JP6411606B1 - Recycling method for sealed lead-acid battery - Google Patents

Recycling method for sealed lead-acid battery Download PDF

Info

Publication number
JP6411606B1
JP6411606B1 JP2017180031A JP2017180031A JP6411606B1 JP 6411606 B1 JP6411606 B1 JP 6411606B1 JP 2017180031 A JP2017180031 A JP 2017180031A JP 2017180031 A JP2017180031 A JP 2017180031A JP 6411606 B1 JP6411606 B1 JP 6411606B1
Authority
JP
Japan
Prior art keywords
storage battery
battery
regeneration
sealed lead
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017180031A
Other languages
Japanese (ja)
Other versions
JP2019057376A (en
Inventor
西田 武次
武次 西田
Original Assignee
株式会社Brs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Brs filed Critical 株式会社Brs
Priority to JP2017180031A priority Critical patent/JP6411606B1/en
Application granted granted Critical
Publication of JP6411606B1 publication Critical patent/JP6411606B1/en
Publication of JP2019057376A publication Critical patent/JP2019057376A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

【課題】実用的に十分な回復率を容易に達成する。
【解決手段】劣化蓄電池の各セルごとに所定濃度の電解液を注入し、ベース電流と方形波のパルス電流とを重畳する充電電流により再生処理を施す。
【選択図】図1
A practically sufficient recovery rate is easily achieved.
An electrolyte solution having a predetermined concentration is injected into each cell of a deteriorated storage battery, and a regeneration process is performed by a charging current that superimposes a base current and a square-wave pulse current.
[Selection] Figure 1

Description

この発明は、制御弁式鉛蓄電池などの密閉形鉛蓄電池を再生し、再使用するための密閉形鉛蓄電池の再生処理方法に関する。   The present invention relates to a method for regenerating a sealed lead-acid battery for regenerating and reusing a sealed lead-acid battery such as a control valve type lead-acid battery.

パルス電流を使用して劣化蓄電池を電気的に再生する再生処理方法が提案され、実用されている(特許文献1)。   A regeneration processing method for electrically regenerating a deteriorated storage battery using a pulse current has been proposed and put into practical use (Patent Document 1).

従来の再生処理方法は、たとえば直流のベース電流に方形波のパルス電流を重畳して充電電流とし、このような充電電流を利用して周期的に休止期間を挟みながら通電することにより、劣化した鉛蓄電池を効果的に再生することができる。なお、パルス電流は、ベース電流の数倍程度の波高値とし、パルス周波数1〜5kHz 程度、デューティ50%未満に設定することが好ましい。   The conventional regeneration processing method has deteriorated, for example, by superimposing a square-wave pulse current on a DC base current to form a charging current, and using such charging current to energize periodically with a pause period between them. The lead acid battery can be effectively regenerated. The pulse current is preferably set to a crest value several times the base current, set to a pulse frequency of about 1 to 5 kHz and a duty of less than 50%.

特許第3723795号公報Japanese Patent No. 3723895

かかる従来技術によるときは、劣化蓄電池が通常のベント形鉛蓄電池であるときはよいとしても、劣化蓄電池が制御弁式鉛蓄電池などの密閉形鉛蓄電池であるときは、再生処理後の電池容量が小さく、十分な回復率(定格容量に対する再生処理後の電池容量の割合をいう、以下同じ)が得られないという問題があった。   According to such prior art, even if the deteriorated storage battery is a normal bent lead acid battery, when the deteriorated storage battery is a sealed lead acid battery such as a control valve type lead acid battery, the battery capacity after regeneration processing is There was a problem that it was small and a sufficient recovery rate (the ratio of the battery capacity after regeneration treatment to the rated capacity, hereinafter the same) could not be obtained.

そこで、この発明の目的は、再生処理に先き立って各セルに所定濃度の電解液を注入することによって、実用的に十分な回復率を容易に達成することができる密閉形鉛蓄電池の再生処理方法を提供することにある。   Accordingly, an object of the present invention is to regenerate a sealed lead-acid battery that can easily achieve a practically sufficient recovery rate by injecting an electrolyte of a predetermined concentration into each cell prior to the regeneration process. It is to provide a processing method.

かかる目的を達成するためのこの発明の構成は、劣化蓄電池の各セルごとに劣化蓄電池の満充電相当の濃度の電解液を注入し、ベース電流と方形波のパルス電流とを重畳する充電電流により再生処理を施すことをその要旨とする。   In order to achieve this object, the configuration of the present invention uses a charging current that superimposes a base current and a square-wave pulse current by injecting an electrolyte solution at a concentration equivalent to the full charge of the deteriorated storage battery for each cell of the deteriorated storage battery. The gist is to apply the reproduction process.

また、電解液の注入から再生処理の開始までの間に所定の待ち時間を設けてもよく、電解液の注入に先き立って劣化蓄電池を放電させてもよい。   Further, a predetermined waiting time may be provided between the injection of the electrolytic solution and the start of the regeneration process, and the deteriorated storage battery may be discharged prior to the injection of the electrolytic solution.

かかる発明の構成によるときは、劣化蓄電池は、たとえば制御弁式鉛蓄電池であっても、回復率70〜80%以上の実用レベルをほぼ確実に達成することができる。なお、再生処理後の回復率は、非常用電源用の据置式の用途向けでは80%以上、自動車や電気車などの一般用途向けでは70%以上であれば、十分実用的である。また、電解液の注入量は、各セルごとに、電槽底部の突部(いわゆる「くら」)上に支持されている極板の下端部を浸す程度とするのがよい。   According to the configuration of the present invention, even if the deterioration storage battery is, for example, a control valve type lead storage battery, a practical level with a recovery rate of 70 to 80% or more can be almost certainly achieved. It should be noted that the recovery rate after the regeneration process is sufficiently practical if it is 80% or more for stationary applications for emergency power supplies and 70% or more for general applications such as automobiles and electric cars. Moreover, the injection amount of the electrolytic solution is preferably set so as to immerse the lower end portion of the electrode plate supported on the protruding portion (so-called “kura”) at the bottom of the battery case for each cell.

各セルに注入する電解液の濃度は、劣化蓄電池の満充電相当とするのがよく、鉛蓄電池については、比重1.280の稀硫酸を用いる。なお、精製水を注入したり、劣化蓄電池の50%充電相当の濃度の電解液(比重1.200の稀硫酸)を注入したりしても、いずれも約20〜30%前後程度の低い回復率しか実現できないことが少なくない。   The concentration of the electrolytic solution injected into each cell should be equivalent to the full charge of the deteriorated storage battery, and dilute sulfuric acid having a specific gravity of 1.280 is used for the lead storage battery. Even if purified water is injected or an electrolyte solution having a concentration equivalent to 50% charge of a deteriorated storage battery (diluted sulfuric acid having a specific gravity of 1.200) is injected, the recovery is as low as about 20 to 30%. Often, only the rate can be realized.

電解液の注入から所定の待ち時間が経過すると、電解液が極板上に浸潤し、その後の再生処理により回復率を向上させることができる。なお、このときの待ち時間は、約1時間程度で十分である。   When a predetermined waiting time elapses from the injection of the electrolytic solution, the electrolytic solution infiltrates on the electrode plate, and the recovery rate can be improved by a subsequent regeneration process. In addition, about 1 hour is sufficient for the waiting time at this time.

電解液の注入に先き立って劣化蓄電池を放電させることにより、極板上に局部的な過充電状態の部位が発生することを防止し、再生処理中に過大な温度上昇を生じたりする可能性を最小にすることができる。なお、このときの放電処理は、劣化蓄電池の端子電圧が放電終止電圧に低下するまで継続するものとする。   Discharge the degraded storage battery prior to injecting the electrolyte to prevent the occurrence of localized overcharged sites on the electrode plate, resulting in excessive temperature rise during the regeneration process Sex can be minimized. In addition, the discharge process at this time shall be continued until the terminal voltage of a deterioration storage battery falls to a discharge end voltage.

全体工程フローチャートOverall process flowchart 再生処理結果データ(1)Playback processing result data (1) 再生処理結果データ(2)Playback processing result data (2) 再生処理結果データ(3)Playback processing result data (3)

以下、図面を以って発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

密閉形鉛蓄電池の再生処理方法は、たとえば図1のフローチャートに従って実施する。ただし、以下の説明において、劣化蓄電池は、(株)GSユアサ製の制御弁式鉛蓄電池SEB65(定格電圧12V、5時間率定格容量65Ah)を例示する。   The regeneration processing method for the sealed lead-acid battery is performed according to the flowchart of FIG. However, in the following description, the deterioration storage battery exemplifies a control valve type lead storage battery SEB65 (rated voltage 12 V, 5 hour rate rated capacity 65 Ah) manufactured by GS Yuasa Corporation.

劣化蓄電池は、まず、受入検査において、再生処理可能であるか否かを判定する(図1のステップ(1)、以下、単に(1)のように記す)。すなわち、劣化蓄電池は、電槽の割れや膨らみ、端子部の脱落・変形などがなく、内部抵抗値がたとえば35mΩ未満のものを再生処理可能として選別し、それ以外は、再生処理不能として廃棄する。また、劣化蓄電池の端子電圧を併せて測定し、端子電圧が定格電圧12V以上の劣化蓄電池を放電可能とみなし(2)、その電池を放電させる(3)。放電処理は、5時間率定格容量65Ahの定格放電電流13A以下の適当な定電流により、端子電圧が放電終止電圧10.2Vに低下するまで放電させる。   First, in the acceptance inspection, the deteriorated storage battery determines whether or not it can be regenerated (step (1) in FIG. 1, hereinafter simply referred to as (1)). In other words, deteriorated storage batteries are selected as those that are free from cracking and swelling of the battery case, dropout / deformation of the terminal part, and having an internal resistance value of, for example, less than 35 mΩ, and are discarded as those that cannot be recycled. . Further, the terminal voltage of the deteriorated storage battery is also measured, and the deteriorated storage battery having a terminal voltage of 12V or higher is regarded as dischargeable (2), and the battery is discharged (3). In the discharge treatment, discharging is performed until the terminal voltage is lowered to a discharge end voltage of 10.2 V with an appropriate constant current of a rated discharge current of 13 A or less with a 5-hour rate rated capacity of 65 Ah.

次に、劣化蓄電池の各セルごとに所定量の電解液を注入する(4)。電解液は、劣化蓄電池の満充電相当の濃度の比重1.280の稀硫酸とし、電槽底部の「くら」上の各極板の下端部を浸すように、たとえば各セルごとに40ccを注入する。なお、電解液は、たとえば劣化蓄電池の制御弁の上端の排気栓を一時的に取り外して注入することができる。電解液を注入したら、各極板上に電解液を浸潤させるために、約1時間程度の待ち時間の経過を静止して待つ(5)。   Next, a predetermined amount of electrolyte is injected into each cell of the deteriorated storage battery (4). The electrolyte is dilute sulfuric acid with a specific gravity of 1.280, which is equivalent to the full charge of the deteriorated storage battery. For example, 40 cc is injected into each cell so as to immerse the lower end of each plate on the bottom of the battery case. To do. The electrolyte can be injected, for example, by temporarily removing the exhaust plug at the upper end of the control valve of the deteriorated storage battery. After injecting the electrolyte solution, in order to infiltrate the electrolyte solution on each electrode plate, the waiting time of about 1 hour is stopped and waited (5).

その後、再生処理を実施する(6)。再生処理は、特許第3723795号公報に開示されている手順に準じ、たとえば直流のベース電流5Aと方形波のパルス電流25A(波高値)とを重畳して充電電流とする。ただし、パルス電流は、デューティ30%、パルス周波数2kHz とし、充電電流は、5分間の充電期間ごとに1分間の休止期間を周期的に挟みながら、たとえば10〜30時間程度のあらかじめ定める設定時間だけ通電を続行する。なお、再生処理中に過大な温度上昇を示したり、所定の充電電流値が流れなくなったり、再生初期の端子電圧が異常に高いもの等は、処理を中止するものとする。   Thereafter, reproduction processing is performed (6). The regeneration process is performed in accordance with the procedure disclosed in Japanese Patent No. 3723895, for example, by superimposing a DC base current 5A and a square wave pulse current 25A (crest value) to obtain a charging current. However, the pulse current is set to a duty of 30% and the pulse frequency is 2 kHz, and the charging current is set for a predetermined set time of, for example, about 10 to 30 hours while periodically interposing a pause period of 1 minute every 5 minutes of charging period. Continue energization. It should be noted that the processing is stopped if the temperature rises excessively during the regeneration process, a predetermined charging current value stops flowing, or the terminal voltage at the initial stage of the regeneration is abnormally high.

再生処理が完了した劣化蓄電池は、通常の充電処理の後、容量試験により再生処理後の電池容量、回復率を確認する(7)。なお、電池容量、回復率は、たとえば定格放電電流13Aにより放電終止電圧10.5Vまで放電させて確認するものとする。ただし、一般用途向けでは回復率70%以上、非常用電源向けでは回復率80%以上を再生合格品とする。そこで、再生合格品のみを満充電状態に仕上充電して(8)、出荷する。   After the regeneration process is completed, the deteriorated storage battery is confirmed by a capacity test after the normal charge process (7). The battery capacity and the recovery rate are confirmed by discharging to a final discharge voltage of 10.5 V with a rated discharge current 13A, for example. However, a recovery rate of 70% or more for general use and a recovery rate of 80% or more for emergency power supplies are acceptable. Therefore, only the products that have passed the regeneration are finished charged to a fully charged state (8) and shipped.

劣化蓄電池SEB65の再生処理結果データの一例を図2〜図4に示す。   An example of the regeneration process result data of the deteriorated storage battery SEB65 is shown in FIGS.

図2は、受入検査時の劣化蓄電池の内部抵抗値、端子電圧の実測データである。これらの劣化蓄電池は、いずれも再生処理可能であるが、放電不可であると判定された。   FIG. 2 shows measured data of the internal resistance value and terminal voltage of the deteriorated storage battery at the time of acceptance inspection. Any of these deteriorated storage batteries can be regenerated, but it was determined that they cannot be discharged.

図2の劣化蓄電池に対し、図1のステップ(4)〜(7)を適用したときの再生処理結果を図3に示す。これによれば、再生処理後の電池容量、回復率は、それぞれ59.0〜72.0Ah(平均65.6Ah)、回復率90.8〜110.8%(平均100.9%)が達成されていることが分かる。なお、図3には、再生処理後の内部抵抗値、端子電圧が併せて表示されている。   FIG. 3 shows the result of the regeneration process when steps (4) to (7) in FIG. 1 are applied to the deteriorated storage battery in FIG. According to this, the battery capacity and the recovery rate after the regeneration processing are achieved 59.0-72.0 Ah (average 65.6 Ah) and recovery rate 90.8-110.8% (average 100.9%), respectively. You can see that. FIG. 3 also shows the internal resistance value and the terminal voltage after the regeneration process.

一方、図2の劣化蓄電池に対し、図1のステップ(4)、(5)を省略し、各セルごとに電解液を注入しない場合の再生処理結果を図4に示す。これによれば、再生処理後の回復率は、最良でも40.0%(平均26.7%)しか達成できなかった。   On the other hand, with respect to the deteriorated storage battery of FIG. 2, steps (4) and (5) of FIG. 1 are omitted, and the results of the regeneration process when the electrolyte is not injected into each cell are shown in FIG. According to this, the recovery rate after the regeneration process was only 40.0% (average 26.7%) at best.

なお、具体的なデータは省略するが、図1のステップ(4)において、各セルごとに精製水を注入したとき、50%充電相当の比重1.200の稀硫酸を注入したときの再生処理後の回復率は、それぞれ最良でも25.2%(平均20.7%)、36.3%(平均32.2%)であった。   Although specific data is omitted, in step (4) of FIG. 1, when purified water is injected into each cell, regeneration processing is performed when diluted sulfuric acid having a specific gravity of 1.200 equivalent to 50% charge is injected. The subsequent recovery rates were 25.2% (average 20.7%) and 36.3% (average 32.2%) at best.

以上によれば、劣化蓄電池の各セルごとに、劣化蓄電池の満充電相当の電解液を所定量注入することにより、再生処理後の電池容量、回復率を顕著に向上させ得ることが分かる。また、この発明は、SEB65以外の他の定格電圧、定格容量の制御弁式鉛蓄電池や、その他の密閉形鉛蓄電池に対しても適用可能である。   According to the above, it can be seen that the battery capacity and the recovery rate after the regeneration process can be remarkably improved by injecting a predetermined amount of an electrolyte corresponding to the full charge of the deteriorated storage battery for each cell of the deteriorated storage battery. The present invention can also be applied to control valve type lead-acid batteries of other rated voltage and rated capacity other than SEB65, and other sealed lead-acid batteries.

この発明は、再生処理用の充電電流を通電するに先き立って各セルごとに所定濃度の電解液を注入するだけで実用的に十分な回復率を容易に達成することができ、一般用途向け、非常用電源向けなどの任意の用途の密閉形鉛蓄電池に対し、広く好適に適用することができる。

特許出願人 株式会社 BRS
The present invention can easily achieve a practically sufficient recovery rate by simply injecting a predetermined concentration of electrolyte into each cell prior to supplying a charging current for regeneration treatment. The present invention can be widely and suitably applied to sealed lead-acid batteries for arbitrary uses such as for power supplies and emergency power supplies.

Patent Applicant BRS Inc.

Claims (3)

劣化蓄電池の各セルごとに劣化蓄電池の満充電相当の濃度の電解液を注入し、ベース電流と方形波のパルス電流とを重畳する充電電流により再生処理を施すことを特徴とする密閉形鉛蓄電池の再生処理方法。 A sealed lead-acid battery in which an electrolyte solution having a concentration equivalent to a full charge of a deteriorated storage battery is injected into each cell of the deteriorated storage battery, and a regeneration process is performed by a charging current that superimposes a base current and a square-wave pulse current. Playback processing method. 電解液の注入から再生処理の開始までの間に所定の待ち時間を設けることを特徴とする請求項1記載の密閉形鉛蓄電池の再生処理方法。 Claim 1 Symbol placement process for regeneration of sealed lead acid battery and providing a predetermined waiting time between the injection of the electrolyte to the start of the regeneration process. 電解液の注入に先き立って劣化蓄電池を放電させることを特徴とする請求項1または請求項2記載の密閉形鉛蓄電池の再生処理方法。 Claim 1 or claim 2 Symbol placement process for regeneration of sealed lead acid battery, characterized in that discharging the degraded battery standing come earlier injection of the electrolytic solution.
JP2017180031A 2017-09-20 2017-09-20 Recycling method for sealed lead-acid battery Active JP6411606B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180031A JP6411606B1 (en) 2017-09-20 2017-09-20 Recycling method for sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180031A JP6411606B1 (en) 2017-09-20 2017-09-20 Recycling method for sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JP6411606B1 true JP6411606B1 (en) 2018-10-24
JP2019057376A JP2019057376A (en) 2019-04-11

Family

ID=63920603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180031A Active JP6411606B1 (en) 2017-09-20 2017-09-20 Recycling method for sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP6411606B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193066A (en) * 1987-10-02 1989-04-12 Shin Kobe Electric Mach Co Ltd Manufacture of sealed lead-acid battery
JP2000040537A (en) * 1998-07-24 2000-02-08 Tec:Kk Recycling method for lead-acid battery
JP3723795B2 (en) * 2002-10-08 2005-12-07 武次 西田 Recycling method for lead acid battery
JP2008108511A (en) * 2006-10-24 2008-05-08 Kanji Hosokawa Lead-acid battery electrolyte
JP2011233262A (en) * 2010-04-23 2011-11-17 Masstech Corp Method of reproducing shield type lead-acid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193066A (en) * 1987-10-02 1989-04-12 Shin Kobe Electric Mach Co Ltd Manufacture of sealed lead-acid battery
JP2000040537A (en) * 1998-07-24 2000-02-08 Tec:Kk Recycling method for lead-acid battery
JP3723795B2 (en) * 2002-10-08 2005-12-07 武次 西田 Recycling method for lead acid battery
JP2008108511A (en) * 2006-10-24 2008-05-08 Kanji Hosokawa Lead-acid battery electrolyte
JP2011233262A (en) * 2010-04-23 2011-11-17 Masstech Corp Method of reproducing shield type lead-acid battery

Also Published As

Publication number Publication date
JP2019057376A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
US9337684B2 (en) Battery charging device and method
US11624787B2 (en) Rechargeable battery short circuit early detection device and rechargeable battery short circuit early detection method
JP2008236930A (en) Charging device of secondary battery
JP2015104139A (en) Charging method of secondary battery, and charging device employing the same
US20230387477A1 (en) Nanoparticle compositions and methods for enhancing lead-acid batteries
JP3723795B2 (en) Recycling method for lead acid battery
JP2012105492A (en) Charging/discharging device and regeneration method of lead acid battery using the same
US6791299B2 (en) Method for activating secondary battery
WO2006057083A1 (en) Used lead battery regenerating/new lead battery capacity increasing method
JP2005327737A (en) Method for regenerating storage battery
JP2009016324A (en) Regenerating method for lead storage battery and its device
JP6411606B1 (en) Recycling method for sealed lead-acid battery
CN111211381B (en) Method and device for controlling discharge of lithium battery at low temperature
US11201490B2 (en) Charging method, terminal, and non-transitory computer readable storage medium
US11018376B2 (en) Nanoparticle compositions and methods for enhancing lead-acid batteries
JP2001118611A (en) Regeneration method of lead accumulator battery by electric treatment
CN104091971B (en) A kind of accumulator devulcanization apparatus and method
CN115514043A (en) Lithium iron phosphate battery pack, voltage equalization method thereof, vehicle and storage medium
CN110970670A (en) Power battery management method and device and computer readable storage medium
JP4068268B2 (en) Lead-acid battery charging method
JP2015041445A (en) Regeneration method of alkaline secondary battery
JP4293587B2 (en) Lead-acid battery regeneration method and apparatus used therefor
Buengeler et al. Lead-Acid–Still the Battery Technology with the Largest Sales
JP2013037829A (en) Method for detecting internal short circuit of lead acid battery and power supply system
JP3642212B2 (en) Lead-acid battery charging method

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180724

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180926

R150 Certificate of patent or registration of utility model

Ref document number: 6411606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250