JP2018022828A - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element Download PDF

Info

Publication number
JP2018022828A
JP2018022828A JP2016154598A JP2016154598A JP2018022828A JP 2018022828 A JP2018022828 A JP 2018022828A JP 2016154598 A JP2016154598 A JP 2016154598A JP 2016154598 A JP2016154598 A JP 2016154598A JP 2018022828 A JP2018022828 A JP 2018022828A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
core material
conversion element
fiber
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016154598A
Other languages
Japanese (ja)
Inventor
朋也 堤之
Tomoya Tsutsumino
朋也 堤之
徳隆 川瀬
Noritaka Kawase
徳隆 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2016154598A priority Critical patent/JP2018022828A/en
Priority to US15/662,324 priority patent/US20180040797A1/en
Publication of JP2018022828A publication Critical patent/JP2018022828A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Abstract

PROBLEM TO BE SOLVED: To provide a flexible and stretchable thermoelectric conversion element having flexibility.SOLUTION: A thermoelectric conversion element is formed by coating the surface of a stretchable and foldable core material with an organic compound that has thermoelectric conversion characteristics and is selected from a conductive polymer and an organic charge transfer complex. The core material comprises fibers or a twist yarn of fibers. The conductive polymer is a polythiophene-based compound or a polyphenylene vinylene-based compound. The organic charge transfer complex is p- phenylenediamine-tetracyanoquinodimethane or tetrathiafulvalene-tetracyanoquinodimethane.SELECTED DRAWING: Figure 1

Description

本発明は、熱電変換素子に関する。より詳細には、本発明は可撓性を有しフレキシブルで、伸縮可能な熱変換素子に関する。   The present invention relates to a thermoelectric conversion element. More specifically, the present invention relates to a heat conversion element that has flexibility and is flexible and stretchable.

現在、日本では石油および石炭などの一次エネルギーの大半を輸入に頼っているが、これらの一次エネルギーが使用された際には、生じる全エネルギーの約60%が未利用熱エネルギーとして廃棄されているといわれている。   Currently, Japan relies on imports for most primary energy such as oil and coal, but when these primary energy is used, about 60% of the total energy generated is discarded as unused heat energy. It is said that.

この未利用熱エネルギーの活用方法として、注目されているのが熱電発電であり、熱電変換素子を用いることにより、未利用熱エネルギーを利用価値が高い電気エネルギーとして回収でき得ると考えられている。このような理由により、熱電変換素子の開発に注力されており、該素子は単独で、または多数の素子が組み合わされ熱電変換モジュールとして既に地上用発電のみならず、人工衛星用の電源としても利用されている。また、大きな発熱体のみならず、自動車や自動二輪車などの小さな発熱体を利用することも考えられている。   Thermoelectric power generation is attracting attention as a method for utilizing this unused thermal energy, and it is considered that unused thermal energy can be recovered as electrical energy having a high utility value by using a thermoelectric conversion element. For these reasons, efforts have been focused on the development of thermoelectric conversion elements. These elements can be used alone or in combination as a thermoelectric conversion module not only for terrestrial power generation but also as a power source for artificial satellites. Has been. It is also considered to use not only large heating elements but also small heating elements such as automobiles and motorcycles.

従来、熱電変換素子としては、2種類の異なる金属または半導体を接合するか、またはp型半導体とn型半導体とを組み合わせて、使用されてきたが、これらの熱電変換素子は、可撓性に乏しく、フレキシブルなものではなかった。   Conventionally, thermoelectric conversion elements have been used by joining two different metals or semiconductors or combining a p-type semiconductor and an n-type semiconductor. However, these thermoelectric conversion elements are flexible. It was scarce and not flexible.

近年、導電性高分子はフレキシブルな熱電変換素子として注目されている。しかしながら、このような導電性高分子を用いても使用した熱電変換材料によっては、導電性高分子がフレキシブルといえども折り曲げは不可能であり、折り曲げた際には割れが発生し導通しなくなる。
導電性高分子を用いた熱電変換素子を、より薄膜化すればフレキシブル性は向上するが、薄膜化すると導電性高分子の電流方向への断面積が減少し導電性が低下してしまう等の問題がある。
In recent years, conductive polymers have attracted attention as flexible thermoelectric conversion elements. However, even if such a conductive polymer is used, depending on the thermoelectric conversion material used, it is impossible to bend even if the conductive polymer is flexible.
If a thermoelectric conversion element using a conductive polymer is made thinner, the flexibility will be improved. However, if the film is made thinner, the cross-sectional area of the conductive polymer in the current direction will decrease and the conductivity will decrease. There's a problem.

導電性高分子は、熱電変換素子の実用化を考える上で、既に実用化している無機系熱電変換素子と比較し導電性が欠点と言われ、フレキシブル性を向上するために熱電変換素子を薄膜化することは、導電性がさらに低下し、エネルギー変換効率の観点から実用化を考える上で良策とは言い難い。   When considering the practical application of thermoelectric conversion elements, conductive polymers are said to have poor conductivity compared to inorganic thermoelectric conversion elements already in practical use. In order to improve flexibility, the thermoelectric conversion element is made into a thin film. It is difficult to say that it is a good measure in considering practical application from the viewpoint of energy conversion efficiency because the conductivity further decreases.

近年、多孔質マトリクスまたは多孔質基盤を使用して作成される熱電素子を開示し、安価で、極めて可撓性が高く、多くの異なる用途のために熱電素子を作成することを開示している先行技術もあるが、熱電素子の具体的な可撓性については、何ら記載がなされていない(特許文献1)。   In recent years, thermoelectric elements made using a porous matrix or porous substrate have been disclosed, making it cheap, extremely flexible, and making thermoelectric elements for many different applications. Although there is prior art, there is no description about the specific flexibility of the thermoelectric element (Patent Document 1).

また、担体と、該担体の表面に担持された電気伝導性および熱電特性を有する有機化合物と、前記担体と前記有機化合物の界面に担持されたドーパントとを備えた複合体からなる1番目の熱電材料と、多孔質の担体と、該担体の細孔内に担持された電気伝導性及び熱電特性を有する有機化合物とを備えた複合体からなる2番目の熱電材料を開示している先行技術もあるが、これらの該熱電材料の可撓性については、何ら記載されていない(特許文献2)。   Also, a first thermoelectric comprising a composite comprising a carrier, an organic compound having electrical conductivity and thermoelectric properties carried on the surface of the carrier, and a dopant carried at the interface between the carrier and the organic compound. Prior art discloses a second thermoelectric material comprising a composite comprising a material, a porous carrier, and an organic compound having electrical conductivity and thermoelectric properties carried in the pores of the carrier. However, there is no description of the flexibility of these thermoelectric materials (Patent Document 2).

特表2010−510682Special table 2010-510682 特開2006−128444JP 2006-128444 A

本発明は、可撓性を有しフレキシブルで、伸縮可能で安価な熱変換素子の提供を課題とする。   An object of the present invention is to provide a heat conversion element that is flexible, flexible, stretchable and inexpensive.

本発明者らは、上記の課題を解決すべく、鋭意研究を重ねた結果、伸縮可能な芯材表面を導電性高分子で被覆することにより上記の課題を解決することができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by coating the surface of the stretchable core material with a conductive polymer. Completed the invention.

かくして、本発明によれば、伸縮可能で、かつ折り曲げ可能な芯材と、その表面に熱電変換特性を有する導電性高分子および有機電荷移動錯体から選択される有機化合物による被覆膜とを備えたことを特徴とする熱電変換素子が提供される。   Thus, according to the present invention, there is provided a stretchable and foldable core material, and a coating film made of an organic compound selected from a conductive polymer and an organic charge transfer complex having thermoelectric conversion characteristics on its surface. The thermoelectric conversion element characterized by the above is provided.

また、本発明によれば、前記芯材が、非伸縮性材料に伸縮性材料を織り込んだものである前記の熱電変換素子が提供される。   In addition, according to the present invention, there is provided the thermoelectric conversion element, wherein the core material is obtained by weaving a stretchable material into a non-stretchable material.

また、本発明によれば、前記導電性高分子が、ポリチオフェン系化合物またはポリフェニレンビニレン系化合物であり、前記有機電荷移動錯体が、p−フェニレンジアミン・テトラシアノキノジメタンまたはテトラチアフルバレン・テトラシアノキノジメタンである前記の熱電変換素子が提供される。   According to the present invention, the conductive polymer is a polythiophene compound or a polyphenylene vinylene compound, and the organic charge transfer complex is p-phenylenediamine / tetracyanoquinodimethane or tetrathiafulvalene / tetracyano. The thermoelectric conversion element which is quinodimethane is provided.

また、本発明によれば、前記被覆膜が、前記芯材に対して3〜50wt%の割合で含まれる前記の熱電変換素子が提供される。   Moreover, according to this invention, the said thermoelectric conversion element in which the said coating film is contained in the ratio of 3-50 wt% with respect to the said core material is provided.

また、本発明によれば、前記芯材が、繊維または繊維の撚糸からなり、該繊維および撚糸の表面が被覆されている前記の熱電変換素子が提供される。   Moreover, according to this invention, the said core material consists of a fiber or the twisted yarn of a fiber, The said thermoelectric conversion element with which the surface of this fiber and the twisted yarn is coat | covered is provided.

また、本発明によれば、前記被覆膜が、膜厚0.1〜2.5μmを有する前記の熱電変換素子が提供される。   Moreover, according to this invention, the said thermoelectric conversion element in which the said coating film has a film thickness of 0.1-2.5 micrometers is provided.

また、本発明によれば、前記被覆膜が、膜厚0.2〜2.2μmを有する前記の熱電反感素子が提供される。   Moreover, according to this invention, the said thermoelectric reaction element in which the said coating film has a film thickness of 0.2-2.2 micrometers is provided.

また、本発明によれば、前記芯材が、繊維である前記の熱電変換素子が提供される。   Moreover, according to this invention, the said thermoelectric conversion element whose said core material is a fiber is provided.

さらに、本発明によれば、前記熱電変換素子と前記被覆膜がない芯材のみとが、弾性限界での引っ張り応力負荷時において、20%以下の伸長率の差を示す前記の熱電変換素子が提供される。   Furthermore, according to the present invention, only the thermoelectric conversion element and the core material without the coating film exhibit a difference in elongation of 20% or less when a tensile stress is applied at an elastic limit. Is provided.

本発明によれば、伸縮可能で、かつ折り曲げ可能な芯材を構成する各繊維に、熱電特性を有する導電性高分子を薄く付着させることで、熱電変換素子の折り曲げ可能なフレキシブル性を実現し、かつ導電性高分子が付着した繊維が全体として見たときに並列に繋がっていることで、導電性を向上させている。本発明は折り曲げ可能なフレキシブル性と導電性を両立させることが可能である。   According to the present invention, a flexible flexible thermoelectric conversion element is realized by thinly attaching a conductive polymer having thermoelectric properties to each fiber constituting the core material that can be expanded and contracted. In addition, when the fibers to which the conductive polymer is attached are connected in parallel when viewed as a whole, the conductivity is improved. The present invention can achieve both bendable flexibility and conductivity.

また、本発明によれば、上記芯材に導電性高分子を付着させることで、折り曲げた際や引き延ばした際に割れの発生を低減し、導通を維持することができる。   Moreover, according to this invention, by making a conductive polymer adhere to the said core material, generation | occurrence | production of a crack can be reduced when it bends or it extends, and conduction | electrical_connection can be maintained.

さらに、本発明によれば、熱電素子の新規の設計原理と、前記原理を業界で実現するのに必要となる熱電素子の新規の製造プロセスであって、従来のプロセスに比べてプロセスステップの数が大幅に削減され、残ったプロセスステップが連続大量生産に合わせて一貫して調製されるプロセスが提供される。これにより、いずれの所望の種類の熱電材料も使用することができる。   Furthermore, according to the present invention, there is a new design principle of a thermoelectric element and a new manufacturing process of a thermoelectric element necessary for realizing the principle in the industry, which includes the number of process steps as compared with the conventional process. Is provided and a process is provided in which the remaining process steps are consistently prepared for continuous mass production. This allows any desired type of thermoelectric material to be used.

熱電変換素子の部分イメージ図である。It is a partial image figure of a thermoelectric conversion element. 熱電変換素子の部分拡大概念図および該素子を構成する撚糸の拡大断面模式図である。It is the partial expanded conceptual diagram of a thermoelectric conversion element, and the expanded cross-sectional schematic diagram of the twisted yarn which comprises this element. 熱電変換素子の模式図および該素子の起電力方法を示す模式図である。It is the model which shows the schematic diagram of a thermoelectric conversion element, and the electromotive force method of this element.

本発明に用いられる伸縮可能な芯材を構成する繊維としては、綿、絹、麻、モヘヤ、ウール、カシミヤ、アセテート繊維、キュプラ繊維、レーヨン繊維、リヨセル繊維、ポリノジック繊維、再生ポリエステル繊維、エラストマー繊維、スパンデックス繊維、ナイロン繊維、アラミド繊維、ビニロン繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリエステル系繊維、ポリアクリロニトリル系繊維、ポリエチレン系繊維、ポリプロピレン系繊維、ポリウレタン系繊維、ポリクラール繊維、ポリ乳酸繊維、アルギン繊維、ポリトリブチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ゴム繊維、炭素繊維が挙げられる。
非伸縮性繊維と伸縮性繊維は以下のように分類できる。
The fibers constituting the stretchable core material used in the present invention include cotton, silk, hemp, mohair, wool, cashmere, acetate fiber, cupra fiber, rayon fiber, lyocell fiber, polynosic fiber, recycled polyester fiber, and elastomer fiber. , Spandex fiber, nylon fiber, aramid fiber, vinylon fiber, polyvinylidene chloride fiber, polyvinyl chloride fiber, polyester fiber, polyacrylonitrile fiber, polyethylene fiber, polypropylene fiber, polyurethane fiber, polyclar fiber, poly Examples thereof include lactic acid fiber, algin fiber, polytributylene terephthalate fiber, polybutylene terephthalate fiber, rubber fiber, and carbon fiber.
Non-stretchable fibers and stretchable fibers can be classified as follows.

非伸縮性繊維
非伸縮性繊維としては、綿、絹、麻、モヘヤ、ウール、カシミヤ、アセテート繊維、キュプラ繊維、レーヨン繊維、リヨセル繊維、ポリノジック繊維、再生ポリエステル繊維、ナイロン繊維、アラミド繊維、ビニロン繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリエステル系繊維、ポリアクリロニトリル系繊維、ポリエチレン系繊維、ポリプロピレン系繊維、ポリクラール繊維、ポリ乳酸繊維、アルギン酸繊維、炭素繊維等が挙げられる。
Non-stretch fibers Non-stretch fibers include cotton, silk, hemp, mohair, wool, cashmere, acetate fiber, cupra fiber, rayon fiber, lyocell fiber, polynosic fiber, recycled polyester fiber, nylon fiber, aramid fiber, and vinylon fiber. , Polyvinylidene chloride fiber, polyvinyl chloride fiber, polyester fiber, polyacrylonitrile fiber, polyethylene fiber, polypropylene fiber, polyclar fiber, polylactic acid fiber, alginic acid fiber, carbon fiber and the like.

伸縮性繊維
また、伸縮性繊維としてはポリウレタン系繊維、エラストマー繊維、スパンデックス繊維、ポリトリブチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ゴム繊維等が挙げられる。
Stretchable fibers Examples of stretchable fibers include polyurethane fibers, elastomer fibers, spandex fibers, polytributylene terephthalate fibers, polybutylene terephthalate fibers, and rubber fibers.

上記の非伸縮性繊維および伸縮性繊維は、繊維の太さにも依存してそれぞれ1本の繊維を用いて織り込むこともできるが、2本以上の繊維を撚り合わせて撚糸として用いるのが、強度の観点から好ましい。
このようにして得られた非伸縮性繊維(以下、非伸縮性撚糸も意味する)と伸縮性繊維(以下、伸縮性撚糸も意味する)とを織り込んで、本発明で用いられる伸縮可能な芯材を得ることができる。
The above non-stretchable fibers and stretchable fibers can also be woven using one fiber depending on the thickness of the fibers, respectively, but two or more fibers are twisted together and used as a twisted yarn. It is preferable from the viewpoint of strength.
A non-stretchable fiber (hereinafter also referred to as a non-stretchable twisted yarn) obtained in this manner and a stretchable fiber (hereinafter also referred to as a stretchable twisted yarn) are woven into a stretchable core used in the present invention. A material can be obtained.

本発明による熱電変換素子に用いられる素材としては、不織布または織布に伸縮性の材料を織り込むことで伸縮性を持たせた繊維材料が用いられる。この繊維材料を芯材とし、その芯材に導電性高分子を付着させることで、フレキシブルで折り曲げ可能な熱電変換素子が作製される。
導電性高分子は元々フレキシブルな材料ではあるが、導電性高分子を塗布する素材の性質または塗布膜の厚みやなどにより折り曲げると割れが発生したりする。
本発明では上記芯材に導電性高分子を付着させることで、折り曲げた際や引き延ばした際に割れの発生を低減し、導通を維持することができる。
As a material used for the thermoelectric conversion element according to the present invention, a fiber material made stretchable by weaving a stretchable material into a nonwoven fabric or a woven fabric is used. By using this fiber material as a core material and attaching a conductive polymer to the core material, a flexible and foldable thermoelectric conversion element is manufactured.
Although the conductive polymer is originally a flexible material, cracking may occur when it is bent depending on the nature of the material to which the conductive polymer is applied or the thickness of the coating film.
In the present invention, by attaching a conductive polymer to the core material, it is possible to reduce the occurrence of cracking and maintain continuity when bent or stretched.

熱電変換特性を有する有機化合物
熱電変換特性を有する有機化合物は、電気伝導性及び熱電特性を有するものからなり、上記の芯材または芯材を形成する撚糸および撚糸を形成する繊維の表面に被覆される。
このような熱電変換特性を有する有機化合物には、導電性高分子、有機電荷移動錯体等がある。これらはドーパントの種類や濃度を変化させることにより電気抵抗等を調整することができる。
Organic compounds having thermoelectric conversion characteristics Organic compounds having thermoelectric conversion characteristics are composed of those having electrical conductivity and thermoelectric characteristics, and are coated on the core material or the twisted yarn forming the core material and the surface of the fiber forming the twisted yarn. The
Examples of organic compounds having such thermoelectric conversion characteristics include conductive polymers and organic charge transfer complexes. These can adjust electric resistance etc. by changing the kind and density | concentration of a dopant.

導電性高分子
具体的には、共役系の分子構造を有する高分子化合物を用いることができる。
ここで、共役系の分子構造を有する高分子(共役系高分子)とは、高分子の主鎖上の炭素−炭素結合において、一重結合と二重結合とが交互に連なる構造を有している高分子であるか、芳香族化合物または複素環式芳香族化合物が連なる構造を有している高分子を意味する。
Conductive polymer Specifically, a polymer compound having a conjugated molecular structure can be used.
Here, a polymer having a conjugated molecular structure (conjugated polymer) has a structure in which single bonds and double bonds are alternately linked in a carbon-carbon bond on the main chain of the polymer. Or a polymer having a structure in which aromatic compounds or heterocyclic aromatic compounds are linked.

このような共役系高分子としては、チオフェン系化合物、ピロール系化合物、アニリン系化合物、アセチレン系化合物、p−フェニレン系化合物、p−フェニレンビニレン系化合物、p−フェニレンエチニレン系化合物、p−フルオレニレンビニレン系化合物、ポリアセン系化合物、ポリフェナントレン系化合物、金属フタロシアニン系化合物、p−キシリレン系化合物、ビニレンスルフィド系化合物、m−フェニレン系化合物、ナフタレンビニレン系化合物、p−フェニレンオキシド系化合物、フェニレンスルフィド系化合物、フラン系化合物、セレノフェン系化合物、アゾ系化合物、金属錯体系化合物、およびこれらの化合物に置換基を導入した誘導体などをモノマーとし、当該モノマーから誘導される繰り返し単位を有する共役系高分子が挙げられる。   Such conjugated polymers include thiophene compounds, pyrrole compounds, aniline compounds, acetylene compounds, p-phenylene compounds, p-phenylene vinylene compounds, p-phenylene ethynylene compounds, p-full. Olenylene vinylene compound, polyacene compound, polyphenanthrene compound, metal phthalocyanine compound, p-xylylene compound, vinylene sulfide compound, m-phenylene compound, naphthalene vinylene compound, p-phenylene oxide compound, phenylene Sulfuric compounds, furan compounds, selenophene compounds, azo compounds, metal complex compounds, and derivatives having substituents introduced into these compounds as monomers, and conjugated compounds having repeating units derived from the monomers. Min And the like.

また、チオフェン系化合物およびその誘導体から誘導される繰り返し単位を有する共役系高分子としては、ポリチオフェン、チオフェン環に置換基が導入されたモノマーから誘導される繰り返し単位を含む共役系高分子、および、チオフェン環を含む縮合多環構造を有するモノマーから誘導される繰り返し単位を含む共役系高分子が挙げられる。   As the conjugated polymer having a repeating unit derived from a thiophene compound and its derivative, polythiophene, a conjugated polymer containing a repeating unit derived from a monomer having a substituent introduced into the thiophene ring, and Examples thereof include conjugated polymers containing a repeating unit derived from a monomer having a condensed polycyclic structure containing a thiophene ring.

チオフェン環に置換基が導入されたモノマーから誘導される繰り返し単位を含む共役系高分子としては、ポリ−3−メチルチオフェン、ポリ−3−ブチルチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3−シクロヘキシルチオフェン、ポリ−3−(2'−エチルヘキシル)チオフェン、ポリ−3−オクチルチオフェン、ポリ−3−ドデシルチオフェン、ポリ−3−(2'−メトキシエトキシ)メチルチオフェン、ポリ−3−(メトキシエトキシエトキシ)メチルチオフェンなどのポリ−アルキル置換チオフェン類、ポリ−3−メトキシチオフェン、ポリ−3−エトキシチオフェン、ポリ−3−ヘキシルオキシチオフェン、ポリ−3−シクロヘキシルオキシチオフェン、ポリ−3−(2'−エチルヘキシルオキシ)チオフェン、ポリ−3−ドデシルオキシチオフェン、ポリ−3−メトキシ(ジエチレンオキシ)チオフェン、ポリ−3−メトキシ(トリエチレンオキシ)チオフェン、ポリ−(3,4−エチレンジオキシチオフェン)などのポリ−アルコキシ置換チオフェン類、ポリ−3−メトキシ−4−メチルチオフェン、ポリ−3−ヘキシルオキシ−4−メチルチオフェン、ポリ−3−ドデシルオキシ−4−メチルチオフェンなどのポリ−3−アルコキシ置換−4−アルキル置換チオフェン類、ポリ−3−チオヘキシルチオフェン、ポリ−3−チオオクチルチオフェン、ポリ−3−チオドデシルチオフェンなどのポリ−3−チオアルキルチオチオフェン類などが挙げられる。
特に、ポリ−3−アルキルチオフェン類、ポリ−3−アルコキシチオフェン類が好ましい。
Examples of the conjugated polymer containing a repeating unit derived from a monomer having a substituent introduced into a thiophene ring include poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3- Cyclohexylthiophene, poly-3- (2′-ethylhexyl) thiophene, poly-3-octylthiophene, poly-3-dodecylthiophene, poly-3- (2′-methoxyethoxy) methylthiophene, poly-3- (methoxyethoxy) Poly-alkyl-substituted thiophenes such as ethoxy) methylthiophene, poly-3-methoxythiophene, poly-3-ethoxythiophene, poly-3-hexyloxythiophene, poly-3-cyclohexyloxythiophene, poly-3- (2 ′ -Ethylhexyloxy) thiophene, poly-3-do Poly-alkoxy-substituted thiophenes such as siloxythiophene, poly-3-methoxy (diethyleneoxy) thiophene, poly-3-methoxy (triethyleneoxy) thiophene, poly- (3,4-ethylenedioxythiophene), poly- Poly-3-alkoxy-substituted-4-alkyl-substituted thiophenes such as 3-methoxy-4-methylthiophene, poly-3-hexyloxy-4-methylthiophene, poly-3-dodecyloxy-4-methylthiophene, poly- And poly-3-thioalkylthiothiophenes such as 3-thiohexylthiophene, poly-3-thiooctylthiophene, and poly-3-thiododecylthiophene.
In particular, poly-3-alkylthiophenes and poly-3-alkoxythiophenes are preferable.

有機電荷移動錯体
有機電荷移動錯体とは、電子供与体(ドナー、D)と、電子受容体(アクセプター、A)との間での電荷移動により生じる錯体(Dγ+Aγ−、γは電荷移動量)をいう。
有機電荷移動錯体は、そのすべてが電気伝導性及び熱電特性を有しているわけではないが、ある種の有機電荷移動錯体は、相対的に高い電気伝導性及び熱電特性を有している。
Organic charge transfer complex An organic charge transfer complex is a complex (Dγ + Aγ−, where γ is the amount of charge transfer) generated by charge transfer between an electron donor (donor, D) and an electron acceptor (acceptor, A). Say.
Although not all organic charge transfer complexes have electrical conductivity and thermoelectric properties, certain organic charge transfer complexes have relatively high electrical conductivity and thermoelectric properties.

このような有機電荷移動錯体としては、具体的には、p−フェニレンジアミン・テトラシアノキノジメタンや、テトラチアフルバレン・テトラシアノキノジメタン等がある。   Specific examples of such an organic charge transfer complex include p-phenylenediamine / tetracyanoquinodimethane and tetrathiafulvalene / tetracyanoquinodimethane.

ドーパント
ドーパントには、有機化合物から電子を受け取るアクセプタードーパント(p型ドーパント)と、有機化合物に電子を与えるドナードーパント(n型ドーパント)がある。
Dopant The dopant includes an acceptor dopant that receives electrons from an organic compound (p-type dopant) and a donor dopant that gives electrons to the organic compound (n-type dopant).

導電性高分子に添加するアクセプタードーパントとしては、具体的には:
(1)Cl、Br、I、ICl、ICl、IBr、IF等のハロゲン、
(2)PF、AsF、SbF、BF、BCl、BBr、SO等のルイス酸、
(3)HF、HCl、HNO、HSO、HClO、リン酸等のプロトン酸、
(4)2−ナフタレンスルホン酸、ドデシルベンゼンスルホン酸、カンファースルホン酸等の有機酸、
(5)FeCl、FeOCl、TiCl、ZrCl、NbF、NbCl、TaCl、MoF、WF等の遷移金属化合物
などが挙げられる。
Specifically, the acceptor dopant added to the conductive polymer is:
(1) Halogen such as Cl 2 , Br 2 , I 2 , ICl, ICl 3 , IBr, IF,
(2) Lewis acids such as PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 , SO 3 ,
(3) HF, HCl, HNO 3 , H 2 SO 4 , HClO 4 , protonic acid such as phosphoric acid,
(4) Organic acids such as 2-naphthalenesulfonic acid, dodecylbenzenesulfonic acid, camphorsulfonic acid,
(5) Transition metal compounds such as FeCl 3 , FeOCl, TiCl 4 , ZrCl 4 , NbF 5 , NbCl 5 , TaCl 5 , MoF 5 , and WF 6 may be mentioned.

また、ドナードーパントとしては、具体的には:
(1)Li、Na、K、Rb、Cs等のアルカリ金属、
(2)Ca、Sr、Ba等のアルカリ土類金属、
(3)Eu等のランタノイド、
(4)R、R、RAs、R(R:アルキル基)、アセチルコリン、
などが挙げられる。
Specific donor dopants include:
(1) Alkali metals such as Li, Na, K, Rb, Cs,
(2) alkaline earth metals such as Ca, Sr and Ba,
(3) Lanthanoids such as Eu,
(4) R 4 N + , R 4 P + , R 4 As + , R 3 S + (R: alkyl group), acetylcholine,
Etc.

一般的な繊維は直径10〜20μmであり、その密度は、1.2〜1.7g/cmである。導電性高分子の密度は1.5g/cm前後のモノが多く、繊維に0.1μmの厚みで被覆するには導電性高分子を3wt%程度含む必要がある。 A typical fiber has a diameter of 10 to 20 μm and a density of 1.2 to 1.7 g / cm 3 . The density of the conductive polymer is often about 1.5 g / cm 3, and it is necessary to contain about 3 wt% of the conductive polymer in order to cover the fiber with a thickness of 0.1 μm.

また、熱電変換特性を有する導電性高分子および有機電荷移動錯体から選択される有機化合物の含有量が、50wt%程度またはそれ以上にまで達すると2μmほどの厚膜の被覆膜になり繊維と繊維を橋渡しし膜状の導電性被覆膜を形成する箇所が増加するため、フレキシブル性を発揮できず折り曲げや伸長時に割れが発生し抵抗が増大してしまう。   Further, when the content of the organic compound selected from the conductive polymer having the thermoelectric conversion characteristics and the organic charge transfer complex reaches about 50 wt% or more, the coating film becomes a thick film of about 2 μm and the fibers Since the number of places where the fibers are bridged to form a film-like conductive coating film increases, the flexibility cannot be exhibited and cracking occurs at the time of bending or stretching, resulting in an increase in resistance.

上記の導電性高分子は、熱電変換素子用芯材に対して、3〜50wt%、好ましくは5〜25wt%の割合で塗布し、乾燥して芯材表面に被覆膜を形成できる。
この導電性高分子からなる被覆膜の厚みは、0.1〜2.5μm、好ましくは0.2〜2.2μmである。
導電性高分子からなる被覆膜の厚みが、上記の範囲内では折り曲げによる亀裂等がより少なくなるようである。
The conductive polymer can be applied to the core material for a thermoelectric conversion element at a ratio of 3 to 50 wt%, preferably 5 to 25 wt%, and dried to form a coating film on the surface of the core material.
The coating film made of the conductive polymer has a thickness of 0.1 to 2.5 μm, preferably 0.2 to 2.2 μm.
The thickness of the coating film made of a conductive polymer seems to be less likely to cause cracks due to bending within the above range.

導電性高分子を用いた伸縮可能な芯材への被覆形成方法としては、導電性高分子塗布液に該芯材を浸し、自然に浸透させる方法または圧力をかける方法、芯材を容器に入れ減圧あるいは真空にした後に塗液を添加して浸透させる方法、機械的加圧により塗液を浸透させる方法、芯材を圧縮してできる限り空気を抜いた後に塗液に浸し浸透させる方法等がある。   As a method of forming a coating on a stretchable core material using a conductive polymer, the core material is immersed in a conductive polymer coating solution and allowed to naturally penetrate or a pressure is applied, and the core material is placed in a container. A method of adding and infiltrating the coating liquid after reducing pressure or vacuum, a method of infiltrating the coating liquid by mechanical pressure, a method of compressing the core material and removing air as much as possible, and then immersing and infiltrating the coating liquid is there.

導電性高分子を用いた伸縮可能な芯材の被覆膜は、該芯材を構成する非伸縮性または伸縮性材料の各撚糸表面のみならず、これら撚糸の各繊維表面をも被覆できる。   The stretchable core material coating film using a conductive polymer can coat not only the surface of each twisted yarn of the non-stretchable or stretchable material constituting the core material but also the surface of each fiber of these twisted yarns.

芯材は浸透をさせる前に酸やアルカリ、有機溶媒、界面活性剤等での洗浄、表面処理等を行うことも可能である。
乾燥は減圧、加熱下での乾燥、真空下での乾燥、窒素等の不活性雰囲気下などで乾燥を行うことも可能である。
The core material can be washed with an acid, an alkali, an organic solvent, a surfactant, or the like before being infiltrated, surface treatment, or the like.
Drying may be performed under reduced pressure, drying under heating, drying under vacuum, or an inert atmosphere such as nitrogen.

以下、実施例および比較例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例だけに何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited only to the following Example.

塗液の調整
固形分濃度1.5wt%のポリ(3,4−エチレンジオキシチオフェン):ポリ(4−スチレンスルホン酸塩)(PEDOT:PSS)溶液(綜研化学株式会社製WED-SM)10gを十分に撹拌して塗液とする。該塗液の導電性高分子濃度は1.5wt%である。
Preparation of coating solution Poly (3,4-ethylenedioxythiophene) with a solid content concentration of 1.5 wt%: Poly (4-styrenesulfonate) (PEDOT: PSS) solution (WED-SM, manufactured by Soken Chemical Co., Ltd.) 10 g Is sufficiently stirred to obtain a coating solution. The conductive polymer concentration of the coating liquid is 1.5 wt%.

実施例1
綿にスパンデックスを織り込んだ伸縮包帯(白十字株式会社製、幅50mm)を芯材として使用する。この伸縮包帯を幅50mm、長さ130mm切り出し芯材として用いるが、秤量したところ0.72gであった。
該芯材に上記の塗液を1.5g滴下し、圧力をかけることにより芯材に塗液を十分に染み込ませた後に空気中、70℃10分加熱し乾燥させることで、熱電変換素子中において導電性高分子3wt%の被覆膜が形成された折り曲げや伸縮可能な熱電変換素子を作製した。
Example 1
An elastic bandage (white cross, 50 mm width) in which spandex is woven into cotton is used as the core material. This stretch bandage was cut out to a width of 50 mm and a length of 130 mm and used as a core material. When weighed, it was 0.72 g.
In the thermoelectric conversion element, 1.5 g of the coating liquid is dropped onto the core material, and the core liquid is sufficiently infiltrated by applying pressure to the core material, and then heated and dried in air at 70 ° C. for 10 minutes. A thermoelectric conversion element that can be folded and stretched and on which a coating film of 3 wt% of a conductive polymer was formed was prepared.

実施例2
実施例1と同様の芯材に塗液を1.5g滴下し、揉むことで芯材に塗液を十分に染み込ませた後に70℃10分加熱し乾燥させる工程を8回繰り返し、導電性高分子の割合が24wt%の被覆膜が形成された折り曲げ伸縮可能な熱電変換素子を作製した。
Example 2
The step of dripping 1.5 g of the coating liquid on the same core material as in Example 1 and thoroughly soaking the core liquid in the core material and heating and drying at 70 ° C. for 10 minutes is repeated 8 times. A thermoelectric conversion element that can be bent and stretched and formed with a coating film having a molecular ratio of 24 wt% was produced.

実施例3
芯材として綿にゴムを織り込んだ伸縮性の布を使用した。該芯材は幅50mm、長さ130mm、重量0.7gである。
該芯材に塗液を1.5g滴下し、揉むことで芯材に塗液を十分に染み込ませた後に70℃10分加熱し乾燥させる工程を5回繰り返し、導電性高分子の割合が14wt%の被覆膜が形成された折り曲げ伸縮可能な熱電変換素子を作製した。
Example 3
A stretchable cloth in which rubber is woven into cotton was used as a core material. The core material has a width of 50 mm, a length of 130 mm, and a weight of 0.7 g.
The step of dripping 1.5 g of the coating liquid onto the core material and thoroughly immersing the coating liquid into the core material and then heating and drying at 70 ° C. for 10 minutes was repeated 5 times, and the ratio of the conductive polymer was 14 wt. A thermoelectric conversion element capable of bending expansion and contraction on which a coating film of% was formed was produced.

実施例4
芯材としてアラミド繊維にスパンデックスを織り込んだ伸縮性の布を使用した。該芯材は幅50mm、長さ130mm、重量0.75gである。
該芯材に塗液を1.5g滴下し、揉むことで芯材に塗液を十分に染み込ませた後に70℃10分加熱し乾燥させる工程を5回繰り返し、導電性高分子の割合が13wt%の被覆膜が形成された折り曲げ伸縮可能な熱電変換素子を作製した。
Example 4
A stretchable cloth in which spandex was woven into aramid fiber was used as a core material. The core material has a width of 50 mm, a length of 130 mm, and a weight of 0.75 g.
The step of dripping 1.5 g of the coating liquid into the core material and thoroughly soaking the core material in the core material, followed by heating and drying at 70 ° C. for 10 minutes, was repeated 5 times. The ratio of the conductive polymer was 13 wt. A thermoelectric conversion element capable of bending expansion and contraction on which a coating film of% was formed was produced.

実施例5
芯材として綿にスパンデックスを織り込んだ伸縮包帯(白十字株式会社製)を使用する。該芯材は幅50mmである。該芯材を幅50mm、長さ130mm切り出す。切り出した芯材は0.72gであった。SIGMA-ALDRICH社のポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン](以下MEH-PPVという)をクロロホルムに溶解させ、1重量%溶液の塗布液を調製した。この塗布液を該芯材に1.5g滴下し揉むことで芯材に塗液を十分に染み込ませた後、室温(23℃)で減圧(2mmHg(約266N・m−2))乾燥を2時間行う工程を10回繰り返した。その後、ヨウ素をドーピング剤として気相ドーピング(蒸気圧1mmHg(約133N・m−2))を行い、導電性高分子の割合が17wt%の被覆膜が形成された折り曲げ伸縮可能な熱電変換素子を作製した。
Example 5
An elastic bandage (manufactured by White Cross Co., Ltd.) in which spandex is woven into cotton is used as the core material. The core material has a width of 50 mm. The core material is cut out with a width of 50 mm and a length of 130 mm. The cut out core material was 0.72 g. SIGMA-ALDRICH poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene] (hereinafter referred to as MEH-PPV) was dissolved in chloroform to prepare a 1 wt% solution. . After dripping 1.5 g of this coating solution into the core material, the core material is sufficiently impregnated with the coating material, and then drying under reduced pressure (2 mmHg (about 266 N · m −2 )) at room temperature (23 ° C.) is performed. The process of time was repeated 10 times. Thereafter, a thermoelectric conversion element capable of bending expansion and contraction in which a coating film having a conductive polymer ratio of 17 wt% is formed by vapor phase doping (vapor pressure 1 mmHg (about 133 N · m −2 )) using iodine as a doping agent. Was made.

実施例6
実施例1と同様の芯材に塗液を1.5g滴下し、揉むことで芯材に塗液を十分に染み込ませた後に70℃10分加熱し乾燥させる工程を15回繰り返し、導電性高分子の割合が44wt%の被覆膜が形成された折り曲げ伸縮可能な熱電変換素子を作製した。
Example 6
A step of dropping 1.5 g of the coating liquid onto the same core material as in Example 1 and thoroughly soaking the core liquid in the core material by heating and drying at 70 ° C. for 10 minutes was repeated 15 times to increase the conductivity. A thermoelectric conversion element capable of bending expansion and contraction on which a coating film having a molecular ratio of 44 wt% was formed was produced.

実施例7
実施例1と同様の芯材に塗液を1.3g滴下し、揉むことで芯材に塗液を十分に染み込ませた後に70℃10分加熱し乾燥させる工程を2回繰り返し、導電性高分子の割合が5wt%の被覆膜が形成された折り曲げ伸縮可能な熱電変換素子を作製した。
Example 7
A step of dripping 1.3 g of the coating liquid on the same core material as in Example 1 and thoroughly immersing the coating liquid in the core material and then heating and drying at 70 ° C. for 10 minutes was repeated twice. A thermoelectric conversion element that can be bent and stretched and formed with a coating film having a molecular ratio of 5 wt% was produced.

実施例8
実施例1と同様の芯材に塗液を1.5g滴下し、揉むことで芯材に塗液を十分に染み込ませた後に70℃10分加熱し乾燥させる工程を7回繰り返し、導電性高分子の割合が20wt%の被覆膜が形成された折り曲げ伸縮可能な熱電変換素子を作製した。
Example 8
A step of dripping 1.5 g of the coating liquid on the same core material as in Example 1 and thoroughly immersing the coating liquid into the core material, followed by heating and drying at 70 ° C. for 10 minutes, was repeated 7 times to increase the conductivity. A thermoelectric conversion element that can be bent and stretched and formed with a coating film having a molecular ratio of 20 wt% was produced.

実施例9
実施例1と同様の芯材に塗液を1.5g滴下し、揉むことで芯材に塗液を十分に染み込ませた後に70℃10分加熱し乾燥させる工程を17回繰り返し、導電性高分子の割合が50wt%の被覆膜が形成された折り曲げ伸縮可能な熱電変換素子を作製した。
Example 9
The step of dripping 1.5 g of the coating liquid onto the same core material as in Example 1 and thoroughly immersing the coating liquid into the core material, followed by heating and drying at 70 ° C. for 10 minutes, was repeated 17 times. A thermoelectric conversion element that can be bent and stretched and formed with a coating film having a molecular ratio of 50 wt% was produced.

比較例1
芯材として綿にスパンデックスを織り込んだ伸縮包帯(白十字株式会社製)を使用する。該芯材は幅50mmである。該芯材を幅50mm、長さ130mm切り出す。切り出した芯材は0.77gであった。該芯材に塗液を0.3g滴下し、揉むことで芯材に塗液を十分に染み込ませた後に70℃10分加熱し乾燥させることで、導電性高分子の割合が0.5wt%の被覆膜が形成された折り曲げ伸縮可能な熱電変換素子を作製した。
Comparative Example 1
An elastic bandage (manufactured by White Cross Co., Ltd.) in which spandex is woven into cotton is used as the core material. The core material has a width of 50 mm. The core material is cut out with a width of 50 mm and a length of 130 mm. The core material cut out was 0.77 g. By dripping 0.3 g of the coating liquid on the core material and thoroughly saturating the coating liquid into the core material, the coating liquid is heated at 70 ° C. for 10 minutes and dried, so that the ratio of the conductive polymer is 0.5 wt%. A thermoelectric conversion element capable of bending expansion and contraction on which the above coating film was formed was produced.

比較例2
芯材として綿にスパンデックスを織り込んだ伸縮包帯(白十字株式会社製)を使用する。該芯材は幅50mmである。該芯材を幅50mm、長さ130mm切り出す。切り出した芯材は0.72gであった。該芯材に塗液を1.5g滴下し、揉むことで芯材に塗液を十分に染み込ませた後に70℃10分加熱し乾燥させる工程を20回繰り返し、導電性高分子の割合が60wt%の被覆膜が形成された熱電変換素子を作製した。
Comparative Example 2
An elastic bandage (manufactured by White Cross Co., Ltd.) in which spandex is woven into cotton is used as the core material. The core material has a width of 50 mm. The core material is cut out with a width of 50 mm and a length of 130 mm. The cut out core material was 0.72 g. The step of dripping 1.5 g of the coating liquid onto the core material and thoroughly soaking the core material in the core material, followed by heating and drying at 70 ° C. for 10 minutes, was repeated 20 times, and the proportion of the conductive polymer was 60 wt. A thermoelectric conversion element on which a coating film was formed was prepared.

比較例3
芯材として綿にスパンデックスを織り込んだ伸縮包帯(白十字株式会社製)を使用する。該芯材は幅50mmである。該芯材を幅50mm、長さ130mm切り出す。切り出した芯材は0.75gであった。熱電変換材料としてBiTeを使用した。平均粒径2.3μmのBiTe粉末0.25gを芯材に均一に付着させ、放電プラズマ焼結装置にて、昇温速度100℃/min、焼結温度300℃、焼結圧力49MPa、焼結時間3minの条件で焼結して熱電変換素子を作製したが完全な被覆膜は形成されなかった。
Comparative Example 3
An elastic bandage (manufactured by White Cross Co., Ltd.) in which spandex is woven into cotton is used as the core material. The core material has a width of 50 mm. The core material is cut out with a width of 50 mm and a length of 130 mm. The core material cut out was 0.75 g. Bi 2 Te 3 was used as the thermoelectric conversion material. 0.25 g of Bi 2 Te 3 powder having an average particle size of 2.3 μm was uniformly attached to the core, and the temperature was increased at a rate of 100 ° C./min, the sintering temperature was 300 ° C., and the sintering pressure was 49 MPa using a discharge plasma sintering apparatus. Although a thermoelectric conversion element was produced by sintering under the condition of a sintering time of 3 min, a complete coating film was not formed.

比較例4
200mm×200mmの厚み10mmのシリコンゴム板の中央を150mm×150mmくりぬきシリコンゴム板のマスクを作製した。該マスクを、200mm×200mmの厚み0.5mmシリコンゴム板の台座上にのせ、マスク中央150mm×150mmのくりぬいた部分に塗液を10g流しこみ、70℃60分加熱し乾燥させ厚み3mmのシリコンゴム板のマスクを剥がし、厚み5.2μmの熱電変換材料を作製した。
該熱電変換材料をシリコンゴム板の台座ごと切断し、台座に乗った状態で各評価を行った。ただし、熱電変換材料含有前後の伸長率差の評価については、熱電変換素子100%の比較例のため熱電変換材料含有前が存在せず実施していない。
Comparative Example 4
A silicon rubber plate mask was prepared by hollowing out a center of a silicon rubber plate of 200 mm × 200 mm and a thickness of 10 mm. The mask is placed on a pedestal of a 200 mm × 200 mm thick 0.5 mm silicon rubber plate, 10 g of the coating solution is poured into the hollowed portion of the center of the mask 150 mm × 150 mm, heated at 70 ° C. for 60 minutes, dried, and 3 mm thick silicon The mask of the rubber plate was peeled off to produce a thermoelectric conversion material having a thickness of 5.2 μm.
The thermoelectric conversion material was cut together with the pedestal of the silicon rubber plate, and each evaluation was performed in the state of being on the pedestal. However, the evaluation of the difference in elongation rate before and after the inclusion of the thermoelectric conversion material is not performed because there is no pre-thermoelectric conversion material inclusion because of a comparative example of the thermoelectric conversion element 100%.

測定評価方法
試験片作製方法
縦5cm横13cmの四角形の試験片を作製し、図3に示すように、その伸長方向の両端を銅電極に電気的に接続する。接続する例としては銅テープに試験片の端部を乗せ、導電性銀ペースト(ドータイト:藤倉化成社製)で銅テープと試験片を電気的に接続し固定する方法がある。
Measurement Evaluation Method Test Piece Preparation Method A square test piece having a length of 5 cm and a width of 13 cm is prepared, and both ends in the extending direction are electrically connected to copper electrodes as shown in FIG. As an example of connection, there is a method in which an end of a test piece is placed on a copper tape, and the copper tape and the test piece are electrically connected and fixed with a conductive silver paste (Dotite: manufactured by Fujikura Kasei Co., Ltd.).

起電力確認方法
図3に示すように両端の電極を高温側60±5℃、低温側20±5℃に維持し、デジタルエレクトロメータTR8652(ADVANTEST社製)に各電極とアースを接続することで電極間の電圧を測定しゼーベック効果による起電力を確認した。
Method for confirming electromotive force As shown in FIG. 3, the electrodes at both ends are maintained at 60 ± 5 ° C. on the high temperature side and 20 ± 5 ° C. on the low temperature side, and each electrode and ground are connected to the digital electrometer TR8652 (manufactured by ADVANTEST). The voltage between the electrodes was measured to confirm the electromotive force due to the Seebeck effect.

抵抗の測定法
図3におけるデジタルエレクトロメータTR8652(ADVANTEST社製)を、ロレスタGPMCP-T600(株式会社三菱化学アナリテック社製)の装置に替えて4端子法にて測定した。
Measurement Method of Resistance The digital electrometer TR8652 (manufactured by ADVANTEST) in FIG. 3 was measured by a four-terminal method in place of the apparatus of Loresta GPCCP-T600 (manufactured by Mitsubishi Chemical Analytech Co., Ltd.).

折り曲げ耐性試験
上記の試験片を電極の中間地点の同じ位置で180°および−180°往復折り曲げを行う。150回往復折り曲げを行い、折り曲げ前の素子の抵抗と折り曲げ後の素子の抵抗を測定し、抵抗の増加率を求めた。
抵抗の増加率%は以下の式により算出した。
抵抗の増加率(%)=試験後の抵抗値/試験前の抵抗値×100
Bending resistance test The test piece is subjected to 180 ° and −180 ° reciprocal bending at the same position in the middle of the electrode. The reciprocal bending was performed 150 times, the resistance of the element before bending and the resistance of the element after bending were measured, and the rate of increase in resistance was obtained.
The percentage increase in resistance was calculated by the following formula.
Resistance increase rate (%) = resistance value after test / resistance value before test × 100

折り曲げ耐性の評価
A:抵抗の増加率が110%以下
B:抵抗の増加率が110〜120%
C:抵抗の増加率が120%より上
D:折り曲げ前の抵抗値が10000以上
Evaluation of bending resistance A: Increase rate of resistance is 110% or less B: Increase rate of resistance is 110 to 120%
C: Resistance increase rate is higher than 120% D: Resistance value before bending is 10000 or more

伸縮耐性試験
試験片を通常時の1.5倍の長さに伸縮可能方向に伸長させた状態で抵抗測定を行い、抵抗の増加率を求める。抵抗の増加率%は、以下の式により算出した。
抵抗の増加率(%)=試験後の抵抗値/試験前の抵抗値×100
Stretch resistance test The resistance is measured in a state in which the test piece is stretched in the stretchable direction to a length 1.5 times that of normal, and the rate of increase in resistance is obtained. The percentage increase in resistance was calculated by the following formula.
Resistance increase rate (%) = resistance value after test / resistance value before test × 100

伸縮体制の評価
A:抵抗の増加率が110%以下
B:抵抗の増加率が110〜120%
C:抵抗の増加率が120%より上
D:伸長前の抵抗値が10000以上
Evaluation of expansion and contraction system A: Resistance increase rate is 110% or less B: Resistance increase rate is 110 to 120%
C: Increase rate of resistance is higher than 120% D: Resistance value before elongation is 10,000 or more

熱電変換材料含有前後の伸長率差の確認方法
熱電変換素子含有前に基材の弾性限界での伸長率を測定する。測定方法は、基材の伸長方向の両端1cmをクリップなどではさみ固定し、十分な高さに吊るした状態で下端の固定した部分に重りを吊るして伸縮を確認し、弾性限界となる荷重を測定し、弾性限界の伸長率を測定する。熱電変換材料含有後についても同様に、弾性限界の伸長率を測定する。熱電変換材料含有前後の伸長率差は、以下の式により算出した。
伸長率差=熱電変換材料含浸前の弾性限界の伸長率−熱電変換材料含浸後の弾性限界の伸長率
Method for confirming difference in elongation rate before and after containing thermoelectric conversion material The elongation rate at the elastic limit of the substrate is measured before the thermoelectric conversion element is contained. The measuring method is as follows: 1 cm in both ends of the base material in the direction of elongation is fixed with a clip, etc., suspended in a sufficient height, a weight is suspended on the fixed part at the lower end, the expansion and contraction is confirmed, and the load that becomes the elastic limit is applied. Measure the elastic limit elongation. Similarly, the elongation at the elastic limit is also measured after the thermoelectric conversion material is contained. The difference in elongation rate before and after containing the thermoelectric conversion material was calculated by the following equation.
Elongation rate difference = Elastic limit elongation rate before impregnation of thermoelectric conversion material-Elastic limit elongation rate after impregnation of thermoelectric conversion material

熱電変換材料含有前後の伸長率差の評価
A:伸長率差が10%以下
B:伸長率差が10〜20%
C:伸長率差が20%より上
D:弾性変化しない
Evaluation of elongation rate difference before and after containing thermoelectric conversion material A: Elongation rate difference is 10% or less B: Elongation rate difference is 10-20%
C: Elongation rate difference is higher than 20% D: Elasticity does not change

熱電変換材料含有前後の弾性限界応力負荷時の伸長率の測定方法と定義
応力が無い状態での芯材の長さを測定し、弾性限界の引っ張り応力を加えた状態での芯材の長さを測定し、熱電変換材料含有前の伸長率を求めた。
同様に、応力が無い状態での熱電変換素子の長さを測定し、弾性限界の引っ張り応力を加えた状態での熱電変換素子の長さを測定し、熱電変換材料含有後の伸長率を以下の式により算出した。
伸長率(%)=弾性限界の引っ張り応力を加えた状態での長さ/応力が無い状態での長さ×100
Measurement method and definition of elongation rate when elastic limit stress is applied before and after thermoelectric conversion material is contained Measurement of length of core material without stress and length of core material with elastic limit tensile stress applied Was measured, and the elongation before the thermoelectric conversion material was contained was determined.
Similarly, measure the length of the thermoelectric conversion element in the absence of stress, measure the length of the thermoelectric conversion element in the state where the tensile stress of the elastic limit is applied, and the elongation rate after containing the thermoelectric conversion material is as follows: It was calculated by the following formula.
Elongation rate (%) = length with tensile limit of elastic limit / length without stress × 100

被覆厚の測定
被覆前の芯材(繊維状)の平均の大きさ(繊維の径)および被覆後の平均の大きさについてはSEMにて測定し被覆前後の平均の大きさの差を被覆膜の膜厚とした。
Measurement of coating thickness The average size (fiber diameter) of the core material (fibrous) before coating and the average size after coating are measured by SEM to cover the difference in average size before and after coating. The film thickness was taken.

総合評価
起電力が確認できないものは評価をDとした。
折り曲げ耐性、伸縮耐性、伸長率の評価結果の基づく総合評価
A:3項目ともA
B:1項目以上にB、他にA
C:1項目以上にC、他にAまたはB
D:1項目以上にD
Comprehensive evaluation The evaluation was set to D when the electromotive force could not be confirmed.
Comprehensive evaluation based on evaluation results of bending resistance, stretch resistance, and elongation rate A: All three items are A
B: B for 1 item or more, A for others
C: C for one or more items, A or B for others
D: D over 1 item

前記の実施例1〜9および比較例1〜4で作製した熱電変換素子について、上記の折り曲げ耐性、伸縮耐性、伸長率の各項目に対して評価した結果を以下の表にまとめて示す。   About the thermoelectric conversion element produced by the said Examples 1-9 and Comparative Examples 1-4, the result evaluated with respect to each item of said bending tolerance, expansion-strength tolerance, and an elongation rate is put together in the following table | surfaces.

実施例1〜9で得られた熱電変換素子は、膜厚0.1〜2.5μmの被覆膜を有していることが判明した。
また、熱電変換素子を180°〜−180°まで150回往復折り曲げを行った耐性評価において、実施例1〜9で得られた熱電変換素子は、折り曲げ前後の抵抗の変化において105〜195%の抵抗増加率を示し、導電性を維持していることが分かった。
It turned out that the thermoelectric conversion element obtained in Examples 1-9 has a coating film with a film thickness of 0.1-2.5 micrometers.
Moreover, in the tolerance evaluation which performed 150 times reciprocating bending of the thermoelectric conversion element from 180 ° to −180 °, the thermoelectric conversion elements obtained in Examples 1 to 9 were 105 to 195% in the change in resistance before and after the bending. The resistance increase rate was shown, and it was found that the conductivity was maintained.

また、実施例1〜9で得られた熱電変換素子の抵抗値と、該素子を1.5倍の長さに伸長させた状態での抵抗値を比較したところ、抵抗の増加率は、100〜200%で、該素子が導電性を維持していることが判明した。
さらに、導電性高分子または有機電荷移動錯体による処理前の芯材と、処理後に得られた熱電変換素子の伸長率の変化を評価したところ、伸長率の差は1〜20%の範囲内であることが判明した。
Moreover, when the resistance value of the thermoelectric conversion element obtained in Examples 1 to 9 was compared with the resistance value in a state where the element was extended to a length of 1.5 times, the rate of increase in resistance was 100. It was found that the element maintained conductivity at ˜200%.
Furthermore, when the change of the elongation rate of the core material before the treatment with the conductive polymer or the organic charge transfer complex and the thermoelectric conversion element obtained after the treatment was evaluated, the difference in the elongation rate is within a range of 1 to 20%. It turned out to be.

最後に、実施例1〜9で得られた熱電変換素子の起電力を評価したところ、9〜42μV/Kであることが判明した。   Finally, when the electromotive force of the thermoelectric conversion elements obtained in Examples 1 to 9 was evaluated, it was found to be 9 to 42 μV / K.

一方、実施例1〜9および比較例1、2で得られた熱電変換素子の評価結果を、折り曲げ耐性の観点からみてみると、熱電変換材料割合が熱電変換素子用芯材に対して、3〜50wt%がよく、より好ましくは伸縮耐性も良好な5〜25wt%であることが判明した。   On the other hand, when the evaluation results of the thermoelectric conversion elements obtained in Examples 1 to 9 and Comparative Examples 1 and 2 are viewed from the viewpoint of bending resistance, the thermoelectric conversion material ratio is 3 with respect to the core material for thermoelectric conversion elements. It has been found that it is preferably ˜50 wt%, more preferably 5 to 25 wt% with good stretch resistance.

熱電変換材料の割合が3wt%より小さい場合には完全な被覆膜が形成され難く、被覆漏れが起こり得ることが判明した。
また、熱電変換材料の割合が50wt%より高い場合には、被覆膜の可撓性が乏しくなり、熱電変換材料による被覆膜に亀裂が入ることによる性能低下が起こることが判明した。
It has been found that when the ratio of the thermoelectric conversion material is less than 3 wt%, it is difficult to form a complete coating film, and coating leakage may occur.
Moreover, when the ratio of the thermoelectric conversion material was higher than 50 wt%, it became clear that the flexibility of a coating film became poor and the performance fall by cracking the coating film by a thermoelectric conversion material occurred.

被覆膜の膜厚については折り曲げ耐性の観点から0.1〜2.5μmがよく、より好ましくは伸縮耐性も良好な0.2〜2.2μmであればよいことが分かる。
被覆膜厚が0.1μmより小さい場合は完全な被覆膜が形成されないことがあり、被覆漏れにより、熱電変換素子の性能低下が起こることが分かった。
また、被覆膜の膜厚が2.5μmより厚い場合には、被覆膜に亀裂が入ることによる熱電変換素子の性能低下が起こることが分かった。
また、熱電変換材料含有前後での伸長率の差が20%以下であれば、熱電変換材料による被覆膜形成前の芯材と比較しても遜色なく使用でき、10%以下なら繰り返しにも強くより好ましいことが分かった。
The film thickness of the coating film is 0.1 to 2.5 [mu] m from the viewpoint of bending resistance, and more preferably 0.2 to 2.2 [mu] m with good stretch resistance.
It was found that when the coating film thickness is smaller than 0.1 μm, a complete coating film may not be formed, and the performance of the thermoelectric conversion element is deteriorated due to coating leakage.
Moreover, when the film thickness of the coating film was thicker than 2.5 micrometers, it turned out that the performance fall of the thermoelectric conversion element by a crack entering a coating film occurs.
In addition, if the difference in elongation before and after the inclusion of the thermoelectric conversion material is 20% or less, it can be used inferior to the core material before the formation of the coating film with the thermoelectric conversion material. Strongly more preferable.

一方、比較例1で得られた熱電変換素子では、導電性高分子の割合が低すぎるため、1枚の熱電変換素子内における繊維間の薄膜導電性高分子が十分に電気的に接続することが出来ず、折り曲げ時や伸縮時に導通を確認できず、起電力も確認できなかった。
比較例2で得られた熱電変換素子では、導電性高分子の割合が高すぎるため、繊維間の導電性高分子が厚膜化しフレキシブル性が損なわれた。その結果、折り曲げや伸長時に割れが発生し、抵抗の増加や弾性変化しない等の問題が発生した。
On the other hand, in the thermoelectric conversion element obtained in Comparative Example 1, since the ratio of the conductive polymer is too low, the thin film conductive polymer between fibers in one thermoelectric conversion element is sufficiently electrically connected. It was not possible to confirm continuity during bending or expansion and contraction, and electromotive force could not be confirmed.
In the thermoelectric conversion element obtained in Comparative Example 2, since the proportion of the conductive polymer was too high, the conductive polymer between the fibers was thickened and the flexibility was impaired. As a result, cracks occurred during bending or stretching, and problems such as increased resistance and no elastic change occurred.

比較例3で得られた熱電変換素子では、非伸縮性繊維と伸縮性繊維が焼結によって分解され、芯材に熱電変換材料を膜化することが出来なかった。
無機系の熱電変換素子では焼結によって成型することが一般的であるため無機系の熱電変換材料を用いるには、さらなる改善が必要であることが分かった。
In the thermoelectric conversion element obtained in Comparative Example 3, the non-stretchable fiber and the stretchable fiber were decomposed by sintering, and the thermoelectric conversion material could not be formed into a core material.
It has been found that further improvement is necessary to use an inorganic thermoelectric conversion material because inorganic thermoelectric conversion elements are generally molded by sintering.

比較例4で得られた熱電変換素子では、多少のフレキシブル性はあるものの、折り曲げると割れが発生し、また伸長についても1.5倍の長さに伸長させることができず割れた。   The thermoelectric conversion element obtained in Comparative Example 4 had some flexibility, but cracked when bent, and could not be stretched to 1.5 times as long as it was cracked.

本発明によれば、伸縮可能な芯材を構成する各繊維に、熱電特性を有する導電性高分子を薄く付着させることで、熱電変換素子の折り曲げ可能なフレキシブル性を実現し、かつ導電性高分子が付着した繊維が全体として見たときに並列に繋がっていることで、導電性を向上させている。本発明は折り曲げ可能なフレキシブル性と導電性を両立させることが可能である。   According to the present invention, a flexible conductive polymer having thermoelectric properties is thinly attached to each of the fibers constituting the stretchable core material, thereby realizing the flexibility in which the thermoelectric conversion element can be bent and having high conductivity. When the fibers to which molecules are attached are connected in parallel when viewed as a whole, the conductivity is improved. The present invention can achieve both bendable flexibility and conductivity.

Claims (9)

伸縮可能で、かつ折り曲げ可能な芯材と、その表面に熱電変換特性を有する導電性高分子および有機電荷移動錯体から選択される有機化合物による被覆膜とを備えたことを特徴とする熱電変換素子。   A thermoelectric conversion comprising: a stretchable and foldable core material; and a coating film made of an organic compound selected from a conductive polymer having thermoelectric conversion characteristics and an organic charge transfer complex on the surface thereof element. 前記芯材が、非伸縮性材料に伸縮性材料を織り込んだものである請求項1に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the core material is a non-stretchable material woven with a stretchable material. 前記導電性高分子が、ポリチオフェン系化合物またはポリポリフェニレンビニレン系化合物であり、前記有機電荷移動錯体が、p−フェニレンジアミン・テトラシアノキノジメタンまたはテトラチアフルバレン・テトラシアノキノジメタンである請求項1または2に記載の熱電変換素子。   The conductive polymer is a polythiophene compound or a polypolyphenylene vinylene compound, and the organic charge transfer complex is p-phenylenediamine / tetracyanoquinodimethane or tetrathiafulvalene / tetracyanoquinodimethane. The thermoelectric conversion element according to 1 or 2. 前記被覆膜が、前記芯材に対して3〜50wt%の割合で含まれる請求項1〜3のいずれか1つに記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 3, wherein the coating film is included in a ratio of 3 to 50 wt% with respect to the core material. 前記芯材が、繊維または繊維の撚糸からなり、該繊維および撚糸の表面が被覆されている請求項1〜4のいずれか1つに記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 4, wherein the core material is made of a fiber or a twisted yarn of a fiber, and the surface of the fiber and the twisted yarn is covered. 前記被覆膜が、膜厚0.1〜2.5μmを有する請求項1〜5のいずれか1つに記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the coating film has a film thickness of 0.1 to 2.5 μm. 前記被覆膜が、膜厚0.2〜2.2μmを有する請求項1〜6にいずれか1つに記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the coating film has a film thickness of 0.2 to 2.2 μm. 前記芯材が、繊維である請求項1〜7のいずれか1つに記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the core material is a fiber. 前記熱電変換素子と前記被覆膜がない芯材のみとが、弾性限界での引っ張り応力負荷時において、20%以下の伸長率の差を示す請求項1〜8のいずれか1つに記載の熱電変換素子。

The thermoelectric conversion element and only the core material without the coating film exhibit a difference in elongation of 20% or less at the time of tensile stress load at an elastic limit. Thermoelectric conversion element.

JP2016154598A 2016-08-05 2016-08-05 Thermoelectric conversion element Pending JP2018022828A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016154598A JP2018022828A (en) 2016-08-05 2016-08-05 Thermoelectric conversion element
US15/662,324 US20180040797A1 (en) 2016-08-05 2017-07-28 Thermoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016154598A JP2018022828A (en) 2016-08-05 2016-08-05 Thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2018022828A true JP2018022828A (en) 2018-02-08

Family

ID=61069771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016154598A Pending JP2018022828A (en) 2016-08-05 2016-08-05 Thermoelectric conversion element

Country Status (2)

Country Link
US (1) US20180040797A1 (en)
JP (1) JP2018022828A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677066C1 (en) * 2018-02-07 2019-01-15 Вячеслав Сергеевич Перфильев Thermal thread-thermal cable
CN112768597B (en) * 2021-02-22 2022-02-22 湖南大学 Method for enhancing thermoelectric performance of organic semiconductor and organic semiconductor thermoelectric device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2016082132A (en) * 2014-10-20 2016-05-16 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2016082132A (en) * 2014-10-20 2016-05-16 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module

Also Published As

Publication number Publication date
US20180040797A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
Li et al. High‐performance polypyrrole/graphene/SnCl2 modified polyester textile electrodes and yarn electrodes for wearable energy storage
Jia et al. An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors
Feng et al. Stretchable, healable, adhesive, and redox-active multifunctional supramolecular hydrogel-based flexible supercapacitor
Zheng et al. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics
Lu et al. Superelastic hybrid CNT/graphene fibers for wearable energy storage
化学 Recent advances of intrinsically conductive polymers
Yue et al. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications
Tong et al. Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors
Sun et al. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices
Mao et al. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification
Xu et al. Carbon Nanotube Fiber Based Stretchable Wire-Shaped Supercapacitors.
Ambade et al. Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density
Lei et al. Commercial Dacron cloth supported Cu (OH) 2 nanobelt arrays for wearable supercapacitors
Anothumakkool et al. Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor
Song et al. High performance wire-type supercapacitor with Ppy/CNT-ionic liquid/AuNP/carbon fiber electrode and ionic liquid based electrolyte
Khosrozadeh et al. A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles
Wang et al. Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites
Cai et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes
Sun et al. A freestanding polypyrrole hybrid electrode supported by conducting silk fabric coated with PEDOT: PSS and MWCNTs for high-performance supercapacitor
Tebyetekerwa et al. Surface self-assembly of functional electroactive nanofibers on textile yarns as a facile approach toward super flexible energy storage
TWI335947B (en) Conductive engineered fabrics and engineered fabric polymeric filaments
Ghouri et al. Recent progress in textile-based flexible supercapacitor
Wang et al. High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires
CN109461593B (en) Functionalized graphene hydrogel/functionalized carbon cloth composite fabric, flexible all-solid-state supercapacitor integrated electrode and preparation method
Sworakowski et al. On the reliability of determination of energies of HOMO levels in organic semiconducting polymers from electrochemical measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200728