JP2016192424A - Thermoelectric conversion element and thermoelectric conversion module - Google Patents

Thermoelectric conversion element and thermoelectric conversion module Download PDF

Info

Publication number
JP2016192424A
JP2016192424A JP2015070008A JP2015070008A JP2016192424A JP 2016192424 A JP2016192424 A JP 2016192424A JP 2015070008 A JP2015070008 A JP 2015070008A JP 2015070008 A JP2015070008 A JP 2015070008A JP 2016192424 A JP2016192424 A JP 2016192424A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
substrate
heat conduction
thermal conductivity
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015070008A
Other languages
Japanese (ja)
Inventor
広樹 渡辺
Hiroki Watanabe
広樹 渡辺
水野 知章
Tomoaki Mizuno
知章 水野
佳也 大原
Yoshiya Ohara
佳也 大原
磴 秀康
Hideyasu Ishibashi
磴  秀康
林 直之
Naoyuki Hayashi
直之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2015070008A priority Critical patent/JP2016192424A/en
Publication of JP2016192424A publication Critical patent/JP2016192424A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element of which the robustness is improved by smoothly varying output even if an external temperature rapidly changes, and a thermoelectric conversion module.SOLUTION: A thermoelectric conversion element comprises: a first substrate including a high heat conduction part where heat conductivity is higher than that of the other region, in a surface direction; a thermoelectric conversion layer that is formed on the first substrate; and a second substrate which includes a high heat conduction part where heat conductivity is higher than that of the other region, in a surface direction and where the high heat conduction part is not completely overlapped with the high heat conduction part of the first substrate in the surface direction. The high heat conduction part of the first substrate and/or the second substrate is covered by a region where heat conductivity is lower than that of the high heat conduction part.SELECTED DRAWING: Figure 1

Description

本発明は、ロバスト性に優れる熱電変換素子、および、この熱電変換素子を用いる熱電変換モジュールに関する。   The present invention relates to a thermoelectric conversion element excellent in robustness and a thermoelectric conversion module using the thermoelectric conversion element.

熱エネルギーと電気エネルギーとを相互に変換することができる熱電変換材料が、熱によって発電する発電素子やペルチェ素子のような熱電変換素子に用いられている。
熱電変換素子は、熱エネルギーを直接電力に変換することができ、可動部を必要としない等の利点を有する。そのため、複数の熱電変換素子を接続してなる熱電変換モジュール(発電装置)は、例えば、焼却炉や工場の各種の設備など、排熱される部位に設けることで、動作コストを掛ける必要なく、簡易に電力を得ることができる。
Thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used for thermoelectric conversion elements such as power generation elements and Peltier elements that generate electricity by heat.
The thermoelectric conversion element can convert heat energy directly into electric power, and has an advantage that a movable part is not required. For this reason, a thermoelectric conversion module (power generation device) formed by connecting a plurality of thermoelectric conversion elements is provided in a portion where heat is exhausted, such as an incinerator or various facilities in a factory, so that it is not necessary to incur operation costs and is simple. Can get power.

このような熱電変換素子としては、いわゆるπ型の熱電変換素子が知られている。
π型の熱電変換素子とは、互いに離間する一対の電極を設け、一方の電極の上にn型熱電変換材料を、他方の電極の上にp型熱電変換材料を、同じく互いに離間して設け、両熱電変換材料の上面を電極によって接続してなる構成を有する。
また、n型熱電変換材料とp型熱電変換材料とが交互に配置されるように、複数の熱電変換素子を配列して、熱電変換材料の下部の電極を直列に接続することで、熱電変換モジュールが形成される。
As such a thermoelectric conversion element, a so-called π-type thermoelectric conversion element is known.
A π-type thermoelectric conversion element is provided with a pair of electrodes spaced apart from each other, an n-type thermoelectric conversion material on one electrode, and a p-type thermoelectric conversion material on the other electrode. The upper surfaces of both thermoelectric conversion materials are connected by electrodes.
In addition, a plurality of thermoelectric conversion elements are arranged so that n-type thermoelectric conversion materials and p-type thermoelectric conversion materials are alternately arranged, and the lower electrodes of the thermoelectric conversion material are connected in series, so that thermoelectric conversion is achieved. A module is formed.

π型の熱電変換素子を含め、通常の熱電変換素子は、シート状の基板の上に電極を有し、電極の上に熱電変換層(発電層)を有し、熱電変換層の上にシート状の電極を有してなる構成を有する。
すなわち、通常の熱電変換素子は、電極で熱電変換層を厚さ方向に挟持し、熱電変換層の厚さ方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換させている。
Normal thermoelectric conversion elements, including π-type thermoelectric conversion elements, have an electrode on a sheet-like substrate, a thermoelectric conversion layer (power generation layer) on the electrode, and a sheet on the thermoelectric conversion layer. It has the structure which has a shape-like electrode.
That is, in a normal thermoelectric conversion element, a thermoelectric conversion layer is sandwiched between electrodes in the thickness direction, a temperature difference is generated in the thickness direction of the thermoelectric conversion layer, and heat energy is converted into electric energy.

これに対し、特許文献1や特許文献2には、高熱伝導部と低熱伝導部とを有する基板を用いて、熱電変換層の厚さ方向ではなく、熱電変換層の面方向に温度差を生じさせて熱エネルギーを電気エネルギーに変換する熱電変換素子が記載されている。
具体的には、特許文献1には、P型材料およびN型材料で形成された熱電変換層の両面に、熱伝導率が異なる2種類の材料で構成された柔軟性を有するフィルム基板を設け、かつ、フィルム基板を、熱伝導率が異なる材料を通電方向の逆位置に位置し、熱伝導率が高い材料が基板の外面の一部に位置した熱電変換素子が記載されている。
On the other hand, Patent Document 1 and Patent Document 2 use a substrate having a high heat conduction portion and a low heat conduction portion to cause a temperature difference in the surface direction of the thermoelectric conversion layer, not in the thickness direction of the thermoelectric conversion layer. A thermoelectric conversion element that converts thermal energy into electrical energy is described.
Specifically, in Patent Document 1, a flexible film substrate composed of two types of materials having different thermal conductivities is provided on both surfaces of a thermoelectric conversion layer formed of a P-type material and an N-type material. In addition, there is described a thermoelectric conversion element in which a material having a different thermal conductivity is positioned at a position opposite to the energizing direction and a material having a high thermal conductivity is positioned at a part of the outer surface of the substrate.

また、特許文献2には、P型材料およびN型材料で形成された熱電変換層の両面に、絶縁性の基層と、この基層の上の交互に形成された樹脂層および金属層のパターンとを有するフレキシブル基板を基層面を対向して設け、かつ、このフレキシブル基板の樹脂層がシロキサン変性ポリイミドを含有する樹脂組成物から形成されているフレキシブル熱電変換素子が記載されている。   Patent Document 2 discloses an insulating base layer on both surfaces of a thermoelectric conversion layer formed of a P-type material and an N-type material, and patterns of resin layers and metal layers alternately formed on the base layer. A flexible thermoelectric conversion element is described in which a flexible substrate having a base layer surface is provided opposite to each other, and a resin layer of the flexible substrate is formed from a resin composition containing a siloxane-modified polyimide.

特開2006−186255号公報JP 2006-186255 A 特開2008−182160号公報JP 2008-182160 A

特許文献1や特許文献2に記載される構成の熱電変換素子は、基板に設けられる高熱伝導部によって熱電変換層の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する。そのため、薄い熱電変換層でも、温度差が生じる距離を長くして、効率の良い発電ができる。さらに、熱電変換層をシート状にできるので、フレキシブル性にも優れ、曲面等への設置も容易な熱電変換素子や熱電変換モジュールが得られる。   The thermoelectric conversion element having the configuration described in Patent Document 1 or Patent Document 2 generates a temperature difference in the surface direction of the thermoelectric conversion layer by a high heat conduction portion provided on the substrate, and converts the heat energy into electric energy. Therefore, even with a thin thermoelectric conversion layer, the distance at which the temperature difference occurs can be lengthened and efficient power generation can be performed. Furthermore, since the thermoelectric conversion layer can be formed into a sheet shape, a thermoelectric conversion element or a thermoelectric conversion module that is excellent in flexibility and easy to install on a curved surface or the like can be obtained.

しかしながら、その半面、特許文献1や特許文献2に記載される構成の熱電変換素子は、いわゆるロバスト性が不十分であり、外部の温度が変動した際に、それに応じて、発生する電力も急激に変動してしまう。
熱電変換素子が発生する電力の急激な変動は、熱電変換素子が発電した電力を利用する装置において、ノイズ等の原因ともなり得る。
However, on the other hand, the thermoelectric conversion elements having the configurations described in Patent Document 1 and Patent Document 2 have insufficient so-called robustness, and when the external temperature fluctuates, the generated electric power also increases rapidly. Will fluctuate.
The rapid fluctuation of the electric power generated by the thermoelectric conversion element can cause noise or the like in the apparatus using the electric power generated by the thermoelectric conversion element.

本発明の目的は、このような従来技術の問題点を解決することにあり、基板に設けられた高熱伝導部および低熱伝導部によって、熱電変換層の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する熱電変換素子において、温度が急激に変化した際にも、出力の急激な変動を生じることがない、ロバスト性に優れた熱電変換素子および熱電変換モジュールを提供することにある。   An object of the present invention is to solve such problems of the prior art, and a temperature difference is generated in the surface direction of the thermoelectric conversion layer by the high heat conduction portion and the low heat conduction portion provided on the substrate, and the heat To provide a thermoelectric conversion element and a thermoelectric conversion module excellent in robustness that do not cause a sudden change in output even when the temperature changes suddenly in a thermoelectric conversion element that converts energy into electric energy. is there.

このような目的を達成するために、本発明の熱電変換素子は、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板と、
第1基板の上に形成される熱電変換層と、
熱電変換層の上に形成される、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向において自身の高熱伝導部が第1基板の高熱伝導部と完全に重複しない第2基板と、
面方向に熱電変換層を挟むように熱電変換層に接続される、一対の電極とを有し、
かつ、第1基板および第2基板の少なくとも一方は、高熱伝導部の熱電変換層とは逆側の表面の全面を覆って、高熱伝導部よりも熱伝導率が低い領域を有することを特徴とする熱電変換素子を提供する。
In order to achieve such an object, the thermoelectric conversion element of the present invention includes a first substrate having a high thermal conductivity portion having a thermal conductivity higher than that of other regions in at least a part of the surface direction,
A thermoelectric conversion layer formed on the first substrate;
A high thermal conductivity portion having a higher thermal conductivity than other regions is formed in at least a part of the surface direction, which is formed on the thermoelectric conversion layer, and the high thermal conductivity portion of the first substrate has a high heat conductivity in the plane direction. A second substrate that does not completely overlap the conductive portion;
A pair of electrodes connected to the thermoelectric conversion layer so as to sandwich the thermoelectric conversion layer in the plane direction;
In addition, at least one of the first substrate and the second substrate has a region that covers the entire surface on the opposite side of the thermoelectric conversion layer of the high thermal conductivity portion and has a lower thermal conductivity than the high thermal conductivity portion. A thermoelectric conversion element is provided.

このような本発明の熱電変換素子において、第1基板および第2基板の少なくとも一方は、熱電変換層と高熱伝導部との間に、高熱伝導部よりも熱伝導率が低い領域を有するのが好ましい。
また、熱電変換層と高熱伝導部との間の、高熱伝導部よりも熱伝導率が低い領域が、熱電変換層および一対の電極の少なくとも一方を形成する基板として作用するのが好ましい。
また、第1基板および第2基板が、共に、高熱伝導部の熱電変換層とは逆側の表面の全面を覆って、高熱伝導部よりも熱伝導率が低い領域を有するのが好ましい。
また、第1基板および第2基板の少なくとも一方の、高熱伝導部の熱電変換層とは逆側の表面の全面を覆う高熱伝導部よりも熱伝導率が低い領域が、異なる2種以上の材料を積層して形成されたものであるのが好ましい。
さらに、熱電変換層と第2基板との間に、粘着層を有するのが好ましい。
In such a thermoelectric conversion element of the present invention, at least one of the first substrate and the second substrate has a region having a lower thermal conductivity than the high thermal conductivity portion between the thermoelectric conversion layer and the high thermal conductivity portion. preferable.
In addition, it is preferable that a region between the thermoelectric conversion layer and the high thermal conductivity portion that has a lower thermal conductivity than the high thermal conductivity portion functions as a substrate on which at least one of the thermoelectric conversion layer and the pair of electrodes is formed.
Moreover, it is preferable that both the first substrate and the second substrate have a region having a lower thermal conductivity than the high thermal conductivity portion, covering the entire surface of the surface opposite to the thermoelectric conversion layer of the high thermal conductivity portion.
Further, at least one of the first substrate and the second substrate is made of two or more materials having different regions having lower thermal conductivity than the high thermal conductive portion covering the entire surface opposite to the thermoelectric conversion layer of the high thermal conductive portion. It is preferable that these are formed by laminating.
Furthermore, it is preferable to have an adhesive layer between the thermoelectric conversion layer and the second substrate.

また、本発明の熱電変換モジュールは、本発明の熱電変換素子を、複数、直列に接続してなる熱電変換モジュールを提供する。   The thermoelectric conversion module of the present invention provides a thermoelectric conversion module formed by connecting a plurality of the thermoelectric conversion elements of the present invention in series.

このような本発明によれば、基板に設けられた高熱伝導部および低熱伝導部によって、熱電変換層の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換する熱電変換素子において、外部の温度が急激に変化した場合にも、出力が緩やかに変動する、いわゆるロバスト性が良好な熱電変換素子および熱電変換モジュールが得られる。   According to the present invention as described above, in the thermoelectric conversion element that converts the thermal energy into electric energy by causing a temperature difference in the surface direction of the thermoelectric conversion layer by the high thermal conduction portion and the low thermal conduction portion provided on the substrate. Even when the external temperature rapidly changes, a thermoelectric conversion element and a thermoelectric conversion module having a so-called robust property in which the output gradually changes can be obtained.

(A)〜(C)は、本発明の熱電変換素子の一例を概念的に示す図である。(A)-(C) are figures which show notionally an example of the thermoelectric conversion element of this invention. (A)および(B)は、本発明の熱電変換素子の別の例を概念的に示す図である。(A) And (B) is a figure which shows notionally another example of the thermoelectric conversion element of this invention. (A)〜(D)は、本発明の熱電変換素子を利用する本発明の熱電変換モジュールの一例を説明するための概念図である。(A)-(D) are the conceptual diagrams for demonstrating an example of the thermoelectric conversion module of this invention using the thermoelectric conversion element of this invention. (A)〜(N)は、本発明の熱電変換素子の別の例を概念的に示す図である。(A)-(N) is a figure which shows notionally another example of the thermoelectric conversion element of this invention. (A)は、本発明の実施例の結果を、(B)は、比較例の結果を、それぞれ示すグラフである。(A) is a graph which shows the result of the Example of this invention, (B) is a graph which shows the result of a comparative example, respectively.

以下、本発明の熱電変換素子および熱電変換モジュールについて、添付の図面に示される好適実施例を基に詳細に説明する。   Hereinafter, the thermoelectric conversion element and the thermoelectric conversion module of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.

図1(A)〜図1(C)に、本発明の熱電変換素子の一例を概念的に示す。なお、図1(A)は上面図(図1(B)を紙面上方から見た図)、図1(B)は正面図(後述する基板等の面方向に見た図)、図1(C)は底面図(図1(B)を紙面下方から見た図)である。なお、図1(B)は、図1(A)を図中横方向に切断した断面を示しているが、図を簡略化するために、ハッチは省略している。   FIG. 1A to FIG. 1C conceptually show an example of the thermoelectric conversion element of the present invention. 1A is a top view (a view of FIG. 1B viewed from above), FIG. 1B is a front view (a view of a substrate or the like to be described later), FIG. C) is a bottom view (a view of FIG. 1B viewed from the lower side of the drawing). Note that FIG. 1B illustrates a cross section of FIG. 1A cut in the horizontal direction in the drawing, but hatching is omitted for the sake of simplicity.

図1(A)〜図1(C)に示す熱電変換素子10は、基本的に、第1基板12と、熱電変換層16と、粘着層18と、第2基板20と、電極26および電極28とを有して構成される。
具体的には、第1基板12の上に熱電変換層16、電極26および電極28を有し、熱電変換層16、電極26および電極28を覆って粘着層18を有し、粘着層18の上に第2基板20を有する。また、電極26および電極28すなわち電極対は、第1基板12の基板面の方向に熱電変換層16を挟むように設けられる。以下、第1基板12の基板面の方向を、以下、単に『面方向』とも言う。
1A to 1C basically includes a first substrate 12, a thermoelectric conversion layer 16, an adhesive layer 18, a second substrate 20, an electrode 26, and an electrode. 28.
Specifically, the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 are provided on the first substrate 12, the adhesive layer 18 is covered so as to cover the thermoelectric conversion layer 16, the electrode 26, and the electrode 28. A second substrate 20 is provided thereon. In addition, the electrode 26 and the electrode 28, that is, the electrode pair are provided so as to sandwich the thermoelectric conversion layer 16 in the direction of the substrate surface of the first substrate 12. Hereinafter, the direction of the substrate surface of the first substrate 12 is also simply referred to as “surface direction”.

図1(A)〜図1(C)に示すように、第1基板12は、低熱伝導部12a、高熱伝導部12bおよび低熱伝導部12cを有する。同様に、第2基板20も、低熱伝導部20a、高熱伝導部20bおよび低熱伝導部20cを有する。図示例において、両基板は、互いの高熱伝導部が、電極26と電極28との離間方向すなわち通電方向に異なる位置となるように配置される。
なお、両基板は、配置位置、および、表裏や面方向の向きが異なるのみで、構成は同じであるので、第1基板12と第2基板20とを区別する必要が有る場合を除いて、説明は第1基板12を代表例として行う。
As shown in FIGS. 1 (A) to 1 (C), the first substrate 12 has a low heat conduction part 12a, a high heat conduction part 12b, and a low heat conduction part 12c. Similarly, the 2nd board | substrate 20 also has the low heat conduction part 20a, the high heat conduction part 20b, and the low heat conduction part 20c. In the illustrated example, the two substrates are arranged such that their high thermal conductivity portions are at different positions in the separation direction of the electrode 26 and the electrode 28, that is, in the energization direction.
In addition, since both boards differ only in the arrangement position and the orientation of the front and back sides and the surface direction, and the configuration is the same, unless it is necessary to distinguish between the first board 12 and the second board 20, The description will be made using the first substrate 12 as a representative example.

図示例の熱電変換素子10において、第1基板12(第2基板20)は、板状の低熱伝導部12a(低熱伝導部20a)の一方の半面を覆って高熱伝導部12b(高熱伝導部20b)を積層し、さらに、高熱伝導部12bの熱電変換層16とは逆側の表面の全面を覆って、低熱伝導部12c(低熱伝導部20c)を積層してなる構成を有する。以下、高熱伝導部12bの熱電変換層16とは逆側の表面を、単に『表面』とも言う。
従って、第1基板12は、一方の面は、面方向の半分の領域が低熱伝導部12aのみで、残りの半分の領域は低熱伝導部12aに、高熱伝導部12bと低熱伝導部12cとが積層された構成になる。また、第1基板12の他方の面は、全面が低熱伝導部12aのみとなる。
In the illustrated thermoelectric conversion element 10, the first substrate 12 (second substrate 20) covers one half surface of the plate-like low heat conduction part 12 a (low heat conduction part 20 a) and covers the high heat conduction part 12 b (high heat conduction part 20 b). ), And the low heat conductive portion 12c (low heat conductive portion 20c) is stacked so as to cover the entire surface opposite to the thermoelectric conversion layer 16 of the high heat conductive portion 12b. Hereinafter, the surface opposite to the thermoelectric conversion layer 16 of the high thermal conductive portion 12b is also simply referred to as “surface”.
Therefore, the first substrate 12 has one surface of which the half region in the surface direction is only the low heat conducting portion 12a, the other half region is the low heat conducting portion 12a, and the high heat conducting portion 12b and the low heat conducting portion 12c are. It becomes a laminated structure. Further, the other surface of the first substrate 12 is entirely the low heat conducting portion 12a.

低熱伝導部12aおよび低熱伝導部12cは、ガラス板、セラミックス板、プラスチックフィルム、樹脂からなる層など、後述する高熱伝導部12bよりも熱伝導率が低く、熱電変換層16や電極26等の形成等に対する十分な耐熱性を有するものであれば、各種の材料からなる物が利用可能である。
好ましくは、低熱伝導部12aおよび低熱伝導部12cには、プラスチックフィルム等の樹脂(高分子材料)からなるシート状物(板状物)や樹脂からなる層が利用される。低熱伝導部12aおよび低熱伝導部12cを樹脂で形成することにより、軽量化やコストの低下を計ると共に、可撓性(フレキシブル性)を有する熱電変換素子10が形成可能となり、好ましい。
The low heat conductive portion 12a and the low heat conductive portion 12c have a lower thermal conductivity than the high heat conductive portion 12b described later, such as a glass plate, a ceramic plate, a plastic film, and a resin layer, and the thermoelectric conversion layer 16 and the electrode 26 are formed. Any material made of various materials can be used as long as it has sufficient heat resistance.
Preferably, a sheet-like material (plate-like material) made of a resin (polymer material) such as a plastic film or a layer made of resin is used for the low heat-conductive portion 12a and the low heat-conductive portion 12c. By forming the low heat conduction part 12a and the low heat conduction part 12c with resin, the thermoelectric conversion element 10 having flexibility (flexibility) can be formed while reducing the weight and reducing the cost, which is preferable.

低熱伝導部12aおよび低熱伝導部12cに利用可能な樹脂としては、具体的には、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−フタレンジカルボキシレート等のポリエステル樹脂、ポリイミド、ポリカーボネート、ポリプロピレン、ポリエーテルスルホン、シクロオレフィンポリマー、ポリエーテルエーテルケトン(PEEK)、トリアセチルセルロース(TAC)等の樹脂、ガラスエポキシ、液晶性ポリエステル等からなるシート状物(フィルム/板状物)が例示される。
中でも、熱伝導率、耐熱性、耐溶剤性、入手の容易性や経済性等の点で、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート等は、好適に利用される。
Specific examples of resins that can be used for the low thermal conductive portion 12a and the low thermal conductive portion 12c include polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), Polyester resin such as polyethylene-2,6-phthalenedicarboxylate, polyimide, polycarbonate, polypropylene, polyethersulfone, cycloolefin polymer, polyetheretherketone (PEEK), resin such as triacetylcellulose (TAC), glass epoxy, Examples thereof include a sheet-like material (film / plate-like material) made of liquid crystalline polyester or the like.
Among these, polyimide, polyethylene terephthalate, polyethylene naphthalate, and the like are preferably used in terms of thermal conductivity, heat resistance, solvent resistance, availability, economy, and the like.

なお、第1基板12において、低熱伝導部12aおよび低熱伝導部12cは、同じ材料で形成されてもよく、違う材料で形成されてもよい。
また、後に図4(A)〜図4(N)を参照して詳述するが、本発明の熱電変換素子において、第1基板および/または第2基板は、低熱伝導部を2つ有する構成に限定はされず、高熱伝導部の表面全面を覆う低熱伝導部を、1つのみ有する構成でもよく、あるいは、3以上の低熱伝導部を有するものであってもよい。
In the first substrate 12, the low thermal conductive portion 12 a and the low thermal conductive portion 12 c may be formed of the same material or different materials.
Further, as will be described in detail later with reference to FIGS. 4A to 4N, in the thermoelectric conversion element of the present invention, the first substrate and / or the second substrate have two low heat conduction portions. However, the present invention is not limited to this, and it may be configured to have only one low heat conductive portion covering the entire surface of the high heat conductive portion, or may have three or more low heat conductive portions.

高熱伝導部12bは、低熱伝導部12aおよび低熱伝導部12cよりも熱伝導率が高いものであれば、各種の材料からなるフィルムや金属箔が例示される。
具体的には、熱伝導率等の点で、金、銀、銅、アルミニウム等の各種の金属が例示される。中でも、熱伝導率、経済性等の点で、銅およびアルミニウムは好適に利用される。
As long as the high heat conduction part 12b has higher heat conductivity than the low heat conduction part 12a and the low heat conduction part 12c, films and metal foils made of various materials are exemplified.
Specifically, various metals such as gold, silver, copper, and aluminum are exemplified in terms of thermal conductivity and the like. Among these, copper and aluminum are preferably used in terms of thermal conductivity, economy, and the like.

なお、本発明において、第1基板12の厚さ、低熱伝導部12aの厚さ、高熱伝導部12bの厚さ等は、高熱伝導部12bおよび低熱伝導部12aの形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。なお、第1基板12の厚さとは、高熱伝導部12bが無い領域の低熱伝導部12aの厚さである。本発明者らの検討によれば、第1基板12の厚さは、2〜50μmが好ましく、2〜25μmがより好ましく、2〜20μmがより好ましい。
また、第1基板12の面方向(基板面と直交する方向から見た際)の大きさ、基板12における高熱伝導部12bの面方向の面積率等も、低熱伝導部12aおよび高熱伝導部12bの形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
In the present invention, the thickness of the first substrate 12, the thickness of the low thermal conductive portion 12a, the thickness of the high thermal conductive portion 12b, etc. are the same as the forming material of the high thermal conductive portion 12b and the low thermal conductive portion 12a. What is necessary is just to set suitably according to a magnitude | size. In addition, the thickness of the 1st board | substrate 12 is the thickness of the low heat conductive part 12a of the area | region which does not have the high heat conductive part 12b. According to the study by the present inventors, the thickness of the first substrate 12 is preferably 2 to 50 μm, more preferably 2 to 25 μm, and more preferably 2 to 20 μm.
Further, the size in the surface direction of the first substrate 12 (when viewed from the direction orthogonal to the substrate surface), the area ratio in the surface direction of the high heat conduction portion 12b in the substrate 12, and the like are also low heat conduction portions 12a and high heat conduction portions 12b. What is necessary is just to set suitably according to the formation material of this, the magnitude | size of the thermoelectric conversion element 10, etc. FIG.

高熱伝導部12bの表面全面を覆う低熱伝導部12c、すなわち、高熱伝導部の表面全面を覆う高熱伝導部よりも熱伝導率が低い領域の厚さは、高熱伝導部12bおよび低熱伝導部12cの形成材料、低熱伝導部12cの熱伝導率、熱電変換素子10の大きさ、想定される外部の温度条件等によって、好適な範囲が大きく異なる。
従って、高熱伝導部12bの表面全面を覆う低熱伝導部12c、すなわち、高熱伝導部の表面全面を覆う高熱伝導部よりも熱伝導率が低い領域の厚さは、高熱伝導部12bおよび低熱伝導部12cの形成材料、低熱伝導部12cの熱伝導率、熱電変換素子10の大きさ、想定される外部の温度条件等に応じて、適宜、設定すればよい。
The thickness of the low thermal conductivity portion 12c covering the entire surface of the high thermal conductivity portion 12b, that is, the region having a lower thermal conductivity than the high thermal conductivity portion covering the entire surface of the high thermal conductivity portion, is that of the high thermal conductivity portion 12b and the low thermal conductivity portion 12c. The preferred range varies greatly depending on the forming material, the thermal conductivity of the low thermal conductive portion 12c, the size of the thermoelectric conversion element 10, the assumed external temperature conditions, and the like.
Accordingly, the thickness of the low thermal conductivity portion 12c covering the entire surface of the high thermal conductivity portion 12b, that is, the region having a lower thermal conductivity than the high thermal conductivity portion covering the entire surface of the high thermal conductivity portion, is the high thermal conductivity portion 12b and the low thermal conductivity portion. What is necessary is just to set suitably according to the formation material of 12c, the heat conductivity of the low heat conductive part 12c, the magnitude | size of the thermoelectric conversion element 10, the assumed external temperature conditions, etc.

さらに、第1基板12における高熱伝導部12bの面方向の位置も、図示例に限定されず、各種の位置が利用可能である。
例えば、第1基板12において、高熱伝導部12bは、面方向において低熱伝導部12aに内包されてもよい。あるいは、高熱伝導部12bは、面方向において、一部を第1基板12の端部に位置し、それ以外の領域を低熱伝導部12aに内包されてもよい。
さらに、第1基板12は、面方向に複数の高熱伝導部12bを有してもよい。
ただし、何れの場合であっても、高熱伝導部12bの表面は、全面を低熱伝導部によって覆われている。
Furthermore, the position of the first substrate 12 in the surface direction of the high thermal conductive portion 12b is not limited to the illustrated example, and various positions can be used.
For example, in the 1st board | substrate 12, the high heat conductive part 12b may be included in the low heat conductive part 12a in the surface direction. Alternatively, a part of the high heat conduction unit 12b may be located at the end of the first substrate 12 in the plane direction, and the other region may be included in the low heat conduction unit 12a.
Further, the first substrate 12 may have a plurality of high heat conducting portions 12b in the surface direction.
However, in any case, the entire surface of the high thermal conductive portion 12b is covered with the low thermal conductive portion.

熱電変換素子10において、第1基板12の高熱伝導部12bを形成されていない側の表面には、熱電変換層16、ならびに、電極26および電極28が設けられる。
すなわち、第1基板12の低熱伝導部12aは、熱電変換層16、ならびに、電極26および電極28の少なくとも1つの形成基板としても作用する。熱電変換層16と高熱伝導部12bとの間に、このような熱電変換層16等の形成基板となる低熱伝導部12a、すなわち、高熱伝導部12bよりも熱伝導率が低い領域を有することにより、熱電変換素子10の製造を容易に行える、熱電変換素子10の生産性を向上することができる等の点で好ましい。
In the thermoelectric conversion element 10, the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 are provided on the surface of the first substrate 12 on the side where the high thermal conductive portion 12 b is not formed.
That is, the low thermal conductive portion 12 a of the first substrate 12 also functions as a thermoelectric conversion layer 16 and at least one formation substrate of the electrode 26 and the electrode 28. By having between the thermoelectric conversion layer 16 and the high heat conduction part 12b, the low heat conduction part 12a used as a formation board of such a thermoelectric conversion layer 16, etc., ie, the area | region where heat conductivity is lower than the high heat conduction part 12b, The thermoelectric conversion element 10 can be easily manufactured, and the productivity of the thermoelectric conversion element 10 can be improved.

本発明の熱電変換素子10において、熱電変換層16は、公知の熱電変換材料を用いる各種の構成が、全て、利用可能である。従って、熱電変換層16は、有機系の熱電変換材料を用いる物であっても、無機系の熱電変換材料を用いるものであってもよい。さらに、熱電変換層16は、P型材料からなるものでも、N型材料からなるものでも、P型材料およびN型材料の両方からなるものでもよい。   In the thermoelectric conversion element 10 of the present invention, the thermoelectric conversion layer 16 can use all of various configurations using known thermoelectric conversion materials. Therefore, the thermoelectric conversion layer 16 may be a material using an organic thermoelectric conversion material or an inorganic thermoelectric conversion material. Further, the thermoelectric conversion layer 16 may be made of a P-type material, an N-type material, or both a P-type material and an N-type material.

熱電変換層16に用いられる熱電変換材料としては、例えば、導電性高分子や導電性ナノ炭素材料等の有機材料が好適に例示される。
導電性高分子としては、共役系の分子構造を有する高分子化合物(共役系高分子)が例示される。具体的には、ポリアニリン、ポリフェニレンビニレン、ポリピロール、ポリチオフェン、ポリフルオレン、アセチレン、ポリフェニレンなどの公知のπ共役高分子等が例示される。特に、ポリジオキシチオフェンは、好適に使用できる。
As a thermoelectric conversion material used for the thermoelectric conversion layer 16, organic materials, such as a conductive polymer and a conductive nanocarbon material, are illustrated suitably, for example.
Examples of the conductive polymer include a polymer compound having a conjugated molecular structure (conjugated polymer). Specific examples include known π-conjugated polymers such as polyaniline, polyphenylene vinylene, polypyrrole, polythiophene, polyfluorene, acetylene, and polyphenylene. In particular, polydioxythiophene can be preferably used.

導電性ナノ炭素材料としては、具体的には、カーボンナノチューブ(以下、CNTとも言う)、カーボンナノファイバー、グラファイト、グラフェン、カーボンナノ粒子等が例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
中でも、熱電特性がより良好となる理由から、CNTが好ましく利用される。
Specific examples of the conductive nanocarbon material include carbon nanotubes (hereinafter also referred to as CNT), carbon nanofibers, graphite, graphene, and carbon nanoparticles. These may be used alone or in combination of two or more.
Among these, CNT is preferably used for the reason that the thermoelectric characteristics are better.

CNTには、1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT、2枚のグラフェン・シートが同心円状に巻かれた2層CNT、及び複数のグラフェン・シートが同心円状に巻かれた多層CNTがある。本発明においては、単層CNT、2層CNT、多層CNTを各々単独で用いてもよく、2種以上を併せて用いてもよい。特に、導電性及び半導体特性において優れた性質を持つ単層CNTおよび2層CNTを用いることが好ましく、単層CNTを用いることがより好ましい。
単層CNTは、半導体性のものであっても、金属性のものであってもよく、両者を併せて用いてもよい。半導体性CNTと金属性CNTとを両方を用いる場合、組成物中の両者の含有比率は、組成物の用途に応じて適宜調整することができる。また、CNTには金属などが内包されていてもよく、フラーレン等の分子が内包されたものを用いてもよい。
CNTは、修飾あるいは処理されたものであってもよい。さらに、熱電変換層16にCNTを利用する場合には、ドーパント(アクセプタ)を含んでいてもよい。
A CNT is a single-walled CNT in which a single carbon film (graphene sheet) is wound in a cylindrical shape, a double-walled CNT in which two graphene sheets are wound in a concentric shape, and a plurality of graphene sheets in a concentric circle There are multi-walled CNTs wound in a shape. In the present invention, single-walled CNTs, double-walled CNTs, and multilayered CNTs may be used alone, or two or more kinds may be used in combination. In particular, it is preferable to use single-walled CNT and double-walled CNT having excellent properties in terms of conductivity and semiconductor properties, and more preferably single-walled CNT.
Single-walled CNTs may be semiconducting or metallic, and both may be used in combination. When both semiconducting CNT and metallic CNT are used, the content ratio of both in the composition can be appropriately adjusted according to the use of the composition. The CNT may contain a metal or the like, or may contain a molecule such as fullerene.
The CNTs may be modified or processed. Furthermore, when using CNT for the thermoelectric conversion layer 16, a dopant (acceptor) may be included.

熱電変換層16を構成する熱電変換材料としては、ニッケルあるいはニッケル合金も好適に例示される。
ニッケル合金は、温度差を生じることで発電するニッケル合金が、各種、利用可能である。具体的には、バナジウム、クロム、シリコン、アルミニウム、チタン、モリブデン、マンガン、亜鉛、錫、銅、コバルト、鉄、マグネシウム、ジルコニウムなどの1成分、もしくは、2成分以上と混合したニッケル合金等が例示される。
熱電変換層16にニッケルあるいはニッケル合金を用いる場合には、熱電変換層16は、ニッケルの含有量が90原子%以上であるのが好ましく、ニッケルの含有量が95原子%以上であるのがより好ましく、ニッケルからなるのが特に好ましい。ニッケルからなる熱電変換層16とは、不可避的不純物を有するものも含む。
As the thermoelectric conversion material constituting the thermoelectric conversion layer 16, nickel or a nickel alloy is also preferably exemplified.
Various nickel alloys that generate electricity by generating a temperature difference can be used. Specific examples include one component such as vanadium, chromium, silicon, aluminum, titanium, molybdenum, manganese, zinc, tin, copper, cobalt, iron, magnesium, zirconium, or a nickel alloy mixed with two or more components. Is done.
When nickel or a nickel alloy is used for the thermoelectric conversion layer 16, the thermoelectric conversion layer 16 preferably has a nickel content of 90 atomic% or more, and more preferably has a nickel content of 95 atomic% or more. Preferably, it is made of nickel. The thermoelectric conversion layer 16 made of nickel includes those having inevitable impurities.

本発明の熱電変換素子10において、熱電変換層16の厚さ、面方向の大きさ、基板に対する面方向の面積率等は、熱電変換層16の形成材料、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。
なお、図示例の熱電変換素子10において、熱電変換層16は、電極26と電極28との離間方向の中心を、第1基板12の高熱伝導部12bと低熱伝導部12aとの境目に一致して形成される。
In the thermoelectric conversion element 10 of the present invention, the thickness of the thermoelectric conversion layer 16, the size in the surface direction, the area ratio in the surface direction with respect to the substrate, and the like depend on the forming material of the thermoelectric conversion layer 16, the size of the thermoelectric conversion element 10, etc. Accordingly, it may be set appropriately.
In the illustrated thermoelectric conversion element 10, the thermoelectric conversion layer 16 has the center in the separation direction between the electrode 26 and the electrode 28 coincident with the boundary between the high heat conduction portion 12 b and the low heat conduction portion 12 a of the first substrate 12. Formed.

このような熱電変換層16には、面方向に挟持するように、電極26および電極28が接続される。
電極26および電極28は、必要な導電率を有するものであれば、各種の材料で形成可能である。
具体的には、銅、銀、金、白金、ニッケル、アルミニウム、コンスタンタン、クロム、インジウム、鉄、銅合金などの金属材料、酸化インジウムスズ(ITO)や酸化亜鉛(ZnO)等の各種のデバイスで透明電極として利用されている材料等が例示される。中でも、銅、金、銀、白金、ニッケル、銅合金、アルミニウム、コンスタンタン等は好ましく例示され、銅、金、銀、白金、ニッケルは、より好ましく例示される。
電極26および電極28は、例えば、クロム層の上に銅層を形成してなる構成等、積層電極であってもよい。
The thermoelectric conversion layer 16 is connected with the electrode 26 and the electrode 28 so as to be sandwiched in the plane direction.
The electrode 26 and the electrode 28 can be formed of various materials as long as they have a necessary conductivity.
Specifically, various materials such as copper, silver, gold, platinum, nickel, aluminum, constantan, chromium, indium, iron, copper alloy, and other devices such as indium tin oxide (ITO) and zinc oxide (ZnO) Examples include materials used as transparent electrodes. Among these, copper, gold, silver, platinum, nickel, copper alloy, aluminum, constantan and the like are preferably exemplified, and copper, gold, silver, platinum and nickel are more preferably exemplified.
The electrode 26 and the electrode 28 may be laminated electrodes, such as a configuration in which a copper layer is formed on a chromium layer.

電極26および電極28の厚さや大きさ、形状等も、熱電変換層16の厚さや大きさ、形状、熱電変換素子10の大きさ等に応じて、適宜、設定すればよい。   The thickness, size, shape, and the like of the electrode 26 and the electrode 28 may be appropriately set according to the thickness, size, shape, the size of the thermoelectric conversion element 10, etc. of the thermoelectric conversion layer 16.

図示例の熱電変換素子において、電極26および電極28は、離間方向の端部を熱電変換層16に覆われて、熱電変換層16に接続されている。
本発明は、これ以外にも、電極26および電極28は、各種の構成が利用可能である。一例として、図2(A)に示すように、熱電変換層16の端部から端面に沿って立ち上がり、熱電変換層16の上面の端部近傍に到る電極26および電極28が例示される。また、図2(B)に示すように、熱電変換層16の端部に当接する電極26および電極28も利用可能である。さらに、電極26と電極28とは、構成が異なってもよい。
In the illustrated thermoelectric conversion element, the electrode 26 and the electrode 28 are connected to the thermoelectric conversion layer 16 with the end portions in the separation direction covered by the thermoelectric conversion layer 16.
In the present invention, in addition to this, various configurations can be used for the electrode 26 and the electrode 28. As an example, as illustrated in FIG. 2A, an electrode 26 and an electrode 28 that rise from the end of the thermoelectric conversion layer 16 along the end surface and reach the vicinity of the end of the upper surface of the thermoelectric conversion layer 16 are illustrated. Further, as shown in FIG. 2B, an electrode 26 and an electrode 28 that are in contact with the end portion of the thermoelectric conversion layer 16 can also be used. Further, the configuration of the electrode 26 and the electrode 28 may be different.

熱電変換素子10は、好ましい態様として、熱電変換層16、電極26および電極28の上には、粘着層18を有する。このような粘着層18を有することにより第1基板12と第2基板20との密着性を良好にして、耐屈曲性など、機械的強度が良好な熱電変換素子(熱電変換モジュール)が得られる。また、粘着層18は、第2基板20と、熱電変換層16、電極26および電極28とを絶縁する、絶縁層としても作用する。
なお、このような粘着層18は、後述する図4(A)〜図4(N)に示される各構成でも、好適に利用可能であるのは、言うまでもない。
The thermoelectric conversion element 10 has the adhesion layer 18 on the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 as a preferable aspect. By having such an adhesive layer 18, a thermoelectric conversion element (thermoelectric conversion module) having good mechanical strength such as bending resistance can be obtained by improving the adhesion between the first substrate 12 and the second substrate 20. . The adhesive layer 18 also functions as an insulating layer that insulates the second substrate 20 from the thermoelectric conversion layer 16, the electrode 26, and the electrode 28.
In addition, it cannot be overemphasized that such an adhesion layer 18 can be utilized suitably also in each structure shown by FIG. 4 (A)-FIG. 4 (N) mentioned later.

粘着層18の形成材料は、第1基板12の低熱伝導部12a、熱電変換層16、電極26および電極28、ならびに、第2基板20の低熱伝導部20aの形成材料等に応じて、第1基板12、熱電変換層16、電極26および電極28と、第2基板20とを貼着可能なものが、各種、利用可能である。
具体的には、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、ゴム、EVA、α-オレフィンポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ゼラチン、デンプン等が例示される。また、粘着層18は、市販の接着剤、粘着剤、両面テープや粘着フィルム等を利用して形成してもよい。
The material for forming the adhesive layer 18 is the first material depending on the material for forming the low heat conductive portion 12a of the first substrate 12, the thermoelectric conversion layer 16, the electrode 26 and the electrode 28, and the low heat conductive portion 20a of the second substrate 20. Various materials that can attach the substrate 12, the thermoelectric conversion layer 16, the electrode 26 and the electrode 28, and the second substrate 20 can be used.
Specific examples include acrylic resins, urethane resins, silicone resins, epoxy resins, rubber, EVA, α-olefin polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, gelatin, starch, and the like. Moreover, you may form the adhesion layer 18 using a commercially available adhesive agent, an adhesive, a double-sided tape, an adhesive film, etc.

粘着層18の厚さは、粘着層18の形成材料、熱電変換層16に起因する段差の大きさ等に応じて、熱電変換層16等と第2基板20とを十分な密着力で貼着でき、かつ、絶縁できる厚さを、適宜、設定すればよい。なお、粘着層18は、基本的に、薄い方が、熱電変換性能を高くできる。
具体的には、5〜100μmが好ましく、5〜50μmがより好ましい。
粘着層18の厚さを5μm以上とすることにより、熱電変換層16に起因する段差を十分に埋めることができる、良好な密着性が得られ、十分な絶縁性が得られる等の点で好ましい。
粘着層18の厚さを100μm以下、特に50μm以下とすることにより、熱電変換素子10(熱電変換モジュール)の薄膜化を計れる、可撓性の良好な熱電変換素子10を得ることができる、粘着層18の熱抵抗を小さくでき、より良好な熱電変換性能が得られる等の点で好ましい。
The thickness of the adhesive layer 18 is such that the thermoelectric conversion layer 16 or the like and the second substrate 20 are adhered with sufficient adhesion depending on the forming material of the adhesive layer 18, the size of the step caused by the thermoelectric conversion layer 16, and the like. A thickness that can be insulated and insulated may be set as appropriate. Basically, the thinner the adhesive layer 18, the higher the thermoelectric conversion performance.
Specifically, 5-100 micrometers is preferable and 5-50 micrometers is more preferable.
By setting the thickness of the adhesive layer 18 to 5 μm or more, it is preferable in that the level difference caused by the thermoelectric conversion layer 16 can be sufficiently filled, good adhesion can be obtained, and sufficient insulation can be obtained. .
By making the thickness of the adhesive layer 18 100 μm or less, particularly 50 μm or less, the thermoelectric conversion element 10 (thermoelectric conversion module) can be made thin, and a flexible thermoelectric conversion element 10 can be obtained. The layer 18 is preferable in that the thermal resistance of the layer 18 can be reduced and better thermoelectric conversion performance can be obtained.

なお、必要に応じて、密着性を向上するために、熱電変換層16、電極26および電極28と粘着層18との界面、粘着層18と第2基板20との界面の1以上において、界面を形成する表面の少なくとも1面に、プラズマ処理、UVオゾン処理、電子線照射処理等の公知の表面処理を施して、表面の改質や清浄化を行ってもよい。   In order to improve the adhesion, if necessary, at one or more of the interfaces between the thermoelectric conversion layer 16, the electrode 26 and the electrode 28 and the adhesive layer 18, and the interface between the adhesive layer 18 and the second substrate 20, the interface The surface may be modified or cleaned by performing a known surface treatment such as plasma treatment, UV ozone treatment, electron beam irradiation treatment or the like on at least one surface of the surface to be formed.

粘着層18の上には、第2基板20が貼着されて、熱電変換素子10が構成される。
熱電変換素子10においては、例えば、第1基板12側に熱源を設け、第1基板12の高熱伝導部12bと、第2基板20の高熱伝導部20bとの間に温度差を生じさせることにより、発電する。また、電極26および電極28に配線を接続することにより、加熱等によって発生した電力(電気エネルギー)が取り出される。
前述のように、熱電変換素子10において、第1基板12および第2基板20は、高熱伝導部12bと高熱伝導部20bとが、電極26と電極28との離間方向すなわち通電方向に異なる位置となるように配置される。そのため、熱電変換素子10においては、熱電変換層16の面方向に温度差を生じさせて、熱エネルギーを電気エネルギーに変換することができ、すなわち、熱電変換層16の面方向の長い距離の温度差によって、効率の良い発電が可能である。
On the adhesive layer 18, the 2nd board | substrate 20 is affixed and the thermoelectric conversion element 10 is comprised.
In the thermoelectric conversion element 10, for example, a heat source is provided on the first substrate 12 side, and a temperature difference is generated between the high thermal conductivity portion 12 b of the first substrate 12 and the high thermal conductivity portion 20 b of the second substrate 20. ,Generate electricity. Further, by connecting wiring to the electrode 26 and the electrode 28, electric power (electric energy) generated by heating or the like is taken out.
As described above, in the thermoelectric conversion element 10, the first substrate 12 and the second substrate 20 are such that the high heat conduction portion 12b and the high heat conduction portion 20b are different from each other in the separation direction of the electrode 26 and the electrode 28, that is, in the energization direction. It is arranged to become. Therefore, in the thermoelectric conversion element 10, a temperature difference can be generated in the surface direction of the thermoelectric conversion layer 16 to convert heat energy into electric energy, that is, a long distance temperature in the surface direction of the thermoelectric conversion layer 16. Due to the difference, efficient power generation is possible.

ここで、本発明の熱電変換素子10においては、第1基板12は高熱伝導部12bの表面すなわち高熱伝導部12bの熱電変換層16とは逆側の表面の全面を覆って、低熱伝導部12cを有する。第2基板20も、同じく高熱伝導部20bの表面全面を覆って、低熱伝導部20cを有する。   Here, in the thermoelectric conversion element 10 of the present invention, the first substrate 12 covers the entire surface of the surface of the high heat conduction portion 12b, that is, the surface opposite to the thermoelectric conversion layer 16 of the high heat conduction portion 12b, and the low heat conduction portion 12c. Have Similarly, the second substrate 20 covers the entire surface of the high heat conductive portion 20b and has a low heat conductive portion 20c.

高熱伝導部と低熱伝導部とを有する基板を用い、熱電変換層の面方向に温度差を生じさせる熱電変換素子において、特許文献1や特許文献2等に示される従来の熱電変換素子では、高熱伝導部が積層方向の外部に位置している。すなわち、高熱伝導部が加熱源や冷却源に直接的に接触する。
そのため、熱電変換素子が取り付けられる人物の体温の急変や工場内配管の温度変化等外部に温度変化が生じた際に、この温度変化が直ちに高熱伝導部に伝わり、熱電変換層に急激な温度変化が生じる。その結果、熱電変換素子が発生する電力が急激に変動して、熱電変換素子が発生する電力を利用する装置において、ノイズの発生等が生じ、動作が不安定になる。
In a thermoelectric conversion element that uses a substrate having a high heat conduction part and a low heat conduction part and generates a temperature difference in the surface direction of the thermoelectric conversion layer, the conventional thermoelectric conversion elements shown in Patent Document 1, Patent Document 2, etc. The conductive part is located outside in the stacking direction. That is, the high heat conduction part directly contacts the heating source and the cooling source.
Therefore, when an external temperature change occurs, such as a sudden change in the body temperature of a person to which the thermoelectric conversion element is attached or a temperature change in the piping in the factory, this temperature change is immediately transmitted to the high heat conduction section, and the thermoelectric conversion layer undergoes a sudden temperature change. Occurs. As a result, the electric power generated by the thermoelectric conversion element fluctuates abruptly, causing noise and the like in an apparatus using the electric power generated by the thermoelectric conversion element, resulting in unstable operation.

これに対し、本発明の熱電変換素子10では、第1基板12(第2基板20)が、高熱伝導部12b(高熱伝導部20b)の表面全面を覆って、低熱伝導部12c(低熱伝導部20c)を有する。すなわち、第1基板12および第2基板20が、共に、高熱伝導部の表面全面を覆って、高熱伝導部よりも熱伝導率が低い領域を有する。
そのため、本発明の熱電変換素子10は、外部に温度変化が生じても、この温度変化が直接的に高熱伝導部12bに伝わることがなく、低熱伝導部12cによって緩衝されて、緩やかに高熱伝導部12bに伝わり、熱電変換層16に急激な温度変化が生じない。すなわち、本発明の熱電変換素子10は、外部温度が変化しても、外部温度の変化に応じて熱電変換層16の温度分布が定常状態になるまでの応答時間が長い。
その結果、外部に温度変化が生じても、熱電変換層16の温度変化が緩やかで、熱電変換素子10が発生する電力が急激に変動することを防止できる。言い換えれば、本発明の熱電変換素子10によれば、外部温度が変化しても、発生する電力の変化が緩やかな、安定した電力の発生が可能である。そのため、本発明によれば、外部温度の変動に対する発生電力の急激な変動を抑制した、いわゆるロバスト性が高い熱電変換素子10(熱電変換モジュール)を得ることができる。
加えて、高熱伝導部12bの表面全面を低熱伝導部12cで覆うので、高熱伝導部12bの全域に渡って急激な温度変化が生じることを防止でき、より安定した発電が可能であり、好適にロバスト性を向上できる。
On the other hand, in the thermoelectric conversion element 10 of the present invention, the first substrate 12 (second substrate 20) covers the entire surface of the high heat conduction portion 12b (high heat conduction portion 20b), and the low heat conduction portion 12c (low heat conduction portion). 20c). That is, both the first substrate 12 and the second substrate 20 cover the entire surface of the high thermal conductivity portion and have a region having a lower thermal conductivity than the high thermal conductivity portion.
Therefore, in the thermoelectric conversion element 10 of the present invention, even if a temperature change occurs outside, the temperature change is not directly transmitted to the high heat conduction part 12b, but is buffered by the low heat conduction part 12c, and the high heat conduction is moderately performed. The temperature is transmitted to the portion 12b, and a rapid temperature change does not occur in the thermoelectric conversion layer 16. That is, the thermoelectric conversion element 10 of the present invention has a long response time until the temperature distribution of the thermoelectric conversion layer 16 becomes a steady state in accordance with the change in the external temperature even when the external temperature changes.
As a result, even if a temperature change occurs outside, the temperature change of the thermoelectric conversion layer 16 is gentle, and it is possible to prevent the electric power generated by the thermoelectric conversion element 10 from fluctuating rapidly. In other words, according to the thermoelectric conversion element 10 of the present invention, even when the external temperature changes, it is possible to generate stable power with a gradual change in generated power. Therefore, according to the present invention, it is possible to obtain a thermoelectric conversion element 10 (thermoelectric conversion module) having high so-called robustness that suppresses a rapid change in generated power with respect to a change in external temperature.
In addition, since the entire surface of the high heat conduction part 12b is covered with the low heat conduction part 12c, it is possible to prevent a sudden temperature change over the entire area of the high heat conduction part 12b, and more stable power generation is possible. Robustness can be improved.

前述のように、本発明の熱電変換素子10においては、低熱伝導部12cの厚さは、高熱伝導部12bおよび低熱伝導部12cの形成材料、低熱伝導部12cの熱伝導率、熱電変換素子10の大きさ、想定される外部の温度条件等に応じて、適宜、設定される。
ここで、本発明においては、高熱伝導部12bの表面を覆う低熱伝導部12cの厚さをD[m]、高熱伝導部12bの表面を覆う低熱伝導部12cの熱伝導率をλ[W/mK]、外部から高熱伝導部12bに流入する熱量をQ[W]とした際に、下記の式(1)を満たすのが好ましい。
≦(1.0×103λ)/Q 式(1)
熱電変換素子10が式(1)を満たすことにより、高熱伝導部12bの表面を覆う低熱伝導部12cにおける厚さ方向の温度差が不要に大きくなることを防止して、効率の良い発電を行うことができる。
As described above, in the thermoelectric conversion element 10 of the present invention, the thickness of the low heat conduction portion 12c is the same as the material for forming the high heat conduction portion 12b and the low heat conduction portion 12c, the heat conductivity of the low heat conduction portion 12c, and the thermoelectric conversion element 10. It is set as appropriate according to the size of the sensor, the assumed external temperature condition, and the like.
Here, in the present invention, the thickness of the low thermal conductive portion 12c covering the surface of the high thermal conductive portion 12b is D n [m], and the thermal conductivity of the low thermal conductive portion 12c covering the surface of the high thermal conductive portion 12b is λ n [. W / mK], and when the amount of heat flowing from the outside into the high heat conducting portion 12b is Q [W], it is preferable to satisfy the following formula (1).
D n ≦ (1.0 × 10 3 λ n ) / Q Formula (1)
When the thermoelectric conversion element 10 satisfies the formula (1), the temperature difference in the thickness direction in the low heat conduction portion 12c covering the surface of the high heat conduction portion 12b is prevented from becoming unnecessarily large, and efficient power generation is performed. be able to.

なお、図示例の熱電変換素子10は、良好なロバスト性が得られる好ましい態様として、第1基板12および第2基板20の両方が、高熱伝導部の表面全面を覆う低熱伝導部を有する。
しかしながら、本発明は、この構成以外にも、第1基板12のみ、あるいは、第2基板20のみ、高熱伝導部の表面全面を覆う低熱伝導部を有する構成であってもよい。
In addition, the thermoelectric conversion element 10 of the example of illustration has a low heat conduction part which covers the whole surface of a high heat conduction part as both the 1st board | substrate 12 and the 2nd board | substrate 20 as a preferable aspect with which favorable robustness is acquired.
However, in addition to this configuration, the present invention may have a configuration in which only the first substrate 12 or only the second substrate 20 has a low thermal conductivity portion that covers the entire surface of the high thermal conductivity portion.

図示例の熱電変換素子10は、電極26と電極28との離間方向に対面して当接するように、第1基板12の高熱伝導部12bと、第2基板20が高熱伝導部20bとが、電極間方向で、面方向の異なる位置に配置される。
本発明の熱電変換素子は、これ以外にも、第1基板の高熱伝導部と、第2基板の高熱伝導部とが、面方向において完全に重複せず、さらに、高熱伝導部の表面全面が低熱伝導部すなわち高熱伝導部よりも熱伝導率が低い領域に覆われていれば、各種の構成が利用可能である。言い換えれば、本発明の熱電変換素子は、第1基板の高熱伝導部と第2基板の高熱伝導部とが、面方向と直交する方向から見た際に完全に重複しなければ、各種の構成が利用可能である。
The thermoelectric conversion element 10 of the illustrated example has a high heat conduction portion 12b of the first substrate 12 and a high heat conduction portion 20b of the second substrate 20 so as to face and contact each other in the separation direction of the electrode 26 and the electrode 28. They are arranged at different positions in the plane direction in the inter-electrode direction.
In the thermoelectric conversion element of the present invention, in addition to this, the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate do not completely overlap in the plane direction. Various configurations can be used as long as they are covered with a region having a lower thermal conductivity than the low thermal conductivity portion, that is, the high thermal conductivity portion. In other words, the thermoelectric conversion element of the present invention has various configurations as long as the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate do not completely overlap when viewed from the direction orthogonal to the plane direction. Is available.

例えば、図1に示す例において、第1基板12の高熱伝導部12bを図中右側に移動し、第2基板20の高熱伝導部20bを図中左側に移動して、面方向において、両高熱伝導部を、電極間方向に離間させてもよい。具体的には、第1基板12の高熱伝導部12bと第2基板20の高熱伝導部20bとは、面方向において、電極26と電極28との離間方向における熱電変換層16の大きさに対して、電極間方向に10〜90%離間させるのが好ましく、10〜50%離間させるのがより好ましい。
あるいは、この両高熱伝導部が離間する構成において、高熱伝導部12bおよび/または高熱伝導部20bに、他方に向かう凸部を設け、面方向において、両基板の高熱伝導部が一部重複するようにしてもよい。
For example, in the example shown in FIG. 1, the high heat conduction portion 12 b of the first substrate 12 is moved to the right side in the drawing, the high heat conduction portion 20 b of the second substrate 20 is moved to the left side in the drawing, The conductive portion may be separated in the direction between the electrodes. Specifically, the high heat conduction part 12b of the first substrate 12 and the high heat conduction part 20b of the second substrate 20 are in the plane direction with respect to the size of the thermoelectric conversion layer 16 in the direction in which the electrode 26 and the electrode 28 are separated from each other. Thus, it is preferably 10 to 90% apart, more preferably 10 to 50% apart in the direction between the electrodes.
Alternatively, in the configuration in which both the high heat conductive portions are separated from each other, the high heat conductive portion 12b and / or the high heat conductive portion 20b are provided with a convex portion directed to the other, so that the high heat conductive portions of both the substrates partially overlap in the surface direction. It may be.

逆に、図1に示す例において、第1基板12の高熱伝導部12bを図中左側に移動し、第2基板20の高熱伝導部20bを図中右側に移動することによって、両基板の高熱伝導部の一部を、面方向で重複させてもよい。   On the other hand, in the example shown in FIG. 1, the high heat conduction portion 12b of the first substrate 12 is moved to the left side in the drawing, and the high heat conduction portion 20b of the second substrate 20 is moved to the right side in the drawing, A part of the conductive portion may overlap in the surface direction.

また、本発明においては、これ以外にも、第1基板の高熱伝導部と、第2基板の高熱伝導部とが、面方向において完全に重複しなければ、各種の構成が利用可能である。
例えば、第1基板に円形の高熱伝導部を形成し、第2基板に同サイズ(直径と一辺の長さとが一致)の正方形の高熱伝導部を形成して、両高熱伝導部の中心を面方向で一致させるように、両基板を配置してもよい。この構成でも、距離は短いが、両高熱伝導部は、端部(周辺)位置が面方向で異なるので、熱電変換層には面方向の温度差が生じ、厚さ方向に温度差を生じさせる熱電変換素子に比して、効率の良い発電が可能である。
In addition, in the present invention, various configurations can be used as long as the high thermal conductivity portion of the first substrate and the high thermal conductivity portion of the second substrate do not completely overlap in the plane direction.
For example, a circular high heat conduction part is formed on the first substrate, a square high heat conduction part of the same size (diameter and length of one side coincides) is formed on the second substrate, and the center of both high heat conduction parts is faced. You may arrange | position both board | substrates so that it may correspond in a direction. Even in this configuration, although the distance is short, since the end (periphery) positions of the two high heat conducting portions are different in the surface direction, a temperature difference in the surface direction is generated in the thermoelectric conversion layer, and a temperature difference is generated in the thickness direction. Efficient power generation is possible compared to thermoelectric conversion elements.

図3(A)〜図3(D)に、このような本発明の熱電変換素子10を、複数、直列に接続してなる本発明の熱電変換モジュールの一例を示す。なお、図3(A)〜図3(C)は上面図、図3(D)は正面図である。
本例において、第1基板12Aおよび第2基板20Aは、矩形板状の低熱伝導材料の表面に、一方向に延在する四角柱状の高熱伝導部を、四角柱の低熱伝導部に接触する一辺の長さと等間隔で、四角柱の延在方向と直交する方向に配列してなる構成を有する。また、この高熱伝導部の上には、同様の四角柱状の低熱伝導部が積層されている。
すなわち、第1基板12Aおよび第2基板20Aは、一方の面は、全面が低熱伝導部のみであり、他方の面は、低熱伝導部のみの領域と、低熱伝導部に、一方向に長尺な低熱伝導部と高熱伝導部とが積層された領域とが、長手方向と直交する方向に等間隔で交互に形成された構成を有する(図3(A)、図3(C)および図3(D)参照)。
3 (A) to 3 (D) show an example of the thermoelectric conversion module of the present invention in which a plurality of such thermoelectric conversion elements 10 of the present invention are connected in series. 3A to 3C are top views and FIG. 3D is a front view.
In this example, each of the first substrate 12A and the second substrate 20A has a rectangular plate-like high heat conductive portion that extends in one direction on the surface of a rectangular plate-like low heat conductive material, and a side that contacts the low heat conductive portion of the square pillar. Are arranged in the direction orthogonal to the extending direction of the quadrangular prism at equal intervals. In addition, a similar quadrangular prism-like low heat conduction part is laminated on the high heat conduction part.
That is, as for the 1st board | substrate 12A and the 2nd board | substrate 20A, the whole surface is only a low heat conduction part, and the other side is long in one direction in the area | region of only a low heat conduction part, and a low heat conduction part. The regions where the low heat conduction portions and the high heat conduction portions are stacked are alternately formed at equal intervals in a direction orthogonal to the longitudinal direction (FIGS. 3A, 3C, and 3). (See (D)).

図3(B)および図3(C)に概念的に示すように、熱電変換層16は矩形の面形状を有し、第1基板12Aの全面が低熱伝導部12aである側の表面(図3(D)を図中上下方向に表裏反転した状態)に、低熱伝導部12aと高熱伝導部12bおよび低熱伝導部12cとの境界と中心とを面方向で一致させて形成される。図示例においては、熱電変換層16の図3(B)における横方向(以下、単に『横方向』とも言う)の大きさは、高熱伝導部12bの幅と同じである。なお、言い換えれば、横方向とは、低熱伝導部12aと高熱伝導部12bおよび低熱伝導部12cとの交互の配列方向である。
熱電変換層16は、横方向に、低熱伝導部12aと高熱伝導部12bおよび低熱伝導部12cとの境界に対して、1境界置きに等間隔で形成される。すなわち、熱電変換層16は、横方向に、高熱伝導部12bの幅(すなわち熱電変換層16の大きさ)と同じ間隔で等間隔に形成される。
また、熱電変換層16は、横方向に等間隔に配列された熱電変換層16の列が、図3(B)における上下方向(以下、単に『上下方向』とも言う)に等間隔で配列されるように、二次元的に形成される。なお、言い換えれば、上下方向とは、低熱伝導部12a、高熱伝導部12bおよび低熱伝導部12cの延在方向である。
さらに、図3(B)に示すように、熱電変換層16の横方向の配列は、上下方向に隣接する列では、高熱伝導部12bおよび低熱伝導部12cの幅の分だけ、横方向にズレて形成される。すなわち、上下方向に隣接する列では、熱電変換層16は、高熱伝導部12bおよび低熱伝導部12cの幅の分だけ、互い違いに形成される。
As conceptually shown in FIGS. 3B and 3C, the thermoelectric conversion layer 16 has a rectangular surface shape, and the entire surface of the first substrate 12A is a surface on the side that is the low thermal conductive portion 12a (FIG. 3). 3 (D) in a state where the front and back are inverted in the vertical direction in the drawing), the boundary and the center of the low heat conduction portion 12a, the high heat conduction portion 12b, and the low heat conduction portion 12c are aligned in the plane direction. In the illustrated example, the size of the thermoelectric conversion layer 16 in the horizontal direction in FIG. 3B (hereinafter, also simply referred to as “lateral direction”) is the same as the width of the high thermal conductive portion 12b. In other words, the lateral direction is an alternately arranged direction of the low heat conduction part 12a, the high heat conduction part 12b, and the low heat conduction part 12c.
The thermoelectric conversion layer 16 is formed at equal intervals every other boundary with respect to the boundary between the low thermal conduction portion 12a, the high thermal conduction portion 12b, and the low thermal conduction portion 12c in the lateral direction. That is, the thermoelectric conversion layer 16 is formed in the horizontal direction at equal intervals with the same interval as the width of the high thermal conduction portion 12b (that is, the size of the thermoelectric conversion layer 16).
Further, the thermoelectric conversion layers 16 are arranged in such a manner that rows of thermoelectric conversion layers 16 arranged at equal intervals in the horizontal direction are arranged at equal intervals in the vertical direction in FIG. 3B (hereinafter also simply referred to as “vertical direction”). Thus, it is formed two-dimensionally. In other words, the up-down direction is the extending direction of the low heat conduction portion 12a, the high heat conduction portion 12b, and the low heat conduction portion 12c.
Further, as shown in FIG. 3B, the horizontal arrangement of the thermoelectric conversion layers 16 is shifted in the horizontal direction by the width of the high heat conduction portion 12b and the low heat conduction portion 12c in the columns adjacent in the vertical direction. Formed. That is, in the columns adjacent in the vertical direction, the thermoelectric conversion layers 16 are alternately formed by the widths of the high heat conduction portion 12b and the low heat conduction portion 12c.

各熱電変換層16は、電極26(電極28)によって直列に接続される。なお、構成を明確にするため、電極26には網かけをしてある。具体的には、図3(B)に示すように、図中横方向の熱電変換層16の配列において、電極26が、各熱電変換層16を横方向に挟むように設けられる。これにより、横方向に配列された熱電変換層16が、電極26によって直列に接続される。
さらに、熱電変換層16の横方向の端部では、上下方向に隣接する列の熱電変換層16が、電極26によって接続される。この横方向の列の端部での電極26による上下方向の熱電変換層16の接続は、一方の端部の熱電変換層16は上側の列の同側端部の熱電変換層16と接続され、他方の端部の熱電変換層16は下側の列の同側端部の熱電変換層16と接続される。
これにより、全ての熱電変換層16が、横方向に、複数回、折り返した1本の線のように直列で接続される。
Each thermoelectric conversion layer 16 is connected in series by an electrode 26 (electrode 28). Note that the electrode 26 is shaded for clarity. Specifically, as shown in FIG. 3B, in the arrangement of the thermoelectric conversion layers 16 in the horizontal direction in the drawing, the electrodes 26 are provided so as to sandwich the thermoelectric conversion layers 16 in the horizontal direction. Thereby, the thermoelectric conversion layers 16 arranged in the lateral direction are connected in series by the electrode 26.
Further, the thermoelectric conversion layers 16 in the rows adjacent in the vertical direction are connected by the electrodes 26 at the lateral ends of the thermoelectric conversion layers 16. In the connection of the vertical thermoelectric conversion layer 16 by the electrode 26 at the end of the horizontal row, the thermoelectric conversion layer 16 at one end is connected to the thermoelectric conversion layer 16 at the same end of the upper row. The thermoelectric conversion layer 16 at the other end is connected to the thermoelectric conversion layer 16 at the same end in the lower row.
Thereby, all the thermoelectric conversion layers 16 are connected in series like the one line | wire folded in multiple times in the horizontal direction.

さらに、図3(A)に概念的に示すように、熱電変換層16および電極26の上に、第2基板20Aの全面が低熱伝導部20aである側を下方にして、かつ、低熱伝導部12aと高熱伝導部12bおよび低熱伝導部12cとの境界を第1基板12Aと一致させて、第2基板20Aが積層される。この積層は、第1基板12Aの高熱伝導部12bおよび低熱伝導部12cと、第2基板20Aの高熱伝導部20bおよび低熱伝導部12cとが、互い違いになるように行われる。
なお、図示はされないが、第2基板20Aの積層に先立ち、第1基板12Aを全面的に覆うように、熱電変換層16および電極26の上に粘着層18が形成される。
Further, as conceptually shown in FIG. 3 (A), on the thermoelectric conversion layer 16 and the electrode 26, the side of the second substrate 20A where the entire surface is the low heat conduction portion 20a is directed downward, and the low heat conduction portion. The second substrate 20A is laminated such that the boundary between 12a, the high heat conduction portion 12b, and the low heat conduction portion 12c coincides with the first substrate 12A. This stacking is performed so that the high heat conduction part 12b and the low heat conduction part 12c of the first substrate 12A and the high heat conduction part 20b and the low heat conduction part 12c of the second substrate 20A are alternated.
Although not shown, the adhesive layer 18 is formed on the thermoelectric conversion layer 16 and the electrode 26 so as to cover the entire surface of the first substrate 12A prior to the lamination of the second substrate 20A.

従って、第1基板12Aの低熱伝導部12aのみの領域と、第2基板20Aの高熱伝導部20bおよび低熱伝導部12cを有する領域とが面方向に一致して対面し、第1基板12Aの高熱伝導部12bおよび低熱伝導部12cを有する領域と、第2基板20Aの低熱伝導部20aのみの領域とが面方向に一致して対面する。
これにより、本発明の熱電変換素子10を、多数、直列に接続してなる、熱電変換モジュールが構成される。
Therefore, the region of the first substrate 12A having only the low thermal conductivity portion 12a and the region having the high thermal conductivity portion 20b and the low thermal conductivity portion 12c of the second substrate 20A face each other in the plane direction, and the high thermal conductivity of the first substrate 12A. The region having the conductive portion 12b and the low thermal conductive portion 12c and the region having only the low thermal conductive portion 20a of the second substrate 20A face each other in the plane direction.
Thereby, the thermoelectric conversion module formed by connecting many thermoelectric conversion elements 10 of this invention in series is comprised.

ここで、前述のように、熱電変換層16の横方向の配列は、上下方向に隣接する列では、高熱伝導部12bおよび低熱伝導部12cの幅の分だけ、横方向にズレて形成される。すなわち、上下方向に隣接する列では、熱電変換層16は、高熱伝導部12bおよび低熱伝導部12cの幅の分だけ、互い違いに形成される。
そのため、折り返した1本の線のように直列に接続された熱電変換層16は、接続方向の一方向の流れにおいて、全ての熱電変換層16が、一方の半分が第1基板12Aの高熱伝導部12bと第2基板20Aの低熱伝導部20aのみの領域とに対面し、他方の半分が第1基板12Aの低熱伝導部12aのみの領域と第2基板20Aの高熱伝導部20bとに対面する。
例えば、図3(B)の上から下への直列の接続方向で見た場合には、図3(A)〜図3(C)に示すように、全ての熱電変換層16が、上流側半分が第1基板12Aの高熱伝導部12bおよび第2基板20Aの低熱伝導部20aのみの領域に対面し、下流側の半分が第1基板12Aの低熱伝導部12aのみの領域および第2基板20Aの高熱伝導部20bに対面する。
従って、第1基板12A側もしくは第2基板20A側に熱源を配置した際に、直列に接続された全ての熱電変換層16で、接続方向に対する熱の流れ方向すなわち発電した電気の流れ方向が一致し、熱電変換モジュールが適正に発電を行うことができる。
Here, as described above, the arrangement of the thermoelectric conversion layers 16 in the horizontal direction is shifted in the horizontal direction by the width of the high heat conduction portion 12b and the low heat conduction portion 12c in the columns adjacent in the vertical direction. . That is, in the columns adjacent in the vertical direction, the thermoelectric conversion layers 16 are alternately formed by the widths of the high heat conduction portion 12b and the low heat conduction portion 12c.
For this reason, the thermoelectric conversion layers 16 connected in series as a single folded line have all the thermoelectric conversion layers 16 in the flow in one direction of the connection direction, and one half of the thermoelectric conversion layers 16 is the high thermal conductivity of the first substrate 12A. The portion 12b faces the region of the second substrate 20A only of the low heat conduction portion 20a, and the other half faces the region of only the low heat conduction portion 12a of the first substrate 12A and the high heat conduction portion 20b of the second substrate 20A. .
For example, when viewed in the serial connection direction from the top to the bottom of FIG. 3B, as shown in FIGS. 3A to 3C, all the thermoelectric conversion layers 16 are upstream. Half of the first substrate 12A faces the region of only the high thermal conductivity portion 12b and the second substrate 20A of the low thermal conductivity portion 20a, and the half of the downstream side of the first substrate 12A of the region of only the low thermal conductivity portion 12a and the second substrate 20A. It faces the high heat conduction part 20b.
Therefore, when the heat source is arranged on the first substrate 12A side or the second substrate 20A side, the heat flow direction relative to the connection direction, that is, the flow direction of the generated electricity is the same in all the thermoelectric conversion layers 16 connected in series. And the thermoelectric conversion module can generate electricity properly.

以下、図1(A)〜図1(C)に示す熱電変換素子10の製造方法の一例を説明する。なお、図3(A)〜図3(D)に示す熱電変換モジュールも、基本的に、同様に製造することができる。   Hereinafter, an example of the manufacturing method of the thermoelectric conversion element 10 shown to FIG. 1 (A)-FIG.1 (C) is demonstrated. In addition, the thermoelectric conversion module shown to FIG. 3 (A)-FIG.3 (D) can be fundamentally manufactured similarly.

低熱伝導部12a、高熱伝導部12bおよび低熱伝導部12cを有する第1基板12(12A)、ならびに、低熱伝導部20a、高熱伝導部20bおよび低熱伝導部20cを有する第2基板20(20A)を用意する。   A first substrate 12 (12A) having a low heat conduction part 12a, a high heat conduction part 12b and a low heat conduction part 12c, and a second substrate 20 (20A) having a low heat conduction part 20a, a high heat conduction part 20b and a low heat conduction part 20c. prepare.

第1基板12および第2基板20は、フォトリソグラフィー、エッチング、成膜技術等を利用して、公知の方法で作製すればよい。
先と同様、第1基板12を代表として説明すると、一例として、低熱伝導部12aとなるシート状物に、シート状もしくは帯状の高熱伝導部12bおよび低熱伝導部12cを貼着することで、低熱伝導部12aに高熱伝導部12bを積層してなる第1基板12を作製すればよい。あるいは、低熱伝導部12aとなるシート状物の全面に高熱伝導部12bとなる層および低熱伝導部12cとなる層を形成してなるシート状物を用意し、この高熱伝導部12bおよび低熱伝導部12cとなる層をエッチングして不要な部分を除去することで、低熱伝導部12aに、高熱伝導部12bおよび低熱伝導部12cを積層してなる第1基板12を作製してもよい。
The first substrate 12 and the second substrate 20 may be manufactured by a known method using photolithography, etching, film formation technology, or the like.
As described above, the first substrate 12 will be described as a representative example. As an example, a sheet-like or belt-like high heat conduction portion 12b and a low heat conduction portion 12c are bonded to a sheet-like material that becomes the low heat conduction portion 12a. What is necessary is just to produce the 1st board | substrate 12 formed by laminating | stacking the high heat conductive part 12b on the conductive part 12a. Alternatively, a sheet-like material is prepared by forming a layer that becomes the high heat conduction portion 12b and a layer that becomes the low heat conduction portion 12c on the entire surface of the sheet material that becomes the low heat conduction portion 12a, and the high heat conduction portion 12b and the low heat conduction portion. The first substrate 12 formed by laminating the high thermal conductivity portion 12b and the low thermal conductivity portion 12c on the low thermal conductivity portion 12a may be manufactured by etching the layer to be 12c and removing unnecessary portions.

次いで、第1基板12の全面が低熱伝導部12aである面の熱電変換層16に対応する位置に、熱電変換層16を面方向で挟むように、電極26および電極28を形成する。
電極26および電極28の形成は、メタルマスクを用いる真空蒸着法など、電極26および電極28の形成材料等に応じて、公知の方法で行えばよい。
Next, the electrode 26 and the electrode 28 are formed so as to sandwich the thermoelectric conversion layer 16 in the surface direction at a position corresponding to the thermoelectric conversion layer 16 on the surface where the entire surface of the first substrate 12 is the low thermal conductive portion 12a.
The electrode 26 and the electrode 28 may be formed by a known method such as a vacuum vapor deposition method using a metal mask, depending on a material for forming the electrode 26 and the electrode 28.

次いで、第1基板12の全面が低熱伝導部12aである面の目的とする位置に、熱電変換層16を形成する。なお、図示例の熱電変換素子10においては、熱電変換層16が、電極26および電極28の端部を覆うように形成する。
熱電変換層16は、用いる熱電変換材料に応じて、公知の方法で形成すればよい。
例えば、熱電変換材料とバインダとを有する塗布組成物を調製して、この塗布組成物をスクリーン印刷やインクジェット等の公知の方法でパターンニングして塗布して、乾燥し、バインダを硬化することにより、バインダに熱電変換材料を分散してなる熱電変換材料を形成する方法が例示される。
また、熱電変換材料としてCNTを用いる場合には、分散剤(界面活性剤)を用いてCNTを水に分散してなる塗布組成物を調製して、この塗布組成物を同様に公知の方法でパターンニングして塗布して、乾燥することにより、主にCNTと界面活性剤とから熱電変換層を形成する方法が例示される。この際においては、塗布組成物を乾燥した後、アルコール等の分散剤を溶解する洗浄剤で熱電変換層を洗浄することで分散剤を除去し、その後、洗浄剤を乾燥することにより、実質的にCNTのみからなる熱電変換層とするのが好ましい。洗浄は、熱電変換層を洗浄剤に浸漬する方法や、熱電変換層を洗浄剤で濯ぐ方法等で行えばよい。
また、熱電変換材料としてニッケルあるいはニッケル合金を用いる場合には、真空蒸着やスパッタリング等の気相成膜法によって、メタルマスク等を用いる公知の方法で、ニッケルあるいはニッケル合金からなる熱電変換層をパターン形成する方法が例示される。
あるいは、第1基板12の全面に熱電変換層を形成して、エッチング等によって、熱電変換層16をパターン形成してもよい。
Next, the thermoelectric conversion layer 16 is formed at a target position on the surface where the entire surface of the first substrate 12 is the low thermal conductive portion 12a. In the illustrated thermoelectric conversion element 10, the thermoelectric conversion layer 16 is formed so as to cover the ends of the electrode 26 and the electrode 28.
What is necessary is just to form the thermoelectric conversion layer 16 by a well-known method according to the thermoelectric conversion material to be used.
For example, by preparing a coating composition having a thermoelectric conversion material and a binder, patterning and coating the coating composition by a known method such as screen printing or inkjet, drying, and curing the binder An example is a method of forming a thermoelectric conversion material obtained by dispersing a thermoelectric conversion material in a binder.
When CNT is used as the thermoelectric conversion material, a coating composition in which CNT is dispersed in water using a dispersant (surfactant) is prepared, and this coating composition is similarly obtained by a known method. A method of forming a thermoelectric conversion layer mainly from CNT and a surfactant by patterning, applying and drying is exemplified. In this case, after drying the coating composition, the dispersant is removed by washing the thermoelectric conversion layer with a detergent that dissolves the dispersant such as alcohol, and then the detergent is substantially dried. It is preferable to use a thermoelectric conversion layer made of only CNT. Cleaning may be performed by a method of immersing the thermoelectric conversion layer in a cleaning agent, a method of rinsing the thermoelectric conversion layer with a cleaning agent, or the like.
When nickel or a nickel alloy is used as the thermoelectric conversion material, a thermoelectric conversion layer made of nickel or a nickel alloy is patterned by a known method using a metal mask or the like by a vapor deposition method such as vacuum deposition or sputtering. The method of forming is illustrated.
Alternatively, a thermoelectric conversion layer 16 may be formed on the entire surface of the first substrate 12, and the thermoelectric conversion layer 16 may be patterned by etching or the like.

さらに、作製した第2基板20の全面が低熱伝導部20aである面に粘着層18を形成して、粘着層18を熱電変換層16に向けて、かつ、第1基板12の高熱伝導部12bと第2基板20の高熱伝導部20bとが、電極26および電極28の離間方向に反対に位置するように積層して貼着し、熱電変換素子10を作製する。   Furthermore, the adhesive layer 18 is formed on the surface of the second substrate 20 that is formed as the low thermal conductive portion 20a, the adhesive layer 18 faces the thermoelectric conversion layer 16, and the high thermal conductive portion 12b of the first substrate 12 is formed. And the high thermal conductive portion 20b of the second substrate 20 are laminated and stuck so as to be opposite to the separation direction of the electrode 26 and the electrode 28, and the thermoelectric conversion element 10 is manufactured.

以上の例は、電極26および電極28を形成した後に熱電変換層16を形成しているが、熱電変換層16と電極26および電極28との形成順は、逆であってもよい。
この場合には、図2(A)に概念的に示す熱電変換層16のように、熱電変換層の上面まで、電極26および電極28が到るような構成でもよい。
In the above example, the thermoelectric conversion layer 16 is formed after the electrode 26 and the electrode 28 are formed. However, the formation order of the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 may be reversed.
In this case, a configuration in which the electrode 26 and the electrode 28 reach the upper surface of the thermoelectric conversion layer as in the thermoelectric conversion layer 16 conceptually shown in FIG.

本発明の熱電変換素子は、図1(A)〜図1(C)に示す構成以外にも、各種の構成が利用可能である。図4(A)〜図4(N)に、その一例を示す。
図4(A)〜図4(N)に示す例は、いずれも、第1基板12の高熱伝導部12bおよび第2基板20の高熱伝導部20bは、全く同じ形状であり、端部を一致して、電極26および電極28の離間方向に反対に位置するように配置される。また、熱電変換層16は、電極26および電極28の離間方向の中心を、高熱伝導部12bと高熱伝導部20bの端部と一致して形成される。
なお、高熱伝導部が金属等の導電性の材料で形成され、かつ、図4(A)や図4(E)に示されるように熱電変換層16や電極26および電極28の上に形成される場合には、高熱伝導部と、熱電変換層16、電極26および電極28との絶縁性を確保するために、間に絶縁層等を形成してもよい。
Various configurations can be used for the thermoelectric conversion element of the present invention in addition to the configurations shown in FIGS. 1 (A) to 1 (C). An example is shown in FIGS. 4 (A) to 4 (N).
In each of the examples shown in FIGS. 4A to 4N, the high heat conduction portion 12b of the first substrate 12 and the high heat conduction portion 20b of the second substrate 20 have exactly the same shape, and the end portions are the same. And it arrange | positions so that it may oppose in the separation direction of the electrode 26 and the electrode 28. FIG. Further, the thermoelectric conversion layer 16 is formed so that the center of the electrode 26 and the electrode 28 in the separation direction coincides with the end portions of the high heat conduction portion 12b and the high heat conduction portion 20b.
The high thermal conductivity portion is formed of a conductive material such as a metal, and is formed on the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 as shown in FIGS. 4A and 4E. In order to ensure insulation between the high thermal conductivity portion and the thermoelectric conversion layer 16, the electrode 26, and the electrode 28, an insulating layer or the like may be formed therebetween.

これらの例でも、熱電変換層16、電極26および電極28の上に粘着層を有してもよいのは、前述のとおりである。   In these examples, the adhesive layer may be provided on the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 as described above.

図4(A)〜図4(N)に示される例においても、第1基板12と第2基板20は、配置位置、および、表裏や面方向(基板面方向)の向きが異なるのみで、構成は同じであるので、説明は第1基板12を代表例として行う。   Also in the example shown in FIGS. 4A to 4N, the first substrate 12 and the second substrate 20 differ only in the arrangement position and the orientation of the front and back sides and the surface direction (substrate surface direction). Since the configuration is the same, the description will be made using the first substrate 12 as a representative example.

図4(A)〜図4(D)に示す例は、第1基板12(第2基板20)を低熱伝導部となる1種の材料と高熱伝導部となる1種の材料の2種の材料で形成した例である。
図4(A)は、熱電変換層16、電極26および電極28の下面において、電極の突出部を除く半面を覆うように高熱伝導部12b(20b)を有し、高熱伝導部12b、ならびに、熱電変換層16の高熱伝導部12bが形成されない半面および電極26を覆って、低熱伝導部12a(20a)を形成した例である。
なお、以下の説明では、『熱電変換層16、電極26および電極28の下面において』ならび『電極の突出部を除く』は省略し、高熱伝導部や低熱伝導部が形成される全域を単に『全面』、電極26および電極28の離間方向の半分の領域を単に『半面』とも言う。
In the example shown in FIGS. 4A to 4D, the first substrate 12 (second substrate 20) is divided into two kinds of materials, one kind of material that becomes a low heat conduction part and one kind of material that becomes a high heat conduction part. It is an example formed with a material.
4A has a high heat conduction part 12b (20b) on the lower surface of the thermoelectric conversion layer 16, the electrode 26, and the electrode 28 so as to cover the half surface excluding the protruding part of the electrode, and the high heat conduction part 12b, This is an example in which the low heat conductive portion 12a (20a) is formed covering the half surface of the thermoelectric conversion layer 16 where the high heat conductive portion 12b is not formed and the electrode 26.
In the following description, “on the lower surfaces of the thermoelectric conversion layer 16, the electrode 26, and the electrode 28” and “excluding the protruding portion of the electrode” are omitted, and the entire region where the high heat conduction portion and the low heat conduction portion are formed is simply “ The half area in the separation direction of the electrode 26 and the electrode 28 is also simply referred to as “half face”.

図4(B)は、図4(A)に示す例において、熱電変換層16および電極28と高熱伝導部12bとの間にも、低熱伝導部12aが存在する例である。
図4(C)は、半面に高熱伝導部12bを有し、この高熱伝導部12bの表面のみを覆って、低熱伝導部12aを形成した例である。
さらに、図4(D)は、全面を覆って低熱伝導部12aを有し、低熱伝導部12aの半面を覆って高熱伝導部12bを有し、高熱伝導部12bの表面全面を覆って低熱伝導部12c(20c)を形成した例である。
FIG. 4B is an example in which the low heat conductive portion 12a exists between the thermoelectric conversion layer 16 and the electrode 28 and the high heat conductive portion 12b in the example shown in FIG. 4A.
FIG. 4C shows an example in which the high heat conduction part 12b is provided on the half surface, and the low heat conduction part 12a is formed by covering only the surface of the high heat conduction part 12b.
Further, FIG. 4D shows a low heat conduction portion 12a covering the entire surface, a high heat conduction portion 12b covering a half surface of the low heat conduction portion 12a, and a low heat conduction covering the entire surface of the high heat conduction portion 12b. This is an example in which the portion 12c (20c) is formed.

図4(E)〜図4(K)に示す例は、低熱伝導部を2種の材料で形成した、3種の材料で第1基板を形成した例である。すなわち、低熱伝導部12aと低熱伝導部12c(20c)とは、異なる材料で形成される。
図4(E)は、半面に低熱伝導部12aを形成し、残りの半面に高熱伝導部12bを形成し、低熱伝導部12aおよび高熱伝導部12bを全て覆って低熱伝導部12cを形成した例である。
図4(F)は、半面に低熱伝導部12aを形成し、残りの半面に低熱伝導部12aよりも低い高熱伝導部12bを形成し、高熱伝導部12bのみの表面全面を覆って低熱伝導部12cを形成した例である。
図4(G)は、図4(E)に示す例において、熱電変換層16および電極28と高熱伝導部12bとの間にも、低熱伝導部12aが存在する例である。
図4(H)は、図4(F)に示す例において、熱電変換層16および電極28と高熱伝導部12bとの間にも、低熱伝導部12aが存在する例である。
図4(I)は、全面に低熱伝導部12aを形成し、低熱伝導部12aの半面を覆って高熱伝導部12bを形成し、低熱伝導部12aの残りの半面および高熱伝導部12bの表面全面を覆って、低熱伝導部12cを形成した例である。
図4(J)は、半面に低熱伝導部12aを形成し、低熱伝導部12aの全域を覆って高熱伝導部12bを形成し、低熱伝導部12aの残りの半面および高熱伝導部12bの表面全面を覆って、低熱伝導部12cを形成した例である。
さらに、図4(K)は、全面を覆って低熱伝導部12aを有し、低熱伝導部12aの半面を覆って高熱伝導部12bを有し、高熱伝導部12bの表面全面を覆って低熱伝導部12cを形成した例である。
The example shown in FIGS. 4E to 4K is an example in which the first substrate is formed of three types of materials in which the low thermal conductivity portion is formed of two types of materials. That is, the low heat conduction part 12a and the low heat conduction part 12c (20c) are formed of different materials.
FIG. 4E shows an example in which the low thermal conductivity portion 12a is formed on the half surface, the high thermal conductivity portion 12b is formed on the remaining half surface, and the low thermal conductivity portion 12a is formed by covering all of the low thermal conductivity portion 12a and the high thermal conductivity portion 12b. It is.
In FIG. 4F, the low heat conduction portion 12a is formed on the half surface, the high heat conduction portion 12b lower than the low heat conduction portion 12a is formed on the remaining half surface, and the entire surface of only the high heat conduction portion 12b is covered. This is an example in which 12c is formed.
FIG. 4G is an example in which the low heat conduction part 12a exists between the thermoelectric conversion layer 16 and the electrode 28 and the high heat conduction part 12b in the example shown in FIG. 4E.
FIG. 4 (H) is an example in which the low heat conduction part 12a exists between the thermoelectric conversion layer 16 and the electrode 28 and the high heat conduction part 12b in the example shown in FIG. 4 (F).
FIG. 4I shows that the low heat conduction part 12a is formed on the entire surface, the half surface of the low heat conduction part 12a is covered to form the high heat conduction part 12b, the remaining half surface of the low heat conduction part 12a and the entire surface of the high heat conduction part 12b. This is an example in which the low heat conduction portion 12c is formed.
FIG. 4 (J) shows that the low heat conduction part 12a is formed on the half surface, the high heat conduction part 12b is formed covering the whole area of the low heat conduction part 12a, and the remaining half face of the low heat conduction part 12a and the entire surface of the high heat conduction part 12b. This is an example in which the low heat conduction portion 12c is formed.
Furthermore, FIG. 4K covers the entire surface and has a low thermal conductivity portion 12a, covers a half surface of the low thermal conductivity portion 12a and has a high thermal conductivity portion 12b, and covers the entire surface of the high thermal conductivity portion 12b and low thermal conductivity. This is an example in which the portion 12c is formed.

図4(L)〜図4(N)に示す例は、低熱伝導部を3種の材料で形成した、4種の材料で第1基板を形成した例である。すなわち、低熱伝導部12aと低熱伝導部12cと低熱伝導部12d(20d)とは、異なる材料で形成される。本例では、高熱伝導部12bの表面全面を覆う低熱伝導部を、異なる材料からなる2層構成とする。これにより、1種の材料で高熱伝導部12bの表面全面を覆う低熱伝導部を形成した場合に、所望の熱伝導率が得られない場合でも、異なる2種の材料を組み合わせることで、所望の熱伝導率を有する高熱伝導部12bの表面全面を覆う低熱伝導部を形成できる。
また、高熱伝導部12bの表面全面を覆う低熱伝導部、すなわち、高熱伝導部12bの表面全面を覆う高熱伝導部12bよりも熱伝導率が低い領域は、異なる材料からなる3層以上の構成としてもよい。
The example shown in FIGS. 4L to 4N is an example in which the first substrate is formed of four types of materials in which the low thermal conductivity portion is formed of three types of materials. That is, the low heat conduction part 12a, the low heat conduction part 12c, and the low heat conduction part 12d (20d) are formed of different materials. In this example, the low thermal conductivity portion covering the entire surface of the high thermal conductivity portion 12b has a two-layer configuration made of different materials. As a result, even when the desired thermal conductivity cannot be obtained when the low thermal conductivity portion covering the entire surface of the high thermal conductivity portion 12b is formed with one type of material, the desired two types of materials can be combined to obtain the desired A low thermal conductivity portion covering the entire surface of the high thermal conductivity portion 12b having thermal conductivity can be formed.
Further, the low thermal conductivity portion covering the entire surface of the high thermal conductivity portion 12b, that is, the region having a lower thermal conductivity than the high thermal conductivity portion 12b covering the entire surface of the high thermal conductivity portion 12b, has a configuration of three or more layers made of different materials. Also good.

図4(L)は、半面に低熱伝導部12aを形成し、残りの半面に高熱伝導部12bを形成し、低熱伝導部12aおよび高熱伝導部12bを全て覆って低熱伝導部12cを形成し、さらに、その上に低熱伝導部12dを形成した例である。
図4(M)は、半面に低熱伝導部12aを形成し、残りの半面に低熱伝導部12aよりも高い高熱伝導部12bを形成し、高熱伝導部12bのみの表面全面を覆って低熱伝導部12cを形成し、さらに、低熱伝導部12cおよび低熱伝導部12aを覆って、低熱伝導部12dを形成した例である。
さらに、図4(N)は、図4(M)に示す例において、一番上の低熱伝導部12dを低熱伝導部12cのみを覆って形成した例である。
In FIG. 4 (L), the low heat conduction part 12a is formed on the half surface, the high heat conduction part 12b is formed on the remaining half surface, the low heat conduction part 12a and the high heat conduction part 12b are all covered, and the low heat conduction part 12c is formed. Furthermore, this is an example in which a low thermal conductive portion 12d is formed thereon.
In FIG. 4M, the low heat conduction portion 12a is formed on the half surface, the high heat conduction portion 12b higher than the low heat conduction portion 12a is formed on the remaining half surface, and the entire surface of only the high heat conduction portion 12b is covered. This is an example in which 12c is formed, and further, the low heat conductive portion 12c and the low heat conductive portion 12a are covered to form the low heat conductive portion 12d.
Further, FIG. 4 (N) is an example in which the uppermost low heat conductive portion 12d is formed to cover only the low heat conductive portion 12c in the example shown in FIG. 4 (M).

これらの熱電変換素子は、フォトリソグラフィー、真空蒸着やスパッタリング等の気相堆積法、膜となる材料を含む塗布組成物を用いる塗布法、スクリーン印刷やインクジェット等の印刷法など、公知の方法を用いて作製すればよい。
また、パターンニングも、マスク等を用いる公知の方法で行えばよい。
These thermoelectric conversion elements use known methods such as photolithography, vapor phase deposition methods such as vacuum deposition and sputtering, coating methods using a coating composition containing a film material, and printing methods such as screen printing and inkjet. Can be prepared.
Also, patterning may be performed by a known method using a mask or the like.

なお、図1(A)〜図1(C)に示す熱電変換素子や、図4(A)〜図4(N)に示す熱電変換素子は、いずれも第1基板と第2基板とが同じ構成を有するものであるが、本発明の熱電変換素子においては、第1基板と第2基板とが、異なる構成であってもよい。   The thermoelectric conversion elements shown in FIGS. 1A to 1C and the thermoelectric conversion elements shown in FIGS. 4A to 4N are the same in the first substrate and the second substrate. Although it has a configuration, in the thermoelectric conversion element of the present invention, the first substrate and the second substrate may have different configurations.

このような本発明の熱電変換素子および熱電変換モジュールは、各種の用途に利用可能である。
一例として、温泉熱発電機、太陽熱発電機、廃熱発電機などの発電機や、腕時計用電源、半導体駆動電源、小型センサ用電源などの各種装置(デバイス)の電源等、様々な発電用途が例示される。また、本発明の熱電変換素子の用途としては、発電用途以外にも、感熱センサや熱電対などのセンサー素子用途も例示される。
Such a thermoelectric conversion element and thermoelectric conversion module of the present invention can be used for various applications.
Examples include various power generation applications such as hot spring thermal generators, solar thermal generators, waste heat generators, and other devices (devices) such as wristwatch power supplies, semiconductor drive power supplies, and small sensor power supplies. The Moreover, as a use of the thermoelectric conversion element of this invention, sensor element uses, such as a thermal sensor and a thermocouple, are illustrated besides a power generation use.

以上、本発明の熱電変換素子および熱電変換モジュールについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。   As described above, the thermoelectric conversion element and the thermoelectric conversion module of the present invention have been described in detail. However, the present invention is not limited to the above-described example, and various improvements and modifications may be made without departing from the gist of the present invention. Of course it is good.

以下、本発明の具体的実施例を挙げて、本発明の熱電変換素子および熱電変換モジュールについて、より詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the specific example of this invention is given and the thermoelectric conversion element and thermoelectric conversion module of this invention are demonstrated in detail. However, the present invention is not limited to the following examples.

[実施例]
有限要素法構造解析ソフトウエアであるANSYSを用い、図1(A)〜図1(C)に示す熱電変換素子10において、第2基板20側を加熱側とした際の、低熱伝導部20cの上面すなわち高温面の温度、および、高熱伝導部20bの下面の温度の時間変化をシミュレーションした。
[Example]
Using ANSYS which is finite element method structural analysis software, in the thermoelectric conversion element 10 shown in FIGS. 1 (A) to 1 (C), when the second substrate 20 side is the heating side, A time change of the temperature of the upper surface, that is, the high temperature surface, and the temperature of the lower surface of the high heat conducting portion 20b was simulated.

まず、ANSYSのモデル作成ツールを用い、図1(A)〜図1(C)に示す熱電変換素子10の構造モデルを作成した。
その後、第1基板12および第2基板20において、低熱伝導部12aおよび低熱伝導部20aにポリイミドを想定した熱物性(熱伝導率λ=0.28[W/mK])を、高熱伝導部12bおよび高熱伝導部12bに銅を想定した熱物性(熱伝導率λ=400[W/mK])を、低熱伝導部12cおよび低熱伝導部20cにポリイミドを想定した熱物性(熱伝導率λ=0.28[W/mK])を、それぞれ設定した。
さらに、熱電変換層16にCNTを想定した熱物性(熱伝導率λ=0.4[W/mK])を、電極26および電極28に鉄を想定した熱物性(熱伝導率λ=83[W/mK])を、粘着層18にゴムを想定した熱物性(熱伝導率λ=0.16[W/mK])を、それぞれ設定した。
また、第1基板12の低熱伝導部12aおよび第2基板20の低熱伝導部20aの厚さに25μmを、第1基板12の高熱伝導部12bおよび第2基板20の高低熱伝導部20bの厚さに70μmを、第1基板12の低熱伝導部12cおよび第2基板20の低熱伝導部20cの厚さに30μmを、それぞれ、設定した。
熱電変換層16の厚さに5μmを、粘着層18の厚さに20μmを、電極26および電極28の厚さに1μmを、それぞれ設定した。
さらに、電極26と電極28との離間方向において、第1基板12および第2基板20の長さに1000μmを、第1基板12の低熱伝導部12cおよび第2基板20の低熱伝導部20cの長さに500μmを、熱電変換層16の長さに500μmを、電極26および28の長さに500μmを、それぞれ設定し、電極26および28は、対面する側の端部を100μm、熱電変換層16に覆われるように設定した。
First, a structural model of the thermoelectric conversion element 10 shown in FIGS. 1A to 1C was created using an ANSYS model creation tool.
Thereafter, in the first substrate 12 and the second substrate 20, the thermal properties (thermal conductivity λ = 0.28 [W / mK]) assuming polyimide for the low thermal conductive portion 12a and the low thermal conductive portion 20a are changed to the high thermal conductive portion 12b. In addition, thermal properties assuming that copper is used for the high thermal conductivity portion 12b (thermal conductivity λ = 400 [W / mK]), and thermal properties assuming that polyimide is used for the low thermal conductivity portion 12c and the low thermal conductivity portion 20c (thermal conductivity λ = 0). .28 [W / mK]) was set respectively.
Further, the thermoelectric conversion layer 16 has a thermal property (thermal conductivity λ = 0.4 [W / mK]) assuming CNT, and the electrode 26 and the electrode 28 have a thermal property (thermal conductivity λ = 83 [ W / mK]) and thermal properties (thermal conductivity λ = 0.16 [W / mK]) assuming rubber for the adhesive layer 18 were set.
Further, the thickness of the low thermal conductive portion 12a of the first substrate 12 and the thickness of the low thermal conductive portion 20a of the second substrate 20 is 25 μm, and the thickness of the high thermal conductive portion 12b of the first substrate 12 and the thickness of the high and low thermal conductive portion 20b of the second substrate 20 is. Further, 70 μm was set, and 30 μm was set to the thicknesses of the low thermal conductive portion 12 c of the first substrate 12 and the low thermal conductive portion 20 c of the second substrate 20.
The thickness of the thermoelectric conversion layer 16 was set to 5 μm, the thickness of the adhesive layer 18 was set to 20 μm, and the thickness of the electrodes 26 and 28 was set to 1 μm.
Further, in the direction in which the electrode 26 and the electrode 28 are separated from each other, the length of the first substrate 12 and the second substrate 20 is set to 1000 μm, and the length of the low thermal conductive portion 12c of the first substrate 12 and the length of the low thermal conductive portion 20c of the second substrate 20 is. 500 μm is set for the length of the thermoelectric conversion layer 16, and 500 μm is set for the lengths of the electrodes 26 and 28. The electrodes 26 and 28 have an end on the facing side of 100 μm and the thermoelectric conversion layer 16. It was set to be covered with.

上記の条件の下、熱電変換素子10の低熱伝導部20cの上面すなわち高温面の温度が100℃、高熱伝導部20bの下面の温度が20℃の状態から、高温面の温度のみを0.1秒かけて20℃下げた場合の、高熱伝導部20bの下面の温度の時間変化を非定常熱伝導解析によって算出した。
結果を図5(A)に示す。
Under the above-mentioned conditions, the temperature of the upper surface of the low heat conduction part 20c of the thermoelectric conversion element 10, that is, the temperature of the high temperature surface is 100 ° C., and the temperature of the lower surface of the high heat conduction part 20b is 20 ° C. The time change of the temperature of the lower surface of the high heat conduction portion 20b when the temperature was lowered by 20 ° C. over a second was calculated by unsteady heat conduction analysis.
The results are shown in FIG.

[比較例]
第1基板12が高熱伝導部12bの表面全面を覆う低熱伝導部12cを有さず、さらに、第2基板20が高熱伝導部12bの表面全面を覆う低熱伝導部12cを有さない以外は、実施例と同様に構造モデルを作成し、各種のパラメータを設定した。
この熱電変換素子について、実施例1と同様に、熱電変換素子10の低熱伝導部20cの上面すなわち高温面の温度が100℃、高熱伝導部20bの下面の温度が20℃の状態から、高温面の温度のみを0.1秒かけて20℃下げた場合の、高熱伝導部20bの下面の温度の時間変化を非定常熱伝導解析によって算出した。
結果を図5(B)に示す。
[Comparative example]
The first substrate 12 does not have the low heat conduction portion 12c that covers the entire surface of the high heat conduction portion 12b, and the second substrate 20 does not have the low heat conduction portion 12c that covers the entire surface of the high heat conduction portion 12b. A structural model was created in the same manner as in the example, and various parameters were set.
About this thermoelectric conversion element, the temperature of the upper surface, that is, the high temperature surface of the low heat conduction part 20c of the thermoelectric conversion element 10 is 100 ° C., and the temperature of the lower surface of the high heat conduction part 20b is 20 ° C. The time change of the temperature of the lower surface of the high heat conduction portion 20b when only the temperature of 20 ° C. was reduced by 20 ° C. over 0.1 seconds was calculated by unsteady heat conduction analysis.
The results are shown in FIG.

図5(B)に示されるように、第2基板20の高熱伝導部20bの表面が高温面となる従来の熱電変換素子では、高温面すなわち高熱伝導部20bの上面の温度の時間変化と、高熱伝導部20bの下面の温度の時間変化とがほぼ一致している。すなわち、高温面の温度が80℃になる時間と、高熱伝導部20bの下面温度が定常状態になるまでの応答時間Δtとが、ほぼ一致している。そのため、外部温度が変化すると、熱電変換層16に形成される温度分布も急激に変化して、発生する電力も急激に変動してしまう。
これに対し、第2基板20の高熱伝導部20bの表面全面を覆って低熱伝導部20cを有する本発明の熱電変換素子10は、図5(A)に示されるように、高温面すなわち低熱伝導部20cの上面の温度が変化しても、高熱伝導部20bの下面温度が定常状態となるまでの応答時間Δtが長くなっており、外部の温度変化に対して、緩やかに応答している。そのため、本発明の熱電変換素子によれば、外部温度が変化した場合でも、熱電変換層16に形成される温度分布がゆっくりと変化するために、発生する電力も急激に変化することなく、ゆっくりと安定的に変化する。
As shown in FIG. 5B, in the conventional thermoelectric conversion element in which the surface of the high thermal conductivity portion 20b of the second substrate 20 is a high temperature surface, the temperature change over time of the high temperature surface, that is, the upper surface of the high thermal conductivity portion 20b, The time change of the temperature of the lower surface of the high heat conductive portion 20b is almost the same. That is, the time when the temperature of the high temperature surface becomes 80 ° C. and the response time Δt b until the temperature of the lower surface of the high heat conducting portion 20b becomes a steady state are almost the same. For this reason, when the external temperature changes, the temperature distribution formed in the thermoelectric conversion layer 16 also changes abruptly, and the generated power also fluctuates rapidly.
On the other hand, the thermoelectric conversion element 10 of the present invention having the low thermal conductivity portion 20c covering the entire surface of the high thermal conductivity portion 20b of the second substrate 20 has a high temperature surface, that is, low thermal conductivity, as shown in FIG. even if the temperature of the upper surface parts 20c are changed, the lower surface temperature of the high thermal conductive portion 20b are longer response times Delta] t a until a steady state, with respect to external temperature changes, responding slowly . Therefore, according to the thermoelectric conversion element of the present invention, even when the external temperature changes, the temperature distribution formed in the thermoelectric conversion layer 16 changes slowly, so that the generated power does not change abruptly and slowly. And change stably.

なお、計算の結果、定常状態における低熱伝導部12cの厚さ方向の温度差は、6.3℃であることがわかった。
したがって、低熱伝導部12cの熱伝導率はλn=0.28[W/mK]、厚さはDn=3.0×10-5[m]であることから、フーリエの法則より、低熱伝導部12cの厚さ方向に流れる熱流速は、
Q=λn×△Tn/Dn=0.28×6.3/3.0×10-5=5.88×104[W/m2
となる。よって式(1)『D≦(1.0×103λ)/Q』の右辺は、
式(1)の右辺=(1.0×103λn)/Q
=(1.0×103×0.28)/5.88×104
=4.8×10-3[m]
となり、
n=3.0×10-5<4.8×10-3
より、本実施例では式(1)が満たされていることが分かる。
以上の結果より、本発明の効果は明らかである。
As a result of the calculation, it was found that the temperature difference in the thickness direction of the low thermal conductive portion 12c in the steady state was 6.3 ° C.
Therefore, since the thermal conductivity of the low thermal conduction part 12c is λn = 0.28 [W / mK] and the thickness is Dn = 3.0 × 10 −5 [m], the low thermal conduction part is obtained from Fourier law. The heat flow rate flowing in the thickness direction of 12c is
Q = λ n × ΔT n / D n = 0.28 × 6.3 / 3.0 × 10 −5 = 5.88 × 10 4 [W / m 2 ]
It becomes. Therefore, the right side of the expression (1) “D n ≦ (1.0 × 10 3 λ n ) / Q” is
Right side of equation (1) = (1.0 × 10 3 λ n ) / Q
= (1.0 × 10 3 × 0.28) /5.88×10 4
= 4.8 × 10 −3 [m]
And
D n = 3.0 × 10 −5 <4.8 × 10 −3
Thus, it can be seen that the expression (1) is satisfied in this embodiment.
From the above results, the effects of the present invention are clear.

10 熱電変換素子
12 第1基板
12a,20a 低熱伝導部
12b,20b 高熱伝導部
12c,20c 低熱伝導部
16 熱電変換層
18 粘着層
20 第2基板
26,28 電極
DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion element 12 1st board | substrate 12a, 20a Low heat conduction part 12b, 20b High heat conduction part 12c, 20c Low heat conduction part 16 Thermoelectric conversion layer 18 Adhesive layer 20 2nd board | substrate 26, 28 Electrode

Claims (7)

面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有する第1基板と、
前記第1基板の上に形成される熱電変換層と、
前記熱電変換層の上に形成される、面方向の少なくとも一部に他の領域よりも熱伝導率が高い高熱伝導部を有し、かつ、面方向において自身の前記高熱伝導部が前記第1基板の高熱伝導部と完全に重複しない第2基板と、
面方向に前記熱電変換層を挟むように前記熱電変換層に接続される、一対の電極とを有し、
かつ、前記第1基板および第2基板の少なくとも一方は、前記高熱伝導部の熱電変換層とは逆側の表面の全面を覆って、前記高熱伝導部よりも熱伝導率が低い領域を有することを特徴とする熱電変換素子。
A first substrate having a high thermal conductivity part having a higher thermal conductivity than other regions in at least a part of the surface direction;
A thermoelectric conversion layer formed on the first substrate;
It has a high heat conduction part which is formed on the thermoelectric conversion layer and has a heat conductivity higher than that of other regions in at least a part of the surface direction, and the high heat conduction part of itself in the surface direction is the first A second substrate that does not completely overlap with the high thermal conductivity portion of the substrate;
A pair of electrodes connected to the thermoelectric conversion layer so as to sandwich the thermoelectric conversion layer in a plane direction;
In addition, at least one of the first substrate and the second substrate has a region having a lower thermal conductivity than the high thermal conductivity portion, covering the entire surface of the high thermal conductivity portion opposite to the thermoelectric conversion layer. The thermoelectric conversion element characterized by this.
前記第1基板および第2基板の少なくとも一方は、前記熱電変換層と高熱伝導部との間に、前記高熱伝導部よりも熱伝導率が低い領域を有する請求項1に記載の熱電変換素子。   2. The thermoelectric conversion element according to claim 1, wherein at least one of the first substrate and the second substrate has an area between the thermoelectric conversion layer and the high thermal conductivity portion that has a lower thermal conductivity than the high thermal conductivity portion. 前記熱電変換層と高熱伝導部との間の、前記高熱伝導部よりも熱伝導率が低い領域が、前記熱電変換層および一対の電極の少なくとも一方を形成する基板として作用する請求項2に記載の熱電変換素子。   3. The region between the thermoelectric conversion layer and the high thermal conductivity portion having a lower thermal conductivity than the high thermal conductivity portion acts as a substrate that forms at least one of the thermoelectric conversion layer and the pair of electrodes. Thermoelectric conversion element. 前記第1基板および第2基板が、共に、前記高熱伝導部の熱電変換層とは逆側の表面の全面を覆って、前記高熱伝導部よりも熱伝導率が低い領域を有する請求項1〜3のいずれか1項に記載の熱電変換素子。   The first substrate and the second substrate both cover a whole surface of the surface opposite to the thermoelectric conversion layer of the high thermal conductivity portion and have a region having a lower thermal conductivity than the high thermal conductivity portion. The thermoelectric conversion element according to any one of 3. 前記第1基板および第2基板の少なくとも一方の、前記高熱伝導部の熱電変換層とは逆側の表面の全面を覆う高熱伝導部よりも熱伝導率が低い領域が、異なる2種以上の材料を積層して形成されたものである請求項1〜4のいずれか1項に記載の熱電変換素子。   At least one of the first substrate and the second substrate is made of two or more kinds of materials having regions having lower thermal conductivity than the high thermal conductive portion covering the entire surface opposite to the thermoelectric conversion layer of the high thermal conductive portion. The thermoelectric conversion element according to claim 1, wherein the thermoelectric conversion element is formed by laminating layers. 前記熱電変換層と第2基板との間に、粘着層を有する請求項1〜5のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 5, further comprising an adhesive layer between the thermoelectric conversion layer and the second substrate. 請求項1〜6のいずれか1項に記載の熱電変換素子を、複数、直列に接続してなる熱電変換モジュール。   The thermoelectric conversion module formed by connecting the thermoelectric conversion element of any one of Claims 1-6 in multiple numbers in series.
JP2015070008A 2015-03-30 2015-03-30 Thermoelectric conversion element and thermoelectric conversion module Pending JP2016192424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070008A JP2016192424A (en) 2015-03-30 2015-03-30 Thermoelectric conversion element and thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070008A JP2016192424A (en) 2015-03-30 2015-03-30 Thermoelectric conversion element and thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2016192424A true JP2016192424A (en) 2016-11-10

Family

ID=57245784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070008A Pending JP2016192424A (en) 2015-03-30 2015-03-30 Thermoelectric conversion element and thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2016192424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606805A (en) * 2017-09-28 2018-01-19 中山大学 Heat reservoir and its processing molding method based on heat transfer anisotropy heat accumulating
WO2018139475A1 (en) * 2017-01-27 2018-08-02 リンテック株式会社 Flexible thermoelectric conversion element and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139475A1 (en) * 2017-01-27 2018-08-02 リンテック株式会社 Flexible thermoelectric conversion element and method for manufacturing same
CN110235261A (en) * 2017-01-27 2019-09-13 琳得科株式会社 Flexible thermoelectric conversion element and its manufacturing method
JPWO2018139475A1 (en) * 2017-01-27 2019-11-21 リンテック株式会社 Flexible thermoelectric conversion element and manufacturing method thereof
JP7245652B2 (en) 2017-01-27 2023-03-24 リンテック株式会社 Flexible thermoelectric conversion element and manufacturing method thereof
CN110235261B (en) * 2017-01-27 2023-07-25 琳得科株式会社 Flexible thermoelectric conversion element and method for manufacturing same
CN107606805A (en) * 2017-09-28 2018-01-19 中山大学 Heat reservoir and its processing molding method based on heat transfer anisotropy heat accumulating
CN107606805B (en) * 2017-09-28 2023-11-10 中山大学 Heat storage system based on heat transfer anisotropic heat storage material and processing and forming method thereof

Similar Documents

Publication Publication Date Title
JP6247771B2 (en) Thermoelectric conversion element and thermoelectric conversion module
US20180190892A1 (en) Thermoelectric conversion module, method of manufacturing thermoelectric conversion module, and thermally conductive substrate
JP6159532B2 (en) Thermoelectric conversion member
JP6600012B2 (en) Thermoelectric conversion device
JP6524241B2 (en) Thermoelectric conversion device
JP6564045B2 (en) Thermoelectric conversion module
US20180183360A1 (en) Thermoelectric conversion module
US10236431B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6510045B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2016192424A (en) Thermoelectric conversion element and thermoelectric conversion module
JP6659836B2 (en) Thermoelectric conversion module
JP6505585B2 (en) Thermoelectric conversion element
US10115882B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6463510B2 (en) Thermoelectric conversion module
JPWO2015163178A1 (en) Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
WO2017051699A1 (en) Thermoelectric conversion element
JP2017135278A (en) Thermoelectric conversion device
JP6781982B2 (en) Thermoelectric conversion module and its manufacturing method
JPWO2019003642A1 (en) Thermoelectric conversion module
JP2015015431A (en) Transparent electrode and organic thin-film solar cell including the same