JP6442865B2 - Cured film manufacturing method - Google Patents

Cured film manufacturing method Download PDF

Info

Publication number
JP6442865B2
JP6442865B2 JP2014097580A JP2014097580A JP6442865B2 JP 6442865 B2 JP6442865 B2 JP 6442865B2 JP 2014097580 A JP2014097580 A JP 2014097580A JP 2014097580 A JP2014097580 A JP 2014097580A JP 6442865 B2 JP6442865 B2 JP 6442865B2
Authority
JP
Japan
Prior art keywords
substrate
cured film
film
manufacturing
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014097580A
Other languages
Japanese (ja)
Other versions
JP2015213863A (en
Inventor
大作 松川
大作 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HD MicroSystems Ltd
Original Assignee
Hitachi Chemical DuPont Microsystems Ltd
HD MicroSystems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical DuPont Microsystems Ltd, HD MicroSystems Ltd filed Critical Hitachi Chemical DuPont Microsystems Ltd
Priority to JP2014097580A priority Critical patent/JP6442865B2/en
Publication of JP2015213863A publication Critical patent/JP2015213863A/en
Application granted granted Critical
Publication of JP6442865B2 publication Critical patent/JP6442865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、硬化膜製造方法に関する。   The present invention relates to a method for producing a cured film.

ポリイミド及びポリベンゾオキサゾールは、優れた機械的特性、耐熱性、耐薬品性、電気絶縁性等の特性を併せ持つことから、半導体用層間絶縁膜、バッファーコート、フレキシブルプリント配線回路用基板、液晶配向膜等の様々な電子デバイスや光導波路用の膜として幅広く利用されている。   Polyimides and polybenzoxazoles have excellent mechanical properties, heat resistance, chemical resistance, electrical insulation, etc., so that they can be used for semiconductor interlayer insulation films, buffer coats, flexible printed circuit boards, and liquid crystal alignment films. It is widely used as a film for various electronic devices and optical waveguides.

近年では半導体デバイスの高性能化のために、半導体素子の高集積化、大型化、及び封止樹脂パッケージの薄型化、小型化が進んでいる。
いわゆるフリップチップ構造のダイにおいては、ダイの回路面が、複数の導電性ボール又はバンプを備えている。この複数の導電性ボール又はバンプは、基板上に位置する複数の対応する導体パッドと金属結合を作るように設計されている。
In recent years, in order to improve the performance of semiconductor devices, semiconductor elements have been highly integrated and enlarged, and sealing resin packages have been made thinner and smaller.
In a so-called flip-chip die, the circuit surface of the die includes a plurality of conductive balls or bumps. The plurality of conductive balls or bumps are designed to make a metal bond with a plurality of corresponding conductor pads located on the substrate.

ダイと基板をはんだボールで接続する場合、通常は、その信頼性を向上させるためにアンダーバンプメタル(UBM)層が形成される。これにより、接続信頼性が向上するだけでなく、はんだボール積載時に発生する金属間化合物による材料のマイグレーションを抑制することができる。しかし、UBM層の形成プロセスは複雑で、デバイスの信頼性は確保できるものの、低コスト化を妨げる要因となっている。(特許文献1及び2)
このため、最近では、UBM層を用いないパッケージ構造が提案されている。(非特許文献1〜3参照)。UBM層を用いないパッケージ構造においては、銅の再配線上に直接はんだバンプを搭載しており、バンプにかかる応力を緩和して信頼性を確保するため、最外層の樹脂組成物がバンプを補強する構造となっている。
When connecting the die and the substrate with solder balls, an under bump metal (UBM) layer is usually formed to improve the reliability. Thereby, not only the connection reliability is improved, but also the migration of the material due to the intermetallic compound generated when the solder ball is loaded can be suppressed. However, the process of forming the UBM layer is complicated, and although device reliability can be ensured, it is a factor that hinders cost reduction. (Patent Documents 1 and 2)
For this reason, recently, a package structure that does not use the UBM layer has been proposed. (Refer nonpatent literature 1-3.). In the package structure that does not use the UBM layer, solder bumps are mounted directly on the copper rewiring, and the resin composition on the outermost layer reinforces the bumps in order to relieve the stress applied to the bumps and ensure reliability. It has a structure to do.

上記UBM層を用いないパッケージ構造の作製においては、熱硬化性樹脂として感光性樹脂組成物を用いる製造方法(感光プロセス)と、非感光性樹脂組成物を用いる製造方法(非感光プロセス)の2つが提案されている(非特許文献1)。   In the production of the package structure not using the UBM layer, a manufacturing method (photosensitive process) using a photosensitive resin composition as a thermosetting resin and a manufacturing method (non-photosensitive process) using a non-photosensitive resin composition are used. Has been proposed (Non-Patent Document 1).

特開2011−216584号公報JP 2011-216484 A 特開2013−93630号公報JP2013-93630A

“Enhanced Polymer Passivation Layer for Wafer Level Chip Scale Package”、[2011]“Enhanced Polymer Passivation Layer for Wafer Level Chip Scale Package”, [2011] “ADVANCES IN WLCSP TECHNOLOGIES FOR GROWING MARKET NEEDS”、Abstracts of 6th Annual International Wafer Level Packaging Conference、[2009-10-27/10-30]“ADVANCES IN WLCSP TECHNOLOGIES FOR GROWING MARKET NEEDS”, Abstracts of 6th Annual International Wafer Level Packaging Conference, [2009-10-27 / 10-30] “TECHNOLOGY SOLUTIONS FOR A DYNAMIC AND DIVERSE WLCSP MARKET”、Abstracts of 7th Annual International Wafer Level Packaging Conference、2010-11-14、Santa Clara、USA.“TECHNOLOGY SOLUTIONS FOR A DYNAMIC AND DIVERSE WLCSP MARKET”, Abstracts of 7th Annual International Wafer Level Packaging Conference, 2010-11-14, Santa Clara, USA.

本発明の目的は、突出部を有する基板上にUBM層に代わる高い信頼性を有する硬化膜を、低コストで形成する方法を提供することである。   An object of the present invention is to provide a method for forming a cured film having high reliability in place of a UBM layer on a substrate having protrusions at a low cost.

本発明者はUBM層に代わる樹脂層の製造方法について鋭意研究した。感光プロセスによりUBM層に代わる樹脂層を形成したとしても、用いる感光性樹脂が高価であるため、製造コストが高くなり採算がとれない。一方、非感光プロセスを用いた場合、樹脂組成物を極端に厚く塗布する必要がある。
樹脂組成物の塗布方法としては、従来、種々の電子デバイスの製造においては、スピンコート法による成膜が行われている。スピンコート法は、シリコンウエハ等の半導体基板、透明電極や回路パターン形成後の基板、フラットディスプレイ基板などの基板上に膜形成用の樹脂組成物の溶液を塗布し、基板を高速で回転することで遠心力を利用して塗布膜を形成する成膜方法であり、生産性が高く低コストで成膜でき、均一性の高い膜を形成することができる等の利点から、広く用いられている。しかしながら、スピンコート法で、突出部を有する基板上に硬化膜を形成しようとすると、突出部を被覆するだけの厚膜の塗布膜を形成することは困難であった。また、突出部を被覆するように厚膜の塗布膜を形成できたとしても、塗布膜中にバブルが生じ、信頼性のある硬化膜が得られなかった。
本発明者らは、円コート法を用いることにより、基板が突出部を有する場合であっても、厚膜でバブルのない塗布膜が形成できることを見い出し、本発明を完成させた。
The inventor has intensively studied a method for producing a resin layer instead of the UBM layer. Even if a resin layer that replaces the UBM layer is formed by a photosensitive process, the photosensitive resin used is expensive, resulting in an increase in manufacturing cost and unprofitability. On the other hand, when a non-photosensitive process is used, it is necessary to apply the resin composition extremely thickly.
As a method for applying a resin composition, conventionally, in the manufacture of various electronic devices, film formation by spin coating is performed. In the spin coating method, a solution of a resin composition for film formation is applied on a semiconductor substrate such as a silicon wafer, a substrate after forming a transparent electrode or a circuit pattern, a flat display substrate, and the substrate is rotated at a high speed. This is a film forming method for forming a coating film using centrifugal force, and is widely used due to advantages such as high productivity, low film formation, and high uniformity film formation. . However, when a cured film is formed on a substrate having protrusions by spin coating, it is difficult to form a thick coating film that covers the protrusions. Further, even if a thick coating film could be formed so as to cover the protruding portion, bubbles were generated in the coating film, and a reliable cured film could not be obtained.
The present inventors have found that a thick coating film without bubbles can be formed even when the substrate has a protrusion by using the circular coating method, and the present invention has been completed.

本発明によれば、以下の硬化膜製造方法等が提供される。
1.突出部を有する基板上に、樹脂組成物を円コート法を用いて塗布し、塗布膜を形成する工程と、前記塗布膜を加熱して硬化膜とする工程を含む硬化膜製造方法。
2.前記突出部の高さ/幅の値が0.1〜2.0であり、突出部の高さが100μm以上である1に記載の硬化膜製造方法。
3.前記突出部が、導電性ボール又はバンプである1又は2に記載の硬化膜製造方法。
4.前記樹脂組成物が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール又はポリベンゾオキサゾール前駆体を含む1〜3のいずれかに記載の硬化膜製造方法。
5.前記硬化膜が突出部を有する基板の形状を追従した被覆膜である1〜4のいずれかに記載の硬化膜製造方法。
6.1〜5のいずれかに記載の硬化膜製造方法で形成した硬化膜を有する電子部品。
7.基板上に、複数の突出部があり、前記複数の突出部の間に、膜厚84μm以上の硬化樹脂膜がある電子部品。
8.前記突出部の高さが100μm以上である7に記載の電子部品。
9.前記硬化樹脂膜がバブルを含まない7又は8に記載の電子部品。
10.前記突出部が、導電性ボール又はバンプであり、前記電子部品が、アンダーバンプメタル層を用いないパッケージ構造である7〜9のいずれかに記載の電子部品。
According to the present invention, the following cured film manufacturing method and the like are provided.
1. A cured film manufacturing method comprising a step of applying a resin composition on a substrate having a protrusion using a circular coating method to form a coating film, and a step of heating the coating film to form a cured film.
2. 2. The method for producing a cured film according to 1, wherein the height / width value of the protrusion is 0.1 to 2.0, and the height of the protrusion is 100 μm or more.
3. 3. The method for producing a cured film according to 1 or 2, wherein the protrusion is a conductive ball or a bump.
4). The cured film manufacturing method in any one of 1-3 in which the said resin composition contains a polyimide, a polyimide precursor, a polybenzoxazole, or a polybenzoxazole precursor.
5. The cured film manufacturing method in any one of 1-4 whose said cured film is a coating film which followed the shape of the board | substrate which has a protrusion part.
The electronic component which has a cured film formed with the cured film manufacturing method in any one of 6.1-5.
7). An electronic component having a plurality of protrusions on a substrate and a cured resin film having a thickness of 84 μm or more between the plurality of protrusions.
8). 8. The electronic component according to 7, wherein the protrusion has a height of 100 μm or more.
9. The electronic component according to 7 or 8, wherein the cured resin film does not contain bubbles.
10. The electronic component according to any one of 7 to 9, wherein the protruding portion is a conductive ball or a bump, and the electronic component has a package structure that does not use an under bump metal layer.

本発明によれば、突出部を有する基板上にUBM層に代わる高い信頼性を有する硬化膜を、低コストで形成する方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the method of forming the cured film which has high reliability instead of a UBM layer on the board | substrate which has a protrusion part at low cost can be provided.

突出部を有する基板上に硬化膜を形成する場合における、感光性樹脂組成物を用いる製造方法(感光プロセス)と、非感光性樹脂組成物(熱硬化性樹脂組成物)を用いる製造方法(非感光プロセス)の一実施形態を示す図である。A production method using a photosensitive resin composition (photosensitive process) and a production method using a non-photosensitive resin composition (thermosetting resin composition) in the case of forming a cured film on a substrate having protrusions (non-photosensitive) It is a figure which shows one Embodiment of a photosensitive process. 本発明の電子部品の一実施形態に係る再配線構造を有する半導体装置の概略断面図である。It is a schematic sectional drawing of the semiconductor device which has the rewiring structure which concerns on one Embodiment of the electronic component of this invention.

本発明の硬化膜の製造方法は、突出部を有する基板(以下、段差基板という場合がある)上に、樹脂組成物を円コート法を用いて塗布し、塗布膜を形成する工程、及び前記塗布膜を加熱して硬化膜とする工程を含む。   The method for producing a cured film of the present invention includes a step of applying a resin composition on a substrate having a protruding portion (hereinafter sometimes referred to as a stepped substrate) using a circular coating method to form a coating film, and A step of heating the coating film to form a cured film.

図1は、突出部を有する基板上に硬化膜を形成する場合における、感光性樹脂組成物を用いる硬化膜の製造方法と、非感光性樹脂組成物(熱硬化性樹脂組成物)を用いる硬化膜の製造方法の一実施形態を示す図である。
図1において、感光性樹脂組成物を用いた製造方法では、(1−1)樹脂組成物を再配線層20を備える基板10上に塗布、乾燥し、樹脂膜30を形成する工程と、塗布、乾燥工程により得られた樹脂膜30を所定のパターンに露光する工程と、(1−2)露光後の樹脂膜を、現像液を用いて現像する工程と、現像工程により得られたパターン樹脂膜を加熱処理する工程と、(1−3)導電性バンプ40を搭載する工程と、を含む。なお、導電性バンプ40は、導電性ボールでもよい。
しかし、当該製造方法では、感光プロセスを経て製造するため、感光材料が高価であったり、複数のマスクプロセス毎にマスクが必要であったりと、低コスト化が困難である。
FIG. 1 shows a method for producing a cured film using a photosensitive resin composition and curing using a non-photosensitive resin composition (thermosetting resin composition) when a cured film is formed on a substrate having protrusions. It is a figure which shows one Embodiment of the manufacturing method of a film | membrane.
In FIG. 1, in the manufacturing method using the photosensitive resin composition, (1-1) a step of applying and drying the resin composition on the substrate 10 including the rewiring layer 20 to form the resin film 30; , A step of exposing the resin film 30 obtained by the drying step to a predetermined pattern, (1-2) a step of developing the exposed resin film using a developer, and a pattern resin obtained by the development step A step of heat-treating the film, and (1-3) a step of mounting the conductive bump 40. The conductive bump 40 may be a conductive ball.
However, since this manufacturing method is manufactured through a photosensitive process, it is difficult to reduce the cost because the photosensitive material is expensive or a mask is required for each of a plurality of mask processes.

一方、図1において、非感光性樹脂組成物を用いた製造方法では、(2−1)樹脂組成物を再配線層20及び導電性バンプ40からなる突出部を備える基板10上に塗布、乾燥し、樹脂膜30を形成する工程と、(2−2)塗布、乾燥工程により得られた樹脂膜30を加熱処理する工程と、(2−3)導電性バンプ40を露出させる工程を含む。当該製造方法では、感光プロセスを使用せずに製造するため、低コスト化を促進することができる。   On the other hand, in FIG. 1, in the manufacturing method using the non-photosensitive resin composition, (2-1) the resin composition is applied on the substrate 10 provided with the protruding portion including the rewiring layer 20 and the conductive bump 40, and dried. And (2-2) a step of heat-treating the resin film 30 obtained by the coating and drying steps, and (2-3) a step of exposing the conductive bumps 40. Since the manufacturing method is manufactured without using a photosensitive process, cost reduction can be promoted.

スピンコート法を用いて突出部を有する基板上に厚膜の塗布膜を形成する場合、膜厚の厚い塗布膜の形成が困難である他、塗布する樹脂量を増やして塗布膜の厚みを厚くするほどに、塗布膜中にバブルが生じる問題がある。また、バブルを発生させないようにスピンコート時の回転速度を大きく低下させた場合には、大面積に均一に成膜することができない問題がある。
本発明の硬化膜の製造方法では、円コート法を用いることにより、基板が突出部を有する場合であっても、厚膜でバブルのない塗布膜が形成できる。
When a thick coating film is formed on a substrate having protrusions using a spin coating method, it is difficult to form a thick coating film, and the coating film thickness is increased by increasing the amount of resin to be applied. There is a problem that bubbles are generated in the coating film as much as possible. In addition, when the rotational speed at the time of spin coating is greatly reduced so as not to generate bubbles, there is a problem that a film cannot be uniformly formed over a large area.
In the method for producing a cured film of the present invention, a thick coating film without bubbles can be formed even when the substrate has a protruding portion by using the circular coating method.

本発明の硬化膜の製造方法で使用する基板は、シリコンウエハ等の半導体基板、ガラス基板、透明電極付きのディスプレイ用基板などが挙げられる。   Examples of the substrate used in the method for producing a cured film of the present invention include a semiconductor substrate such as a silicon wafer, a glass substrate, and a display substrate with a transparent electrode.

基板が有する突出部の形状は、特に制限はなく、円柱、角柱、直方体、ボール状等が挙げられる。突出部の材質も特に制限はないが、基板の材料と同一であっても、異なってもよく、半導体用途においては、導電性の材料であることが好ましい。なお、半導体用途における突出部としては、具体的には導電性ボール又は導電性バンプが挙げられる。
突出部の高さ/幅(又は直径)の値は特に制限はないが、突出部が導電性ボール又は導電性バンプである場合、0.1〜2.0が好ましく、0.2〜1.5がより好ましく、0.5〜1.0がさらに好ましい。また、この際、高さは100μm以上であることが好ましく、100μm〜300μmであることがより好ましい。
前記導電性ボールとしては、例えば、はんだボールが挙げられる。はんだボールの直径は100μm以上500μm未満が好ましく、100μm以上300μm未満がより好ましい。
There is no restriction | limiting in particular in the shape of the protrusion part which a board | substrate has, A cylinder, a prism, a rectangular parallelepiped, a ball shape etc. are mentioned. The material of the projecting part is not particularly limited, but may be the same as or different from the material of the substrate. For semiconductor applications, a conductive material is preferable. In addition, as a protrusion part in a semiconductor use, a conductive ball or a conductive bump is specifically mentioned.
The value of the height / width (or diameter) of the protrusion is not particularly limited. However, when the protrusion is a conductive ball or a conductive bump, 0.1 to 2.0 is preferable, and 0.2 to 1. 5 is more preferable, and 0.5 to 1.0 is more preferable. At this time, the height is preferably 100 μm or more, and more preferably 100 μm to 300 μm.
An example of the conductive ball is a solder ball. The diameter of the solder ball is preferably 100 μm or more and less than 500 μm, and more preferably 100 μm or more and less than 300 μm.

基板上の突出部は、2以上の突出部が規則性を持って配列していてもよいし、2以上の突出部が不規則に配列していてもよい。
基板上の突出部が規則性を持って配列している場合、互いに隣接する突出部の間隔(段差間隔)は、100〜1000μmが好ましく、400〜700μmがより好ましい。
ここで段差間隔とは、互いに隣接する2つの突出部間の距離であって、例えば突出部が導電性ボールである場合、隣接するボールの中心間の距離が段差間隔(ピッチ)となる。本発明の硬化膜の製造方法では、段差間隔が長い場合であっても厚膜の硬化膜を形成することができる。
As for the protrusions on the substrate, two or more protrusions may be arranged with regularity, or two or more protrusions may be arranged irregularly.
When the protrusions on the substrate are arranged with regularity, the distance between adjacent protrusions (step difference) is preferably 100 to 1000 μm, and more preferably 400 to 700 μm.
Here, the step interval is a distance between two adjacent projecting portions. For example, when the projecting portion is a conductive ball, the distance between the centers of the adjacent balls becomes the step interval (pitch). In the method for producing a cured film of the present invention, a thick cured film can be formed even when the step gap is long.

本発明の硬化膜の製造方法で使用する樹脂組成物が含む樹脂としては、特に制限はないが、電気絶縁性が高い熱硬化性樹脂が好ましい。
熱硬化性樹脂としては、例えばポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリアミド、ポリアミドイミド、ノボラック樹脂、ノルボルネン樹脂、エポキシ樹脂、アクリル樹脂、及びフェノール樹脂を挙げることができる。これらの中でも、絶縁性と機械特性の両立の観点から、熱硬化性樹脂は、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、又はポリベンゾオキサゾール前駆体が好ましい。
これらの熱硬化性樹脂は単独で、又は二種以上を組み合わせて使用することができる。
Although there is no restriction | limiting in particular as resin contained in the resin composition used with the manufacturing method of the cured film of this invention, Thermosetting resin with high electrical insulation is preferable.
Examples of the thermosetting resin include polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, polyamide, polyamideimide, novolac resin, norbornene resin, epoxy resin, acrylic resin, and phenol resin. Among these, the thermosetting resin is preferably a polyimide, a polyimide precursor, a polybenzoxazole, or a polybenzoxazole precursor from the viewpoint of achieving both insulation and mechanical properties.
These thermosetting resins can be used alone or in combination of two or more.

本発明の硬化膜の製造方法で使用する樹脂組成物の粘度としては、円コート法で塗布できる粘度であれば特に制限はないが、1〜50000mPa・sであることが好ましく、厚膜形成性の観点から、500〜30000mPa・sであることがより好ましい。   The viscosity of the resin composition used in the method for producing a cured film of the present invention is not particularly limited as long as it is a viscosity that can be applied by a circular coating method, but is preferably 1 to 50000 mPa · s, and has a thick film formability. From the viewpoint, it is more preferably 500 to 30000 mPa · s.

樹脂組成物に用いる溶剤としては、熱硬化性樹脂を溶解できるものであれば特に制限はないが、硬化温度以下で揮発する溶剤が好ましい。
上記溶剤としては、例えばN−メチル−2−ピロリドン、γ−ブチロラクトン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2−ヒドロキシ−3−メチルブタン酸メチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、及び乳酸ブチルを挙げることができる。これらの溶剤は単独で、又は2種以上を組み合わせて使用することができる。
The solvent used in the resin composition is not particularly limited as long as it can dissolve the thermosetting resin, but is preferably a solvent that volatilizes below the curing temperature.
Examples of the solvent include N-methyl-2-pyrrolidone, γ-butyrolactone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene Glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, Ethyl hydroxyacetate, 2-hydroxy-3-methyl Butanoate, methyl 3-methoxypropionate, 3-methoxypropionate, ethyl 3-ethoxy ethyl propionate, methyl 3-ethoxypropionate, ethyl acetate, butyl acetate, ethyl lactate, and can be exemplified butyl lactate. These solvents can be used alone or in combination of two or more.

樹脂組成物は、必要に応じて、感光剤、架橋剤、カップリング剤、溶解促進剤、溶解阻害剤、界面活性剤又はレベリング剤を含んでもよい。   The resin composition may contain a photosensitizer, a crosslinking agent, a coupling agent, a dissolution accelerator, a dissolution inhibitor, a surfactant, or a leveling agent as necessary.

本発明の硬化膜の製造方法は、突出部を有する基板上に、樹脂組成物を円コート法を用いて塗布する。円コート法は、シリコンウエハ等の円形基板を適当な速度で回転させながら、膜形成用の樹脂組成物の溶液を円形基板の中心から端部に向かって任意の速度で塗布し、樹脂溶液にかかる重力を利用して、塗布膜を形成する製膜方法である。
円コート法を用いることにより、スピンコート法と比較して、膜厚30μm以上の厚膜の塗布膜を得ることができ、厚膜形成時に円形基板の中心部と端部の膜厚について高い均一性が得られる。
In the method for producing a cured film of the present invention, a resin composition is applied onto a substrate having a protruding portion by using a circular coating method. In the circular coating method, while rotating a circular substrate such as a silicon wafer at an appropriate speed, a solution of a resin composition for film formation is applied from the center of the circular substrate toward the end at an arbitrary speed, and applied to the resin solution. This is a film forming method for forming a coating film by utilizing such gravity.
By using the circular coating method, a coating film having a thickness of 30 μm or more can be obtained as compared with the spin coating method, and the thickness of the central portion and the end portion of the circular substrate is high and uniform when forming the thick film. Sex is obtained.

円コート法による塗布の一実施形態を説明する。
突出部を有する基板(段差基板)を、円コータ(中外炉工業株式会社製)に設置し、基板を任意の速度(例えば1−1000rpm、好ましくは1−200rpm、さらに好ましくは1−50rpm)で回転させる。回転速度を調整することで、塗布膜の膜厚を調整できるので、厚膜を形成する場合、1−50rpmで回転させることが好ましい。
次に、回転する基板に樹脂組成物を任意の速度で基板の中心から端部に向かって滴下する。滴下時間としては特に制限はないが、滴下開始から終了までの時間として、例えば0.5秒〜30分であり、生産性の観点から0.5秒〜10分以内であることが好ましい。滴下の速度としては特に制限はないが、一定の速度で滴下してもよいし、滴下の速度を滴下中に任意に変更してもよい。
One embodiment of application by the circular coating method will be described.
A substrate having a protruding portion (stepped substrate) is placed on a circular coater (manufactured by Chugai Furnace Industry Co., Ltd.), and the substrate is moved at an arbitrary speed (for example, 1-1000 rpm, preferably 1-200 rpm, more preferably 1-50 rpm). Rotate. Since the film thickness of the coating film can be adjusted by adjusting the rotation speed, when forming a thick film, it is preferably rotated at 1-50 rpm.
Next, the resin composition is dropped onto the rotating substrate from the center of the substrate toward the end at an arbitrary speed. Although there is no restriction | limiting in particular as dropping time, As time from dripping start to completion | finish, it is 0.5 second-30 minutes, for example, and it is preferable that it is less than 0.5 second-10 minutes from a viewpoint of productivity. Although there is no restriction | limiting in particular as a speed | rate of dripping, you may drop at a fixed speed | rate, You may change arbitrarily the speed of dripping during dripping.

樹脂組成物の滴下量は、使用する基板の大きさや用途、及び必要とする硬化膜の膜厚等に依存するが、塗布膜が段差基板の表面全体を充分に覆うことができる限りにおいて、特に制限はない。例えば、硬化後膜厚を100μm以上にするには、塗布膜の膜厚は300〜1000μmとすることが好ましい。   The dripping amount of the resin composition depends on the size and application of the substrate to be used, and the required thickness of the cured film, but as long as the coating film can sufficiently cover the entire surface of the stepped substrate, in particular. There is no limit. For example, in order to make the film thickness after curing 100 μm or more, the thickness of the coating film is preferably 300 to 1000 μm.

塗布膜を有する段差基板の加熱は、例えば塗布膜中の溶剤を揮発させる第1の加熱、及び塗布膜を硬化して硬化膜とする第2の加熱の2段階で行うことができる。
第1の加熱の加熱温度は、塗布膜中の溶剤を揮発させる温度であれば特に限定されない。第2の加熱の加熱温度(硬化温度)は、塗布膜の硬化反応を進行させるための温度であって第1の加熱の加熱温度よりも高温であり、硬化反応が充分に進行する温度であって段差基板に損傷等の不具合が発生しない温度であることが好ましい。例えば基板の突出部がはんだボールである場合、硬化温度は250℃以下であることが好ましく、はんだの融点を考慮すると、220℃以下であることがより好ましい。
The stepped substrate having the coating film can be heated in two stages, for example, first heating for volatilizing the solvent in the coating film and second heating for curing the coating film to obtain a cured film.
The heating temperature of the first heating is not particularly limited as long as it is a temperature at which the solvent in the coating film is volatilized. The heating temperature (curing temperature) of the second heating is a temperature for proceeding with the curing reaction of the coating film and is higher than the heating temperature of the first heating, and is a temperature at which the curing reaction proceeds sufficiently. Thus, it is preferable that the temperature is such that no trouble such as damage occurs in the stepped substrate. For example, when the protruding portion of the substrate is a solder ball, the curing temperature is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower in consideration of the melting point of the solder.

塗布膜の加熱は、電熱式ホットプレート、IR式ホットプレート等のホットプレート装置、加熱炉、硬化炉などを使用して行うことができる。加熱にホットプレート装置を用いる場合、段差基板はその下部(塗布膜を有する面の反対側)から加熱されることになる。加熱に加熱炉又は硬化炉を用いる場合は、段差基板の全体が均一に加熱されることになる。   The coating film can be heated using a hot plate apparatus such as an electrothermal hot plate or an IR hot plate, a heating furnace, a curing furnace, or the like. When a hot plate apparatus is used for heating, the stepped substrate is heated from the lower part (opposite the surface having the coating film). When a heating furnace or a curing furnace is used for heating, the entire step substrate is heated uniformly.

加熱により得られる硬化膜は、基板上の突出部及び基板の表側(基板の突出部を有する側の面)の全てを被覆している状態となっていれば特に限定されない。段差基板を被覆している硬化膜の形状は、段差基板の形状を追従した形状であることが好ましい。形状の追従とは、硬化膜が突出部の輪郭を覆うことであり、突出部の間の溝を埋めて突出部の形状が失われないことをいう。
段差基板を被覆している硬化膜が段差基板の形状を追従している場合、電子部品の信頼性を高める観点からは、隣接する突出部の間にある硬化膜の中央部の膜厚が、突出部の高さの1/3以上であることが好ましい。
The cured film obtained by heating is not particularly limited as long as it is in a state of covering all of the protruding portion on the substrate and the front side of the substrate (the surface on the side having the protruding portion of the substrate). The shape of the cured film covering the step substrate is preferably a shape that follows the shape of the step substrate. The tracking of the shape means that the cured film covers the outline of the protruding portion, and the groove between the protruding portions is filled and the shape of the protruding portion is not lost.
When the cured film covering the stepped substrate follows the shape of the stepped substrate, from the viewpoint of increasing the reliability of the electronic component, the thickness of the central portion of the cured film between the adjacent protrusions is It is preferable that it is 1/3 or more of the height of a protrusion part.

硬化膜で被覆した段差基板について、突出部に対応する部分を公知の手段で露出させることにより、本発明の電子部品が得られる。   With respect to the stepped substrate covered with the cured film, the electronic component of the present invention can be obtained by exposing a portion corresponding to the protruding portion by a known means.

本発明の電子部品は、基板上にある複数の突出部の間に、膜厚84μm以上の硬化樹脂膜がある。硬化膜は、通常、突出部の間を覆っている。このように厚膜の硬化膜は円コート法により初めて得ることができる。
硬化樹脂膜はバブル(例えば、直径1μm以上の空隙)を含まないことが好ましい。バブルの存在は目視又は顕微鏡による観察にて確認できる。
In the electronic component of the present invention, there is a cured resin film having a thickness of 84 μm or more between the plurality of protrusions on the substrate. The cured film usually covers between the protrusions. Thus, a thick cured film can be obtained for the first time by the circular coating method.
The cured resin film preferably does not contain bubbles (for example, voids having a diameter of 1 μm or more). The presence of bubbles can be confirmed visually or by observation with a microscope.

図2は、本発明の電子部品の一実施形態に係る再配線構造を有する半導体装置の概略断面図である。図2の半導体装置100では、ウエハ110上にアルミニウム配線120が設けられており、ウエハ110及びアルミニウム配線120の両端部を覆うようにして絶縁層130が積層している。絶縁層130上には、絶縁層130及びアルミニウム配線120の一部を覆うようにして層間絶縁層140が設けられており、アルミニウム配線120の残りの露出部の全て及び層間絶縁層140を覆うようにして再配線層150が積層されている。再配線層150に接して導電性ボール170が設けられており、再配線層150及び導電性ボール170が形成する空隙を埋めるようにカバーコート層160が再配線層150上に積層されている。   FIG. 2 is a schematic cross-sectional view of a semiconductor device having a rewiring structure according to an embodiment of the electronic component of the present invention. In the semiconductor device 100 of FIG. 2, the aluminum wiring 120 is provided on the wafer 110, and the insulating layer 130 is laminated so as to cover both ends of the wafer 110 and the aluminum wiring 120. On the insulating layer 130, an interlayer insulating layer 140 is provided so as to cover a part of the insulating layer 130 and the aluminum wiring 120, so as to cover all the remaining exposed portions of the aluminum wiring 120 and the interlayer insulating layer 140. Thus, the rewiring layer 150 is laminated. A conductive ball 170 is provided in contact with the rewiring layer 150, and a cover coat layer 160 is laminated on the rewiring layer 150 so as to fill a gap formed by the rewiring layer 150 and the conductive ball 170.

図2において、ダイと基板を導電性ボールで接続する場合、接続信頼性向上のため、再配線層150と導電性ボール170の間にさらにUBM層が通常設けられる。本発明の硬化膜の製造方法では、カバーコート層160を厚膜に形成することができるため、UBM層を設ける必要がない。UBM層の形成プロセスは複雑であるので、当該UBM層の形成を省略できる本発明の硬化膜の製造方法は極めて有用である。   In FIG. 2, when the die and the substrate are connected with conductive balls, a UBM layer is usually provided between the rewiring layer 150 and the conductive balls 170 in order to improve connection reliability. In the method for producing a cured film of the present invention, the cover coat layer 160 can be formed in a thick film, and therefore there is no need to provide a UBM layer. Since the process of forming the UBM layer is complicated, the method for producing a cured film of the present invention that can omit the formation of the UBM layer is extremely useful.

以下、実施例及び比較例に基づき、本発明についてさらに具体的に説明するが、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例1)
直径250μm及び高さ250μmの円柱状の突出部が700μmの段差間隔で等間隔に存在する突出部を有する直径6インチの銅めっきウエハ基板を円コータに設置した。ここで、段差間隔とは、突出部の中心部から隣接する突出部の中心部までの距離をさす。
次に、基板を30rpmで回転させた状態で、熱硬化性樹脂組成物(日立化成デュポンマイクロシステムズ株式会社製、商品名PIX−3400。ポリマーとしてポリイミド前駆体、溶媒としてN−メチル−2−ピロリドンを含有し、固形分は18−22質量%である)をウエハ中心部から端部に向かって、0.5mm/秒の速度で滴下し、段差基板上に塗布膜を形成した。次に塗布膜を有する基板をホットプレート上、120℃で10分間加熱した。続いて、本基板を、イナートガスオーブン(光洋サーモシステム社製、INH−9CD−S)を用いて窒素雰囲気下、200℃で1時間加熱し硬化膜付き段差基板を得た。
Example 1
A 6-inch diameter copper-plated wafer substrate having protrusions in which cylindrical protrusions with a diameter of 250 μm and a height of 250 μm exist at equal intervals with a step difference of 700 μm was placed on a circular coater. Here, the step interval refers to the distance from the center of the protrusion to the center of the adjacent protrusion.
Next, with the substrate rotated at 30 rpm, a thermosetting resin composition (manufactured by Hitachi Chemical DuPont Microsystems Co., Ltd., trade name PIX-3400. Polyimide precursor as a polymer and N-methyl-2-pyrrolidone as a solvent) And a solid content of 18-22% by mass) was dropped from the center of the wafer toward the end at a rate of 0.5 mm / second to form a coating film on the stepped substrate. Next, the substrate having the coating film was heated on a hot plate at 120 ° C. for 10 minutes. Subsequently, this substrate was heated for 1 hour at 200 ° C. in a nitrogen atmosphere using an inert gas oven (INH-9CD-S, manufactured by Koyo Thermo Systems Co., Ltd.) to obtain a stepped substrate with a cured film.

得られた硬化膜付き段差基板について、以下の評価を行った。結果を表1に示す。
(1)バブルの有無
段差基板の硬化膜表面を光学顕微鏡で観察した。直径6インチの硬化膜において、全面積のうち、5%未満でバブルが観察されたものをA(良好)と評価し、全面積のうち、5%以上で硬化膜中にバブルが存在したものをB(実用レベルではない)と評価した。ここで「バブル」とは、直径0.01〜10μmの空隙と定義され、バブルが存在することで、外観不良となったり、信頼性が低下したりして問題となる。
(2)硬化後膜厚
硬化膜付き段差基板を切断し、硬化膜の膜厚を光学顕微鏡で測定した。具体的には段差間の中心部の膜厚を測定し、膜厚が段差高さの1/3以上の膜厚であったものをA(良好)と評価し、膜厚が段差高さの1/3未満であったものをB(実用レベルではない)と評価した。
The following evaluation was performed about the obtained level | step difference board | substrate with a cured film. The results are shown in Table 1.
(1) Presence or absence of bubbles The surface of the cured film of the stepped substrate was observed with an optical microscope. In a cured film having a diameter of 6 inches, a bubble observed in less than 5% of the total area was evaluated as A (good), and bubbles were present in the cured film in 5% or more of the total area. Was evaluated as B (not at a practical level). Here, “bubbles” are defined as voids having a diameter of 0.01 to 10 μm, and the presence of bubbles causes problems such as poor appearance and reduced reliability.
(2) Film thickness after hardening The step board | substrate with a cured film was cut | disconnected, and the film thickness of the cured film was measured with the optical microscope. Specifically, the film thickness of the central part between the steps is measured, and the film thickness is evaluated as A (good) when the film thickness is 1/3 or more of the step height. What was less than 1/3 was evaluated as B (not practical level).

(実施例2〜5)
銅めっきウエハ基板の段差間隔をそれぞれ500μm、400μm、200μm、100μmにした基板を用いた他は、実施例1と同様にして硬化膜付き段差基板を製造し、評価した。結果を表1に示す。
(Examples 2 to 5)
A stepped substrate with a cured film was manufactured and evaluated in the same manner as in Example 1 except that the stepped intervals of the copper plated wafer substrate were 500 μm, 400 μm, 200 μm, and 100 μm, respectively. The results are shown in Table 1.

(実施例6)
熱硬化性樹脂組成物として、ポリイミド前駆体の組成物(日立化成デュポンマイクロシステムズ株式会社製、商品名:PIX−1400−3L。ポリマーとしてポリイミド前駆体、溶媒としてN−メチル−2−ピロリドンを含有し、固形分は14−16質量%である)を用いた他は、実施例1と同様にして硬化膜付き段差基板を製造し、評価した。結果を表1に示す。
(Example 6)
As a thermosetting resin composition, a polyimide precursor composition (manufactured by Hitachi Chemical DuPont Microsystems, Inc., trade name: PIX-1400-3L. Containing a polyimide precursor as a polymer and N-methyl-2-pyrrolidone as a solvent) In addition, a stepped substrate with a cured film was produced and evaluated in the same manner as in Example 1 except that the solid content was 14-16% by mass. The results are shown in Table 1.

(実施例7及び8)
銅めっきウエハ基板の段差間隔をそれぞれ500μm、400μmとした他は実施例6と同様にして硬化膜付き段差基板を製造し、評価した。結果を表1に示す。
(Examples 7 and 8)
A stepped substrate with a cured film was manufactured and evaluated in the same manner as in Example 6 except that the step intervals of the copper plated wafer substrate were 500 μm and 400 μm, respectively. The results are shown in Table 1.

(実施例9)
熱硬化性樹脂組成物として、ポリイミドの組成物(ポリマーとして下記ポリイミド1、溶媒としてN−メチル−2−ピロリドンを含有し、固形分は40質量%である)を用いた他は、実施例1と同様にして硬化膜付き段差基板を製造し、評価した。結果を表1に示す。
[ポリイミド1の製造]
ポリイミド1は、具体的には以下のように製造した。
撹拌機、温度計を備えた0.2リットルのフラスコ中に、N−メチルピロリドン60gを仕込み、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン4.40g(12mmol)を添加し、撹拌溶解した。続いて、オキシジフタル酸二無水物4.20g(13.5mmol)を10分間で滴下した後、10時間撹拌を続けた。次に、メタ−アミノフェノール0.33g(3.0mmol)を添加し、2時間撹拌した後、トルエン30gを加え、160℃で2時間、180℃で1時間加熱することにより、脱水環化反応を行い、ポリイミド1を得た。ポリイミド1のGPC法標準ポリスチレン換算により求めた重量平均分子量は34,000、分散度は2.0であった。
Example 9
Example 1 except that a polyimide composition (polyimide 1 shown below as a polymer and N-methyl-2-pyrrolidone as a solvent and a solid content of 40% by mass) was used as a thermosetting resin composition In the same manner, a stepped substrate with a cured film was produced and evaluated. The results are shown in Table 1.
[Production of Polyimide 1]
Specifically, the polyimide 1 was produced as follows.
A 0.2 liter flask equipped with a stirrer and a thermometer was charged with 60 g of N-methylpyrrolidone, and 4.40 g (12 mmol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added. Added and stirred to dissolve. Subsequently, 4.20 g (13.5 mmol) of oxydiphthalic dianhydride was added dropwise over 10 minutes, and stirring was continued for 10 hours. Next, 0.33 g (3.0 mmol) of meta-aminophenol was added and stirred for 2 hours, and then 30 g of toluene was added, followed by heating at 160 ° C. for 2 hours and 180 ° C. for 1 hour, thereby causing a dehydration cyclization reaction. The polyimide 1 was obtained. The weight average molecular weight calculated | required by GPC method standard polystyrene conversion of the polyimide 1 was 34,000, and dispersion degree was 2.0.

(実施例10)
熱硬化性樹脂組成物として、ポリベンゾオキサゾール前駆体の組成物(日立化成デュポンマイクロシステムズ株式会社製、商品名:HD−8820。ポリマーとしてポリベンゾオキサゾール前駆体、溶媒としてN−メチル−2−ピロリドンを含有し、固形分は35−54質量%である)を用いた他は、実施例1と同様にして硬化膜付き段差基板を製造し、評価した。結果を表1に示す。
(Example 10)
As a thermosetting resin composition, a polybenzoxazole precursor composition (manufactured by Hitachi Chemical DuPont Microsystems, Inc., trade name: HD-8820. Polybenzoxazole precursor as a polymer, N-methyl-2-pyrrolidone as a solvent) The stepped substrate with a cured film was produced and evaluated in the same manner as in Example 1 except that the solid content was 35 to 54% by mass. The results are shown in Table 1.

(比較例1)
直径250μm及び高さ250μmの円柱状の突出部が700μmの段差間隔で等間隔に存在する突出部を有する直径6インチの銅めっきウエハ基板をスピンコータに設置した
次に、基板を停止させた状態で、熱硬化性樹脂組成物(ポリマーとしてポリイミド前駆体、溶媒としてN−メチル−2−ピロリドンを含有し、固形分は18−22質量%である)を滴下した。1000rpmで10秒間回転させた後、1250rpmで30秒間回転させることで、段差基板上に塗布膜を形成した。次に塗布膜を有する基板をホットプレート上、120℃で10分間加熱した。続いて、本基板を、イナートガスオーブン(光洋サーモシステム社製、INH−9CD−S)を用いて窒素雰囲気下、200℃で1時間加熱し硬化膜付き段差基板を得た。
得られた硬化膜付き段差基板について、実施例1と同様の評価を行った。結果を表1に示す。
(Comparative Example 1)
A 6-inch diameter copper-plated wafer substrate having protrusions in which cylindrical protrusions having a diameter of 250 μm and a height of 250 μm are present at equal intervals with a step interval of 700 μm was placed on a spin coater. Next, with the substrate stopped The thermosetting resin composition (containing a polyimide precursor as a polymer and N-methyl-2-pyrrolidone as a solvent and having a solid content of 18-22% by mass) was added dropwise. After rotating for 10 seconds at 1000 rpm, the coating film was formed on the stepped substrate by rotating for 30 seconds at 1250 rpm. Next, the substrate having the coating film was heated on a hot plate at 120 ° C. for 10 minutes. Subsequently, this substrate was heated for 1 hour at 200 ° C. in a nitrogen atmosphere using an inert gas oven (INH-9CD-S, manufactured by Koyo Thermo Systems Co., Ltd.) to obtain a stepped substrate with a cured film.
About the obtained level | step difference board | substrate with a cured film, evaluation similar to Example 1 was performed. The results are shown in Table 1.

(比較例2及び3)
銅めっきウエハ基板の段差間隔をそれぞれ500μm、400μmにした基板を用いた他は、比較例1と同様にして硬化膜付き段差基板を製造し、評価した。結果を表1に示す。
(Comparative Examples 2 and 3)
A stepped substrate with a cured film was produced and evaluated in the same manner as in Comparative Example 1 except that the stepped intervals of the copper plated wafer substrate were 500 μm and 400 μm, respectively. The results are shown in Table 1.

Figure 0006442865
Figure 0006442865

(実験例1)
直径250μm及び高さ250μmの円柱状の突出部が300μmの段差間隔で等間隔に存在する突出部を有する直径6インチの銅めっきウエハ基板をスピンコータに設置した。
次に、基板を停止させた状態で、(日立化成デュポンマイクロシステムズ株式会社製、商品名PIX−3400。ポリマーとしてポリイミド前駆体、溶媒としてN−メチル−2−ピロリドンを含有し、固形分は18−22質量%である)を滴下した。750、1250、1500、3000rpmで30秒間回転させて段差基板上に塗布膜を形成した。その後は比較例1と同様にして、硬化膜付き段差基板を得た。硬化膜の膜厚は6μm〜40μmであった。
得られた硬化膜付き段差基板について、バブルの有無を評価した結果を表2に示す。
バブルの有無については、段差基板の硬化膜表面を光学顕微鏡で観察した。直径6インチの硬化膜において、全面積のうち、50%未満でバブルが観察されたものを△(良好ではない)と評価し、全面積のうち、50%以上で硬化膜中にバブルが存在したものを×(実用レベルではない)と評価した。
(Experimental example 1)
A 6-inch diameter copper-plated wafer substrate having protrusions in which cylindrical protrusions having a diameter of 250 μm and a height of 250 μm exist at equal intervals with a step interval of 300 μm was placed on a spin coater.
Next, with the substrate stopped (trade name PIX-3400, manufactured by Hitachi Chemical DuPont Microsystems Co., Ltd., containing a polyimide precursor as a polymer, N-methyl-2-pyrrolidone as a solvent, and a solid content of 18 −22 mass%) was added dropwise. A coating film was formed on the stepped substrate by rotating at 750, 1250, 1500, 3000 rpm for 30 seconds. Thereafter, in the same manner as in Comparative Example 1, a stepped substrate with a cured film was obtained. The film thickness of the cured film was 6 μm to 40 μm.
Table 2 shows the results of evaluating the presence or absence of bubbles for the obtained stepped substrate with cured film.
About the presence or absence of a bubble, the cured film surface of the level | step difference board | substrate was observed with the optical microscope. In a cured film having a diameter of 6 inches, if a bubble was observed in less than 50% of the total area, it was evaluated as △ (not good), and there was a bubble in the cured film in 50% or more of the total area. What was done was evaluated as x (not a practical level).

Figure 0006442865
Figure 0006442865

(実験例2)
熱硬化性樹脂組成物の粘度、段差間隔、添加物の有無を、表3に示すように変え、スピンコータの回転速度を1250rpmと一定にした他は、実験例1と同様にして硬化膜付き段差基板を得た。粘度は溶媒により調整した。
表中、NMPはN−メチル−2−ピロリドンの30質量%添加を、Surfctantは界面活性剤の0.5質量%添加を示す。
得られた硬化膜付き段差基板について、それぞれの段差間隔におけるバブルの有無を実施例1と同様に評価した。結果を表3に示す。
(Experimental example 2)
A step with a cured film was performed in the same manner as in Experimental Example 1, except that the viscosity of the thermosetting resin composition, the step interval, and the presence or absence of additives were changed as shown in Table 3 and the spin coater rotation speed was kept constant at 1250 rpm. A substrate was obtained. The viscosity was adjusted with a solvent.
In the table, NMP represents the addition of 30% by mass of N-methyl-2-pyrrolidone, and Surfcant represents the addition of 0.5% by mass of the surfactant.
About the obtained level | step difference board | substrate with a cured film, the presence or absence of the bubble in each level | step difference space | interval was evaluated similarly to Example 1. FIG. The results are shown in Table 3.

Figure 0006442865
Figure 0006442865

上記実験例1及び2から、スピンコート法では、膜厚の厚いバブルのない硬化膜が得られないことが分かる。   From Experimental Examples 1 and 2, it can be seen that the spin coat method cannot provide a cured film without a thick bubble.

本発明による硬化膜製造方法は、段差基板に対する熱硬化性樹脂組成物の塗布であっても、ボイドなく硬化膜を形成できる。また、本発明によれば、段差基板上に、厚膜を形成することが可能である。さらに、本発明の硬化膜製造方法を用いると、硬化膜中にボイドが存在しないことから、信頼性の高い電子部品(UBM層を用いないパッケージ構造等)が得られる。   The cured film manufacturing method by this invention can form a cured film without a void even if it is application | coating of the thermosetting resin composition with respect to a level | step difference board | substrate. Moreover, according to the present invention, it is possible to form a thick film on the stepped substrate. Furthermore, when the cured film manufacturing method of the present invention is used, since there is no void in the cured film, a highly reliable electronic component (such as a package structure not using a UBM layer) can be obtained.

10 基板
20 再配線層
30 樹脂膜
40 導電性バンプ
100 半導体装置
110 ウエハ
120 アルミニウム配線
130 絶縁層
140 層間絶縁層
150 再配線層
160 カバーコート層
170 導電性ボール
DESCRIPTION OF SYMBOLS 10 Substrate 20 Rewiring layer 30 Resin film 40 Conductive bump 100 Semiconductor device 110 Wafer 120 Aluminum wiring 130 Insulating layer 140 Interlayer insulating layer 150 Rewiring layer 160 Cover coat layer 170 Conductive ball

Claims (10)

複数の突出部を有する基板上に、前記基板を任意の速度で回転させながら樹脂組成物を前記基板の中心から端部に向かって任意の速度で滴下位置を移動させながら滴下して塗布し、塗布膜を形成する工程と、前記塗布膜を加熱して、前記複数の突出部の間に、膜厚84μm以上の硬化膜を形成する工程を含む硬化膜製造方法。 On the substrate having a plurality of protrusions, the resin composition is dropped and applied while moving the dropping position at an arbitrary speed from the center of the substrate toward the end while rotating the substrate at an arbitrary speed, A method for producing a cured film, comprising: a step of forming a coating film; and a step of heating the coating film to form a cured film having a thickness of 84 μm or more between the plurality of protrusions . 前記突出部の高さ/幅の値が0.1〜2.0であり、突出部の高さが100μm以上である請求項1に記載の硬化膜製造方法。   2. The method for producing a cured film according to claim 1, wherein a height / width value of the protrusion is 0.1 to 2.0, and a height of the protrusion is 100 μm or more. 前記突出部が、導電性ボール又はバンプである請求項1又は2に記載の硬化膜製造方法。   The cured film manufacturing method according to claim 1, wherein the protrusion is a conductive ball or a bump. 前記樹脂組成物が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール又はポリベンゾオキサゾール前駆体を含む請求項1〜3のいずれかに記載の硬化膜製造方法。   The cured film manufacturing method in any one of Claims 1-3 in which the said resin composition contains a polyimide, a polyimide precursor, a polybenzoxazole, or a polybenzoxazole precursor. 前記硬化膜が突出部を有する基板の形状を追従した被覆膜である請求項1〜4のいずれかに記載の硬化膜製造方法。   The method for producing a cured film according to claim 1, wherein the cured film is a coating film that follows the shape of a substrate having a protruding portion. 請求項1〜5のいずれかに記載の硬化膜製造方法で硬化膜を形成する電子部品の製造方法。   The manufacturing method of the electronic component which forms a cured film with the cured film manufacturing method in any one of Claims 1-5. 基板上に、複数の突出部があり、前記基板上に、前記基板を任意の速度で回転させながら樹脂組成物を前記基板の中心から端部に向かって任意の速度で滴下位置を移動させながら滴下して塗布し、塗布膜を形成する工程と、前記塗布膜を加熱して、前記複数の突出部の間に、膜厚84μm以上の硬化樹脂膜を形成する工程を含む電子部品の製造方法。   There are a plurality of protrusions on the substrate, and while the substrate is rotated at an arbitrary speed on the substrate, the dropping position is moved at an arbitrary speed from the center of the substrate toward the edge. A method of manufacturing an electronic component, comprising: a step of dropping and coating to form a coating film; and a step of heating the coating film to form a cured resin film having a thickness of 84 μm or more between the plurality of protrusions. . 前記突出部の高さが100μm以上である請求項7に記載の電子部品の製造方法。   The method for manufacturing an electronic component according to claim 7, wherein a height of the protruding portion is 100 μm or more. 前記硬化樹脂膜がバブルを含まない請求項7又は8に記載の電子部品の製造方法。   The method for manufacturing an electronic component according to claim 7, wherein the cured resin film does not contain bubbles. 前記突出部が、導電性ボール又はバンプであり、前記電子部品が、アンダーバンプメタル層を用いないパッケージ構造である請求項7〜9のいずれかに記載の電子部品の製造方法。   The method of manufacturing an electronic component according to claim 7, wherein the protruding portion is a conductive ball or a bump, and the electronic component has a package structure that does not use an under bump metal layer.
JP2014097580A 2014-05-09 2014-05-09 Cured film manufacturing method Active JP6442865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097580A JP6442865B2 (en) 2014-05-09 2014-05-09 Cured film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097580A JP6442865B2 (en) 2014-05-09 2014-05-09 Cured film manufacturing method

Publications (2)

Publication Number Publication Date
JP2015213863A JP2015213863A (en) 2015-12-03
JP6442865B2 true JP6442865B2 (en) 2018-12-26

Family

ID=54751303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097580A Active JP6442865B2 (en) 2014-05-09 2014-05-09 Cured film manufacturing method

Country Status (1)

Country Link
JP (1) JP6442865B2 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175187A (en) * 1991-12-20 1993-07-13 Nec Yamagata Ltd Manufacture of semiconductor device
JPH08279448A (en) * 1995-04-05 1996-10-22 Sony Corp Spin coater and spin coating method
JPH0975825A (en) * 1995-09-20 1997-03-25 Matsushita Electric Ind Co Ltd Apparatus and method for forming coating film
JP4022282B2 (en) * 1997-04-07 2007-12-12 大日本スクリーン製造株式会社 Coating device
JPH11162806A (en) * 1997-09-24 1999-06-18 Hitachi Chem Co Ltd Semiconductor device and its manufacture
JP3585096B2 (en) * 1999-04-20 2004-11-04 平田機工株式会社 Rotary coating device
JP4145468B2 (en) * 1999-07-29 2008-09-03 中外炉工業株式会社 Method for forming circular coating film and annular coating film
JP4361223B2 (en) * 2001-03-19 2009-11-11 株式会社フジクラ Semiconductor package
JP3655576B2 (en) * 2001-07-26 2005-06-02 株式会社東芝 Liquid film forming method and semiconductor device manufacturing method
JP2004047579A (en) * 2002-07-09 2004-02-12 Seiko Epson Corp Method and apparatus for discharging liquid-like substance
JP3685158B2 (en) * 2002-07-09 2005-08-17 セイコーエプソン株式会社 Liquid material discharge method and liquid material discharge device
JP2004358381A (en) * 2003-06-05 2004-12-24 Canon Inc Method of forming circular/annular coating film
JP3938128B2 (en) * 2003-09-30 2007-06-27 セイコーエプソン株式会社 SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD, CIRCUIT BOARD, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC DEVICE
JP4031756B2 (en) * 2003-12-22 2008-01-09 日東電工株式会社 Printed circuit board
JP2007173621A (en) * 2005-12-22 2007-07-05 Sharp Corp Method for coating liquid membrane material to substrate
JP4693855B2 (en) * 2008-03-06 2011-06-01 株式会社フジクラ Semiconductor package and manufacturing method thereof
JP4982527B2 (en) * 2009-06-08 2012-07-25 株式会社東芝 Film forming apparatus and film forming method

Also Published As

Publication number Publication date
JP2015213863A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
KR101900534B1 (en) Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and method for producing semiconductor device
TW201803043A (en) Semiconductor packages with antennas
JP6534948B2 (en) Method of manufacturing semiconductor device, method of manufacturing flip chip type semiconductor device, semiconductor device and flip chip type semiconductor device
TWI648347B (en) Packaging material and thin film
TWI726165B (en) Diamine compound, heat-resistant resin and resin composition using it
TWI745426B (en) Method of manufacturing semiconductor device
WO2012133384A1 (en) Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package
JP2018041074A (en) Photosensitive resin composition, photosensitive resin film, and electronic apparatus
JP6212861B2 (en) Manufacturing method of semiconductor device
JP2005036136A (en) Thermosetting resin composition with low modulus, thermosetting films using the composition and cured product thereof
TWI431093B (en) Then the sheet
JP6442865B2 (en) Cured film manufacturing method
JP2021096486A (en) Negative type photosensitive resin composition, and semiconductor device using the same
KR102186795B1 (en) Adhesive composition and adhesive film having same, substrate provided with adhesive composition, and semiconductor device and method for manufacturing same
JP7131133B2 (en) resin composition
US10953641B2 (en) Thermally conductive type polyimide substrate
JP2013105834A (en) Manufacturing method of semiconductor device, semiconductor device, and electronic component
JP7348857B2 (en) Manufacturing method of semiconductor device
JP5262350B2 (en) Structure having insulating coating, method for producing the same, and electronic component
JPWO2013111241A1 (en) Polyimide precursor and resin composition using the same
TW201803937A (en) Resin sheet
JP2017194604A (en) Positive photosensitive resin composition
JP2009049417A (en) Manufacturing method of semiconductor device, and semiconductor device
JP2024064435A (en) Resin composition, cured film of resin composition and manufacturing method thereof, insulating film, protective film, and electronic component
JP2013142763A (en) Method for forming coating film of positive type photosensitive resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R150 Certificate of patent or registration of utility model

Ref document number: 6442865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350