JP6420561B2 - Printed wiring board and manufacturing method thereof - Google Patents

Printed wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP6420561B2
JP6420561B2 JP2014073113A JP2014073113A JP6420561B2 JP 6420561 B2 JP6420561 B2 JP 6420561B2 JP 2014073113 A JP2014073113 A JP 2014073113A JP 2014073113 A JP2014073113 A JP 2014073113A JP 6420561 B2 JP6420561 B2 JP 6420561B2
Authority
JP
Japan
Prior art keywords
metal piece
wiring board
printed wiring
housing portion
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014073113A
Other languages
Japanese (ja)
Other versions
JP2015195304A (en
Inventor
淳男 川越
淳男 川越
利幸 島
利幸 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014073113A priority Critical patent/JP6420561B2/en
Publication of JP2015195304A publication Critical patent/JP2015195304A/en
Application granted granted Critical
Publication of JP6420561B2 publication Critical patent/JP6420561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、実装した半導体素子などの電子部品からの熱を放熱させるようにした印刷配線板、この印刷配線板と実装された部品とを備えた実装構造体、および印刷配線板の製造方法に関する。   The present invention relates to a printed wiring board configured to dissipate heat from an electronic component such as a mounted semiconductor element, a mounting structure including the printed wiring board and the mounted component, and a method for manufacturing the printed wiring board. .

放熱用印刷配線板で、例えば、電源回路などに厚肉の導体が要求される場合には、特許文献1および2に開示されるように、厚銅タイプのコア基板を用いる方法が知られている。また、特許文献3には、銅箔にワイヤを溶接して、必要箇所のみに厚銅と同じ効果を付与する方法が開示されている。   For example, when a printed wiring board for heat dissipation requires a thick conductor for a power supply circuit or the like, as disclosed in Patent Documents 1 and 2, a method using a thick copper type core substrate is known. Yes. Patent Document 3 discloses a method in which a wire is welded to a copper foil and the same effect as that of thick copper is imparted only to a necessary portion.

しかし、特許文献1および2の方法では、使用する銅箔面が非常に厚くなるため、エッチングの裾引きの影響でエッチング処理により細線化した配線パターンを形成することが難しい。また、エッチングの裾引きによって、放熱用厚肉配線パターン部の回路幅精度が悪くなる問題もある。
特許文献3には、銅箔に0.3mm〜0.4mmの厚さを持つワイヤを溶接することにより、必要箇所のみに厚銅と同様な効果をもたらす技術が提案されていた。しかし、特許文献3の方法では、銅箔とワイヤとを特別な装置を用いて、高精度に接合する必要がある。
However, in the methods of Patent Documents 1 and 2, since the copper foil surface to be used becomes very thick, it is difficult to form a thin wiring pattern by etching due to the influence of etching tailing. Further, there is a problem that the circuit width accuracy of the heat dissipating thick wiring pattern portion is deteriorated due to the etching skirting.
Patent Document 3 proposes a technique that brings about an effect similar to that of thick copper only at a necessary portion by welding a wire having a thickness of 0.3 mm to 0.4 mm to a copper foil. However, in the method of Patent Document 3, it is necessary to join the copper foil and the wire with high accuracy using a special apparatus.

特許文献4には、コア基板に形成された貫通孔に銅などの金属小片(放熱ブロック)が収容された放熱用印刷配線板が開示されている。このような印刷配線板では、コア基板として厚銅を用いる必要がなく、上述のような問題は生じにくい。しかし、コア基板に絶縁樹脂層を積層後、放熱ブロックにビアホールを経由して伝熱させるため、ビアホールの断面積に伝熱量が制限される問題があった。   Patent Document 4 discloses a printed wiring board for heat dissipation in which a small piece of metal such as copper (heat dissipation block) is accommodated in a through hole formed in a core substrate. In such a printed wiring board, it is not necessary to use thick copper as the core substrate, and the above-described problems are unlikely to occur. However, after the insulating resin layer is laminated on the core substrate, heat is transferred to the heat dissipating block via the via hole, so that there is a problem that the amount of heat transfer is limited to the cross-sectional area of the via hole.

特許文献5では、ビア導体(金属小片等)を開口部に嵌合する際、開口部の突溝にビア導体の突起を結合させ嵌めこんでいる。このビア導体は、開口部の面積より片側で0.2〜0.5mm程度の小さな形状であるため隙間が生じ、この隙間を埋めるための接着性樹脂等を充填している。さらに、ビア導体が開口部から抜け落ちないようにビア導体とグランド用パターンとを一体化させる技術が開示されている。
しかし、特許文献5では、ビア導体が突起を有しているためビア導体の形成が困難で、高コストで歩留りが低いという問題がある。また、ビア導体を基板の開口部に嵌合する際、開口部の突溝にビア導体の突起を結合させ嵌め込むため、ビア導体に高精度な位置合わせが必要であり、さらに、この嵌合にはかなりの力を必要とするため特殊な装置を用いなければ嵌合は困難である。また、このビア導体は0.2mm以下の開口部には嵌合できない。さらに、ビア導体と開口部の隙間を埋めるための接着性樹脂等を充填しているにもかかわらず、ビア導体が開口部から抜け落ちることの防止に、ビア導体とグランド用パターンとの一体化が必要なため、ビア導体を嵌合からビア導体とグランド用パターンとの一体化までの間の搬送・作業中に、ビア導体が開口部から抜け落ちる危換があり、生産性がきわめて低い問題がある。
In Patent Document 5, when a via conductor (a small metal piece or the like) is fitted into an opening, a protrusion of the via conductor is coupled and fitted into a protruding groove of the opening. Since the via conductor has a small shape of about 0.2 to 0.5 mm on one side from the area of the opening, a gap is formed, and an adhesive resin or the like for filling the gap is filled. Furthermore, a technique is disclosed in which the via conductor and the ground pattern are integrated so that the via conductor does not fall out of the opening.
However, in Patent Document 5, since the via conductor has a protrusion, it is difficult to form the via conductor, and there is a problem that the yield is low at a high cost. Also, when the via conductor is fitted into the opening of the board, the via conductor protrusion is coupled and fitted into the groove of the opening, so that the via conductor needs to be aligned with high accuracy. Since a considerable force is required, the fitting is difficult without using a special device. Further, this via conductor cannot be fitted into an opening of 0.2 mm or less. Furthermore, in order to prevent the via conductor from falling out of the opening even though it is filled with adhesive resin or the like for filling the gap between the via conductor and the opening, the via conductor and the ground pattern are integrated. Because it is necessary, there is a risk that the via conductor may fall out of the opening during transportation and work from fitting the via conductor to integration of the via conductor and the ground pattern. .

また、特許文献5には、ビア導体を内蔵した片側面にめっき処理を施して一体化する構造体が開示されているが、片側にしかめっき処理を施さないため、両面に回路形成が出来ない等の設計的制約がある。   Further, Patent Document 5 discloses a structure in which one side with a built-in via conductor is plated and integrated. However, since only one side is plated, a circuit cannot be formed on both sides. There are design constraints such as

特開平8−293659号公報JP-A-8-293659 特開2002−076571号公報JP 2002-077651 A 特表2008−529263号公報Special table 2008-529263 gazette 特開2013−135168号公報JP2013-135168A 特開2010−258260号公報JP 2010-258260 A

本発明の主たる課題は、実装した部品からの熱を放熱させる放熱性能に優れた印刷配線板を提供することである。
本発明の他の課題は、優れた放熱性を有する印刷配線板を効率よく製造することができる印刷配線板の製造方法を提供することである。
The main subject of this invention is providing the printed wiring board excellent in the thermal radiation performance which radiates the heat | fever from the mounted components.
The other subject of this invention is providing the manufacturing method of the printed wiring board which can manufacture efficiently the printed wiring board which has the outstanding heat dissipation.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
(1)絶縁板の少なくとも一方の面に配線パターンが形成されたコア基板と、コア基板の表面に積層された絶縁樹脂層と、前記コア基板と絶縁樹脂層とを貫通する収容部と、収容部に収容された金属小片とを備え、さらに、前記収容部の一方の表面を上面としたとき、この一方の表面から収容部に収容した前記金属小片が他方の表面から落下しないように、収容部の他方の表面側に金属小片を支持する導体を有することを特徴とする印刷配線板。
(2)前記収容部内周面と金属小片との間隙部分に、絶縁性の金属小片固定樹脂を充填して金属小片が固定されている(1)に記載の印刷配線板。
(3)前記金属小片が銅小片である、(1)または(2)に記載の印刷配線板。
(4)前記収容部は、印刷配線板の一方の面から他方の面にかけて寸法が小さくなる逆錐台状、または該寸法が一定である柱状の貫通孔である、(1)〜(3)のいずれかに記載の印刷配線板。
(5)前記金属小片の表面が、前記絶縁樹脂層の表面と略同一面である、(1)〜(4)のいずれかに記載の印刷配線板。
(6)前記上面側の金属小片の表面に配線導体層を備えた(1)〜(5)のいずれかに記載の印刷配線板。
(7)上記(1)〜(6)のいずれかに記載の印刷配線板の少なくとも一方の面における前記金属小片が収容された位置に部品を直接実装したことを特徴とする実装構造体。
(8)前記部品がフェイスダウンまたはフェイスアップで印刷配線板に実装され、部品下部を熱伝導樹脂または低融点金属で金属小片上の配線導体層に密着させていることを特徴とする(7)に記載の実装構造体。
(9)絶縁板の少なくとも一方の面に配線パターンを形成してコア基板を得る工程と、コア基板の表面に絶縁樹脂層を積層する工程と、前記コア基板と絶縁樹脂層とを貫通する収容部を形成する工程と、前記収容部に金属小片を収容する工程と、前記金属小片の表面に配線導体層を形成する工程とを含み、収容部の一方の表面を上面としたとき、この一方の表面から収容部に収容した前記金属小片が他方の表面から落下しないように、金属小片の収容前に、収容部の他方の表面側に金属小片を支持する導体を設けることを特徴とする印刷配線板の製造方法。
(10)前記コア基板を得る工程の前に、絶縁板にビアホールを形成する工程を含む、請求項9に記載の印刷配線板の製造方法。
(11)前記収容部を形成する工程がレーザ加工または金型加工によって行われる、請求項9または10に記載の印刷配線板の製造方法。
(12)前記収容部に前記金属小片を収容する工程の後、前記収容部と前記金属小片との間隙に絶縁性の金属小片固定樹脂を充填して硬化させる工程をさらに含む、請求項9〜11のいずれかに記載の印刷配線板の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have found a solution means having the following configuration, and have completed the present invention.
(1) A core substrate having a wiring pattern formed on at least one surface of an insulating plate, an insulating resin layer laminated on the surface of the core substrate, an accommodating portion penetrating the core substrate and the insulating resin layer, and accommodating A small piece of metal housed in a portion, and when one surface of the housing portion is an upper surface, the small piece of metal housed in the housing portion is prevented from falling from the other surface from the one surface. A printed wiring board having a conductor for supporting a small metal piece on the other surface side of the portion.
(2) The printed wiring board according to (1), wherein a metal piece is fixed by filling an insulating metal piece fixing resin in a gap portion between the inner peripheral surface of the housing portion and the metal piece.
(3) The printed wiring board according to (1) or (2), wherein the metal piece is a copper piece.
(4) The accommodating portion is an inverted frustum shape whose size is reduced from one surface of the printed wiring board to the other surface, or a columnar through-hole having a constant size, (1) to (3) A printed wiring board according to any one of the above.
(5) The printed wiring board according to any one of (1) to (4), wherein the surface of the metal piece is substantially flush with the surface of the insulating resin layer.
(6) The printed wiring board according to any one of (1) to (5), wherein a wiring conductor layer is provided on a surface of the metal piece on the upper surface side.
(7) A mounting structure in which a component is directly mounted at a position where the metal piece is accommodated on at least one surface of the printed wiring board according to any one of (1) to (6).
(8) The component is mounted on a printed wiring board face-down or face-up, and a lower part of the component is adhered to a wiring conductor layer on a metal piece with a heat conductive resin or a low melting point metal (7) Mounting structure described in 1.
(9) A step of obtaining a core substrate by forming a wiring pattern on at least one surface of the insulating plate, a step of laminating an insulating resin layer on the surface of the core substrate, and a housing penetrating the core substrate and the insulating resin layer Including a step of forming a portion, a step of housing a metal piece in the housing portion, and a step of forming a wiring conductor layer on a surface of the metal piece, wherein one surface of the housing portion is an upper surface. Before the metal piece is accommodated, a conductor for supporting the metal piece is provided on the other surface side of the accommodation portion so that the metal piece accommodated in the accommodation portion from the other surface does not fall from the other surface. A method for manufacturing a wiring board.
(10) The method for manufacturing a printed wiring board according to claim 9, including a step of forming a via hole in the insulating plate before the step of obtaining the core substrate.
(11) The method for manufacturing a printed wiring board according to claim 9 or 10, wherein the step of forming the housing portion is performed by laser processing or mold processing.
(12) After the step of housing the metal piece in the housing portion, the method further includes a step of filling and hardening an insulating metal piece fixing resin in a gap between the housing portion and the metal piece. 11. A method for producing a printed wiring board according to any one of 11 above.

本発明の印刷配線板によれば、収容部に収容される金属小片の厚みと基板厚み(コア基板と絶縁樹脂層との総厚み)を同一に調整可能であり、また、印刷配線板の表裏に段差が無いため微細回路を形成しやすい。しかも、収容部の一方の表面から収容部内に収容された金属小片は、収容部の他方の表面側に設けた導体によって落下しないように支持されているので、金属小片の収容部内への収容が容易になる。
収容部に収容された金属小片と実装した部品とは、ビアホールを介することなく、配線導体層を介して接触するため、高い放熱性能が安定的に得られる。また、前記導体は伝熱性にも優れているので、金属小片の放熱性能をより向上させることができる。さらに、収容部に金属小片を圧入しないため、内蔵に特殊な装置を必要とせず、汎用の部品マウンタを使用できるという効果がある。
According to the printed wiring board of the present invention, the thickness of the metal piece accommodated in the accommodating portion and the substrate thickness (the total thickness of the core substrate and the insulating resin layer) can be adjusted to be the same. Since there is no step, it is easy to form a fine circuit. Moreover, since the metal piece accommodated in the accommodation portion from one surface of the accommodation portion is supported so as not to fall by the conductor provided on the other surface side of the accommodation portion, the metal piece can be accommodated in the accommodation portion. It becomes easy.
Since the small metal piece accommodated in the accommodating portion and the mounted component are in contact via the wiring conductor layer without via holes, high heat radiation performance can be stably obtained. Moreover, since the said conductor is excellent also in heat conductivity, the thermal radiation performance of a metal piece can be improved more. Furthermore, since a small metal piece is not press-fitted into the accommodating portion, there is an effect that a general-purpose component mounter can be used without requiring a special device.

本発明に係る印刷配線板の製造方法によれば、優れた放熱性能を有する印刷配線板を効率よく製造することができる。   According to the method for manufacturing a printed wiring board according to the present invention, a printed wiring board having excellent heat dissipation performance can be efficiently manufactured.

(a)は本発明に係る印刷配線板の一実施態様を示す平面図であり、(b)は(a)のA−A’線側断面図である。(A) is a top view which shows one embodiment of the printed wiring board based on this invention, (b) is the A-A 'line side sectional drawing of (a). (a)〜(f)は本発明に係る印刷配線板の製造方法における実施形態を示す工程図である。(A)-(f) is process drawing which shows embodiment in the manufacturing method of the printed wiring board based on this invention. (g)〜(j)は本発明に係る印刷配線板の製造方法における実施形態を示す工程図である。(G)-(j) is process drawing which shows embodiment in the manufacturing method of the printed wiring board based on this invention. (k)〜(o)は本発明に係る印刷配線板の製造方法における実施形態を示す工程図である。(K)-(o) is process drawing which shows embodiment in the manufacturing method of the printed wiring board based on this invention. 本発明に係る印刷配線板に部品が実装された構造体の一実施形態を示す側面図である。It is a side view which shows one Embodiment of the structure by which components were mounted in the printed wiring board which concerns on this invention. 本発明に係る印刷配線板に部品が実装された構造体の別の実施形態を示す側面図である。It is a side view which shows another embodiment of the structure by which components were mounted in the printed wiring board which concerns on this invention. 本発明に係る印刷配線板の別の形態を示す側断面図である。It is a sectional side view which shows another form of the printed wiring board which concerns on this invention.

本発明の印刷配線板を、図1に基づいて説明する。図1(a)は、本発明に係る印刷配線板の一実施態様を示す平面図を示し、図1(b)は図1(a)のA−A’線側断面図を示す。
本発明の印刷配線板は、図1(a)に示すように、金属小片40を収容する収容部11と配線基板部12を備えている。より詳細には、図1(b)に示すように、本発明の印刷配線板は、絶縁板1の表面に配線パターン4が形成されたコア基板2と、コア基板2の表面に積層された絶縁樹脂層21aと、コア基板2と絶縁樹脂層21aとを貫通して形成された収容部11に収容された金属小片40と、金属小片40の表面に形成された配線導体層22とを備える。さらに、コア基板2の上下面を電気的に接続するために、絶縁板1にはビアホール3が形成されている。
The printed wiring board of this invention is demonstrated based on FIG. Fig.1 (a) shows the top view which shows one embodiment of the printed wiring board based on this invention, FIG.1 (b) shows the sectional view on the AA 'line side of Fig.1 (a).
As shown in FIG. 1A, the printed wiring board of the present invention includes a housing portion 11 that houses a metal piece 40 and a wiring board portion 12. More specifically, as shown in FIG. 1B, the printed wiring board of the present invention is laminated on the surface of the core substrate 2, the core substrate 2 having the wiring pattern 4 formed on the surface of the insulating plate 1. An insulating resin layer 21a, a metal piece 40 accommodated in the accommodating portion 11 formed through the core substrate 2 and the insulating resin layer 21a, and a wiring conductor layer 22 formed on the surface of the metal piece 40 are provided. . Furthermore, via holes 3 are formed in the insulating plate 1 in order to electrically connect the upper and lower surfaces of the core substrate 2.

絶縁板1は、絶縁性を有する素材で形成されていれば特に限定されない。このような絶縁性を有する素材としては、例えば、エポキシ樹脂、ビスマレイミド−トリアジン樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂などの有機樹脂などが挙げられる。これらの有機樹脂は2種以上を混合して用いてもよい。絶縁板1として有機樹脂を使用する場合、有機樹脂に補強材を配合して使用するのが好ましい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維、ポリエステル繊維などが挙げられる。これらの補強材は2種以上を併用してもよい。絶縁板1は、好ましくはガラス繊維やガラス不織布などのガラス材入り有機樹脂から形成される。さらに、絶縁板1には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどの無機充填材が含まれていてもよい。絶縁板1の厚みは特に限定されないが、好ましくは0.02〜10mmであるのがよい。   The insulating plate 1 is not particularly limited as long as it is made of an insulating material. Examples of such an insulating material include organic resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether (PPE) resin. These organic resins may be used in combination of two or more. When using an organic resin as the insulating plate 1, it is preferable to mix and use a reinforcing material in the organic resin. Examples of the reinforcing material include glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Two or more of these reinforcing materials may be used in combination. The insulating plate 1 is preferably formed from an organic resin containing a glass material such as glass fiber or glass nonwoven fabric. Furthermore, the insulating plate 1 may contain inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide. The thickness of the insulating plate 1 is not particularly limited, but preferably 0.02 to 10 mm.

図1に示す印刷配線板のように、配線パターン4は絶縁板1の両表面に形成されていることが好ましい。すなわち、コア基板2の上下面に配線パターン4が存在する。この場合、コア基板2の上下面を電気的に接続するために、絶縁板1にはビアホール3が形成されている。   As in the printed wiring board shown in FIG. 1, the wiring pattern 4 is preferably formed on both surfaces of the insulating plate 1. That is, the wiring pattern 4 exists on the upper and lower surfaces of the core substrate 2. In this case, via holes 3 are formed in the insulating plate 1 in order to electrically connect the upper and lower surfaces of the core substrate 2.

コア基板2の表面には、絶縁樹脂層21aが積層されている。絶縁樹脂層21aを形成する樹脂としては、例えば、エポキシ樹脂、ビスマレイミド−トリアジン樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂、フェノール樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ケイ素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリフェニレンオキシド(PPO)樹脂などが挙げられる。これらの樹脂は2種以上を混合してもよい。絶縁樹脂層21aを形成する樹脂には、上述の補強材や無機充填材、フェノール樹脂やメタクリル樹脂からなる有機充填材が含まれていてもよい。   An insulating resin layer 21 a is laminated on the surface of the core substrate 2. Examples of the resin forming the insulating resin layer 21a include epoxy resin, bismaleimide-triazine resin, polyimide resin, polyphenylene ether (PPE) resin, phenol resin, polytetrafluoroethylene (PTFE) resin, silicon resin, polybutadiene resin, Examples thereof include polyester resin, melamine resin, urea resin, polyphenylene sulfide (PPS) resin, polyphenylene oxide (PPO) resin, and the like. Two or more of these resins may be mixed. The resin forming the insulating resin layer 21a may contain the above-described reinforcing material, inorganic filler, and organic filler made of phenol resin or methacrylic resin.

金属小片40の両表面に形成されている配線導体層22は、エッチングなどによって形成される。配線導体層22の形成方法の詳細は後述する。   The wiring conductor layer 22 formed on both surfaces of the metal piece 40 is formed by etching or the like. Details of the method of forming the wiring conductor layer 22 will be described later.

図1に示す印刷配線板では、絶縁樹脂層21aおよび配線導体層22は、印刷配線板の上下面にそれぞれ1層積層されているが、1層に限定されない。例えば、絶縁樹脂層21aおよび配線導体層22を交互に積層させて多層のビルドアップ層としてもよい。この場合、絶縁樹脂層21aにビアホール23が形成される。   In the printed wiring board shown in FIG. 1, the insulating resin layer 21 a and the wiring conductor layer 22 are respectively laminated on the upper and lower surfaces of the printed wiring board, but are not limited to one layer. For example, the insulating resin layers 21a and the wiring conductor layers 22 may be alternately stacked to form a multilayer buildup layer. In this case, the via hole 23 is formed in the insulating resin layer 21a.

本発明の印刷配線板において、金属小片40は、絶縁板1に形成された収容部11に収容されている。金属小片40を構成する金属は、例えば、銅、金、鉄、アルミニウムなどが挙げられる。これらの金属の中でも、銅が好ましい。金属小片40が銅小片の場合、例えば、下記の方法によって得られる。
(I)銅板または銅箔をエッチングによって、銅小片に加工する。
(II)銅板、銅箔または銅線材を、金型で打ち抜き、銅小片に加工する。
(III)銅板または銅箔を、ダイシングで切削することによって、銅小片に加工する。
また、金属小片40の厚みは、印刷配線板に内蔵するため、コア基板2と絶縁樹脂層21aとの総厚み±25μm程度にすることが好ましい。
In the printed wiring board of the present invention, the metal piece 40 is accommodated in the accommodating portion 11 formed on the insulating plate 1. Examples of the metal constituting the metal piece 40 include copper, gold, iron, and aluminum. Among these metals, copper is preferable. When the metal piece 40 is a copper piece, for example, it is obtained by the following method.
(I) A copper plate or a copper foil is processed into copper pieces by etching.
(II) A copper plate, a copper foil or a copper wire is punched with a mold and processed into a copper piece.
(III) A copper plate or a copper foil is cut into pieces by cutting with a dicing.
Moreover, since the thickness of the metal piece 40 is built in a printed wiring board, it is preferable that the total thickness of the core substrate 2 and the insulating resin layer 21a is about ± 25 μm.

本実施形態における金属小片40の形状は直方体状である。そして、この金属小片40を収容する収容部11は、コア基板と絶縁樹脂層とを貫通する貫通孔であり、金属小片40と同様な直方体状の形状を有する。
さらに、印刷配線板の一方の表面を上面としたとき、この一方の表面から収容した前記金属小片40を他方の表面から落下させないように印刷配線板の他方の表面側に金属小片40を保持する金属小片支持導体27を有する。
具体的には、コア基板と絶縁樹脂層を貫通することで形成した壁面を側面とし、金属小片支持導体27を底面としたキャビティとする。このキャビティは、凹形状の空間を指す。
The shape of the metal piece 40 in this embodiment is a rectangular parallelepiped shape. And the accommodating part 11 which accommodates this metal piece 40 is a through-hole which penetrates a core board | substrate and an insulating resin layer, and has the same rectangular parallelepiped shape as the metal piece 40. FIG.
Further, when one surface of the printed wiring board is the upper surface, the metal piece 40 is held on the other surface side of the printed wiring board so that the metal piece 40 accommodated from the one surface is not dropped from the other surface. A metal piece supporting conductor 27 is provided.
Specifically, a wall surface formed by penetrating the core substrate and the insulating resin layer is a side surface, and a cavity is formed with the metal piece supporting conductor 27 being a bottom surface. This cavity refers to a concave space.

金属小片40の大きさは、絶縁板1の厚みなどに応じて適宜設定される。例えば、金属小片40の下面の長辺は、0.1〜50mm程度であり、金属小片40の上面から下面までの高さ(厚み)は0.02〜10mm程度である。   The size of the metal piece 40 is appropriately set according to the thickness of the insulating plate 1 and the like. For example, the long side of the lower surface of the metal piece 40 is about 0.1 to 50 mm, and the height (thickness) from the upper surface to the lower surface of the metal piece 40 is about 0.02 to 10 mm.

収容部11の内周面と金属小片40との間隙部分には、絶縁性の金属小片固定樹脂13が充填されており、これにより収容部11内に金属小片40を固定している。   An insulating metal piece fixing resin 13 is filled in a gap portion between the inner peripheral surface of the housing portion 11 and the metal piece 40, thereby fixing the metal piece 40 in the housing portion 11.

前記金属小片固定樹脂13としては、例えば、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂などが挙げられる。これらの中でも、エポキシ樹脂またはエポキシ樹脂と他の樹脂との混合樹脂が好ましい。金属小片固定樹脂13には、さらにシリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどのフィラーが含まれていてもよい。   Examples of the metal piece fixing resin 13 include epoxy resin, acrylic resin, polyimide resin, polyphenylene ether (PPE) resin, and the like. Among these, epoxy resins or mixed resins of epoxy resins and other resins are preferable. The metal piece fixing resin 13 may further contain a filler such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide.

次に、本発明に係る印刷配線板の製造方法を説明する。本発明に係る印刷配線板の製造方法は、下記の工程(i)〜(vi)を含む。
(i)絶縁板の両面に配線パターンを形成してコア基板を得て、このコア基板の両面に絶縁樹脂層を積層し、さらに絶縁樹脂層の表面に薄銅箔を積層した、コア基板と絶縁樹脂層との積層体(以下、積層体)を得る工程。
(ii)前記積層体の収容部の直上の薄銅箔をエッチング等により除去し、前記積層体のコア基板と絶縁樹脂層のみ貫通し、直下の薄銅箔を残した収容部を形成し、上面より金属小片を収容する工程。
(iii)前記収容部の内周面と金属小片との間隙部分に金属小片固定樹脂を充填する工程。
(iv)前記金属小片固定樹脂を硬化させた後、印刷配線板の表面と金属小片の表面とが略同一面となるように研磨する工程。
(v)印刷配線板の、金属小片を内蔵しない箇所にビアホールを形成する工程。
(vi)印刷配線板の両面にめっき処理をし、エッチング処理等により導体の厚みを調整した後、配線導体層を形成し、ソルダーレジスト印刷して金めっき処理等を施す工程。
Next, a method for manufacturing a printed wiring board according to the present invention will be described. The method for manufacturing a printed wiring board according to the present invention includes the following steps (i) to (vi).
(I) A core substrate obtained by forming a wiring pattern on both surfaces of an insulating plate, laminating an insulating resin layer on both surfaces of the core substrate, and laminating a thin copper foil on the surface of the insulating resin layer; The process of obtaining a laminated body (henceforth a laminated body) with an insulating resin layer.
(Ii) removing the thin copper foil immediately above the accommodating portion of the laminate by etching or the like, penetrating only the core substrate and the insulating resin layer of the laminate, and forming the accommodating portion leaving the thin copper foil immediately below; The process of accommodating a metal piece from the upper surface.
(Iii) A step of filling a metal piece fixing resin into a gap portion between the inner peripheral surface of the housing portion and the metal piece.
(Iv) A step of polishing the metal piece fixing resin after curing the surface so that the surface of the printed wiring board and the surface of the metal piece are substantially flush with each other.
(V) A step of forming a via hole in a portion of the printed wiring board where no metal piece is incorporated.
(Vi) A step of plating the both sides of the printed wiring board, adjusting the thickness of the conductor by etching, etc., forming a wiring conductor layer, printing a solder resist, and performing gold plating.

本発明に係る印刷配線板の製造方法を、図2〜4に基づいて説明する。まず、図2(a)に示すように、絶縁板1の両表面に薄銅箔2aが形成された両面銅張基板2bを準備する。薄銅箔2aは、好ましくは1〜12μm程度の厚みを有する。絶縁板1は上述の通りであり、説明は省略する。   The manufacturing method of the printed wiring board which concerns on this invention is demonstrated based on FIGS. First, as shown in FIG. 2A, a double-sided copper-clad substrate 2b in which thin copper foils 2a are formed on both surfaces of an insulating plate 1 is prepared. The thin copper foil 2a preferably has a thickness of about 1 to 12 μm. The insulating plate 1 is as described above, and a description thereof is omitted.

図2(b)に示すように、両面銅張基板2bの所定の位置にビアホール下穴3aを形成する。ビアホール下穴3aは、絶縁板1の上下面を電気的に接続するビアホール3を形成するための穴である。ビアホール下穴3aは、例えばレーザ加工などによって形成される。レーザ光としては、CO2レーザ、UV−YAGレーザなどが挙げられる。ビアホール下穴3aの形成と同時に、ビアホール下穴3a直上の薄銅箔2aを開口させてもよい。   As shown in FIG. 2B, via hole prepared holes 3a are formed at predetermined positions on the double-sided copper-clad substrate 2b. The via hole prepared hole 3 a is a hole for forming the via hole 3 that electrically connects the upper and lower surfaces of the insulating plate 1. The via hole prepared hole 3a is formed by, for example, laser processing. Examples of the laser light include a CO2 laser and a UV-YAG laser. Simultaneously with the formation of the via hole prepared hole 3a, the thin copper foil 2a immediately above the via hole prepared hole 3a may be opened.

レーザ加工によってビアホール下穴3aを形成すると、ビアホール下穴3aの底部に薄い樹脂膜が残存する場合がある。この場合、デスミア処理が行われる。デスミア処理は、強アルカリによって樹脂を膨潤させ、次いで酸化剤(例えば、クロム酸、過マンガン酸塩水溶液など)を用いて樹脂を分解除去する。あるいは、研磨材によるウェットブラスト処理やプラズマ処理によって、樹脂膜を除去してもよい。さらに、ビアホール下穴3aの内壁面を粗面化してもよい。粗面化処理としては、例えば、酸化剤(例えば、クロム酸、過マンガン酸塩水溶液など)によるウェットプロセス、プラズマ処理やアッシング処理などのドライプロセスなどが挙げられる。   When the via hole prepared hole 3a is formed by laser processing, a thin resin film may remain at the bottom of the via hole prepared hole 3a. In this case, desmear processing is performed. In the desmear treatment, the resin is swollen with strong alkali, and then the resin is decomposed and removed using an oxidizing agent (for example, chromic acid, permanganate aqueous solution, etc.). Alternatively, the resin film may be removed by wet blasting or plasma treatment with an abrasive. Further, the inner wall surface of the via hole prepared hole 3a may be roughened. Examples of the surface roughening treatment include a wet process using an oxidizing agent (for example, chromic acid, a permanganate aqueous solution, etc.), and a dry process such as a plasma treatment or an ashing treatment.

次いで、図2(c)に示すように、ビアホール下穴3aの内壁面および絶縁板1の表面に銅めっきが施され、導体2cおよびビアホール3が形成される。銅めっきは無電解銅めっきでもよく、電解銅めっきでもよい。めっきの厚付けを行うには電解銅めっきが好ましく、例えば1〜30μm程度の厚みを有する銅めっきが形成される。また、ビアホール下穴3aの内壁面だけでなく、フィルドめっきによってビアホール下穴3aに銅を充填してビアホール3形成してもよい。   Next, as shown in FIG. 2C, copper plating is applied to the inner wall surface of the via hole prepared hole 3 a and the surface of the insulating plate 1 to form the conductor 2 c and the via hole 3. The copper plating may be electroless copper plating or electrolytic copper plating. For thickening the plating, electrolytic copper plating is preferable. For example, copper plating having a thickness of about 1 to 30 μm is formed. Further, not only the inner wall surface of the via hole pilot hole 3a but also the via hole 3 may be formed by filling the via hole pilot hole 3a with filled plating.

次いで、図2(d)に示すように、絶縁板1の表面に配線パターン4を形成する。感光性レジスト(例えば、ドライフィルムのエッチングレジスト)をロールラミネートで貼り付け、露光および現像して回路パターン以外の部分を露出させる。露出部分の銅をエッチングにより除去する。エッチング液としては、例えば塩化第二鉄水溶液などが挙げられる。ドライフィルムのエッチングレジストを剥離して、配線パターン4が形成される。このようにして、絶縁板1の表面に配線パターン4が形成されたコア基板2が得られる。   Next, as shown in FIG. 2D, a wiring pattern 4 is formed on the surface of the insulating plate 1. A photosensitive resist (for example, a dry film etching resist) is applied by roll lamination, and exposed and developed to expose portions other than the circuit pattern. The exposed copper is removed by etching. Examples of the etching solution include an aqueous ferric chloride solution. The wiring film 4 is formed by removing the etching resist of the dry film. In this way, the core substrate 2 having the wiring pattern 4 formed on the surface of the insulating plate 1 is obtained.

次いで、図2(e)および(f)に示すように、コア基板2の表面にプリプレグ21および薄銅箔22aを積層し、積層プレスで熱圧着してプリプレグ21を硬化させて絶縁樹脂層21a(硬化樹脂層)を形成する。なお、プリプレグ21としては、上述の絶縁樹脂層21aで説明した樹脂(必要に応じて補強材および充填材)が用いられる。
このようにして得たコア基板2と絶縁樹脂層21aとの積層体20(以下、積層体20)は、多層ビルドアップ基板に限定されるものではなく、両面基板、多層基板を用いてもよい。
Next, as shown in FIGS. 2E and 2F, the prepreg 21 and the thin copper foil 22a are laminated on the surface of the core substrate 2, and the prepreg 21 is cured by thermocompression bonding using a laminating press, thereby insulating resin layer 21a. (Curing resin layer) is formed. In addition, as the prepreg 21, the resin described in the above-described insulating resin layer 21a (reinforcing material and filler as necessary) is used.
The laminate 20 (hereinafter, laminate 20) of the core substrate 2 and the insulating resin layer 21a obtained in this way is not limited to a multilayer buildup substrate, and a double-sided substrate or a multilayer substrate may be used. .

次いで、図3(g)、(h)に示すように、前記積層体20に、金属小片40を収容するための収容部11を形成する。
まず、図3(g)に示すように、銅張基板20の金属小片を内蔵させたい箇所に、ドライフィルム等の感光性レジストを使用し、公知のエッチング工法により、前記積層体20の上部の銅箔22aを除去して銅箔開口部26を作成する。この銅箔開口部26は、金属小片40の大きさより若干大きく、好ましくは片側25μm程大きめに作成する。同時に下部に金属小片支持導体27を形成する。金属小片支持導体27は、銅めっき接続孔28を有する。
Next, as shown in FIGS. 3G and 3H, the accommodating portion 11 for accommodating the metal piece 40 is formed in the laminate 20.
First, as shown in FIG. 3 (g), a photosensitive resist such as a dry film is used in a portion where the metal piece of the copper-clad substrate 20 is to be incorporated, and the upper portion of the laminate 20 is formed by a known etching method. The copper foil 22a is removed to create a copper foil opening 26. The copper foil opening 26 is made slightly larger than the size of the metal piece 40, preferably about 25 μm on one side. At the same time, a metal piece supporting conductor 27 is formed in the lower part. The metal piece support conductor 27 has a copper plating connection hole 28.

次いで、図3(h)に示すように、前記銅箔開口部26により絶縁樹脂層21aが剥き出しとなった箇所に、例えばCO2レーザ、UV−YAGレーザなどのレーザ加工等により、コア基板及び絶縁樹脂層のみを貫通する収容部11を形成する。
レーザ加工によって収容部11を形成すると、金属小片支持導体27に薄い樹脂膜が残存する場合がある。この場合、必要に応じて前述のデスミア処理を実施しても良い。
Next, as shown in FIG. 3 (h), the core substrate and the insulation are formed at a location where the insulating resin layer 21a is exposed by the copper foil opening 26 by laser processing such as a CO2 laser and a UV-YAG laser. The accommodating part 11 which penetrates only the resin layer is formed.
When the accommodating portion 11 is formed by laser processing, a thin resin film may remain on the metal piece supporting conductor 27. In this case, the aforementioned desmear process may be performed as necessary.

次いで、図3(i)に示すように、マウンタ等の実装機を使用して金属小片40を収容部11に収容する。
この時、金属小片支持導体27があることによって、収容部11内から金属小片40を落下させないようにすることができる。金属小片支持導体27内の銅めっき接続孔28は、金属小片40を収容部11に収容する際のエア抜き孔としての役割もあり、金属小片40下にエア溜りを作ることなく収容部11に容易に収容することができる。
Next, as shown in FIG. 3 (i), the metal piece 40 is accommodated in the accommodating portion 11 using a mounting machine such as a mounter.
At this time, the presence of the metal piece support conductor 27 can prevent the metal piece 40 from dropping from the inside of the accommodating portion 11. The copper plating connection hole 28 in the metal piece support conductor 27 also serves as an air vent hole when the metal piece 40 is accommodated in the accommodation portion 11, and does not form an air reservoir below the metal piece 40. Can be easily accommodated.

次いで、図3(j)に示すように、収容部11に収容した金属小片40の周辺部と収容部11の内周面との間隙部分に、絶縁性の金属小片固定樹脂13を充填し、金属小片固定樹脂13を硬化させる。   Next, as shown in FIG. 3 (j), an insulating metal piece fixing resin 13 is filled in a gap portion between the peripheral portion of the metal piece 40 accommodated in the accommodation portion 11 and the inner peripheral surface of the accommodation portion 11, The metal piece fixing resin 13 is cured.

金属小片固定樹脂13を充填する方法としては、例えば、スクリーン印刷、スプレー、ディスペンサなどの方法で実施される。充填後、熱硬化樹脂であれば高温槽で熱硬化させ、紫外線硬化型樹脂であれば紫外線照射によって硬化させる。金属小片支持導体27内の銅めっき接続孔28は、金属小片固定樹脂13が行き渡る際のエア抜きとしての役割もあり、金属小片40と金属小片支持導体27の間に、気泡なく金属小片固定樹脂13を形成する効果がある。   As a method of filling the metal piece fixing resin 13, for example, screen printing, spraying, a dispenser, or the like is used. After filling, if it is a thermosetting resin, it is cured in a high-temperature tank, and if it is an ultraviolet curable resin, it is cured by ultraviolet irradiation. The copper plating connection hole 28 in the metal piece supporting conductor 27 also serves as an air vent when the metal piece fixing resin 13 spreads, and there is no bubble between the metal piece 40 and the metal piece supporting conductor 27. 13 is effective.

次いで、図4(k)に示すように、余計な箇所に付着し硬化した金属小片固定樹脂13と印刷配線板から突出していた金属小片40とを、バフ等の物理研磨やエッチング等の化学研磨を行い、表層と同一面の高さにする。   Next, as shown in FIG. 4 (k), the metal piece fixing resin 13 adhered and hardened to the extra portion and the metal piece 40 protruding from the printed wiring board are subjected to physical polishing such as buffing or chemical polishing such as etching. To make it flush with the surface.

次いで、図4(l)に示すように、金属小片40が内蔵されていない積層体20の箇所にて、絶縁樹脂層21aに内層回路の層間接続のためのビアホール下穴23aを形成と同時に銅めっき接続孔28内の金属小片固定樹脂13を除去する。ビアホール下穴23a及び銅めっき接続孔28内の金属小片固定樹脂13の除去はレーザ加工などによって実施され、必要に応じてデスミア処理や粗面化処理が行われる。   Next, as shown in FIG. 4L, a via hole pilot hole 23a for interlayer connection of the inner layer circuit is formed in the insulating resin layer 21a at the location of the laminated body 20 in which the small metal piece 40 is not incorporated. The metal piece fixing resin 13 in the plating connection hole 28 is removed. Removal of the small metal piece fixing resin 13 in the via hole prepared hole 23a and the copper plating connection hole 28 is performed by laser processing or the like, and desmear processing or roughening processing is performed as necessary.

次いで、図4(m)に示すように、印刷配線板の表層に銅めっき60を形成してビアホール下穴23aを銅めっき60で埋めビアホール23を得ると共に、銅めっき接続孔28内を銅めっき60で埋め、銅めっき60と金属小片40の熱伝導を強化し、金属小片40および金属小片固定樹脂13上にも銅めっき60を形成する(図4(n))。   Next, as shown in FIG. 4 (m), a copper plating 60 is formed on the surface layer of the printed wiring board, the via hole prepared hole 23a is filled with the copper plating 60 to obtain the via hole 23, and the inside of the copper plating connection hole 28 is plated with copper. 60, the heat conduction between the copper plating 60 and the metal piece 40 is enhanced, and the copper plating 60 is also formed on the metal piece 40 and the metal piece fixing resin 13 (FIG. 4 (n)).

銅めっき処理の後、硫酸と過酸化水素混合溶液によるソフトエッチング処理等の化学的粗化処理あるいはバフ等の機械的粗化処理を行い、任意の導体厚みまで処理を行う。
次いで、公知の工法を使用し、感光性レジスト、例えばドライフィルムのエッチングレジストをロールラミネートで貼り付け、露光および現像し、回路パターン以外の部分を露出させ、露出した部分の銅めっき60をエッチングで除去する。このエッチング液としては、塩化第二鉄水溶液等が使用できる。
After the copper plating process, a chemical roughening process such as a soft etching process using a mixed solution of sulfuric acid and hydrogen peroxide, or a mechanical roughening process such as a buff is performed, and the process is performed to an arbitrary conductor thickness.
Next, using a known method, a photosensitive resist, for example, a dry film etching resist is applied with a roll laminate, exposed and developed to expose portions other than the circuit pattern, and the exposed copper plating 60 is etched. Remove. As this etching solution, a ferric chloride aqueous solution or the like can be used.

次いで、ドライフィルムのエッチングレジストを剥離すると、図4(n)に示すように絶縁樹脂層21aおよび金属小片40の表面に配線導体層22を形成することができる。配線導体層22は、上述の配線パターン4と同様の方法で形成することができる。   Next, when the etching resist of the dry film is peeled off, the wiring conductor layer 22 can be formed on the surfaces of the insulating resin layer 21a and the metal piece 40 as shown in FIG. The wiring conductor layer 22 can be formed by the same method as the wiring pattern 4 described above.

金属小片40の表面に形成される配線導体層22の大きさは、図3(g)で形成した薄銅箔開口部26よりも、片側15〜25μmずつ大きく形成されている。これは前記薄銅箔開口部26より前記配線導体層22が小さいと、金属小片固定樹脂13にエッチング液が染み込み、金属小片40がエッチングされてしまうことを防ぐためである。   The size of the wiring conductor layer 22 formed on the surface of the metal piece 40 is larger by 15 to 25 μm on one side than the thin copper foil opening 26 formed in FIG. This is to prevent the metal piece 40 from being etched by the etching solution soaking into the metal piece fixing resin 13 if the wiring conductor layer 22 is smaller than the opening 26 of the thin copper foil.

最後に、図4(o)に示すように、絶縁樹脂層21a表面の所定の位置にソルダーレジスト30を形成する。ソルダーレジスト30の形成方法は、まず、スプレーコート、ロールコート、カーテンコート、スクリーン法などを用い、感光性液状ソルダーレジストを20μm程度の厚みで塗布して乾燥する、あるいは感光性ドライフィルム・ソルダーレジストをロールラミネートで貼り付ける。その後、露光および現像してパッド部分を開口させて加熱硬化させる。   Finally, as shown in FIG. 4 (o), a solder resist 30 is formed at a predetermined position on the surface of the insulating resin layer 21a. The solder resist 30 is formed by first using a spray coating, roll coating, curtain coating, screen method, etc., and applying and drying a photosensitive liquid solder resist with a thickness of about 20 μm, or a photosensitive dry film / solder resist. Affix with roll laminate. Thereafter, exposure and development are performed to open the pad portion and heat cure.

ソルダーレジスト30を形成する前に、形成面をCZ処理などの銅の粗面化処理に供してもよい。ソルダーレジスト30の開口部に、無電解ニッケルめっきを3μm以上の厚みで形成し、その上に無電解金めっきを0.03μm以上(好ましくは0.06μm以上、ワイヤーボンディング用途の場合は0.3μm以上)の厚みで形成してもよい。このようなめっき層31は図4(o)に示すように、配線導体層22と、ビアホール23に形成され、さらに、その上にはんだプリコートを施す場合もある。無電解めっきではなく、電解めっきで形成してもよい。めっきではなく、水溶性防錆有機被膜(例えば、四国化成工業(株)製タフエースなど)を形成してもよい。外形加工を施し、本発明の印刷配線板が得られる。   Before forming the solder resist 30, the surface to be formed may be subjected to a copper roughening treatment such as a CZ treatment. An electroless nickel plating with a thickness of 3 μm or more is formed in the opening of the solder resist 30, and an electroless gold plating is 0.03 μm or more (preferably 0.06 μm or more, 0.3 μm for wire bonding). You may form with the thickness of the above. As shown in FIG. 4 (o), such a plating layer 31 is formed in the wiring conductor layer 22 and the via hole 23, and a solder precoat may be applied thereon. You may form by electroplating instead of electroless plating. Instead of plating, a water-soluble rust-proof organic film (for example, Toughace manufactured by Shikoku Kasei Kogyo Co., Ltd.) may be formed. The printed circuit board according to the present invention is obtained by performing an outer shape process.

本発明の印刷配線板には、例えば半導体素子などの部品が実装され、実装構造体に加工される。例えば、図5には、本発明に係る印刷配線板に部品70がワイヤーボンディング(フェイスアップ)実装された実装構造体が示され、図6には本発明に係る印刷配線板に部品71がフリップチップ(フェイスダウン)実装された実装構造体が示されている。
部品70、71と金属小片40の上面の配線導体層22は、熱伝導樹脂80などの伝熱材を介して接続され、また図6では部品71のはんだボール81がビアホール23と接続される。
なお、伝熱材は熱伝導樹脂に限定するものではなく、はんだ等の低融点金属でも良い。例えば、Sn3.0Ag0.5Cuなどの組成の金属である。
金属小片40と表面実装の部品70、71とが、従来のようにビアホールを介さずに接するため、実装された部品からの熱の放熱性が向上する。
For example, a component such as a semiconductor element is mounted on the printed wiring board of the present invention and processed into a mounting structure. For example, FIG. 5 shows a mounting structure in which a component 70 is wire-bonded (face-up) mounted on a printed wiring board according to the present invention, and FIG. 6 flips a component 71 onto the printed wiring board according to the present invention. A mounting structure mounted on a chip (face-down) is shown.
The components 70 and 71 and the wiring conductor layer 22 on the upper surface of the metal piece 40 are connected via a heat transfer material such as the heat conductive resin 80, and the solder balls 81 of the component 71 are connected to the via hole 23 in FIG. 6.
The heat transfer material is not limited to the heat conductive resin, and may be a low melting point metal such as solder. For example, a metal having a composition such as Sn3.0Ag0.5Cu.
Since the metal piece 40 and the surface-mounted components 70 and 71 are in contact with each other without via holes as in the prior art, heat dissipation from the mounted components is improved.

なお、以上の実施形態では、金属小片および収容部が共に直方体状である場合について説明したが、収容部は、例えば逆円錐台状、逆楕円錐台状、逆多角錐台状などの逆錐台状であってもよい。逆多角錐台状としては、逆四角錐台状以外にも、例えば逆三角錐台状、逆五角錐台状、逆六角錐台状、逆七角錐台状、逆八角錐台状などが挙げられる。   In the above embodiment, the case has been described in which both the metal piece and the accommodating portion have a rectangular parallelepiped shape. However, the accommodating portion may be an inverted cone such as an inverted truncated cone shape, an inverted elliptical truncated cone shape, or an inverted polygonal truncated cone shape. It may be trapezoidal. In addition to the inverted quadrangular frustum shape, the inverted polygonal frustum shape includes, for example, an inverted triangular frustum shape, an inverted pentagonal frustum shape, an inverted hexagonal frustum shape, an inverted heptagonal frustum shape, and an inverted octagonal frustum shape. It is done.

また、金属小片は、例えば錐台状(円錐台状、楕円錐台状、多角錐台状など)、柱状(円柱状、楕円柱状、多角柱状など)などであってもよい。多角錐台状としては、四角錐台状以外にも、例えば三角錐台状、五角錐台状、六角錐台状、七角錐台状、八角錐台状などが挙げられる。また、多角柱状としては、四角柱状以外にも、三角柱状、五角柱状、六角柱状、七角柱状、八角柱状などが挙げられる。
金属小片と収容部とは、四角錐台状と逆四角錐台状とのように角数(形状)が同じであることが好ましい。
Further, the metal piece may be, for example, a frustum shape (conical frustum shape, elliptic frustum shape, polygonal frustum shape, etc.), columnar shape (columnar shape, elliptical columnar shape, polygonal columnar shape, etc.). Examples of the polygonal frustum shape include a triangular frustum shape, a pentagonal frustum shape, a hexagonal frustum shape, a heptagonal frustum shape, and an octagonal frustum shape in addition to the quadrangular frustum shape. In addition to the quadrangular column shape, the polygonal column shape includes a triangular column shape, a pentagonal column shape, a hexagonal column shape, a heptagonal column shape, an octagonal column shape, and the like.
It is preferable that the metal piece and the accommodating portion have the same number of angles (shape) such as a quadrangular frustum shape and an inverted quadrangular frustum shape.

図7は、収容部11´を逆錐台状にした一例を示している。この収容部11´に収容される金属小片40´は直方体で構成されており、下端部が収容部11´の下部縁部で保持されている。その他は、図1〜図6に示した配線基板と同じであるので、同一符号を付して説明を省略する。
このように収容部11´を逆錐台状にすると、収容部11´の上部が広いため、金属小片40´を収容するのが容易になり、また収容部11´の下部縁部で金属小片40´を安定に保持できるようになる。
FIG. 7 shows an example in which the accommodating portion 11 ′ has an inverted frustum shape. The small metal piece 40 ′ accommodated in the accommodating portion 11 ′ has a rectangular parallelepiped shape, and the lower end portion is held by the lower edge portion of the accommodating portion 11 ′. The other parts are the same as those of the wiring board shown in FIGS.
When the accommodating portion 11 ′ is shaped like an inverted frustum, the upper portion of the accommodating portion 11 ′ is wide, so that it becomes easy to accommodate the metal piece 40 ′, and the metal piece at the lower edge of the accommodating portion 11 ′. 40 'can be held stably.

1 絶縁板
2 コア基板
2a 薄銅箔
2b 両面銅張基板
2c 導体
3 ビアホール
3a ビアホール下穴
4 配線パターン
11、11’ 収容部
12 配線基板部
13 金属小片固定樹脂
20 積層体
21 プリプレグ
21a 絶縁樹脂層
22 配線導体層
22a 薄銅箔
23 ビアホール
23a ビアホール下穴
26 薄銅箔開口部
27 金属小片支持導体
28 銅めっき接続孔
30 ソルダーレジスト
31 めっき層
40、40’ 金属小片
60 銅めっき
70,71 部品
80 熱伝導樹脂
81 はんだボール
DESCRIPTION OF SYMBOLS 1 Insulation board 2 Core board | substrate 2a Thin copper foil 2b Double-sided copper clad board 2c Conductor 3 Via hole 3a Via hole pilot hole 4 Wiring pattern 11, 11 'accommodating part 12 Wiring board part 13 Metal small piece fixed resin 20 Laminate 21 Prepreg 21a Insulating resin layer 22 Wiring conductor layer 22a Thin copper foil 23 Via hole 23a Via hole pilot hole 26 Thin copper foil opening 27 Metal small piece support conductor 28 Copper plating connection hole 30 Solder resist 31 Plating layer 40, 40 'Metal small piece 60 Copper plating 70, 71 Parts 80 Thermal conductive resin 81 Solder balls

Claims (8)

絶縁板の少なくとも一方の面に配線パターンが形成されたコア基板と、
コア基板の表面に積層された絶縁樹脂層と、
前記コア基板と絶縁樹脂層とを貫通する収容部と、
収容部に収容された金属小片とを備え、
さらに、前記収容部の一方の表面を上面としたとき、この一方の表面から収容部に収容した前記金属小片が他方の表面から落下しないように、収容部の他方の表面側に金属小片を支持する導体を有し、
金属小片を支持する前記導体は、金属小片と接続される銅めっきで埋めた銅めっき接続孔を有し、
前記収容部内周面と金属小片との間隙部分に、絶縁性の金属小片固定樹脂を充填して金属小片が固定され、
前記金属小片の表面が、前記絶縁樹脂層の表面と略同一面であり、
前記上面側の金属小片の表面に、収容部を覆い、且つ収容部の周縁より絶縁樹脂層の表面まで延びる配線導体層を備え、金属小片と金属小片を支持する前記導体とは、前記銅めっき接続孔を埋めた銅めっきによっても接続されており、
前記収容部は、印刷配線板の一方の面から他方の面にかけて寸法が小さくなる逆錐台状の貫通孔であり、逆錐台状の収容部内に錐台状の金属小片が収容され、前記金属小片の上端部が前記収容部との間に間隙を形成し、且つ前記金属小片の下端部は、前記収容部の下部縁部で保持されていることを特徴とする印刷配線板。
A core substrate having a wiring pattern formed on at least one surface of the insulating plate;
An insulating resin layer laminated on the surface of the core substrate;
An accommodating portion penetrating the core substrate and the insulating resin layer;
A metal piece housed in the housing portion,
Further, when one surface of the housing portion is an upper surface, the metal piece supported on the other surface side of the housing portion is supported so that the metal piece housed in the housing portion does not fall from the other surface from the one surface. A conductor
The conductor supporting the metal piece has a copper plating connection hole filled with copper plating connected to the metal piece,
The gap between the inner peripheral surface of the housing part and the metal piece is filled with an insulating metal piece fixing resin to fix the metal piece,
The surface of the metal piece is substantially flush with the surface of the insulating resin layer,
The surface of the metal piece on the upper surface side includes a wiring conductor layer that covers the housing portion and extends from the periphery of the housing portion to the surface of the insulating resin layer, and the metal piece and the conductor that supports the metal piece are the copper plating It is also connected by copper plating filling the connection hole,
The accommodating portion is an inverted frustum-shaped through-hole whose size decreases from one surface to the other surface of the printed wiring board, and the frustum-shaped metal piece is accommodated in the inverted frustum-shaped accommodating portion, A printed wiring board , wherein an upper end portion of the metal piece forms a gap with the housing portion, and a lower end portion of the metal piece is held by a lower edge portion of the housing portion .
前記金属小片が銅小片である、請求項1に記載の印刷配線板。   The printed wiring board according to claim 1, wherein the metal piece is a copper piece. 前記金属小片が多角錐台状、円錐台状または楕円錐台状で、前記収容部が逆多角錐台状、逆円錐台状または逆楕円錐台状の貫通孔である、請求項1または2に記載の印刷配線板。 Wherein the metal pieces are truncated polygonal pyramid shape, a conical frustum or truncated elliptical cone shape, the receiving portion is reversed truncated polygonal pyramid shape, an inverted frustoconical or an inverted truncated elliptical cone-shaped through-hole, according to claim 1 or 2 Printed wiring board according to 1. 請求項1〜のいずれかに記載の印刷配線板の少なくとも一方の面における前記金属小片が収容された位置に部品を直接実装したことを特徴とする実装構造体。 Mounting structure characterized by being directly mounted components to the position where the metal pieces is accommodated in at least one surface of the printed wiring board according to any one of claims 1-3. 前記部品がフェイスダウンまたはフェイスアップで印刷配線板に実装され、部品下部を熱伝導樹脂または低融点金属で金属小片上の配線導体層に密着させていることを特徴とする請求項に記載の実装構造体。 5. The component according to claim 4 , wherein the component is mounted on a printed wiring board face-down or face-up, and a lower part of the component is adhered to a wiring conductor layer on a metal piece with a heat conductive resin or a low melting point metal. Mounting structure. 絶縁板の少なくとも一方の面に配線パターンを形成してコア基板を得る工程と、
コア基板の表面に絶縁樹脂層および薄銅箔を積層する工程と、
前記薄銅箔の一部を除去して、薄銅箔開口部を形成する工程と、
前記薄銅箔開口部の範囲内で、前記コア基板と絶縁樹脂層とを貫通する収容部を形成する工程と、
収容部に金属小片を収容する工程と、
前記収容部に前記金属小片を収容する工程の後、前記収容部と前記金属小片との間隙に絶縁性の金属小片固定樹脂を充填して硬化させる工程と、
前記金属小片の表面と、前記絶縁樹脂層の表面と略同一面にする工程と、
前記金属小片の表面に前記薄銅箔開口部の周縁より絶縁樹脂層の表面まで延びる配線導体層を形成する工程とを含み、
収容部の一方の表面を上面としたとき、この一方の表面から収容部に収容した前記金属小片が他方の表面から落下しないように、金属小片の収容前に、収容部の他方の表面側に金属小片を支持する導体を設け
前記導体に金属小片と接続される銅めっきで埋められる銅めっき接続孔を形成し、
前記収容部は、絶縁板の前記一方の表面から他方の表面にかけて寸法が小さくなる逆錐台状の貫通孔であり、逆錐台状の収容部内に錐台状の金属小片の上端部が、前記収容部との間に間隙を形成し、且つ前記金属小片の下端部が、逆錐台状の収容部の下部縁部で保持されるように収容されることを特徴とする印刷配線板の製造方法。
Forming a wiring pattern on at least one surface of the insulating plate to obtain a core substrate;
Laminating an insulating resin layer and a thin copper foil on the surface of the core substrate;
Removing a portion of the thin copper foil to form a thin copper foil opening; and
Within the range of the thin copper foil opening, forming a housing portion that penetrates the core substrate and the insulating resin layer;
A step of accommodating the metal piece in the accommodating portion;
After the step of housing the metal piece in the housing portion, filling the insulating metal piece fixing resin in the gap between the housing portion and the metal piece and curing it;
Making the surface of the metal piece substantially flush with the surface of the insulating resin layer;
Forming a wiring conductor layer extending from the periphery of the thin copper foil opening to the surface of the insulating resin layer on the surface of the metal piece,
When one surface of the housing portion is an upper surface, the metal piece housed in the housing portion from this one surface is placed on the other surface side of the housing portion before housing the metal piece so that the metal piece does not fall from the other surface. Provide a conductor to support the metal piece ,
In the conductor, a copper plating connection hole filled with copper plating connected to a metal piece is formed,
The accommodating portion is an inverted frustum-shaped through-hole whose size decreases from the one surface to the other surface of the insulating plate, and the upper end portion of the frustum-shaped metal piece is in the inverted frustum-shaped accommodating portion. forming a gap between said housing portion, and a lower end portion of the metal piece is housed so as to be held at the bottom edge of the inverse frustum shaped housing portion of the printed wiring board, wherein Rukoto Production method.
前記コア基板を得る工程の前に、絶縁板にビアホールを形成する工程を含む、請求項に記載の印刷配線板の製造方法。 The manufacturing method of the printed wiring board of Claim 6 including the process of forming a via hole in an insulating board before the process of obtaining the said core board | substrate. 前記収容部を形成する工程がレーザ加工または金型加工によって行われる、請求項またはに記載の印刷配線板の製造方法。 The manufacturing method of the printed wiring board of Claim 6 or 7 with which the process of forming the said accommodating part is performed by laser processing or metal mold | die processing.
JP2014073113A 2014-03-31 2014-03-31 Printed wiring board and manufacturing method thereof Active JP6420561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073113A JP6420561B2 (en) 2014-03-31 2014-03-31 Printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073113A JP6420561B2 (en) 2014-03-31 2014-03-31 Printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015195304A JP2015195304A (en) 2015-11-05
JP6420561B2 true JP6420561B2 (en) 2018-11-07

Family

ID=54434086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073113A Active JP6420561B2 (en) 2014-03-31 2014-03-31 Printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6420561B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119248A1 (en) * 2016-01-07 2017-07-13 株式会社村田製作所 Multilayer substrate, electronic device, and method of manufacturing multilayer substrate
KR20180013669A (en) * 2016-07-29 2018-02-07 오태헌 Method For Manufacturing Hybrid PCB and Hybrid PCB Manufactured Using the Same
JP2018174223A (en) * 2017-03-31 2018-11-08 太陽誘電株式会社 Wiring substrate for electronic component, electronic component, and manufacturing method of the same
JP2019033198A (en) * 2017-08-09 2019-02-28 日本シイエムケイ株式会社 Printed wiring board and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660295B2 (en) * 1988-08-24 1997-10-08 イビデン株式会社 Substrate for mounting electronic components
JP2784523B2 (en) * 1990-09-17 1998-08-06 イビデン株式会社 Substrate for mounting electronic components
JP3174393B2 (en) * 1992-04-24 2001-06-11 シチズン時計株式会社 Manufacturing method of electronic component mounting board
JP4159861B2 (en) * 2002-11-26 2008-10-01 新日本無線株式会社 Method for manufacturing heat dissipation structure of printed circuit board
JP2006332449A (en) * 2005-05-27 2006-12-07 Cmk Corp Multilayer printed wiring board and method for manufacturing the same
JP2008091714A (en) * 2006-10-03 2008-04-17 Rohm Co Ltd Semiconductor device
KR100965339B1 (en) * 2008-06-04 2010-06-22 삼성전기주식회사 Printed circuit board with electronic components embedded therein and method for fabricating the same
JP2010258260A (en) * 2009-04-27 2010-11-11 Nec Corp Heat radiation printed board
JP2013098185A (en) * 2011-10-27 2013-05-20 Ain:Kk Wiring board with heat sink and method for manufacturing the same
JP5955023B2 (en) * 2012-02-23 2016-07-20 京セラ株式会社 Printed wiring board with built-in component and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015195304A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6713187B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP5855905B2 (en) Multilayer wiring board and manufacturing method thereof
US8959760B2 (en) Printed wiring board and method for manufacturing same
JP4331769B2 (en) Wiring structure, method for forming the same, and printed wiring board
JP4126038B2 (en) BGA package substrate and manufacturing method thereof
US9554462B2 (en) Printed wiring board
JP2009295949A (en) Printed circuit board with electronic component embedded therein and manufacturing method therefor
JP2008300636A (en) Printed wiring board, its manufacturing method, electronic component housing board using the printed wiring board and its manufacturing method
JP2010245280A (en) Method of manufacturing wiring board and wiring board
JP6473619B2 (en) Manufacturing method of wiring board with cavity
JP6420561B2 (en) Printed wiring board and manufacturing method thereof
US9723728B2 (en) Wiring board with built-in electronic component and method for manufacturing the same
US20120247818A1 (en) Printed wiring board
JP6510884B2 (en) Wiring board, method of manufacturing the same and electronic component device
JP2013211431A (en) Electronic component to be built in printed wiring board and manufacturing method of component built-in printed wiring board
JP2017038044A (en) Wiring board and manufacturing method of the same, and electronic component device
JP2008124247A (en) Substrate with built-in component and its manufacturing method
JP2011171528A (en) Manufacturing method of multilayer wiring board
JP2010062199A (en) Circuit board
JP6321979B2 (en) Printed wiring board and manufacturing method thereof
JP2008270633A (en) Semiconductor-element integrating substrate
JP6215731B2 (en) Printed wiring board and manufacturing method thereof
KR101167422B1 (en) Carrier member and method of manufacturing PCB using the same
JP2009206250A (en) Wiring board and mounting structure
KR100754061B1 (en) Method of fabricating printed circuit board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181012

R150 Certificate of patent or registration of utility model

Ref document number: 6420561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150