JP6398925B2 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP6398925B2
JP6398925B2 JP2015182342A JP2015182342A JP6398925B2 JP 6398925 B2 JP6398925 B2 JP 6398925B2 JP 2015182342 A JP2015182342 A JP 2015182342A JP 2015182342 A JP2015182342 A JP 2015182342A JP 6398925 B2 JP6398925 B2 JP 6398925B2
Authority
JP
Japan
Prior art keywords
vehicle
communication
speed
candidate
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015182342A
Other languages
English (en)
Other versions
JP2017056804A (ja
Inventor
雄介 根本
雄介 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015182342A priority Critical patent/JP6398925B2/ja
Publication of JP2017056804A publication Critical patent/JP2017056804A/ja
Application granted granted Critical
Publication of JP6398925B2 publication Critical patent/JP6398925B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、自車の近傍を走行し且つ無線通信(車車間通信)により情報を自車に送信して来る他車の中から、自車の直前を走行し且つ自車がその無線通信により送信されてくる情報を利用しながら追従走行すべき通信追従対象車を特定し、自車をその通信追従対象車に追従走行させる車両制御装置に関する。
従来から知られるこの種の車両制御装置の一つ(以下、「従来装置」と称呼する。)は、車車間通信により他車から取得した当該他車のGPS情報に含まれる当該他車の位置と、自車の前方センサにより取得した前方車両の相対位置及び自車のGPS情報に含まれる自車の位置から推定される前方車両の位置と、が略一致する車両を、通信追従対象車の候補車として選択し、その候補車の中から通信追従対象車を特定している(例えば、特許文献1を参照。)。
特開2011−221653号公報
しかしながら、GPS情報の精度は、例えば、車両がトンネル内、高層ビル間及び山間地等を走行している場合等において一時的に低下する場合がある。このとき、GPS情報のみに基づいて通信追従対象車の候補車を選択すると、真の通信追従対象車が候補車から除外されてしまう可能性がある。
本発明は上述した課題に対処するためになされたものである。即ち、本発明の目的の一つは、GPS情報を用いながらも、通信追従対象車の候補車をより精度良く選択することが可能な車両制御装置を提供することにある。
本発明の車両制御装置(以下、「本発明装置」とも称呼する。)は、
自車の位置である自車位置を含むGPS情報を取得するGPS手段(70)と、
前記自車の速度である自車速を検出する自車速検出手段(42、40)と、
前記自車の直前を走行している他車の同自車に対する相対速度を取得する相対情報取得手段(61、60)と、
前記自車の周囲に存在する一以上の他車のそれぞれから、無線通信により、前記他車のそれぞれの速度である他車速、前記他車のそれぞれの位置である他車位置及び前記他車のそれぞれの加速度に関連する加速度関連値を含む他車通信情報を取得する無線手段(81、80)と、
前記自車位置、前記自車速、前記相対速度及び前記他車通信情報を用いて、前記一以上の他車の中から上限台数までの候補車を選択し、前記選択した候補車の中から前記自車が追従走行するべき通信追従対象車を特定する処理を繰り返す特定手段(20、図のルーチン、及び、図のルーチン)と、
前記特定された通信追従対象車から前記無線通信により取得される前記加速度関連値に基づいて前記自車の加速度を制御することにより同自車を同通信追従対象車に追従走行させる走行制御手段(20、図6のルーチン)と、
を備える。
更に、前記特定手段は、
前記他車通信情報に含まれる前記他車位置が前記自車位置に基づいて定まる特定範囲内にあるか否かを判定し、前記他車位置が前記特定範囲内にあると判定した場合には当該他車通信情報を送信してきた他車を前記通信追従対象車の第一段階の候補車として選択する位置ベース候補選択手段(20、ステップ230ステップ240及びステップ720)と、
前記自車速及び前記相対速度に基いて推定される前記自車の直前を走行している他車の速度である自車センサベース先行車速度と、前記他車通信情報に含まれる前記他車速である通信車速度と、が類似している程度を表す速度類似度指標値を算出し、前記速度類似度指標値が前記自車センサベース先行車速度と前記通信車速度とが類似していることを示す場合には当該他車通信情報を送信してきた他車を前記通信追従対象車の第一段階の候補車として選択する速度ベース候補選択手段(20、ステップ260及びステップ720)と、
を含む。
更に、前記特定手段は、
前記前回選択された候補車を今回の候補車として選択し(ステップ810)、
前記選択された今回の候補車の数が前記上限台数未満である場合、前記位置ベース候補選択手段によって選択された第一段階の候補車及び前記速度ベース候補選択手段によって選択された第一段階の候補車の中から前記上限台数となるまで前記今回の候補車を選択するように構成されている(ステップ820「Yes」、ステップ840)。
前記位置ベース候補選択手段は、自車及び他車のGPS情報に含まれる位置情報を用いて、他車位置が自車位置を基準とした特定範囲内にあると判定される場合、その他車位置を含む他車通信情報を送信してきた他車を「通信追従対象車の候補車」として選択する。但し、前述したように、GPS情報の精度は低下する場合がある。
そこで、速度ベース候補選択手段は、GPS情報を用いることなく取得される自車センサベース先行車速度と、GPS情報を用いることなく取得される通信車速度と、が類似度指標値に基づいて類似していると判定できる場合、その通信車速度(他車速)を含む他車通信情報を送信してきた他車も「通信追従対象車の候補車」として選択する。
そして、本発明装置は、前記位置ベース候補選択手段により選択された候補車及び前記速度ベース候補選択手段により選択された候補車の中から前記通信追従対象車を特定するように構成されている。
従って、仮にGPS情報の精度が低下した場合であっても、真の通信追従対象車を候補車から除外してしまう可能性を低下させることができる。よって、本発明装置は、より精度良く通信追従対象車を特定することが可能となる。
上記説明においては、本発明の理解を助けるために、後述する実施形態に対応する発明の構成に対し、その実施形態で用いた名称及び/又は符号を括弧書きで添えている。しかしながら、本発明の各構成要素は、前記符号によって規定される実施形態に限定されるものではない。本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。
図1は、本発明の第1実施形態に係る車両制御装置(通信追従対象車特定装置)の概略構成図である。 図2は、図1に示した車両制御ECUのCPUが実行するルーチンを示したフローチャートである。 図3は、自車及び他車との位置関係を示した概略図である。 図4は、時間の経過に対する、自車進行方向距離及び速度類似度指標値の一例を示したグラフである。 図5は、図1に示した車両制御ECUのCPUが実行するルーチンを示したフローチャートである。 図6は、図1に示した車両制御ECUのCPUが実行するルーチンを示したフローチャートである。 図7は、本発明の第2実施形態に係る車両制御装置が有する車両制御ECUのCPU(第2CPU)が実行するルーチンを示したフローチャートである。 図8は、第2CPUが実行するルーチンを示したフローチャートである。 図9は、第2CPUが行う状態遷移判定の内容を示した概念図である。 図10は、第2CPUが計測する各種時間を示した図である。 図11は、第2CPUにより行われる候補車の選択状況を説明するための図である。
以下、本発明の各実施形態に係る車両制御装置について図面を参照しながら説明する。先ず、本明細書、図面及び特許請求の範囲等において使用される主たる用語について説明する。
・自車:自己の車両(着目している車両)
・他車:自車以外の車両
・先行車:自車が備えるセンサ(自車レーダセンサ、即ち、相対情報取得手段)により捕捉している自車の直前を走行している他車
・他車通信情報:自車が無線通信(車車間通信)を介して他車から取得する当該他車に関する情報
・通信車:他車通信情報を送信してくる他車
・通信追従対象車:自車が無線通信を介して取得する他車通信情報に基づいて当該自車の加速度を制御し、以て、当該自車が追従走行すべき先行車
なお、後述するように、本発明の実施形態に係る車両制御装置は、一以上の他車の中から通信追従対象車を特定する装置(即ち、通信追従対象車特定装置)を含むと言うことができる。更に、他車は「自車が搭載している車両制御装置」と同様な車両制御装置を備えているとして説明する。
<第1実施形態>
(構成)
図1に示したように、本発明の第1実施形態に係る車両制御装置VC(以下、「第1装置」と称呼される場合がある。)」は自車10に搭載されている。
第1装置VCは、車両制御ECU20、エンジン制御ECU30、ブレーキ制御ECU40、ステアリング制御ECU50、センサECU60、GPS装置70及び無線制御ECU80を備える。これらのECUは、通信・センサ系CAN(Controller Area Network)101を介してデータ交換可能(通信可能)となっている。なお、ECUは、エレクトリックコントロールユニットの略称であり、CPU、ROM、RAM及びインターフェース等を含むマイクロコンピュータを主要構成部品として有する電子制御回路である。CPUは、メモリ(ROM)に格納されたインストラクションを実行することにより後述する各種機能を実現する。
車両制御ECU20は、後述するセンサ以外の「複数の車両制御用センサ21」、及び、CACCスイッチ22、と接続され、これらのセンサ21及びスイッチ22からの信号を受け取るようになっている。
CACCスイッチ22は、自車10の乗員によって操作されるON−OFFスイッチである。CACCスイッチ22は、その位置がオン位置に設定されると、CACC要求信号を出力するようになっている。なお、CACCは、協調追従走行制御(Cooperative Adaptive Cruise Control)を意味する。
エンジン制御ECU30は、アクセル操作量センサ31、及び、その他の複数のエンジン制御用センサ(図示略)と接続され、これらのセンサの検出信号を受け取るようになっている。
アクセル操作量センサ31は、アクセル操作子としてのアクセルペダル91の操作量(以下、「アクセル操作量」と称呼する。)APを検出し、そのアクセル操作量APを表す信号を出力する。
エンジン制御ECU30は、スロットル弁アクチュエータ及び燃料噴射弁等のエンジンアクチュエータ32と接続されている。エンジン制御ECU30は、エンジンアクチュエータ32を駆動することによって、図示しないエンジンが発生するトルクを変更し、自車10の加速度を調整するようになっている。
ブレーキ制御ECU40は、ブレーキ操作量センサ41、車速センサ42、及び、その他の複数の制動制御用センサ(図示略)と接続され、これらのセンサの検出信号を受け取るようになっている。
ブレーキ操作量センサ41は、ブレーキ操作子としてのブレーキペダル93の操作量(以下、「ブレーキ操作量」と称呼する。)BPを検出し、そのブレーキ操作量BPを表す信号を出力する。
車速センサ42は、自車の速度(自車速)Vjを検出し、その自車速Vjを表す信号を出力する。
ブレーキ制御ECU40は、油圧制御装置を含むブレーキアクチュエータ43と接続されている。ブレーキアクチュエータ43は、ブレーキペダル93の踏力によって作動油を加圧するマスタシリンダと、各車輪に設けられる周知のホイールシリンダを含む摩擦ブレーキ装置と、の間の油圧回路(何れも、図示略)に配設される。ブレーキアクチュエータ43はホイールシリンダに供給する油圧を調整する。ブレーキ制御ECU40は、ブレーキアクチュエータ43を駆動することにより各車輪に制動力を発生させ、自車10の加速度(負の加速度、即ち、減速度)を調整するようになっている。
ステアリング制御ECU50は、自車10の操舵輪の操舵角αを検出する操舵角センサ51、及び、その他の複数のステアリング制御用センサ(図示略)と接続され、これらのセンサの検出信号を受け取るようになっている。
ステアリング制御ECU50は、図示しない電動式パワーステアリング装置のモータである操舵アクチュエータ52と接続され、その操舵アクチュエータ52を駆動するようになっている。
センサECU60は自車レーダセンサ61と接続されている。自車レーダセンサ61は、周知のミリ波レーダセンサである。自車レーダセンサ61は、センサECU60の指示に従って自車10の前方にミリ波を送信する。そのミリ波は、先行車11により反射される。自車レーダセンサ61は、この反射波を受信する。
センサECU60は、自車レーダセンサ61から送信されたミリ波と受信した反射波との位相差、反射波の減衰レベル及びミリ波を送信してから反射波を受信するまでの時間等に基づいて、相対速度Vr、車間距離Dr及び相対方位θp等を所定時間の経過毎に取得する。センサECU60は、相対速度Vr、車間距離Dr及び相対方位θp等をそのRAMに時系列的に格納(記憶)する。なお、自車レーダセンサ61及びセンサECU60によって取得される「相対速度Vr、車間距離Dr及び相対方位θp等を含む情報(データ)」は「自車センサ情報」とも称呼される。
相対速度Vrは、自車10の速度SPDjと先行車11の速度SPDsとの差(=SPDs−SPDj)である。
車間距離Drは、自車10と先行車11と間の距離である。
相対方位θpは、自車10の位置を基準にして自車10の進行方向に対する先行車11の方位(角度)である。
GPS装置70は、周知であり、GPS衛星から送信されてくるGPS信号に基づいて自車10が走行している位置(自車位置)を所定時間が経過する毎に取得し、取得した位置を含むGPS情報に含まれるデータをそのRAMに時系列的に格納するようになっている。自車10の位置は、経度X及び緯度Yにより特定される。
無線制御ECU80は、他車との無線通信(車車間通信)を行うための無線アンテナ81と接続されている。無線制御ECU80は、他車(図1においては他車11〜13)から送信されて来る他車に関する情報(即ち、他車通信情報)を、その他車通信情報を送信してきた他車を識別するID(他車ID)と共に所定時間が経過する毎に受信する。無線制御ECU80は、車車間通信により受信した情報を、他車ID別に且つ時系列的にそのRAMに格納するようになっている。
他車通信情報は、他車(即ち、通信車)の運転状態を表す下記の情報を含んでいる。
(A)通信車のブレーキ制御ECU40が取得した当該通信車の車速(他車速)Vc。
(B)通信車のGPS装置70が取得した当該通信車の位置Pc。
(C)通信車の車両制御装置が、後述する「協調追従走行制御(CACC)及び車間距離制御(ACC:Adaptive Cruise Control)」の何れも実行していない場合において、当該通信車の車両制御ECU20が当該通信車の「アクセル操作量AP及びブレーキ操作量BP」に基づいて算出した当該通信車の推定加速度である要求加速度Gc。
(D)通信車の車両制御装置が「協調追従走行制御及び車間距離制御」の何れかの制御を実行している場合において、その制御を行うために算出している(当該通信車に要求している)加速度である要求加速度Gc。
(E)通信車の車速(他車速)Vcを当該通信車の車両制御ECU20が時間微分することにより取得している当該通信車の実加速度Ga(=dVc/dt)。
無線制御ECU80は、所定時間が経過する毎に、後続車(自車10の後方を走行している車両)のために、自車10についての上記他車通信情報を外部に送信(発信)するようになっている。
(作動)
車両制御ECU20のCPU(以下、「CPU」と表記した場合、特に断りがない限り、車両制御ECU20のCPUを指す。)は、CACCスイッチ22がオン位置に設定されている場合、所定時間が経過する毎に図2にフローチャートにより示したルーチンを実行するようになっている。なお、CACCスイッチ22がオフ位置に設定されているとき、エンジン制御ECU30は、アクセル操作量AP及びエンジン回転速度等に基づいてエンジンアクチュエータ32を制御し、ブレーキ制御ECU40は、ブレーキ操作量BP及び自車速Vj(或いは、各車輪の車輪速)等に基づいてブレーキアクチュエータ43を制御する。
CACCスイッチ22がオン位置に設定されている場合、所定のタイミングになると、CPUは図2のステップ200から処理を開始してステップ210に進み、通信車(n)の他車通信情報の最新情報を無線制御ECU80から受け取る。通信車(n)とは、車車間通信により送信されてくる他車通信情報を自車10が受信している場合における当該車車間通信を行っている任意の他車(n)を意味する。
次に、CPUはステップ220に進んで、以下に述べる処理に基づいて座標変換を行う。前述したように、GPS装置70がGPS衛星から取得する自車10の位置は、図3に示した経度X及び緯度Yにより特定される。通信車(n)の位置についても経度X及び緯度Yにより特定される。
(処理1)CPUは、図3の矢印Aにより示した「自車10の進行方向」を、自車10の最新の位置(=(Xjnew,Yjnew))と、一定時間前の自車10の位置(=Xjold,Yjold))と、に基づいて決定する。CPUは、その決定した自車10の進行方向を、新たな座標軸xに設定し、自車10の進行方向(即ち、x軸方向)と直交する方向を新たな座標軸yに設定する。なお、x軸は、自車10の前進方向において「+」の値となる軸であり、自車10の後進方向において「−」の値となる軸である。y軸は、自車10の前進方向を基準にした場合の左方向において「+」の値となる軸であり、自車10の前進方向を基準にした場合の右方向において「−」の値となる軸である。
(処理2)CPUは、通信車(n)についての以下の値を、自車10の最新の位置(=(Xjnew,Yjnew))と、ステップ210にて取得した通信車(n)の最新の位置Pc(n)(=(Xcnew,Ycnew))と、から算出する。
・自車10の進行方向(x軸方向)における、通信車(n)と自車10との距離Dx。この距離Dxは、単に「自車進行方向距離Dx」とも称呼される。
・自車10の進行方向と直交する方向(y軸方向)における、通信車(n)と自車10との距離Dy。この距離Dyは、単に「自車進行直交方向距離Dy」とも称呼される。
・通信車(n)の自車進行方向に対する他車の進行方向の角度(方位)θp。この方位θpは、単に「相対方位θp」とも称呼される。なお、方位θpは、自車10の前進方向を基準にした場合の右回り方向において「+」の値となり、自車10の前進方向を基準にした場合の左回り方向において「−」の値となるように定義されている。
次に、CPUはステップ230に進み、通信車(n)が自車10の近傍に位置しているか否か、即ち、通信車(n)が「自車10の位置に基づいて定まる特定範囲」内に位置しているか判定する。この特定範囲は、図3の一点鎖線C1により示した長方形の範囲である。より具体的に述べると、CPUはステップ230にて以下に述べる条件1及び条件2の両方が満足されるか否かを判定する。
(条件1)通信車(n)の自車進行方向距離Dxが、負の値である第1閾値(−Dx1th)以上であり、且つ、正の値である第2閾値Dx2th以下である。この場合、値Dx1thは正の値であり、正の値である値Dx2thよりも小さい。
(条件2)通信車(n)の自車進行直交方向距離Dyが、負の値である第3閾値(−Dy3th)以上であり、且つ、正の値である第4閾値Dy4th以下である。この場合、値Dy3thは正の値であり、正の値である値Dy4thと等しいが、両者は相違していてもよい。
CPUは、上記条件1及び上記条件2の少なくとも一方が成立していない場合、ステップ230にて「No」と判定して後述するステップ260に進む。これに対し、CPUは、上記条件1及び上記条件2の両方が成立している場合、ステップ230にて「Yes」と判定してステップ240に進み、通信車(n)の進行方向が自車10の進行方向と近いか否かを判定する。より具体的に述べると、CPUはステップ240にて、以下に述べる条件3が満足されるか否かを判定する。
(条件3)通信車(n)の相対方位θpが、負の値である第1方位閾値(−θ1th)以上であり、且つ、正の値である第2方位閾値θ2th以下である。この場合、値θ1thは正の値(例えば60°)であり、正の値である値θ2thと等しい。但し、両者は相違していてもよい。
CPUは、上記条件3が成立していない場合、ステップ240にて「No」と判定して後述するステップ260に進む。これに対し、CPUは、上記条件3が成立している場合、ステップ240にて「Yes」と判定してステップ250に進み、着目している通信車(n)が「通信追従対象車の候補(以下、単に「候補車」とも称呼する。)」であるとしてRAMにその旨を記憶する。即ち、CPUは、通信車(n)のIDを候補車のIDとして認識し、そのIDをRAMに格納する。この場合の候補車は、位置に基づいて選択される候補車であるから、「位置ベース候補車」とも称呼される。
一方、CPUがステップ260に進んだ場合、CPUはそのステップ260にて、通信車(n)が通信追従対象車である可能性が中程度以上であるか否かにつき、「速度情報を用いた比較結果(速度類似度指標値と閾値との比較結果)」に基づいて判定する。より具体的に述べると、CPUはステップ260にて以下の条件4及び条件5のうちの少なくとも一方が成立しているか否か判定する。なお、ステップ260にて使用される速度類似度指標値(第1速度類似度指標値e1、及び、第2速度類似度指標値e2)は、以下のパラメータを用いて算出される。
・自車センサベース先行車速度Vfr:車速センサ42により取得される自車速Vjと自車レーダセンサ61により取得される相対速度Vrとの和に基づいて推定される「自車10の直前を走行している他車」の速度(Vfr=Vj+Vr)。
・通信車速度Vc:通信車(n)から車車間通信により自車10に送信されてきた「通信車(n)の車速センサにより検出された通信車(n)の車速」。
(条件4)下記(1)式に従って別途計算されている第1速度類似度指標値e1の直近n個の平均値ave(e1)が、第1類似度閾値e1thよりも小さい。
Figure 0006398925
第1速度類似度指標値e1は、自車センサベース先行車速度Vfrと通信車速度Vcとの平均2乗誤差である。よって、第1速度類似度指標値e1は、自車センサベース先行車速度Vfrと通信車速度Vcとが、過去の時点(例えば、車車間通信の開始時点)から現時点までの期間において近しい値を取り続けているほど小さくなる。即ち、第1速度類似度指標値e1の平均値ave(e1)は、自車センサベース先行車速度Vfrと通信車速度Vcとが類似している程度を表す指標値(誤差統計量の一つ)である。
(条件5)下記(2)式に従って別途計算されている第2速度類似度指標値e2の直近n個の平均値ave(e2)が、第2類似度閾値e2thよりも小さい。
Figure 0006398925
上記(2)式においてdVcは、通信車速度Vcの最新値Vc(t)と所定時間(Δt)前の通信車速度Vc(t−Δt)との差(=Vc(t)−Vc(t−Δt))である。
上記(2)式においてdVfrは、自車センサベース先行車速度Vfrの最新値Vfr(t)と所定時間(Δt)前の自車センサベース先行車速度Vfr(t−Δt)との差(=Vfr(t)−Vfr(t−Δt))である。
第2速度類似度指標値e2は、自車センサベース先行車速度Vfrの変化量と通信車速度Vcの変化量との差の絶対値の正規化値であると言える。よって、第2速度類似度指標値e2の直近n個の平均値ave(e2)は、自車センサベース先行車速度Vfrと通信車速度Vcとが同じような変化をしている場合に小さくなる。即ち、第2速度類似度指標値e2の直近n個の平均値ave(e2)は、自車センサベース先行車速度Vfrと通信車速度Vcとが類似している程度を表す指標値(誤差統計量の一つ)である。
上記条件4及び上記条件5のうちの少なくとも一方が成立している場合、CPUはステップ260にて「Yes」と判定してステップ250に進み、着目している通信車(n)が「候補車」であるとしてRAMにその旨を記憶する。この場合の候補車は、車速に基づいて選択される候補車であるから、「速度ベース候補車」とも称呼される。
これに対し、上記条件4及び上記条件5の何れもが成立していない場合、CPUはステップ260にて「No」と判定してステップ270に進む。
なお、CPUは、上記条件4及び上記条件5の両方が成立した場合にステップ250に進み、上記条件4及び上記条件5の一方でも成立していない場合にステップ270に進んでもよい。
CPUは、ステップ270に進むと、通信車(n)が現時点において既に通信追従対象車として特定している他車(以下、「現在特定車」とも称呼する。)であるか否かを判定する。通信車(n)が現在特定車である場合、CPUはステップ270にて「Yes」と判定してステップ250に進み、その通信車(n)が「候補車」であるとしてRAMにその旨を記憶する(即ち、現在特定車である通信車(n)を候補車として選択する。)。
これに対し、通信車(n)が現在特定車でない場合、CPUはステップ270にて「No」と判定してステップ280に進み、通信車(n)を「候補車」から除外する。この場合、通信車(n)が既に候補車としてRAMにそのIDが登録されていた場合には、CPUはそのIDをRAMから消去する。その後、CPUはステップ295に進み、本ルーチンを一旦終了する。
CPUは、無線通信(車車間通信)により他車通信情報を送信してきている通信車の総てに対して、図2のルーチンに従う処理を実行する。その結果、例えば、図3に示した例において、他車T3は条件1により候補車から除外され(ステップ230を参照。)、他車T4は条件2により候補車から除外され(ステップ230を参照。)、他車T5は条件3により候補車から除外される(ステップ240を参照。)。これにより、車両制御ECU20が総ての通信車(n)に対して「通信追従対象車を特定する際に使用される種々の値(例えば、後述の候補車(n)が通信追従対象車である確率)の計算」を行う場合に比べ、車両制御ECU20の計算負荷が軽減される。
但し、これらの他車(T3〜T5)であっても、条件4及び条件5の両方(又は、少なくとも一方)を満たせば通信車(n)は候補車として残される(ステップ260を参照。)。これは、通信車(n)が例えばトンネルに進入した場合等のGPS情報の信頼性が低下する場合にについての対応である。即ち、図4に示したように、例えば、通信車(n)が時刻t1の近傍においてトンネルに進入すると、通信車(n)がGPS衛星から通信車(n)の位置を正確に取得できなくなる場合が生じる。そのために、例えば時刻t2において、自車進行方向距離Dxが「第1閾値(−Dx1th)以上であり、且つ、第2閾値Dx2th以下である」という条件1を満足しなくなる。一方、図4に示した例においては、時刻t2より前の時刻t1以降において、GPS衛星からの信号を用いることなく計算される速度類似度指標値が類似度閾値よりも小さくなっている(即ち、e1<e1th且つe2<e2th)。従って、その通信車(n)は候補車から除外すべきではない。よって、仮にステップ260の処理が行わなければ、図4の(C)に示したように、時刻t2以降において通信車(n)は候補車から除外されるが、ステップ260の処理を行うことにより、図4の(D)に示したように、通信車(n)は候補車として認識され続ける。この結果、本来は候補車である通信車(n)を候補車として認識できない状況が発生することを回避することができる。加えて、候補車を選択する時点において既に通信追従対象車であると特定されていた車両も候補車として残される。これにより、真の追従対象車である可能性の高い他車が候補車から除外されてしまう可能性を一層低減できる。
更に、CPUは、CACCスイッチ22がオン位置に設定されている場合、所定時間が経過する毎に図5にフローチャートにより示したルーチンを実行するようになっている。
従って、所定のタイミングになると、CPUは図5のステップ500から処理を開始し、以下に述べるステップ510乃至ステップ560の処理を順に行い、ステップ570に進む。
ステップ510:CPUは、候補車(n)からの他車通信情報を無線制御ECU80から受け取る。
ステップ520:CPUはステップ520に進み、自車センサベース先行車速度Vfrの時系列データと、通信車速度Vc(この場合、車車間通信により取得される候補車の速度)の時系列データと、の間の相関係数(速度相関係数)coefを算出する。相関係数の算出方法は周知である。速度相関係数coefは、自車センサベース先行車速度Vfrの時系列データと、通信車速度Vcの時系列データと、の間に正の相関があり且つその相関が強いほど「1」に近づく。
ステップ530:CPUは、速度相関係数coefを0〜1までの確率Pcoefに変換する。より具体的に述べると、CPUは、予めの実験により定められたルックアップテーブルMapPcoef(coef)に速度相関係数coefを適用することによって確率Pcoefを求める。確率Pcoefは、速度相関係数により表される「候補車(n)が通信追従対象車である確率」である。ルックアップテーブルMapPcoef(coef)によれば、確率Pcoefは、速度相関係数coefが「1」に近づくほど「1」に近づく値として算出される。
ステップ540:CPUは、図2のステップ260にて算出している「候補車の第1速度類似度指標値e1の平均値ave(e1)」を0〜1までの確率Pe1に変換する。より具体的に述べると、CPUは、予めの実験により定められたルックアップテーブルMapPe1(ave(e1))に第1速度類似度指標値e1の平均値ave(e1)を適用することによって確率Pe1を求める。確率Pe1は、第1速度類似度指標値e1の平均値ave(e1)により表される「候補車(n)が通信追従対象車である確率」である。ルックアップテーブルMapPe1(ave(e1))によれば、確率Pe1は、第1速度類似度指標値e1の平均値ave(e1)が小さくなるほど「1」に近づく値として算出される。
ステップ550:CPUは、他のパラメータにより確率Potherを求める。確率Potherは、他のパラメータにより表される「候補車(n)が通信追従対象車である確率」である。確率Potherについては、特許第5522193号に記載の確率α1〜α7のうちの一以上の任意の組み合わせの積であってもよく、「1」であってもよい。
ステップ560:CPUは、確率Pe1、確率Pcoef及び確率Potherの積を「候補車(n)が通信追従対象車である最終的な確率Pn」として算出する。
ステップ570:CPUは、RAMに候補車として格納されている通信車(n)の総てについて確率Pnを算出したか否かを判定する。RAMに候補車として格納されている通信車(n)の総てについて確率Pnを算出していない場合、CPUはステップ570にて「No」と判定してステップ510に戻る。これに対し、RAMに候補車として格納されている通信車(n)の総てについて確率Pnを算出済みである場合、CPUはステップ570にて「Yes」と判定してステップ580に進み、確率Pnが閾値Pth以上である候補車の中から最も高い確率Pnを有する候補車を、通信追従対象車として特定する。なお、確率Pnが閾値Pth以上である候補車が存在しない場合、CPUは通信追従対象車はないと判定する。
更に、CPUは、所定時間が経過する毎に図6にフローチャートにより示したルーチンを実行するようになっている。
従って、所定のタイミングになると、CPUは図6のステップ600から処理を開始してステップ610に進み、CACCスイッチ22の位置がオン位置に設定されているか否かを判定する。CACCスイッチ22の位置がオフ位置に設定されていると、CPUはステップ610からステップ695に直接進んで本ルーチンを一旦終了する。
CACCスイッチ22の位置がオン位置に設定されていると、CPUはステップ610にて「Yes」と判定してステップ620に進み、通信追従対象車がステップ580にて特定済みであるか否かを判定する。通信追従対象車が特定済みである場合、CPUは以下に述べるステップ630乃至ステップ660の処理を順に行い、ステップ695に進んで本ルーチンを一旦終了する。
ステップ630:CPUは、通信追従対象車から車車間通信により送信されてくる要求加速度Gcに所定のゲインKgを乗じた値をフィードフォワード要求加速度FFGとして算出する。ゲインKgは、本例において「1」であるが、特開2015−51716号公報に記載している手法により自車10の運転状態に応じて設定されてもよい。なお、CPUは、通信追従対象車から送信されてくる他車通信情報に通信追従対象車の実際の加速度Gaが含まれている場合、要求加速度Gcにハイパスフィルタを施した値と、加速度Gaにローパスフィルタを施した値と、の和をフィードフォワード要求加速度FFGとして求めても良い。
ステップ640:CPUは、下記の(3)式に従ってフィードバック要求加速度FBGを算出する。ΔDは車間偏差、Dtgtは目標車間距離、Vrは前述した相対速度である。
Figure 0006398925
ステップ650:CPUは、フィードフォワード要求加速度FFGとフィードバック要求加速度FBGとの和を、最終的な自車10の目標加速度Gtgtとして算出する。なお、CPUは、フィードフォワード要求加速度FFG及びフィードバック要求加速度FBGの加重平均値を目標加速度Gtgtとして算出してもよい。
ステップ660:CPUは、自車10の実際の加速度が目標加速度Gtgtに一致するように、エンジン制御ECU30及びブレーキ制御ECU40に目標加速度Gtgtを送信する。エンジン制御ECU30及びブレーキ制御ECU40は、目標加速度Gtgtに応じて、エンジンアクチュエータ32及びブレーキアクチュエータ43をそれぞれ制御(駆動)する。この結果、自車10の実際の加速度が目標加速度Gtgtに一致させられる。以上の処理によりCACCが実行される。
一方、CPUがステップ620の処理を行う際、通信追従対象車の特定が終了していない場合(通信追従対象車が存在しない場合、及び、通信追従対象車が存在しなくなった場合も含む。)、CPUはステップ620にて「No」と判定してステップ670に進み、フィードフォワード要求加速度FFGの値を「0」に設定し、その後、ステップ640以降に進む。この結果、ACCが実行される。なお、車間偏差ΔDが閾値車間偏差以上になる場合、自車速Vjが所定速度になるようにフィードバック要求加速度FBGが変更される。
<第2実施形態>
次に、本発明の第2実施形態に係る車両制御装置(以下、「第2装置」と称呼される場合がある。)について説明する。
第2装置のCPU(車両制御ECU20)は、図2に代えて、図7にフローチャートにより示したルーチンを実行する。図7に示したルーチンは、ステップ240での「Yes」との判定の後にステップ710を配置している点、及び、ステップ250をステップ720に置換している点、のみにおいて図2に示したルーチンと相違している。
より具体的に述べると、CPUはステップ240にて「Yes」と判定するとステップ710に進み、通信車(n)が禁止車両として指定されていないか否かを判定する。禁止車両とは、後述するように、車車間通信の通信状態が不安定な通信車である。通信車(n)が禁止車両でなければ、CPUはステップ710にて「Yes」と判定してステップ720に進み、通信車(n)を「第一段階の候補車」として選択し、RAMにその旨を記憶する。これに対し、通信車(n)が禁止車両であると、CPUはステップ710にて「No」と判定しステップ260に進む。
更に、第2装置のCPUは、所定時間が経過する毎に図8にフローチャートにより示したルーチンを実行するようになっている。従って、所定のタイミングになると、CPUはステップ800から処理を開始してステッ810に進み、前回の処理(前回、図8のルーチンを実行したとき)において候補車として選択された通信車(n)を、今回の候補車として選択する。
次に、CPUはステップ820に進み、現在選択されている候補車の数(既選択候補車台数)が上限台数(例えば、8台)未満であるか否かを判定する。既選択候補車台数が上限台数未満であると、CPUはステップ820にて「Yes」と判定し、以下に述べるステップ830乃至ステップ880の処理を順に行い、ステップ895に進んで本ルーチンを一旦終了する。
ステップ830:CPUは、候補車として選択されておらず、且つ、第一段階の候補車として選択されている通信車を、距離dnの短い順に並べ替える。距離dnは、車車間通信により取得された「第一段階の候補車として選択されている通信車の位置Pc(n)」と「自車10の位置Pj」との直線距離である。
ステップ840:CPUは、候補車の数が上限台数と一致するまで、第一段階の候補車の中から距離dnが短い順に候補車として選択する。このとき、CPUは、候補車として選択されなかった第一段階の候補車のIDをRAMから削除する(第一段階の候補車から削除する。)。
ステップ850:CPUは、第一段階の候補車として選択されておらず且つ後述する状態が「有効状態及び途絶検査状態の何れか一方」である通信車(n)の他車通信情報を前回値(前回の処理において有効に受信された値)に保持する。
ステップ860:CPUは後述する状態遷移判定を行う(図9を参照。)。
ステップ870:CPUは、状態遷移判定によって途絶状態にあると判定された通信車(n)を禁止車両として指定する。
ステップ880:CPUは、前回の本ルーチンの処理以前においてステップ870にて禁止車両として指定した通信車(n)であって、その指定から所定時間経過していれば、その通信車(n)の禁止車両指定を解除する。
なお、CPUはステップ820の処理を実行する時点において、既選択候補車台数が上限台数以上であると、そのステップ820にて「No」と判定してステップ850以降に直接進む。
ここで、状態遷移判定について図9を参照しながら説明する。判定される状態は、未検査状態、有効検査状態、有効状態、途絶検査状態及び途絶状態の5つの状態である。
・未検査状態にあるとき
自車10が他車通信情報を受信し始めていない他車は未検査状態であると規定される。自車10が、未検査状態にある他車(対象車両)から送信された他車通信情報(データ)を受信すると、その他車は通信車(n)と認識され、その通信車(n)である対象車両の状態は有効検査状態であると判定される。
・有効検査状態にあるとき
対象車両の状態が有効検査状態にあると判定されているとき、CPUは、図10に示した以下の時間を計測するようになっている。
・対象車両からの他車通信情報(データ)が連続で受信できていない時間tng、
・対象車両からの他車通信情報(データ)が連続で受信できた時間tok、
・対象車両が有効検査状態にある継続時間tcheck。
そして、CPUは、時間tngが閾値tngth以上となると、その対象車両の状態が未検査状態になったと判定する。このとき、時間tok及び時間tcheckは何れも「0」にリセットされる。これに対し、CPUは、時間tokが閾値tokth以上となると、その対象車両の状態が有効状態になったと判定する。更に、CPUは、時間tcheckが閾値tcheckth以上となると、その対象車両の状態が有効状態になったと判定する。
・有効状態にあるとき
対象車両の状態が有効状態にあると判定されている場合に、対象車両からの他車通信情報(データ)が1回受信できない事態が発生すると、CPUは対象車両の状態を途絶検査状態であると判定する。
・途絶検査状態
対象車両の状態が途絶検査状態にあると判定されている場合、CPUは、上述の時間tngを計測し、その時間tngが閾値tngth以上となると、その対象車両の状態が途絶状態になったと判定する。
これに対し、対象車両の状態が途絶検査状態にあると判定されている場合に対象車両からの他車通信情報(データ)が1回受信できると、CPUは対象車両の状態を有効状態であると判定する。
・途絶状態
対象車両の状態が途絶状態にあると判定されている場合、対象車両の前回の状態遷移判定の判定結果が途絶状態であると、CPUは対象車両の状態を未検査状態であると判定する。
この第2装置によれば、既に候補車として選択されている通信車が、新たに車車間通信を自車10との間で開始した通信車よりも優先的に候補車として選択される(図8のステップ820を参照。)。これにより、例えば、図11の(A)に示したように、候補車の上限台数が8台であり、既に8台の通信車が候補車として選択されている状況(図中の(1)〜(8)を参照。自車は符号10により示される車両である。)において、図11の(B)に示したように、新たに自車10との間で車車間通信を開始した(自車10が新たにデータを受信し始めた)通信車A、B及びCが現れた場合であっても、既に候補車として選択されている車両(1)〜(8)が候補車として引き続き選択される。その結果、通信追従対象車(1)を引き続き通信追従対象車として特定することができる可能性が高くなる。
更に、第2装置によれば、新たに自車10との間で車車間通信を開始した通信車が複数存在している場合、自車10との距離dnが短い順に優先的に候補車として選択される(図8のステップ830及び840を参照。)。その結果、図11の(B)から理解されるように、新たに車車間通信を開始した通信車A、B及びCの中から、通信追従対象車となる可能性が相対的に低い車両Bよりも、通信追従対象車となる可能性が相対的に高い車両Aを優先的に候補車として選択することができる(但し、この例の場合には、上限台数は例えば9台である。)。
更に、第2装置は、状態遷移判定を行い(図8のステップ860を参照。)、その結果、途絶状態にある通信車(即ち、自車10との車車間通信の状態が不安定である車両)を一定時間禁止車両として指定し、そのような車両(禁止車両)を候補車として選択しない(ステップ710、ステップ870及びステップ880を参照。)。その結果、新たに安定した車車間通信を自車10との間で開始した車両が存在する場合には、その車両を禁止車両よりも優先して候補車として選択することができる。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、自車速Vjは、図示しない各車輪に設けられた車輪速センサの検出信号に基づいて取得されてもよい。更に、自車レーダセンサ61は、光波(例えばレーザー)又は超音波等を発信及び受信するセンサであってもよい。
10…自車、11〜13…他車(通信車)、20…車両制御ECU、22…CACCスイッチ、30…エンジン制御ECU、31…アクセル操作量センサ、32…エンジンアクチュエータ、40…ブレーキ制御ECU、41…ブレーキ操作量センサ、42…車速センサ、43…ブレーキアクチュエータ、50…ステアリング制御、60…センサECU、61…自車レーダセンサ、70…GPS装置、80…無線制御ECU、81…無線アンテナ、Dx…自車進行方向距離、Dy…自車進行直交方向距離、θp…相対方位。

Claims (1)

  1. 自車の位置である自車位置を含むGPS情報を取得するGPS手段と、
    前記自車の速度である自車速を検出する自車速検出手段と、
    前記自車の直前を走行している他車の同自車に対する相対速度を取得する相対情報取得手段と、
    前記自車の周囲に存在する一以上の他車のそれぞれから、無線通信により、前記他車のそれぞれの速度である他車速、前記他車のそれぞれの位置である他車位置及び前記他車のそれぞれの加速度に関連する加速度関連値を含む他車通信情報を取得する無線手段と、
    前記自車位置、前記自車速、前記相対速度及び前記他車通信情報を用いて、前記一以上の他車の中から上限台数までの候補車を選択し、前記選択した候補車の中から前記自車が追従走行するべき通信追従対象車を特定する処理を繰り返す特定手段と、
    前記特定された通信追従対象車から前記無線通信により取得される前記加速度関連値に基づいて前記自車の加速度を制御することにより同自車を同通信追従対象車に追従走行させる走行制御手段と、
    を備える車両制御装置において、
    前記特定手段は、
    前記他車通信情報に含まれる前記他車位置が前記自車位置に基づいて定まる特定範囲内にあるか否かを判定し、前記他車位置が前記特定範囲内にあると判定した場合には当該他車通信情報を送信してきた他車を前記通信追従対象車の第一段階の候補車として選択する位置ベース候補選択手段と、
    前記自車速及び前記相対速度に基いて推定される前記自車の直前を走行している他車の速度である自車センサベース先行車速度と、前記他車通信情報に含まれる前記他車速である通信車速度と、が類似している程度を表す速度類似度指標値を算出し、前記速度類似度指標値が前記自車センサベース先行車速度と前記通信車速度とが類似していることを示す場合には当該他車通信情報を送信してきた他車を前記通信追従対象車の第一段階の候補車として選択する速度ベース候補選択手段と、
    を含み、
    前記前回選択された候補車を今回の候補車として選択し、
    前記選択された今回の候補車の数が前記上限台数未満である場合、前記位置ベース候補選択手段によって選択された第一段階の候補車及び前記速度ベース候補選択手段によって選択された第一段階の候補車の中から前記上限台数となるまで前記今回の候補車を選択するように構成された、車両制御装置。
JP2015182342A 2015-09-15 2015-09-15 車両制御装置 Active JP6398925B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015182342A JP6398925B2 (ja) 2015-09-15 2015-09-15 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015182342A JP6398925B2 (ja) 2015-09-15 2015-09-15 車両制御装置

Publications (2)

Publication Number Publication Date
JP2017056804A JP2017056804A (ja) 2017-03-23
JP6398925B2 true JP6398925B2 (ja) 2018-10-03

Family

ID=58389229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015182342A Active JP6398925B2 (ja) 2015-09-15 2015-09-15 車両制御装置

Country Status (1)

Country Link
JP (1) JP6398925B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132834B2 (ja) * 2018-11-29 2022-09-07 日立Astemo株式会社 車両制御装置、車両制御方法、及び車両追従走行システム
JP7166211B2 (ja) * 2019-03-28 2022-11-07 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752669B2 (ja) * 2006-08-16 2011-08-17 トヨタ自動車株式会社 車両同定装置、位置算出装置
JP2010086269A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp 車両同定装置及びそれを用いた運転支援装置
JP5152244B2 (ja) * 2010-04-06 2013-02-27 トヨタ自動車株式会社 追従対象車特定装置
JP5585177B2 (ja) * 2010-04-12 2014-09-10 トヨタ自動車株式会社 先行車位置判定装置
JP5742626B2 (ja) * 2011-09-24 2015-07-01 株式会社デンソー 追従走行制御装置
EP2784762A4 (en) * 2011-11-21 2015-06-10 Toyota Motor Co Ltd VEHICLE IDENTIFICATION SYSTEM
JP6033689B2 (ja) * 2013-01-09 2016-11-30 三菱電機株式会社 クルーズコントロール装置及びその方法、並びに車両特定装置
JP5924322B2 (ja) * 2013-09-03 2016-05-25 トヨタ自動車株式会社 車両走行制御装置

Also Published As

Publication number Publication date
JP2017056804A (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
US8200419B2 (en) Braking control system and braking control method
JP6350465B2 (ja) 車両の制御装置
US9399397B2 (en) Cruise control apparatus
US10118616B2 (en) Control apparatus of vehicle
JP5924322B2 (ja) 車両走行制御装置
US20170072957A1 (en) Control apparatus of vehicle and following travel system
JP6265191B2 (ja) 車両の制御装置
JP6347243B2 (ja) 車両制御装置
JP6825528B2 (ja) 車両運転支援装置
US11136029B2 (en) Method for controlling a vehicle
JP6828602B2 (ja) 物標検出装置
US11280894B2 (en) Object detection device, object detection method and non-transitory computer readable storage medium for storing programs thereof
JP2017136897A (ja) 車両走行制御装置
JP6398925B2 (ja) 車両制御装置
JP6520596B2 (ja) 通信追従対象車特定装置
JP7144271B2 (ja) 道路形状認識装置
JP6361886B2 (ja) 車両走行制御装置
JP6458692B2 (ja) 車両制御装置
JP6480101B2 (ja) 車両制御装置
JP6365476B2 (ja) 車両制御装置
JP2020050222A (ja) 車両制御システム
JP6418116B2 (ja) 車両制御装置
US20220262251A1 (en) Collision avoiding assist system and collision avoiding assist apparatus
JP2024066052A (ja) 車両制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R151 Written notification of patent or utility model registration

Ref document number: 6398925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151