JP6384890B1 - Method for producing bissilylamino group-containing organosilicon compound - Google Patents

Method for producing bissilylamino group-containing organosilicon compound Download PDF

Info

Publication number
JP6384890B1
JP6384890B1 JP2018107109A JP2018107109A JP6384890B1 JP 6384890 B1 JP6384890 B1 JP 6384890B1 JP 2018107109 A JP2018107109 A JP 2018107109A JP 2018107109 A JP2018107109 A JP 2018107109A JP 6384890 B1 JP6384890 B1 JP 6384890B1
Authority
JP
Japan
Prior art keywords
group
general formula
compound represented
bissilylamino
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018107109A
Other languages
Japanese (ja)
Other versions
JP2019210243A (en
Inventor
谷口 佳範
佳範 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd filed Critical Dow Corning Toray Co Ltd
Priority to JP2018107109A priority Critical patent/JP6384890B1/en
Priority to PCT/JP2018/021438 priority patent/WO2019234805A1/en
Application granted granted Critical
Publication of JP6384890B1 publication Critical patent/JP6384890B1/en
Publication of JP2019210243A publication Critical patent/JP2019210243A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Abstract

【課題】ビスシリルアミノ基含有有機ケイ素化合物を反応のコントロールがしやすい簡便かつ安全な製造工程で生産することができ、かつ、生産性および収率に優れた製造方法を提供する。【解決手段】ビスシリルアミノ基含有不飽和炭化水素化合物と、ケイ素原子結合水素原子含有有機ケイ素化合物をヒドロシリル化反応触媒の存在下でヒドロシリル化反応させてビスシリルアミノ基含有有機ケイ素化合物を製造する方法において、ビスシリルアミノ基含有不飽和炭化水素化合物として特定の有機ケイ素化合物および特定のアミン化合物の合計含有量が0.2質量%以下であるものを用いることを特徴とする、製造方法。【選択図】なしProvided is a production method capable of producing a bissilylamino group-containing organosilicon compound by a simple and safe production process in which the reaction is easily controlled, and excellent in productivity and yield. A bissilylamino group-containing unsaturated silicon compound and a silicon atom-bonded hydrogen atom-containing organosilicon compound are hydrosilylated in the presence of a hydrosilylation reaction catalyst to produce a bissilylamino group-containing organosilicon compound. In the method, a bissilylamino group-containing unsaturated hydrocarbon compound having a total content of a specific organosilicon compound and a specific amine compound of 0.2% by mass or less is used. [Selection figure] None

Description

本発明は、ビスシリルアミノ基含有有機ケイ素化合物の製造方法に関するものであり、ヒドロシリル化反応を促進することで、製造時間を短縮することができ、かつ、反応のコントロールがしやすい安全なプロセスであって、目的とする化合物の反応効率、生産性および収率に優れ、かつ、簡便かつ安全な製造工程で廃棄物の生成量を抑制して実施可能である。さらに、本発明は、当該方法を用いたヒドロシリル化反応の促進方法、当該製造方法により得られたビスシリルアミノ基含有有機ケイ素化合物の使用またはその製造工程を含むことを特徴とする合成ゴム材料等の製造方法に関する。   The present invention relates to a method for producing a bissilylamino group-containing organosilicon compound, and promotes the hydrosilylation reaction to reduce the production time and to be a safe process that is easy to control the reaction. Therefore, it is excellent in the reaction efficiency, productivity and yield of the target compound, and can be carried out while suppressing the amount of waste generated by a simple and safe manufacturing process. Furthermore, the present invention includes a method for promoting a hydrosilylation reaction using the method, a use of a bissilylamino group-containing organosilicon compound obtained by the production method, or a production process thereof, etc. It relates to the manufacturing method.

ビス(シリル)アミノ基含有有機ケイ素化合物はシランカップリング剤、表面処理剤、樹脂変性剤、接着付与剤として有用であり、近年では低燃費タイヤ用途に使用される合成ゴム(特に、変性共役ジエン系ゴム)等の製造に広く使用されている(例えば、特許文献1または特許文献2など)。このため、工業的生産プロセスを用いて、当該有機ケイ素化合物を安定的に、かつ大量に供給する方法が求められている。 Bis (silyl) amino group-containing organosilicon compounds are useful as silane coupling agents, surface treatment agents, resin modifiers, and adhesion-imparting agents. In recent years, synthetic rubbers (especially modified conjugated dienes) used in fuel-efficient tire applications are used. Are widely used in the production of (such as, for example, Patent Document 1 or Patent Document 2). For this reason, the method of supplying the said organosilicon compound stably and in large quantities using an industrial production process is calculated | required.

ビス(シリル)アミノ基含有有機ケイ素化合物の製造方法としては、対応するビス(シリル)アミノ基含有不飽和炭化水素化合物とケイ素原子結合水素原子含有有機ケイ素化合物を白金触媒存在中ヒドロシリル化反応により製造する方法が知られている(たとえば、特許文献3または特許文献4など)。 As a method for producing a bis (silyl) amino group-containing organosilicon compound, the corresponding bis (silyl) amino group-containing unsaturated hydrocarbon compound and silicon atom-bonded hydrogen atom-containing organosilicon compound are produced by hydrosilylation reaction in the presence of a platinum catalyst. There are known methods (for example, Patent Document 3 or Patent Document 4).

一方、原料であるビス(シリル)アミノ基含有不飽和炭化水素化合物の製造方法は、たとえば対応するアミノ基含有不飽和炭化水素化合物を、対応するクロロシランでシリル化反応させて製造する方法(特許文献1、特許文献5など)や、対応するアミノ基含有不飽和炭化水素化合物を、1,1,1,3,3,3−ヘキサメチルジシラザンなどのジシラザン化合物を用いてシリル化する方法(特許文献6など)、さらには、モノシリルアミノ基を有する不飽和炭化水素化合物を酸触媒で不均化する方法(特許文献7)が知られている。 On the other hand, a method for producing a raw material bis (silyl) amino group-containing unsaturated hydrocarbon compound is, for example, a method of producing a corresponding amino group-containing unsaturated hydrocarbon compound by silylation reaction with the corresponding chlorosilane (Patent Document) 1, Patent Document 5, etc.) and a corresponding amino group-containing unsaturated hydrocarbon compound is silylated with a disilazane compound such as 1,1,1,3,3,3-hexamethyldisilazane (patent) Further, a method of disproportionating an unsaturated hydrocarbon compound having a monosilylamino group with an acid catalyst (Patent Document 7) is known.

しかしながら、上記のいずれかの方法を用いて原料であるビス(シリル)アミノ基含有不飽和炭化水素化合物を製造した場合であっても、当該ビス(シリル)アミノ基含有不飽和炭化水素化合物とケイ素原子結合水素原子含有有機ケイ素化合物とを白金系等のヒドロシリル化反応触媒存在下、ヒドロシリル化反応させると当該反応が途中で停止してしまったり、転換率が著しく低くなってしまったりする場合がある。さらに、上記の方法は反応のコントロールが難しく、ケイ素原子結合水素原子含有有機ケイ素化合物の滴下中に突然発熱反応が開始して、反応系の急激な温度上昇や突沸が発生することがあり、工業的な生産プロセスにおいて、目的とするビス(シリル)アミノ基含有不飽和炭化水素化合物を安全かつ高効率に製造することは甚だ困難であった。 However, even when the raw material bis (silyl) amino group-containing unsaturated hydrocarbon compound is produced using any of the above methods, the bis (silyl) amino group-containing unsaturated hydrocarbon compound and silicon If a hydrosilylation reaction is performed with an organic silicon compound containing an atomic bond hydrogen atom in the presence of a platinum-based hydrosilylation reaction catalyst, the reaction may stop in the middle or the conversion rate may be significantly reduced. . In addition, the above method is difficult to control the reaction, and sudden exothermic reaction may start during the dropping of the silicon-bonded hydrogen-containing organosilicon compound, which may cause a sudden rise in temperature and bumping of the reaction system. In a typical production process, it has been extremely difficult to produce a target bis (silyl) amino group-containing unsaturated hydrocarbon compound safely and efficiently.

一方、特許文献8には、ビス(シリル)アミノ基含有不飽和炭化水素化合物に含まれる不純物のうち、モノ(シリル)アミノ基含有不飽和炭化水素の含有量を5.0質量%以下として、ケイ素原子結合水素原子含有有機ケイ素化合物を白金触媒存在中ヒドロシリル化反応させることを特徴とするビスシリルアミノ基を有するシラン化合物の製造方法が提案されている。 On the other hand, in Patent Document 8, among impurities contained in the bis (silyl) amino group-containing unsaturated hydrocarbon compound, the content of the mono (silyl) amino group-containing unsaturated hydrocarbon is 5.0% by mass or less, There has been proposed a method for producing a silane compound having a bissilylamino group, which comprises subjecting a silicon atom-bonded hydrogen atom-containing organosilicon compound to a hydrosilylation reaction in the presence of a platinum catalyst.

しかしながら、特許文献8の反応条件を用いる場合、ヒドロシリル化反応の停止を抑制することに一定の効果は得られるが、依然として、ケイ素原子結合水素原子含有有機ケイ素化合物の滴下中に反応が暴走しやすく、特に工業的スケールで生産する場合の反応のコントロール、生産性および安全性における課題を解決するものではない。また、仮に当該反応条件を採用しても、特にヒドロシリル化触媒の使用量(たとえば、白金金属量)が少ない場合には、十分に反応が進行しない場合があり、その収率や反応効率においても十分ではない。このため、簡便かつ安全な製造工程であって、工業的スケールにおいても、反応効率、生産性および収率に優れたビスシリルアミノ基含有有機ケイ素化合物の製造方法が強く求められている。 However, when the reaction conditions of Patent Document 8 are used, a certain effect can be obtained in suppressing the termination of the hydrosilylation reaction, but the reaction still tends to run away during the dropping of the silicon-bonded hydrogen atom-containing organosilicon compound. In particular, it does not solve the problem of reaction control, productivity and safety when producing on an industrial scale. Even if the reaction conditions are adopted, the reaction may not proceed sufficiently, especially when the amount of hydrosilylation catalyst used (for example, the amount of platinum metal) is small, and the yield and reaction efficiency are also low. Not enough. For this reason, there is a strong demand for a method for producing a bissilylamino group-containing organosilicon compound which is a simple and safe production process and is excellent in reaction efficiency, productivity and yield even on an industrial scale.

特開2003−171418号公報JP 2003-171418 A 特開2016−169381号公報Japanese Patent Laying-Open No. 2006-169931 特開平10−017579号公報Japanese Patent Laid-Open No. 10-017579 特開平11−21289号公報Japanese Patent Laid-Open No. 11-21289 特開平06−293948号公報Japanese Patent Laid-Open No. 06-293948 中国特許公開106749377号公報Chinese Patent Publication No. 106649377 特開平10−218883号公報Japanese Patent Laid-Open No. 10-218883 特開2018−070506号公報JP 2018-070506 A

本発明は、上記課題を解決すべくなされたものであり、工業的生産スケールに適合した製造方法であって、ビスシリルアミノ基含有有機ケイ素化合物を反応のコントロールがしやすい簡便かつ安全な製造工程で生産することができ、かつ、目的とする化合物の反応効率に優れるため製造時間(サイクルタイム)を短縮できるため、生産性および収率に優れた製造方法を提供することを目的とする。さらに、本発明は、上記ビスシリルアミノ基含有有機ケイ素化合物の製造方法であって、反応のコントロールがしやすく、簡便かつ安全に実施可能なヒドロシリル化反応の促進方法を提供することを目的とする。また、本発明は、上記の製造方法を用いて供給されるビスシリルアミノ基含有有機ケイ素化合物の使用またはその製造方法を含むことを特徴とする合成ゴム材料(特に、ゴムタイヤ含む)の製造方法等を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and is a production method suitable for an industrial production scale, which is a simple and safe production process in which the reaction of a bissilylamino group-containing organosilicon compound can be easily controlled. It is an object of the present invention to provide a production method excellent in productivity and yield since production time (cycle time) can be shortened due to excellent reaction efficiency of the target compound. Another object of the present invention is to provide a method for producing the above bissilylamino group-containing organosilicon compound, which is easy to control the reaction and can be carried out easily and safely. . Further, the present invention includes the use of a bissilylamino group-containing organosilicon compound supplied using the above production method or a production method thereof, and a production method of a synthetic rubber material (particularly, including a rubber tire). The purpose is to provide.

上記課題を解決すべく、鋭意検討の結果、本発明者らは、ビスシリルアミノ基含有不飽和炭化水素化合物と、ケイ素原子結合水素原子含有有機ケイ素化合物をヒドロシリル化反応触媒の存在下でヒドロシリル化反応させてビスシリルアミノ基含有有機ケイ素化合物を製造する方法において、ビスシリルアミノ基含有不飽和炭化水素化合物として特定の有機ケイ素化合物および特定のアミン化合物の含有量を一定量以下に抑制することで、原料物質のヒドロシリル化反応が促進され、かつ、当該反応の暴走を抑制して反応コントロール性に優れた製造方法を提供できることを見出し、本発明に到達した。さらに、当該反応温度を80℃以上190℃以下に管理して実施することで、暴走反応をより低減させ、反応コントロール性および反応効率等をさらに改善可能であることを見出し、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors have hydrosilylated a bissilylamino group-containing unsaturated hydrocarbon compound and a silicon-bonded hydrogen atom-containing organosilicon compound in the presence of a hydrosilylation reaction catalyst. In the method for producing a bissilylamino group-containing organosilicon compound by reacting, by suppressing the content of a specific organosilicon compound and a specific amine compound as a bissilylamino group-containing unsaturated hydrocarbon compound to a certain amount or less. The present inventors have found that a hydrosilylation reaction of a raw material can be promoted, and that a production method excellent in reaction controllability can be provided by suppressing runaway of the reaction has been achieved. Furthermore, by controlling the reaction temperature at 80 ° C. or more and 190 ° C. or less, the runaway reaction can be further reduced, and the reaction controllability and reaction efficiency can be further improved, and the present invention has been achieved. .

具体的には、本発明の課題は、以下のビスシリルアミノ基含有有機ケイ素化合物の製造方法により解決される。
[1]下記一般式(1):

Figure 0006384890
{式中、Rは窒素原子を含んでもよい炭素数1〜10の2価炭化水素基であり、
Aは、下記一般式(2):
Figure 0006384890
(式中、R2〜R7は、互いに独立に、炭素数1〜20の1価炭化水素基である)
または、下記一般式(3):
Figure 0006384890
(式中、R8はジシラシクロアミン環を形成する炭素数2〜10の2価炭化水素基であり、
2、R、RおよびR7は、互いに独立に、炭素数1〜20の1価炭化水素基である)で示されるビスシリルアミノ基である}
で示されるビスシリルアミノ基含有不飽和炭化水素化合物と、
下記一般式(4):
Figure 0006384890
(式中RおよびR10は、互いに独立に、炭素数1〜20の1価炭化水素基であり、nは0〜2の範囲の整数である)
で示されるケイ素原子結合水素原子含有有機ケイ素化合物をヒドロシリル化反応触媒の存在下でヒドロシリル化反応させて、
下記一般式(5):
Figure 0006384890
(式中A,R、R、R10は上記同様の官能基であり、nは上記と同じ意味である)
で示されるビスシリルアミノ基含有有機ケイ素化合物を製造する方法において、
前記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、
下記一般式(6):
Figure 0006384890
(式中、R11〜R16は互いに独立に、炭素数1〜20の1価飽和炭化水素基である)
で示される有機ケイ素化合物、および
下記一般式(7):
Figure 0006384890
(式中、R17〜R19は互いに独立に、炭素数1〜20の1価飽和炭化水素基であり、
m、x、y、zはm+x+y+zの合計が3であり、かつ0〜3の範囲の同一又は異なる整数である)
で示されるアミン化合物の合計含有量が0.2質量%以下であるものを用いることを特徴とする、ビスシリルアミノ基含有有機ケイ素化合物の製造方法。
[2] 上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物を精留した後に、水洗または吸着剤により処理することにより、当該一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物中の、上記一般式(6)で示される有機ケイ素化合物および上記一般式(7)で示されるアミン化合物の合計含有量が0.2質量%以下となるように低減する工程をさらに有する、[1]に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法。
[3] 上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物および上記の一般式(4)で示されるケイ素原子結合水素原子含有有機ケイ素化合物のヒドロシリル化反応を80℃以上190℃以下の温度範囲において実施することを特徴とする、[1]または[2]に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法。
[4] 上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、
下記一般式(8):
Figure 0006384890
(式中、R、R、R、Rは上記同様の官能基である)
で示される化合物の含有量が10質量%以下のものを用いることを特徴とする、[1]〜[3]のいずれか1項に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法。
[5] [4]に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法であって、上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、上記の一般式(8)で示される化合物の含有量が0.25質量%以下のものを用いることを特徴とする、ビスシリルアミノ基含有有機ケイ素化合物の製造方法。 Specifically, the problem of the present invention is solved by the following method for producing a bissilylamino group-containing organosilicon compound.
[1] The following general formula (1):
Figure 0006384890
{Wherein R 1 is a C 1-10 divalent hydrocarbon group which may contain a nitrogen atom,
A represents the following general formula (2):
Figure 0006384890
(Wherein R 2 to R 7 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms)
Or the following general formula (3):
Figure 0006384890
(In the formula, R 8 is a divalent hydrocarbon group having 2 to 10 carbon atoms forming a disilacycloamine ring,
R 2 , R 3 , R 4 and R 7 are each independently a bissilylamino group represented by a monovalent hydrocarbon group having 1 to 20 carbon atoms}
A bissilylamino group-containing unsaturated hydrocarbon compound represented by
The following general formula (4):
Figure 0006384890
(Wherein R 9 and R 10 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and n is an integer in the range of 0 to 2).
A silicon atom-bonded hydrogen atom-containing organosilicon compound represented by the following formula in the presence of a hydrosilylation catalyst:
The following general formula (5):
Figure 0006384890
(In the formula, A, R 1 , R 9 and R 10 are the same functional groups as described above, and n has the same meaning as described above).
In the method for producing a bissilylamino group-containing organosilicon compound represented by:
As the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1),
The following general formula (6):
Figure 0006384890
(Wherein R 11 to R 16 are each independently a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms)
And an organic silicon compound represented by the following general formula (7):
Figure 0006384890
(In the formula, R 17 to R 19 are each independently a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms,
m, x, y, and z are the same or different integers in which the sum of m + x + y + z is 3 and in the range of 0 to 3)
A method for producing a bissilylamino group-containing organosilicon compound, wherein the total content of amine compounds represented by the formula is 0.2% by mass or less.
[2] After rectifying the bissilylamino group-containing unsaturated hydrocarbon compound represented by the above general formula (1), the bissilyl represented by the general formula (1) is treated by washing with water or an adsorbent. In the amino group-containing unsaturated hydrocarbon compound, the total content of the organosilicon compound represented by the general formula (6) and the amine compound represented by the general formula (7) is 0.2% by mass or less. The method for producing a bissilylamino group-containing organosilicon compound according to [1], further comprising a reducing step.
[3] A hydrosilylation reaction of the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) and the silicon-bonded hydrogen atom-containing organosilicon compound represented by the general formula (4) is performed at 80 ° C. The method for producing a bissilylamino group-containing organosilicon compound according to [1] or [2], which is carried out in a temperature range of 190 ° C. or lower.
[4] As the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1),
The following general formula (8):
Figure 0006384890
(Wherein R 1 , R 2 , R 6 and R 7 are the same functional groups as described above)
The method for producing a bissilylamino group-containing organosilicon compound according to any one of [1] to [3], wherein the content of the compound represented by formula (1) is 10% by mass or less.
[5] A method for producing a bissilylamino group-containing organosilicon compound according to [4], wherein the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) A method for producing a bissilylamino group-containing organosilicon compound, wherein the compound represented by (8) has a content of 0.25% by mass or less.

同様に、本発明の課題は、以下のビスシリルアミノ基含有有機ケイ素化合物に関するヒドロシリル化反応の促進方法により解決される。
[6] 下記一般式(1):

Figure 0006384890
{式中、Rは窒素原子を含んでもよい炭素数1〜10の2価炭化水素基であり、
Aは、下記一般式(2):
Figure 0006384890
(式中、R2〜R7は、互いに独立に、炭素数1〜20の1価炭化水素基である)
または、下記一般式(3):
Figure 0006384890
(式中、R8はジシラシクロアミン環を形成する炭素数2〜10の2価炭化水素基であり、
2、R、RおよびR7は、互いに独立に、炭素数1〜20の1価炭化水素基である)で示されるビスシリルアミノ基である}
で示されるビスシリルアミノ基含有不飽和炭化水素化合物と、
下記一般式(4):
Figure 0006384890
(式中RおよびR10は、互いに独立に、炭素数1〜20の1価炭化水素基であり、nは0〜2の範囲の整数である)
で示されるケイ素原子結合水素原子含有有機ケイ素化合物をヒドロシリル化反応触媒の存在下でヒドロシリル化反応させて、
下記一般式(5):
Figure 0006384890
(式中A,R、R、R10は上記同様の官能基であり、nは上記と同じ意味である)
で示されるビスシリルアミノ基含有有機ケイ素化合物を製造する際のヒドロシリル化反応の促進方法において、
前記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、
下記一般式(6):
Figure 0006384890
(式中、R11〜R16は互いに独立に、炭素数1〜20の1価飽和炭化水素基である)
で示される有機ケイ素化合物、および
下記一般式(7):
Figure 0006384890
(式中、R17〜R19は互いに独立に、炭素数1〜20の1価飽和炭化水素基であり、
m、x、y、zはm+x+y+zの合計が3であり、かつ0〜3の範囲の同一又は異なる整数である)
で示されるアミン化合物の合計含有量が0.2質量%以下であるものを用いることを特徴とする、ヒドロシリル化反応の促進方法。
[7] さらに、上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、
下記一般式(8):
Figure 0006384890
(式中、R、R、R、Rは上記同様の官能基である)
で示される化合物の含有量が10質量%以下のものを用いることを特徴とする、[6] に記載のヒドロシリル化反応の促進方法。 Similarly, the problem of the present invention is solved by the following method for promoting a hydrosilylation reaction relating to a bissilylamino group-containing organosilicon compound.
[6] The following general formula (1):
Figure 0006384890
{Wherein R 1 is a C 1-10 divalent hydrocarbon group which may contain a nitrogen atom,
A represents the following general formula (2):
Figure 0006384890
(Wherein R 2 to R 7 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms)
Or the following general formula (3):
Figure 0006384890
(In the formula, R 8 is a divalent hydrocarbon group having 2 to 10 carbon atoms forming a disilacycloamine ring,
R 2 , R 3 , R 4 and R 7 are each independently a bissilylamino group represented by a monovalent hydrocarbon group having 1 to 20 carbon atoms}
A bissilylamino group-containing unsaturated hydrocarbon compound represented by
The following general formula (4):
Figure 0006384890
(Wherein R 9 and R 10 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and n is an integer in the range of 0 to 2).
A silicon atom-bonded hydrogen atom-containing organosilicon compound represented by the following formula in the presence of a hydrosilylation catalyst:
The following general formula (5):
Figure 0006384890
(In the formula, A, R 1 , R 9 and R 10 are the same functional groups as described above, and n has the same meaning as described above).
In the method for promoting the hydrosilylation reaction in producing the bissilylamino group-containing organosilicon compound represented by:
As the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1),
The following general formula (6):
Figure 0006384890
(Wherein R 11 to R 16 are each independently a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms)
And an organic silicon compound represented by the following general formula (7):
Figure 0006384890
(In the formula, R 17 to R 19 are each independently a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms,
m, x, y, and z are the same or different integers in which the sum of m + x + y + z is 3 and in the range of 0 to 3)
A method for promoting a hydrosilylation reaction, wherein the total content of amine compounds represented by the formula (1) is 0.2% by mass or less.
[7] Furthermore, as the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1),
The following general formula (8):
Figure 0006384890
(Wherein R 1 , R 2 , R 6 and R 7 are the same functional groups as described above)
The method for promoting a hydrosilylation reaction according to [6], wherein the content of the compound represented by the formula (1) is 10% by mass or less.

また、本発明の課題は、上記のビスシリルアミノ基含有有機ケイ素化合物に関する、合成ゴム材料の製造方法および自動車用途タイヤゴムの製造方法により解決される。
[8] [1]〜[5]のいずれか1項に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法により得られたビスシリルアミノ基含有有機ケイ素化合物を用いることを特徴とする、合成ゴム材料の製造方法。
[9] [1]〜[5]のいずれか1項に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法をその製造工程に含むことを特徴とする、合成ゴム材料の製造方法。
[10] [1]〜[5]のいずれか1項に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法により得られたビスシリルアミノ基含有有機ケイ素化合物の使用を特徴とする、自動車用途タイヤゴムの製造方法。
Further, the problems of the present invention are solved by a method for producing a synthetic rubber material and a method for producing a tire rubber for automobiles related to the above bissilylamino group-containing organosilicon compound.
[8] A synthesis using the bissilylamino group-containing organosilicon compound obtained by the method for producing a bissilylamino group-containing organosilicon compound according to any one of [1] to [5] Manufacturing method of rubber material.
[9] A method for producing a synthetic rubber material, comprising the method for producing a bissilylamino group-containing organosilicon compound according to any one of [1] to [5] in its production process.
[10] Use of a bissilylamino group-containing organosilicon compound obtained by the method for producing a bissilylamino group-containing organosilicon compound according to any one of [1] to [5] Tire rubber manufacturing method.

本発明にかかるビスシリルアミノ基含有有機ケイ素化合物の製造方法は、工業的生産スケールに適合した、反応のコントロールがしやすく、簡便かつ安全な製造工程で実施することが可能であり、かつ、目的とする化合物の反応効率に優れるため製造時間(サイクルタイム)を短縮できるため、生産性および収率に優れるものである。また、本発明にかかるヒドロシリル化反応の促進方法は、反応のコントロールがしやすく、簡便かつ安全に実施可能であり、ビスシリルアミノ基含有有機ケイ素化合物の生産性および収率を改善できるものである。また、本発明により、上記の製造方法を用いて供給されるビスシリルアミノ基含有有機ケイ素化合物の使用またはその製造方法を含むことを特徴とする合成ゴム材料(特に、ゴムタイヤ含む)の製造方法等を提供することができる。   The method for producing a bissilylamino group-containing organosilicon compound according to the present invention is suitable for industrial production scale, easy to control the reaction, and can be carried out in a simple and safe production process. Since the production efficiency (cycle time) can be shortened because the reaction efficiency of the compound is excellent, the productivity and yield are excellent. The method for promoting a hydrosilylation reaction according to the present invention is easy to control the reaction, can be carried out simply and safely, and can improve the productivity and yield of a bissilylamino group-containing organosilicon compound. . In addition, according to the present invention, the use of the bissilylamino group-containing organosilicon compound supplied using the above production method or the production method thereof, a method for producing a synthetic rubber material (particularly including a rubber tire), etc. Can be provided.

以下、本発明のビスシリルアミノ基含有有機ケイ素化合物の製造方法等について、詳細に説明する。 Hereinafter, the production method of the bissilylamino group-containing organosilicon compound of the present invention will be described in detail.

本発明は、ビスシリルアミノ基含有不飽和炭化水素化合物と、ケイ素原子結合水素原子含有有機ケイ素化合物をヒドロシリル化反応触媒の存在下でヒドロシリル化反応させてビスシリルアミノ基含有有機ケイ素化合物を製造する方法において、ビスシリルアミノ基含有不飽和炭化水素化合物として、
下記一般式(6):

Figure 0006384890
(式中、R11〜R16は互いに独立に、炭素数1〜10の1価飽和炭化水素基である)
で示される有機ケイ素化合物、および
下記一般式(7):
Figure 0006384890
(式中、R17〜R19は互いに独立に、炭素数1〜10の1価飽和炭化水素基であり、
m、x、y、zはm+x+y+zの合計が3であり、かつ0〜3の範囲の同一又は異なる整数である)
で示されるアミン化合物の合計含有量が0.2質量%以下であるものを使用することを特徴とする。本発明の技術的効果、特に反応のコントロール性を改善し、安全かつ高い反応効率でヒドロシリル化反応を実施する見地から、その合計含有量がビスシリルアミノ基含有不飽和炭化水素化合物に対して0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.02質量%以下〜当該物質の検出限界以下まで除去され、実質的に含有しないことが最も好ましい。 The present invention produces a bissilylamino group-containing organosilicon compound by hydrosilylating a bissilylamino group-containing unsaturated hydrocarbon compound and a silicon-bonded hydrogen atom-containing organosilicon compound in the presence of a hydrosilylation reaction catalyst. In the method, as the unsaturated hydrocarbon compound containing a bissilylamino group,
The following general formula (6):
Figure 0006384890
(Wherein R 11 to R 16 are each independently a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms)
And an organic silicon compound represented by the following general formula (7):
Figure 0006384890
(In the formula, R 17 to R 19 are each independently a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms,
m, x, y, and z are the same or different integers in which the sum of m + x + y + z is 3 and in the range of 0 to 3)
The total content of amine compounds represented by the formula (1) is 0.2% by mass or less. From the viewpoint of improving the technical effect of the present invention, particularly the controllability of the reaction, and performing the hydrosilylation reaction with safety and high reaction efficiency, the total content is 0 with respect to the unsaturated hydrocarbon compound containing a bissilylamino group. It is preferably 1% by mass or less, more preferably 0.05% by mass or less, and most preferably 0.02% by mass or less to the detection limit or less of the substance and substantially no inclusion. .

これらの一般式(6)で示される有機ケイ素化合物および上記一般式(7)で示されるアミン化合物は、ビスシリルアミノ基含有不飽和炭化水素化合物の不純物として混入する成分であるが、発明者らは、これらの成分がヒドロシリル化反応の主たる阻害要因であり、反応における転換率(反応効率)および反応コントロール性に影響する主たる因子であることを見出し、これら成分の合計含有量を上記範囲となるように除去することで、工業的スケールにおいても本製造方法に係るヒドロシリル化反応が停止せず、かつ、反応を安定してコントロールでき、反応効率を改善できることを見出し、本発明を為すに至ったものである。 The organosilicon compound represented by the general formula (6) and the amine compound represented by the general formula (7) are components mixed as impurities of the bissilylamino group-containing unsaturated hydrocarbon compound. Found that these components are the main inhibitors of the hydrosilylation reaction, and are the main factors affecting the conversion rate (reaction efficiency) and reaction controllability in the reaction, and the total content of these components falls within the above range. As a result of the removal, the hydrosilylation reaction according to the present production method was not stopped even on an industrial scale, and the reaction could be stably controlled and the reaction efficiency could be improved, leading to the present invention. Is.

本発明におけるビスシリルアミノ基含有不飽和炭化水素化合物は、下記一般式(1):

Figure 0006384890
で示される。 The bissilylamino group-containing unsaturated hydrocarbon compound in the present invention has the following general formula (1):
Figure 0006384890
Indicated by

式(1)中、Rは窒素原子を含んでもよい炭素数1〜10の2価炭化水素基であり、その具体例としては、メチレン、エチレン、プロピレン(メチルエチレン)、トリメチレン、メチルトリメチレン、テトラメチレン、ヘキサメチレン、オクタメチレン、デカメチレン、イソブチレン基等のアルキレン基;フェニレン、メチルフェニレン基等のアリーレン基;エチレンフェニレン、エチレンフェニレンメチレン基等のアラルキレン基;3−アザブチレン、3−アザヘキシレン基等の窒素原子含有アルキレン基等が挙げられる。R中の窒素原子の含有部位は特に限定されず、R中の炭化水素基の水素原子の一部または全部はその他の置換基で置換されていてもよく、この置換基の具体例としては、メトキシ、エトキシ、(イソ)プロポキシ基等の炭素数1〜5のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が例示される。 In the formula (1), R 1 is a C 1-10 divalent hydrocarbon group which may contain a nitrogen atom, and specific examples thereof include methylene, ethylene, propylene (methylethylene), trimethylene, methyltrimethylene. Alkylene groups such as tetramethylene, hexamethylene, octamethylene, decamethylene and isobutylene groups; arylene groups such as phenylene and methylphenylene groups; aralkylene groups such as ethylenephenylene and ethylenephenylenemethylene groups; 3-azabutylene groups and 3-azahexylene groups And a nitrogen atom-containing alkylene group. Containing moieties nitrogen atom in R 1 is not particularly limited, some or all of the hydrogen atoms of the hydrocarbon group in R 1 may be substituted with other substituents, specific examples of the substituent Are exemplified by alkoxy groups having 1 to 5 carbon atoms such as methoxy, ethoxy and (iso) propoxy groups; halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom.

式(1)中、Aは、下記一般式(2):

Figure 0006384890
または、下記一般式(3):
Figure 0006384890
で示されるビスシリルアミノ基である。 In the formula (1), A represents the following general formula (2):
Figure 0006384890
Or the following general formula (3):
Figure 0006384890
It is a bissilylamino group shown by these.

式(2)および式(3)において、R2〜R7は、互いに独立に、炭素数1〜20の1価炭化水素基であり、例えば、炭素数1〜20ののアルキル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基等が挙げられる。R2〜R7である一価炭化水素基は、その分子構造において特に制限されず、直鎖状、分岐鎖状または環状の一価炭化水素基であってよい。好適には、R2〜R7は炭素数1〜8、さらに好ましくは炭素数1〜6の1価飽和炭化水素である。 In Formula (2) and Formula (3), R 2 to R 7 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, such as an alkyl group having 1 to 20 carbon atoms, a carbon number Examples thereof include an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. The monovalent hydrocarbon group which is R 2 to R 7 is not particularly limited in its molecular structure, and may be a linear, branched or cyclic monovalent hydrocarbon group. Preferably, R 2 to R 7 are monovalent saturated hydrocarbons having 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms.

具体例としては、メチル、エチル、n−プロピル、n−ブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、イコシル基等の直鎖状のアルキル基;イソプロピル、イソブチル、sec−ブチル、tert−ブチル、テキシル、2−エチルヘキシル基等の分岐鎖状のアルキル基;シクロペンチル、シクロヘキシル基等の環状のアルキル基;ビニル、アリル、プロペニル基等のアルケニル基;フェニル、トリル基等のアリール基;ベンジル基等のアラルキル基等が挙げられ、工業生産上の見地から、R2〜R7は、メチル、エチル、イソプロピル、sec−ブチル、tert−ブチル基が好ましい。 Specific examples include linear chains such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl and icosyl groups. Alkyl groups such as isopropyl, isobutyl, sec-butyl, tert-butyl, texyl and 2-ethylhexyl groups; cyclic alkyl groups such as cyclopentyl and cyclohexyl groups; vinyl, allyl and propenyl groups Alkenyl groups; aryl groups such as phenyl and tolyl groups; aralkyl groups such as benzyl groups and the like. From the viewpoint of industrial production, R 2 to R 7 are methyl, ethyl, isopropyl, sec-butyl, tert-butyl. Groups are preferred.

式(3)において、R8はジシラシクロアミン環を形成する炭素数2〜10の2価炭化水素基であり、たとえば、直鎖状または分岐鎖状のアルキレン基、アリーレン基、アラルキレン基等が挙げられる。工業生産上の見地から、R8はエチレン基、プロピレン基、プロピレン基等のアルキレン基であることが好ましい。 In the formula (3), R 8 is a C 2-10 divalent hydrocarbon group forming a disilacycloamine ring, such as a linear or branched alkylene group, an arylene group, an aralkylene group, etc. Is mentioned. From the viewpoint of industrial production, R 8 is preferably an alkylene group such as an ethylene group, a propylene group, or a propylene group.

なお、R2〜R7、R8は上記各炭化水素基の水素原子の一部または全部はその他の置換基で置換されていてもよく、この置換基の具体例としては、メトキシ、エトキシ、(イソ)プロポキシ基等の炭素数1〜5のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;シアノ基;アミノ基;炭素数2〜10のアシル基;トリクロロシリル基;それぞれ各アルキル基、各アルコキシ基が炭素数1〜5である、トリアルキルシリル、ジアルキルモノクロロシリル、モノアルキルジクロロシリル、トリアルコキシシリル、ジアルキルモノアルコキシシリルまたはモノアルキルジアルコキシシリル基等が挙げられる。 R 2 to R 7 , R 8 may be part or all of hydrogen atoms of each of the hydrocarbon groups substituted with other substituents. Specific examples of the substituents include methoxy, ethoxy, (Iso) propoxy group and other alkoxy groups having 1 to 5 carbon atoms; halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; cyano group; amino group; acyl group having 2 to 10 carbon atoms; trichlorosilyl group A trialkylsilyl, dialkylmonochlorosilyl, monoalkyldichlorosilyl, trialkoxysilyl, dialkylmonoalkoxysilyl or monoalkyldialkoxysilyl group each having 1 to 5 carbon atoms, each alkyl group and each alkoxy group. .

上記の式(1)で表されるビスシリルアミノ基含有不飽和炭化水素化合物の具体例として、N,N−ビス(トリメチルシリル)アリルアミン、N,N−ビス(トリメチルシリル)メタリルアミン、N,N−ビス(トリメチルシリル)ブテニルアミン、N,N−ビス(トリメチルシリル)ヘキセニルアミン、N,N−ビス(トリメチルシリル)デセニルアミン、N,N−ビス(トリメチルシリル)ビニルアニリン、N,N−ビス(トリエチルシリル)アリルアミン、N,N−ビス(トリエチルシリル)メタリルアミン、N,N−ビス(トリエチルシリル)ブテニルアミン、N,N−ビス(トリエチルシリル)ヘキセニルアミン、N,N−ビス(トリエチルシリル)デセニルアミン、N,N−ビス(トリエチルシリル)ビニルアニリン、N,N−ビス(t−ブチルジメチルシリル)アリルアミン、N,N−ビス(t−ブチルジメチルシリル)メタリルアミン、N,N−ビス(t−ブチルジメチルシリル)ブテニルアミン、N,N−ビス(t−ブチルジメチルシリル)ヘキセニルアミン、N,N−ビス(t−ブチルジメチルシリル)デセニルアミン、N,N−ビス(t−ブチルジメチルシリル)ビニルアニリン、N,N−ビス(トリイソプロピルシリル)アリルアミン、N,N−ビス(トリイソプロピルシリル)メタリルアミン、N,N−ビス(トリイソプロピルシリル)ブテニルアミン、N,N−ビス(トリイソプロピルシリル)ヘキセニルアミン、N,N−ビス(トリイソプロピルシリル)デセニルアミン、N,N−ビス(トリイソプロピルシリル)ビニルアニリン、N−トリエチルシリル−N−トリメチルシリルアリルアミン、N−トリエチルシリル−N−トリメチルシリルメタリルアミン、N−トリエチルシリル−N−トリメチルシリルブテニルアミン、N−トリエチルシリル−N−トリメチルシリルヘキセニルアミン、N−トリエチルシリル−N−トリメチルシリルデセニルアミン、N−トリエチルシリル−N−トリメチルシリルビニルアニリン、N−t−ブチルジメチルシリル−N−トリメチルシリルアリルアミン、N−t−ブチルジメチルシリル−N−トリメチルシリルメタリルアミン、N−t−ブチルジメチルシリル−N−トリメチルシリルブテニルアミン、N−t−ブチルジメチルシリル−N−トリメチルシリルヘキセニルアミン、N−t−ブチルジメチルシリル−N−トリメチルシリルデセニルアミン、N−t−ブチルジメチルシリル−N−トリメチルシリルビニルアニリン、N−トリイソプロピルシリル−N−トリメチルシリルアリルアミン、N−トリイソプロピルシリル−N−トリメチルシリルメタリルアミン、N−トリイソプロピルシリル−N−トリメチルシリルブテニルアミン、N−トリイソプロピルシリル−N−トリメチルシリルヘキセニルアミン、N−トリイソプロピルシリル−N−トリメチルシリルデセニルアミン、N−トリイソプロピルシリル−N−トリメチルシリルビニルアニリン等が挙げられる。 Specific examples of the bissilylamino group-containing unsaturated hydrocarbon compound represented by the above formula (1) include N, N-bis (trimethylsilyl) allylamine, N, N-bis (trimethylsilyl) methallylamine, N, N-bis. (Trimethylsilyl) butenylamine, N, N-bis (trimethylsilyl) hexenylamine, N, N-bis (trimethylsilyl) decenylamine, N, N-bis (trimethylsilyl) vinylaniline, N, N-bis (triethylsilyl) allylamine, N, N-bis (triethylsilyl) methallylamine, N, N-bis (triethylsilyl) butenylamine, N, N-bis (triethylsilyl) hexenylamine, N, N-bis (triethylsilyl) decenylamine, N, N-bis (triethyl) Silyl) vinylaniline, N, N- (T-butyldimethylsilyl) allylamine, N, N-bis (t-butyldimethylsilyl) methallylamine, N, N-bis (t-butyldimethylsilyl) butenylamine, N, N-bis (t-butyldimethylsilyl) Hexenylamine, N, N-bis (t-butyldimethylsilyl) decenylamine, N, N-bis (t-butyldimethylsilyl) vinylaniline, N, N-bis (triisopropylsilyl) allylamine, N, N-bis ( Triisopropylsilyl) methallylamine, N, N-bis (triisopropylsilyl) butenylamine, N, N-bis (triisopropylsilyl) hexenylamine, N, N-bis (triisopropylsilyl) decenylamine, N, N-bis (tri Isopropylsilyl) vinylaniline, N-triethyl Lyl-N-trimethylsilylallylamine, N-triethylsilyl-N-trimethylsilylmethallylamine, N-triethylsilyl-N-trimethylsilylbutenylamine, N-triethylsilyl-N-trimethylsilylhexenylamine, N-triethylsilyl-N-trimethylsilylde Cenylamine, N-triethylsilyl-N-trimethylsilylvinylaniline, Nt-butyldimethylsilyl-N-trimethylsilylallylamine, Nt-butyldimethylsilyl-N-trimethylsilylmethallylamine, Nt-butyldimethylsilyl-N -Trimethylsilylbutenylamine, Nt-butyldimethylsilyl-N-trimethylsilylhexenylamine, Nt-butyldimethylsilyl-N-trimethylsilyldecenylamine, N- t-butyldimethylsilyl-N-trimethylsilylvinylaniline, N-triisopropylsilyl-N-trimethylsilylallylamine, N-triisopropylsilyl-N-trimethylsilylmethallylamine, N-triisopropylsilyl-N-trimethylsilylbutenylamine, N- Examples include triisopropylsilyl-N-trimethylsilylhexenylamine, N-triisopropylsilyl-N-trimethylsilyldecenylamine, and N-triisopropylsilyl-N-trimethylsilylvinylaniline.

このようなビスシリルアミノ基含有不飽和炭化水素化合物は、本願の背景技術に記載のとおり、公知の方法で合成することができる。 Such a bissilylamino group-containing unsaturated hydrocarbon compound can be synthesized by a known method as described in the background art of the present application.

一方、上記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物は、水分に接触することで容易に加水分解し、その原料である対応するアミノ基含有不飽和炭化水素化合物と対応するシラノール化合物に分解する。 On the other hand, the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) is easily hydrolyzed by contact with moisture, and the corresponding amino group-containing unsaturated hydrocarbon compound as a raw material Decomposes into the corresponding silanol compound.

また、本願の背景技術に記載のとおり、上記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物は、対応するアミノ基含有不飽和炭化水素化合物をクロロシランやシラザンなどの有機ケイ素化合物を用いてシリル化したり、一旦モノ(シリル)アミノ基含有不飽和炭化水素化合物を製造し、不均化することにより製造することができるが、得られたビスシリルアミノ基含有不飽和炭化水素化合物には原料として使用したアミノ基含有不飽和炭化水素化合物、一般式(6)で示される有機ケイ素化合物、反応促進剤として使用されたアミン化合物等を含有する。 Further, as described in the background art of the present application, the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) is obtained by replacing the corresponding amino group-containing unsaturated hydrocarbon compound with organic silicon such as chlorosilane or silazane. The bissilylamino group-containing unsaturated hydrocarbon can be obtained by silylation using a compound, or once producing a mono (silyl) amino group-containing unsaturated hydrocarbon compound and disproportionation. The compound contains an amino group-containing unsaturated hydrocarbon compound used as a raw material, an organosilicon compound represented by the general formula (6), an amine compound used as a reaction accelerator, and the like.

ここで、上記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物と、下記一般式(4):

Figure 0006384890
で示されるケイ素原子結合水素原子含有有機ケイ素化合物をヒドロシリル化反応させて、下記一般式(5):
Figure 0006384890
で示されるビスシリルアミノ基含有有機ケイ素化合物を製造する際に、上記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物の製造ロットによって上記一般式(5)で示されるビス(シリル)アミノ基含有有機ケイ素化合物への転換率が大幅低下したり反応が暴走したりする場合がある。 Here, the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) and the following general formula (4):
Figure 0006384890
A silicon atom-bonded hydrogen atom-containing organosilicon compound represented by the following general formula (5):
Figure 0006384890
When the bissilylamino group-containing organosilicon compound represented by the formula (1) is produced, the bissilylamino group-containing unsaturated hydrocarbon compound represented by the formula (1) is produced according to the bissilyl formula represented by the formula (5). The conversion rate to the (silyl) amino group-containing organosilicon compound may be significantly reduced or the reaction may be runaway.

当該転換率の低下に伴う反応効率の問題や、反応の暴走による反応コントロール性の問題は、上記のとおり、上記一般式(1)に示される化合物中の特定の不純物、すなわち、上記一般式(6)で示される有機ケイ素化合物と上記一般式(7)で示されるアミン化合物の合計量が強く関与しているため、これらの成分を一定水準以下まで除去することで、解決可能である。 As described above, the problem of reaction efficiency due to the decrease in the conversion rate and the problem of reaction controllability due to reaction runaway are specific impurities in the compound represented by the general formula (1), that is, the general formula ( Since the total amount of the organosilicon compound represented by 6) and the amine compound represented by the general formula (7) is strongly involved, it can be solved by removing these components to a certain level or less.

一般式(6)で表される有機ケイ素化合物は、上記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物の製造原料の一部であり、R11〜R16は当該ビスシリルアミノ基含有不飽和炭化水素化合物と同様に、同一でも異なっていてもよい炭素数1〜20の1価炭化水素基であり、上記のR2〜R7で例示した官能基と同様な炭素数1〜10のアルキル基、アルケニル基、アリール基、アラルキル基が例示され、かつ、その分子構造において特に制限されず、直鎖状、分岐鎖状または環状の一価炭化水素基であってよい。また、R11〜R16は、上記各炭化水素基の水素原子の一部または全部はその他の置換基で置換されていてもよく、特にハロゲン原子により置換されていてもよい。好適には、R11〜R16は、上記のR2〜R7と同様に、炭素数1〜8、炭素数1〜6の1価飽和炭化水素であってよい。また、工業生産上の見地から、R11〜R16はメチル、エチル、イソプロピル、sec−ブチル、tert−ブチル基であってよい。 The organosilicon compound represented by the general formula (6) is a part of the raw material for producing the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1), and R 11 to R 16 represent the bis Similar to the silylamino group-containing unsaturated hydrocarbon compound, it is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different, and is the same carbon as the functional group exemplified in the above R 2 to R 7 Examples are an alkyl group, an alkenyl group, an aryl group, and an aralkyl group having a number of 1 to 10, and are not particularly limited in the molecular structure, and may be a linear, branched, or cyclic monovalent hydrocarbon group. . In R 11 to R 16 , some or all of the hydrogen atoms of the above hydrocarbon groups may be substituted with other substituents, and in particular, may be substituted with halogen atoms. Suitably, R 11 to R 16 are, similarly to the above-mentioned R 2 to R 7, 1 to 8 carbon atoms and may be a monovalent saturated hydrocarbon having 1 to 6 carbon atoms. From the viewpoint of industrial production, R 11 to R 16 may be methyl, ethyl, isopropyl, sec-butyl, or tert-butyl group.

一般式(6)で表される有機ケイ素化合物は、上記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物のビスシリルアミノ基部分の構造に対応した官能基および構造を有する。たとえば、官能基A中のR2〜R7が全てメチル基の場合、ヘキサメチルジシラザンを主たる成分とする。その他、一般式(6)で表される有機ケイ素化合物は、先に例示したビスシリルアミノ基含有不飽和炭化水素化合物のビスシリルアミノ基部分の構造に対応した化合物が挙げられる。 The organosilicon compound represented by the general formula (6) has a functional group and a structure corresponding to the structure of the bissilylamino group portion of the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1). . For example, when R 2 to R 7 in the functional group A are all methyl groups, hexamethyldisilazane is the main component. In addition, examples of the organosilicon compound represented by the general formula (6) include compounds corresponding to the structure of the bissilylamino group portion of the bissilylamino group-containing unsaturated hydrocarbon compound exemplified above.

上記一般式(7)で示される有機アミン化合物は、上記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物の製造原料の一部、または上記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物を保存/製造中に水分と反応して生成する成分に由来する。 The organic amine compound represented by the general formula (7) is a part of the raw material for producing the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) or the general formula (1). It originates from the component which reacts with a water | moisture content and produces | generates a bissilylamino group containing unsaturated hydrocarbon compound during a preservation | save / production.

一般式(7)において、R17〜R19は互いに独立に、炭素数1〜20の1価炭化水素基であり、上記のR2〜R7で例示した官能基と同様なアルキル基、アルケニル基、アリール基、アラルキル基が例示され、かつ、その分子構造において特に制限されず、直鎖状、分岐鎖状または環状の一価炭化水素基であってよい。また、R17〜R19は、上記各炭化水素基の水素原子の一部または全部はその他の置換基で置換されていてもよく、特にハロゲン原子により置換されていてもよい。好適には、R17〜R19は、炭素数1〜8のアルキル基、炭素数2〜8のアルケニル基であってよい。工業生産上の見地から、R17〜R19は、メチル、エチル、ビニル、プロピル、イソプロピル、アリル、sec−ブチル、tert−ブチル基であってよい。 In the general formula (7), R 17 to R 19 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and are the same alkyl group or alkenyl as the functional groups exemplified in the above R 2 to R 7. Groups, aryl groups and aralkyl groups are exemplified, and the molecular structure is not particularly limited, and may be a linear, branched or cyclic monovalent hydrocarbon group. In R 17 to R 19 , some or all of the hydrogen atoms of the above hydrocarbon groups may be substituted with other substituents, and in particular, may be substituted with halogen atoms. Suitably, R < 17 > -R < 19 > may be a C1-C8 alkyl group and a C2-C8 alkenyl group. From an industrial production standpoint, R 17 to R 19 may be methyl, ethyl, vinyl, propyl, isopropyl, allyl, sec-butyl, tert-butyl groups.

一般式(7)において、m、x、y、zはm+x+y+zの合計が3であり、かつ0〜3の範囲の同一又は異なる整数である。 In the general formula (7), m, x, y, and z are the same or different integers in which the sum of m + x + y + z is 3 and in the range of 0-3.

一般式(7)で表される有機アミン化合物は、アリルアミン、1−プロピルアミン、トリエチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリメチルアミン、アリルメチルアミン、アリルジメチルアミン等が例示される。なお、一般式(7)で表される有機アミン化合物は、一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物の製造原料またはその加水分解物に由来するので、先に例示したビスシリルアミノ基含有不飽和炭化水素化合物の原料および加水分解物に対応した化合物であってよい。 Examples of the organic amine compound represented by the general formula (7) include allylamine, 1-propylamine, triethylamine, diethylmethylamine, ethyldimethylamine, trimethylamine, allylmethylamine, and allyldimethylamine. In addition, since the organic amine compound represented by General formula (7) originates in the manufacturing raw material of the bissilylamino group containing unsaturated hydrocarbon compound shown by General formula (1), or its hydrolyzate, it illustrates previously. It may be a compound corresponding to the raw material and hydrolyzate of the bissilylamino group-containing unsaturated hydrocarbon compound.

これらの不純物を除去する手段は特に限定されるものではないが、精留による分離、カラムクロマトグラフィー、活性炭等の吸着剤による分離等の公知の精製法によって低減することができ、その低減の程度は、反応原料であるビスシリルアミノ基含有不飽和炭化水素化合物についてガスクロマトグラフィー(GC)およびガスクロマトグラフィー質量分析(GC―MS)を行うことで特定可能である。 The means for removing these impurities is not particularly limited, but can be reduced by a known purification method such as separation by rectification, column chromatography, separation with an adsorbent such as activated carbon, and the extent of the reduction. Can be identified by performing gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS) on the bissilylamino group-containing unsaturated hydrocarbon compound as a reaction raw material.

本発明において、一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物から一般式(6)で示される有機ケイ素化合物および上記一般式(7)で示されるアミン化合物を低減する手段として、多段数(理論段数)の蒸留塔を有する蒸留装置を用いて精留した後に、水洗または吸着剤により処理する工程を用いることにより、これらの成分の合計含有量が0.2質量%以下となるように低減されていることが好ましい。なお、当該精留に用いる蒸留塔の理論段数、水洗または吸着剤による処理の回数等は、合成したビスシリルアミノ基含有不飽和炭化水素化合物(粗原料)中の不純物の含有量に応じて適宜設定してよい。また、必要に応じて、複数回の精留、水洗、および吸着剤による処理を行ってもよい。 In the present invention, means for reducing the organosilicon compound represented by the general formula (6) and the amine compound represented by the general formula (7) from the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) As a result of rectifying using a distillation apparatus having a multi-stage (theoretical stage) distillation tower, and then using a process of washing with water or an adsorbent, the total content of these components is 0.2% by mass or less. It is preferable to be reduced so that The number of theoretical columns of the distillation column used for the rectification, the number of times of washing or treatment with an adsorbent, etc. are appropriately determined according to the content of impurities in the synthesized bissilylamino group-containing unsaturated hydrocarbon compound (crude raw material). May be set. Moreover, you may perform the process by several times of rectification, water washing, and adsorption agent as needed.

本発明の製造方法において、上記の方法により、上記一般式(6)で示される有機ケイ素化合物および上記一般式(7)で示されるアミン化合物を十分に低減したビスシリルアミノ基含有不飽和炭化水素化合物を反応原料として用いることで、安全かつ高効率に目的物である一般式(5)で示されるビス(シリル)アミノ基含有有機ケイ素化合物を製造することができる。 In the production method of the present invention, the bissilylamino group-containing unsaturated hydrocarbon in which the organosilicon compound represented by the general formula (6) and the amine compound represented by the general formula (7) are sufficiently reduced by the above method. By using the compound as a reaction raw material, it is possible to produce a bis (silyl) amino group-containing organosilicon compound represented by the general formula (5) which is a target product safely and with high efficiency.

一般式(4)で示されるケイ素原子結合水素原子含有有機ケイ素化合物は、ハイドロジェンシラン化合物であり、一般式(1)に示される化合物の末端にある炭素−炭素二重結合と、ケイ素原子結合水素原子間で、ヒドロシリル化反応触媒の存在下、ヒドロシリル化反応が進行することで、一般式(5)で示されるビスシリルアミノ基含有有機ケイ素化合物が形成される。 The silicon-bonded hydrogen atom-containing organosilicon compound represented by the general formula (4) is a hydrogen silane compound, and a carbon-carbon double bond at the terminal of the compound represented by the general formula (1) and a silicon atom bond A hydrosilylation reaction proceeds between hydrogen atoms in the presence of a hydrosilylation reaction catalyst, whereby a bissilylamino group-containing organosilicon compound represented by the general formula (5) is formed.

一般式(4)におけるRおよびR10は、互いに独立に、炭素数1〜20の1価炭化水素基であり、上記のR2〜R7で例示した官能基と同様なアルキル基、アルケニル基、アリール基、アラルキル基が例示されかつ、その分子構造において特に制限されず、直鎖状、分岐鎖状または環状の一価炭化水素基であってよい。また、RおよびR10は、上記各炭化水素基の水素原子の一部または全部はその他の置換基で置換されていてもよく、特にハロゲン原子により置換されていてもよい。好適には、工業生産上の見地から、RおよびR10は、メチルまたはエチル基が好ましい。また、一般式(4)におけるnは0〜2の範囲の整数である。 R 9 and R 10 in the general formula (4) are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and are the same alkyl group or alkenyl as the functional groups exemplified in the above R 2 to R 7. Groups, aryl groups and aralkyl groups are exemplified, and the molecular structure is not particularly limited, and may be a linear, branched or cyclic monovalent hydrocarbon group. In R 9 and R 10 , some or all of the hydrogen atoms of the above hydrocarbon groups may be substituted with other substituents, and in particular may be substituted with halogen atoms. Preferably, from the viewpoint of industrial production, R 9 and R 10 are preferably methyl or ethyl groups. Moreover, n in General formula (4) is an integer of the range of 0-2.

好適には、一般式(4)で示されるケイ素原子結合水素原子含有有機ケイ素化合物として、トリメトキシシラン、メチルジメトキシシラン、ジメチルメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、ジメチルエトキシシラン等が挙げられる。 Preferably, the silicon-bonded hydrogen atom-containing organosilicon compound represented by the general formula (4) includes trimethoxysilane, methyldimethoxysilane, dimethylmethoxysilane, triethoxysilane, methyldiethoxysilane, dimethylethoxysilane and the like. It is done.

上記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物と、上記一般式(4)で示されるハイドロジェンシラン化合物との反応比は特に限定されないが、反応性、生産性の点から、一般式(1)で示される化合物1molに対し、一般式(4)で示される化合物0.5〜3.0molの範囲が好ましく、0.8〜1.5molの範囲がより好ましい。本発明にかかる製造方法おいては、ヒドロシリル化反応が促進され、かつ、反応のコントロールが容易であるので、一般式(1)で示される化合物1molに対し、一般式(4)で示される化合物が0.9〜1.1mol、あるいはほぼ1molとなる化学的に等モル量の反応であっても、反応が停止することなく、高い反応効率で進行できる利点がある。 The reaction ratio between the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) and the hydrogen silane compound represented by the general formula (4) is not particularly limited. From the point, the range of 0.5 to 3.0 mol of the compound represented by the general formula (4) is preferable, and the range of 0.8 to 1.5 mol is more preferable with respect to 1 mol of the compound represented by the general formula (1). In the production method according to the present invention, the hydrosilylation reaction is promoted and the control of the reaction is easy, so the compound represented by the general formula (4) with respect to 1 mol of the compound represented by the general formula (1). Even if the reaction is a chemically equimolar amount of 0.9 to 1.1 mol or about 1 mol, there is an advantage that the reaction can proceed with high reaction efficiency without stopping.

ヒドロシリル化反応触媒は特に制限されるものではないが、反応効率の見地から、白金系金属を含むヒドロシリル化反応触媒であり、具体的には、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸のオレフィン錯体、塩化白金酸とケトン類との錯体、塩化白金酸とビニルシロキサンとの錯体、四塩化白金、白金微粉末、アルミナまたはシリカの担体に固体状白金を担持させたもの、白金黒、白金のオレフィン錯体、白金のアルケニルシロキサン錯体、白金のカルボニル錯体、これらの白金系触媒を含むメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シリコーン樹脂等の熱可塑性有機樹脂粉末の白金系触媒が例示される。特に、塩化白金酸と1,3−ジビニル−1,1,3,3−テトラメチルジシロキサンとの錯体、塩化白金酸とテトラメチルテトラビニルシクロテトラシロキサンとの錯体、白金1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体、及び白金テトラメチルテトラビニルシクロテトラシロキサン錯体等の白金アルケニルシロキサン錯体が好ましく使用できる。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。 The hydrosilylation reaction catalyst is not particularly limited, but from the viewpoint of reaction efficiency, it is a hydrosilylation reaction catalyst containing a platinum-based metal, specifically, chloroplatinic acid, alcohol-modified chloroplatinic acid, chloroplatinic acid. Olefin complexes, chloroplatinic acid and ketone complexes, chloroplatinic acid and vinylsiloxane complexes, platinum tetrachloride, platinum fine powder, alumina or silica carrier with solid platinum, platinum black, Examples include platinum olefin complexes, platinum alkenylsiloxane complexes, platinum carbonyl complexes, and platinum-based catalysts of thermoplastic organic resin powders such as methyl methacrylate resins, polycarbonate resins, polystyrene resins, and silicone resins containing these platinum-based catalysts. . In particular, a complex of chloroplatinic acid and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, a complex of chloroplatinic acid and tetramethyltetravinylcyclotetrasiloxane, platinum 1,3-divinyl- Platinum alkenylsiloxane complexes such as 1,1,3,3-tetramethyldisiloxane complex and platinum tetramethyltetravinylcyclotetrasiloxane complex can be preferably used. In addition, as a catalyst which accelerates | stimulates hydrosilylation reaction, you may use non-platinum type metal catalysts, such as iron, ruthenium, and iron / cobalt.

ヒドロシリル化反応触媒の使用量は、白金系金属量が1〜1,000ppmの範囲となる量が好ましく、5〜500ppmの範囲となる量がさらに好ましい。本発明にかかる製造方法おいては、ヒドロシリル化反応が促進され、かつ、反応のコントロールが容易であるので、ヒドロシリル化反応触媒が比較的少量、たとえば、白金系金属量が5〜100ppmとなる範囲で十分な反応が進行し、かつ、反応を進行させるためにヒドロシリル化反応触媒を多段階で添加したり、100ppmを超える量で添加したりしなくても、目的とするビスシリルアミノ基含有有機ケイ素化合物を短い製造時間、高い反応効率、および高い収率で得ることができる。 The amount of the hydrosilylation reaction catalyst used is preferably such that the platinum metal content is in the range of 1 to 1,000 ppm, more preferably in the range of 5 to 500 ppm. In the production method according to the present invention, the hydrosilylation reaction is promoted and the control of the reaction is easy, so that the hydrosilylation reaction catalyst is a relatively small amount, for example, a range in which the amount of platinum-based metal is 5 to 100 ppm. The target bissilylamino group-containing organic compound can be produced without adding a hydrosilylation reaction catalyst in multiple stages or in an amount exceeding 100 ppm to advance the reaction. Silicon compounds can be obtained with short production times, high reaction efficiencies and high yields.

上記反応は無溶媒でも進行するが、溶媒を用いることもできる。使用可能な溶媒の具体例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトニトリル、N,N−ジメチルホルムアミド、N−メチルピロリドン等の非プロトン性極性溶媒;ジクロロメタン、クロロホルム等の塩素化炭化水素系溶媒等が挙げられ、これらの溶媒は1種を単独で用いても、2種以上混合して用いてもよい。 The above reaction proceeds even without solvent, but a solvent can also be used. Specific examples of usable solvents include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene, and xylene; ether solvents such as diethyl ether, tetrahydrofuran, and dioxane; ethyl acetate, butyl acetate, and the like Ester solvents; aprotic polar solvents such as acetonitrile, N, N-dimethylformamide, and N-methylpyrrolidone; chlorinated hydrocarbon solvents such as dichloromethane and chloroform, and the like. It may be used in a mixture of two or more.

本発明の製造方法において、上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物および上記の一般式(4)で示されるケイ素原子結合水素原子含有有機ケイ素化合物のヒドロシリル化反応の反応温度は、80℃以上190℃以下の温度範囲において実施することが好ましい。上記の不純物を低減した一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物を原料に用いる場合であっても、反応温度が80℃を下回ると、ヒドロシリル化反応触媒の量によって、ヒドロシリル化反応が途中で停止して反応効率(転換率)が低下したり、当該反応が途中で暴走して、急激に発熱したりして安全な製造が困難となる場合がある。一方、反応温度が190℃を超えると、反応途中で原料が揮発する場合があり、反応効率(転換率)が低下して特に工業的スケールでの効率的な製造が困難である。ヒドロシリル化反応触媒量が少量であっても反応のコントロール性と安全性に優れ、高い反応効率を維持する見地から、本発明における製造方法は、ヒドロシリル化反応を80℃以上190℃以下の温度範囲において実施することが好ましく、80℃から160℃の温度範囲での実施がより好ましく、80℃から120℃の温度範囲で実施することが特に好ましい。 In the production method of the present invention, hydrosilylation of a bissilylamino group-containing unsaturated hydrocarbon compound represented by the above general formula (1) and a silicon atom-bonded hydrogen atom-containing organosilicon compound represented by the above general formula (4) The reaction temperature is preferably in the temperature range of 80 ° C. or higher and 190 ° C. or lower. Even when the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) with reduced impurities is used as a raw material, if the reaction temperature falls below 80 ° C., the amount of hydrosilylation reaction catalyst depends on the amount. In some cases, the hydrosilylation reaction stops in the middle and the reaction efficiency (conversion rate) decreases, or the reaction runs away in the middle and suddenly generates heat, making safe production difficult. On the other hand, when the reaction temperature exceeds 190 ° C., the raw material may be volatilized during the reaction, the reaction efficiency (conversion rate) is lowered, and efficient production particularly on an industrial scale is difficult. From the viewpoint of maintaining excellent reaction controllability and safety and maintaining high reaction efficiency even if the amount of the hydrosilylation reaction catalyst is small, the production method in the present invention performs the hydrosilylation reaction in a temperature range of 80 ° C or higher and 190 ° C or lower. It is preferable to carry out at a temperature range of 80 ° C. to 160 ° C., more preferably 80 ° C. to 120 ° C.

さらに、本発明の製造方法において、特に、ヒドロシリル化反応が途中で停止することを予防する見地から、上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、下記一般式(8):

Figure 0006384890
(式中、R、R、R、Rは上記同様の官能基である)
で示される化合物の含有量が10質量%以下のものを用いてもよい。当該化合物は、ビスシリルアミノ基を有する不飽和結合含有化合物として、上記ヒドロシリル化反応の反応阻害物質となりうるので、精留による分離、カラムクロマトグラフィー、活性炭等の吸着剤による分離等の公知の精製法によって低減することが好ましい。ただし、当該化合物の存在は、上記一般式(6)で示される有機ケイ素化合物および上記一般式(7)で示されるアミン化合物に比べて、ヒドロシリル化反応の進行および反応のコントロール性に与える影響は軽微であり、仮に当該成分を一定量低減しても、一般式(6)で示される有機ケイ素化合物および上記一般式(7)で示されるアミン化合物が系中に大量に残存していると、本発明の技術的効果は十分に達成されない。 Furthermore, in the production method of the present invention, in particular, from the viewpoint of preventing the hydrosilylation reaction from stopping in the middle, the bissilylamino group-containing unsaturated hydrocarbon compound represented by the above general formula (1) is represented by the following general formula: Formula (8):
Figure 0006384890
(Wherein R 1 , R 2 , R 6 and R 7 are the same functional groups as described above)
A compound having a content of 10% by mass or less may be used. Since the compound is an unsaturated bond-containing compound having a bissilylamino group and can be a reaction inhibitor of the hydrosilylation reaction, known purification such as separation by rectification, column chromatography, separation by an adsorbent such as activated carbon, etc. It is preferable to reduce by the method. However, compared to the organosilicon compound represented by the general formula (6) and the amine compound represented by the general formula (7), the presence of the compound has no influence on the progress of the hydrosilylation reaction and the controllability of the reaction. Even if the component is reduced by a certain amount, the organosilicon compound represented by the general formula (6) and the amine compound represented by the general formula (7) remain in a large amount in the system. The technical effect of the present invention is not sufficiently achieved.

本発明の製造方法において、好適な形態は、上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、さらに、上記の一般式(8)で示される化合物の含有量が1質量%以下のものを用いてもよく、0.5質量%以下のものを用いてもよく、0.25質量%以下〜検出限界以下まで低減したものを用いることが特に好ましい。 In the production method of the present invention, a preferred embodiment is a content of the compound represented by the above general formula (8) as the bissilylamino group-containing unsaturated hydrocarbon compound represented by the above general formula (1). 1 mass% or less may be used, 0.5 mass% or less may be used, and it is especially preferable to use what was reduced to 0.25 mass% or less-below the detection limit.

本発明の製造方法により、下記一般式(5):

Figure 0006384890
(式中A,R、R、R10は上記同様の官能基であり、nは上記と同じ意味である)
で示されるビスシリルアミノ基含有有機ケイ素化合物が、高い反応効率かつ、反応のコントロール性に優れた安全な製造工程で生産可能である。本発明の製造方法は、これらの利点を有するので、特に、目的とする化合物の反応効率に優れるため製造時間(サイクルタイム)を短縮でき、工業的生産スケールに適合し、かつ、原料の比率を1:1に近い比率で選択し、反応に必要なヒドロシリル化反応触媒量が比較的少なくても十分な反応性を有するので、廃棄物の発生量が少なく、白金等の重金属を含むヒドロシリル化反応触媒の使用量を低減できる点においても優位性を有する。 According to the production method of the present invention, the following general formula (5):
Figure 0006384890
(In the formula, A, R 1 , R 9 and R 10 are the same functional groups as described above, and n has the same meaning as described above).
The bissilylamino group-containing organosilicon compound represented by can be produced in a safe manufacturing process with high reaction efficiency and excellent reaction controllability. Since the production method of the present invention has these advantages, the production time (cycle time) can be shortened because it is particularly excellent in the reaction efficiency of the target compound, it is suitable for an industrial production scale, and the ratio of raw materials is reduced. Select a ratio close to 1: 1 and have sufficient reactivity even if the amount of hydrosilylation reaction catalyst required for the reaction is relatively small, so the amount of waste generated is small, and hydrosilylation reaction containing heavy metals such as platinum There is an advantage also in the point which can reduce the usage-amount of a catalyst.

本発明は、同時に、ビスシリルアミノ基含有有機ケイ素化合物に関するヒドロシリル化反応の促進方法の側面を有し、上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物と、上記の一般式(4)で示されるケイ素原子結合水素原子含有有機ケイ素化合物をヒドロシリル化反応触媒の存在下でヒドロシリル化反応させて、
上記の一般式(5)で示されるビスシリルアミノ基含有有機ケイ素化合物を製造する際のヒドロシリル化反応の促進方法において、当該ビスシリルアミノ基含有不飽和炭化水素化合物として、上記の一般式(6)で示される有機ケイ素化合物、および上記の一般式(7)で示されるアミン化合物の合計含有量が0.2質量%以下であるものを用いることを特徴とする、ヒドロシリル化反応の促進方法でもある。
The present invention simultaneously has a method for promoting a hydrosilylation reaction related to a bissilylamino group-containing organosilicon compound, the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1), and The silicon-bonded hydrogen atom-containing organosilicon compound represented by the general formula (4) is hydrosilylated in the presence of a hydrosilylation reaction catalyst,
In the method for promoting a hydrosilylation reaction in producing the bissilylamino group-containing organosilicon compound represented by the general formula (5), the bissilylamino group-containing unsaturated hydrocarbon compound may be the above general formula (6 And a method for promoting a hydrosilylation reaction, wherein the total content of the organosilicon compound represented by formula (7) and the amine compound represented by the general formula (7) is 0.2% by mass or less. is there.

本発明に係るヒドロシリル化反応の促進方法は、上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、上記の一般式(8)で示される化合物の含有量が10質量%以下のものを用いることを更なる特徴とするものであってもよい。 In the method for promoting a hydrosilylation reaction according to the present invention, the content of the compound represented by the general formula (8) is 10 as the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1). It may be further characterized in that a material having a mass% or less is used.

なお、これらのヒドロシリル化反応の促進方法における実施上の好適な形態は、先に製造方法において記載した条件と同様である。 In addition, the preferable form on implementation in these hydrosilylation reaction promotion methods is the same as the conditions described in the production method.

本発明の製造方法により得られたビスシリルアミノ基含有有機ケイ素化合物は、シランカップリング剤、表面処理剤、樹脂添加剤、塗料添加剤、接着剤等として有用であるが、特に、低燃費性が求められる自動車用途タイヤゴム等に用いる合成ゴム、たとえば、変性共役ジエン系ゴム、共役ジオレフィン共重合ゴム等の製造において、変性剤として用いることが好ましい。本発明の製造方法は、簡便かつ安全な工程で実施できるため、工業的生産過程において、シリカの表面処理や合成ゴムの変性剤として大量に使用する場合に、その供給性に優れるという利点を有する。 The bissilylamino group-containing organosilicon compound obtained by the production method of the present invention is useful as a silane coupling agent, a surface treatment agent, a resin additive, a paint additive, an adhesive, and the like. Is preferably used as a modifier in the production of synthetic rubbers such as modified conjugated diene rubbers and conjugated diolefin copolymer rubbers used for automobile tire tires and the like. Since the production method of the present invention can be carried out in a simple and safe process, it has an advantage that it is excellent in supplyability when used in a large amount as a silica surface treatment or a synthetic rubber modifier in an industrial production process. .

すなわち、本発明により、上記のビスシリルアミノ基含有有機ケイ素化合物の製造方法により得られたビスシリルアミノ基含有有機ケイ素化合物を用いることを特徴とする、合成ゴム材料の製造方法が提供される。 That is, according to the present invention, there is provided a method for producing a synthetic rubber material, characterized in that the bissilylamino group-containing organosilicon compound obtained by the above-described method for producing a bissilylamino group-containing organosilicon compound is used.

同様に、本発明により、上記のビスシリルアミノ基含有有機ケイ素化合物の製造方法をその製造工程に含むことを特徴とする、合成ゴム材料の製造方法が提供される。なお、合成ゴムの製造方法において、上記のビスシリルアミノ基含有有機ケイ素化合物の製造工程と合成ゴムの変性剤として使用する製造工程とは同一の場所で実施手もよく、各々の工程を別の場所で実施してもよい。すなわち、ある場所で上記のビスシリルアミノ基含有有機ケイ素化合物の製造工程を実施して変性剤を製造した後、当該変性剤を合成ゴムの製造工程に移送して実施してもよい。 Similarly, according to the present invention, there is provided a method for producing a synthetic rubber material, characterized in that the production process includes the above-mentioned method for producing a bissilylamino group-containing organosilicon compound. In the synthetic rubber production method, the production process of the bissilylamino group-containing organosilicon compound and the production process used as a synthetic rubber modifier may be performed in the same place, and each process may be performed separately. It may be implemented at the place. That is, after carrying out the production process of the bissilylamino group-containing organosilicon compound in a certain place to produce a modifier, the modifier may be transferred to the synthetic rubber production process.

また、本発明は、上記のビスシリルアミノ基含有有機ケイ素化合物の製造方法により得られたビスシリルアミノ基含有有機ケイ素化合物を用いることを特徴とする、自動車用途タイヤゴムの製造方法を提供することができ、燃費に優れたタイヤゴム材料を安価かつ大量に供給できる利点がある。 The present invention also provides a method for producing tire rubber for automobiles, characterized in that the bissilylamino group-containing organosilicon compound obtained by the above-described method for producing a bissilylamino group-containing organosilicon compound is used. This is advantageous in that it is possible to supply tire rubber materials excellent in fuel efficiency at low cost and in large quantities.

以下、合成例、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

[合成例1]ビス(トリメチルシリル)アリルアミンの合成
攪拌機、温度計、還流管、滴下漏斗を備えたフラスコに、アリルアミン 57.1g(1.0モル)、1,1,1,3,3,3−ヘキサメチルジシラザン(東レ・ダウコーニング社製SZ-6079 SILANE)80.6g(0.5モル)、塩化アンモニウム 5gを投入し、80℃で6時間攪拌した。室温に冷却後下相を分離し、上相にナトリウムエトキシド(約28%エタノール溶液)250gを加え75℃で2時間攪拌した。反応混合物を蒸留し、沸点113−115℃の成分を主留分として採取した。この主留分にトリメチルクロロシラン108.6g (1.0モル)とトリエチルアミン202.4g(2.0モル)を加え、80℃で10時間攪拌した。副生したトリエチルアミン塩酸塩をろ別し、理論段数30段の蒸留塔を備えたバッチ式蒸留装置を用いて反応混合物を蒸留し、123gの留分を得た(沸点83.5−84.0℃/5kPa)。この留分に活性炭10gを加え、室温で10時間攪拌した。活性炭をろ別し、109gのN,N-ビス(トリメチルシリル)アリルアミンを得た。ガスクロマトグラフィーおよびガスクロマトグラフィー質量分析により、このN,N-ビス(トリメチルシリル)アリルアミンの純度は99.99%であり、表1の“合成例1”に示す不純物をそれぞれ含有していることを確認した。
[Synthesis Example 1] Synthesis of bis (trimethylsilyl) allylamine A flask equipped with a stirrer, thermometer, reflux tube, and dropping funnel was charged with 57.1 g (1.0 mol) of allylamine, 1,1,1,3,3,3-hexamethyl. Disilazane (SZ-6079 SILANE manufactured by Toray Dow Corning Co., Ltd.) 80.6 g (0.5 mol) and 5 g of ammonium chloride were added and stirred at 80 ° C. for 6 hours. After cooling to room temperature, the lower phase was separated, 250 g of sodium ethoxide (about 28% ethanol solution) was added to the upper phase, and the mixture was stirred at 75 ° C. for 2 hours. The reaction mixture was distilled and a component having a boiling point of 113 to 115 ° C. was collected as a main fraction. To this main fraction were added 108.6 g (1.0 mol) of trimethylchlorosilane and 202.4 g (2.0 mol) of triethylamine, and the mixture was stirred at 80 ° C. for 10 hours. By-product triethylamine hydrochloride was filtered off, and the reaction mixture was distilled using a batch distillation apparatus equipped with a distillation column having a theoretical plate number of 30 to obtain 123 g of a fraction (boiling point 83.5-84.0). ° C / 5 kPa). 10 g of activated carbon was added to this fraction and stirred at room temperature for 10 hours. The activated carbon was filtered off to obtain 109 g of N, N-bis (trimethylsilyl) allylamine. By gas chromatography and gas chromatography mass spectrometry, it was confirmed that the purity of this N, N-bis (trimethylsilyl) allylamine was 99.99% and contained impurities shown in “Synthesis Example 1” in Table 1, respectively. .

[合成例2]
攪拌機、温度計、還流管、滴下漏斗を備えたフラスコに、アリルアミン 57.1g(1.0モル)、1,1,1,3,3,3−ヘキサメチルジシラザン(東レ・ダウコーニング社製SZ-6079 SILANE)80.6g(0.5モル)、塩化アンモニウム 5gを投入し、80℃で6時間攪拌した。室温に冷却後下相を分離し、上相にナトリウムエトキシド(約28%エタノール溶液)250gを加え75℃で2時間攪拌した。反応混合物を蒸留し、沸点113−115℃の成分を主留分として採取した。この主留分にトリメチルクロロシラン108.6g (1.0モル)とトリエチルアミン202.4g(2.0モル)を加え、80℃で10時間攪拌した。副生したトリエチルアミン塩酸塩をろ別し、理論段数30段の蒸留塔を備えたバッチ式蒸留装置を用いて反応混合物を蒸留し、123gの留分を得た(沸点83.5−84.0℃/5kPa)。ガスクロマトグラフィーおよびガスクロマトグラフィー質量分析により、この留分はN,N-ビス(トリメチルシリル)アリルアミンを99.87%含有しており、さらには表1の“合成例2”に示す不純物をそれぞれ含有していることを確認した。
[Synthesis Example 2]
In a flask equipped with a stirrer, thermometer, reflux tube and dropping funnel, 57.1 g (1.0 mol) of allylamine, 1,1,1,3,3,3-hexamethyldisilazane (SZ-6079 manufactured by Toray Dow Corning) SILANE) 80.6 g (0.5 mol) and 5 g of ammonium chloride were added and stirred at 80 ° C. for 6 hours. After cooling to room temperature, the lower phase was separated, 250 g of sodium ethoxide (about 28% ethanol solution) was added to the upper phase, and the mixture was stirred at 75 ° C. for 2 hours. The reaction mixture was distilled and a component having a boiling point of 113 to 115 ° C. was collected as a main fraction. To this main fraction were added 108.6 g (1.0 mol) of trimethylchlorosilane and 202.4 g (2.0 mol) of triethylamine, and the mixture was stirred at 80 ° C. for 10 hours. By-product triethylamine hydrochloride was filtered off, and the reaction mixture was distilled using a batch distillation apparatus equipped with a distillation column having a theoretical plate number of 30 to obtain 123 g of a fraction (boiling point 83.5-84.0). ° C / 5 kPa). According to gas chromatography and gas chromatography mass spectrometry, this fraction contains 99.87% of N, N-bis (trimethylsilyl) allylamine, and further contains impurities shown in “Synthesis Example 2” in Table 1, respectively. I confirmed that

[合成例3]
攪拌機、温度計、還流管、滴下漏斗を備えたフラスコに、アリルアミン 57.1g(1.0モル)、1,1,1,3,3,3−ヘキサメチルジシラザン(東レ・ダウコーニング社製SZ-6079 SILANE)80.6g(0.5モル)、塩化アンモニウム 5gを投入し、80℃で6時間攪拌した。室温に冷却後下相を分離し、上相にナトリウムエトキシド(約28%エタノール溶液)250gを加え75℃で2時間攪拌した。反応混合物を蒸留し、沸点113−115℃の成分を主留分として採取した。この主留分にトリメチルクロロシラン108.6g (1.0モル)とトリエチルアミン202.4g(2.0モル)を加え、80℃で10時間攪拌した。副生したトリエチルアミン塩酸塩をろ別し、理論段数30段の蒸留塔を備えたバッチ式蒸留装置を用いて反応混合物を蒸留し、146gのN,N-ビス(トリメチルシリル)アリルアミンを得た(沸点81−84℃/5kPa)。ガスクロマトグラフィーおよびガスクロマトグラフィー質量分析により、このN,N-ビス(トリメチルシリル)アリルアミンの純度は98.95%であり、表1の“合成例3”に示す不純物をそれぞれ含有していることを確認した。
[Synthesis Example 3]
In a flask equipped with a stirrer, thermometer, reflux tube and dropping funnel, 57.1 g (1.0 mol) of allylamine, 1,1,1,3,3,3-hexamethyldisilazane (SZ-6079 manufactured by Toray Dow Corning) SILANE) 80.6 g (0.5 mol) and 5 g of ammonium chloride were added and stirred at 80 ° C. for 6 hours. After cooling to room temperature, the lower phase was separated, 250 g of sodium ethoxide (about 28% ethanol solution) was added to the upper phase, and the mixture was stirred at 75 ° C. for 2 hours. The reaction mixture was distilled and a component having a boiling point of 113 to 115 ° C. was collected as a main fraction. To this main fraction were added 108.6 g (1.0 mol) of trimethylchlorosilane and 202.4 g (2.0 mol) of triethylamine, and the mixture was stirred at 80 ° C. for 10 hours. By-product triethylamine hydrochloride was filtered off, and the reaction mixture was distilled using a batch distillation apparatus equipped with a distillation column having a theoretical plate number of 30 to obtain 146 g of N, N-bis (trimethylsilyl) allylamine (boiling point). 81-84 ° C / 5kPa). According to gas chromatography and gas chromatography mass spectrometry, the purity of this N, N-bis (trimethylsilyl) allylamine is 98.95%, and each of the impurities shown in “Synthesis Example 3” in Table 1 is contained. confirmed.

[合成例4]
攪拌機、温度計、還流管、滴下漏斗を備えたフラスコに、アリルアミン 57.1g(1.0モル)、1,1,1,3,3,3−ヘキサメチルジシラザン(東レ・ダウコーニング社製SZ-6079 SILANE)80.6g(0.5モル)、塩化アンモニウム 5gを投入し、80℃で6時間攪拌した。室温に冷却後下相を分離し、上相にナトリウムエトキシド(約28%エタノール溶液)250gを加え75℃で2時間攪拌した。反応混合物を蒸留し、沸点113−115℃の成分を主留分として採取した。この主留分にトリメチルクロロシラン108.6g (1.0モル)とトリエチルアミン202.4g(2.0モル)を加え、80℃で10時間攪拌した。副生したトリエチルアミン塩酸塩をろ別し、理論段数30段の蒸留塔を備えたバッチ式蒸留装置を用いて反応混合物を蒸留し、150gの留分を得た(沸点79−84.0℃/5kPa)。この留分に活性炭10gを加え、室温で10時間攪拌した。活性炭をろ別し、141gのN,N-ビス(トリメチルシリル)アリルアミンを得た。ガスクロマトグラフィーおよびガスクロマトグラフィー質量分析により、このN,N-ビス(トリメチルシリル)アリルアミンの純度は94.67%であり、表1の“合成例4”に示す不純物をそれぞれ含有していることを確認した。
[Synthesis Example 4]
In a flask equipped with a stirrer, thermometer, reflux tube and dropping funnel, 57.1 g (1.0 mol) of allylamine, 1,1,1,3,3,3-hexamethyldisilazane (SZ-6079 manufactured by Toray Dow Corning) SILANE) 80.6 g (0.5 mol) and 5 g of ammonium chloride were added and stirred at 80 ° C. for 6 hours. After cooling to room temperature, the lower phase was separated, 250 g of sodium ethoxide (about 28% ethanol solution) was added to the upper phase, and the mixture was stirred at 75 ° C. for 2 hours. The reaction mixture was distilled and a component having a boiling point of 113 to 115 ° C. was collected as a main fraction. To this main fraction were added 108.6 g (1.0 mol) of trimethylchlorosilane and 202.4 g (2.0 mol) of triethylamine, and the mixture was stirred at 80 ° C. for 10 hours. By-product triethylamine hydrochloride was filtered off, and the reaction mixture was distilled using a batch distillation apparatus equipped with a distillation column having a theoretical plate number of 30 to obtain 150 g of a fraction (boiling point 79-84.0 ° C. / 5 kPa). 10 g of activated carbon was added to this fraction and stirred at room temperature for 10 hours. The activated carbon was filtered off to obtain 141 g of N, N-bis (trimethylsilyl) allylamine. According to gas chromatography and gas chromatography mass spectrometry, the purity of this N, N-bis (trimethylsilyl) allylamine was 94.67% and contained impurities shown in “Synthesis Example 4” in Table 1, respectively. confirmed.

[合成例5]
攪拌機、温度計、還流管、滴下漏斗を備えたフラスコに、アリルアミン 57.1g(1.0モル)、1,1,1,3,3,3−ヘキサメチルジシラザン(東レ・ダウコーニング社製SZ-6079 SILANE)80.6g(0.5モル)、塩化アンモニウム 5gを投入し、80℃で6時間攪拌した。室温に冷却後下相を分離し、上相にナトリウムエトキシド(約28%エタノール溶液)250gを加え75℃で2時間攪拌した。反応混合物を蒸留し、沸点113−115℃の成分を主留分として採取した。この主留分にトリメチルクロロシラン108.6g (1.0モル)とトリエチルアミン202.4g(2.0モル)を加え、80℃で10時間攪拌した。副生したトリエチルアミン塩酸塩をろ別し、理論段数30段の蒸留塔を備えたバッチ式蒸留装置を用いて反応混合物を蒸留し、112gのN,N-ビス(トリメチルシリル)アリルアミンを得た(沸点77−84℃/5kPa)。ガスクロマトグラフィーおよびガスクロマトグラフィー質量分析により、このN,N-ビス(トリメチルシリル)アリルアミンの純度は94.2%であり、表1の“合成例5”に示す不純物をそれぞれ含有していることを確認した。
[Synthesis Example 5]
In a flask equipped with a stirrer, thermometer, reflux tube and dropping funnel, 57.1 g (1.0 mol) of allylamine, 1,1,1,3,3,3-hexamethyldisilazane (SZ-6079 manufactured by Toray Dow Corning) SILANE) 80.6 g (0.5 mol) and 5 g of ammonium chloride were added and stirred at 80 ° C. for 6 hours. After cooling to room temperature, the lower phase was separated, 250 g of sodium ethoxide (about 28% ethanol solution) was added to the upper phase, and the mixture was stirred at 75 ° C. for 2 hours. The reaction mixture was distilled and a component having a boiling point of 113 to 115 ° C. was collected as a main fraction. To this main fraction were added 108.6 g (1.0 mol) of trimethylchlorosilane and 202.4 g (2.0 mol) of triethylamine, and the mixture was stirred at 80 ° C. for 10 hours. By-product triethylamine hydrochloride was filtered off, and the reaction mixture was distilled using a batch distillation apparatus equipped with a distillation column having a theoretical plate number of 30 to obtain 112 g of N, N-bis (trimethylsilyl) allylamine (boiling point). 77-84 ° C / 5kPa). According to gas chromatography and gas chromatography mass spectrometry, the purity of this N, N-bis (trimethylsilyl) allylamine is 94.2%, and each of the impurities shown in “Synthesis Example 5” in Table 1 is contained. confirmed.

[合成例6]
合成例1で合成したN,N-ビス(トリメチルシリル)アリルアミンにアリルアミン、1−プロパンアミン、トリエチルアミンおよびヘキサメチルジシラザンを表1に示す濃度になるように加え、サンプル溶液を調製した。
[Synthesis Example 6]
Allylamine, 1-propanamine, triethylamine and hexamethyldisilazane were added to the N, N-bis (trimethylsilyl) allylamine synthesized in Synthesis Example 1 to the concentrations shown in Table 1 to prepare a sample solution.

[実施例1〜5、比較例1〜3]
以下の実施例1〜5、比較例1〜3において、使用したN,N-ビス(トリメチルシリル)アリルアミン原料の合成例No.、ヒドロシリル化反応に用いる触媒中の白金金属量(濃度ppm)、転換率およびメチルジエトキシシランの滴下終了後、転換率が99%に到達するまでに要した時間を反応時間(単位:時間)として表2に示した。一方、比較例において当該反応が停止した場合は「停止」、急激な発熱反応に至った場合は「暴走」と表2中の反応時間の欄に記載し、最終的にこれらの不具合で実験を中止せざるをえない場合は「中止」と表2中の反応時間の欄に併記した。
[Examples 1-5, Comparative Examples 1-3]
In Examples 1 to 5 and Comparative Examples 1 to 3 below, the synthesis example No. of the used N, N-bis (trimethylsilyl) allylamine raw material, the amount of platinum metal (concentration ppm) in the catalyst used for the hydrosilylation reaction, conversion Table 2 shows the reaction time (unit: hours) required for the conversion rate and the conversion rate to reach 99% after completion of the dropwise addition of methyldiethoxysilane. On the other hand, in the comparative example, when the reaction is stopped, “stop” is indicated, and when a sudden exothermic reaction is reached, “runaway” is described in the reaction time column in Table 2. When it was unavoidable, “Cancel” was written in the column of reaction time in Table 2.

[実施例1]
攪拌機、温度計、滴下漏斗、還流管を備えたフラスコに、合成例1で得られたN,N-ビス(トリメチルシリル)アリルアミン90.68g(0.45モル)、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液0.5g(白金原子のN,N-ビス(トリメチルシリル)アリルアミンに対する濃度は25ppm)を加え、90℃に加熱した。温度が安定した後、メチルジエトキシシラン63.4g(0.47モル)を3時間かけて滴下した。メチルジエトキシシランは、反応温度を90℃―110℃で調整しながら滴下した。その後、反応混合物を110℃で攪拌した。3時間後にサンプルを取り出しガスクロマトグラフィーを測定した結果、N,N-ビス(トリメチルシリル)アリルアミンのN,N-ビス(トリメチルシリル)アミノプロピル(メチル)ジエトキシシランへの転換率は99.1%であった。
[Example 1]
In a flask equipped with a stirrer, thermometer, dropping funnel and reflux tube, 90.68 g (0.45 mol) of N, N-bis (trimethylsilyl) allylamine obtained in Synthesis Example 1 and platinum-1,3-divinyl- 0.5 g of a toluene solution of 1,1,3,3-tetramethyldisiloxane complex (the concentration of platinum atoms with respect to N, N-bis (trimethylsilyl) allylamine was 25 ppm) was added and heated to 90 ° C. After the temperature was stabilized, 63.4 g (0.47 mol) of methyldiethoxysilane was added dropwise over 3 hours. Methyldiethoxysilane was added dropwise while adjusting the reaction temperature at 90 ° C to 110 ° C. The reaction mixture was then stirred at 110 ° C. The sample was taken out after 3 hours and measured by gas chromatography. As a result, the conversion rate of N, N-bis (trimethylsilyl) allylamine to N, N-bis (trimethylsilyl) aminopropyl (methyl) diethoxysilane was 99.1%. there were.

[実施例2]
合成例2で合成したN,N-ビス(トリメチルシリル)アリルアミンを用いる以外は実施例1と同様にして実験をおこなった。N,N-ビス(トリメチルシリル)アリルアミンのN,N-ビス(トリメチルシリル)アミノプロピル(メチル)ジエトキシシランへの転換率が99.0%となるまでの攪拌時間(メチルジエトキシシラン滴下終了後、110℃で反応継続させた時間)は3時間であった。
[Example 2]
The experiment was performed in the same manner as in Example 1 except that N, N-bis (trimethylsilyl) allylamine synthesized in Synthesis Example 2 was used. Stirring time until conversion of N, N-bis (trimethylsilyl) allylamine to N, N-bis (trimethylsilyl) aminopropyl (methyl) diethoxysilane is 99.0% (after completion of dropping of methyldiethoxysilane, 110 ° C. The time during which the reaction was continued for 3 hours was 3 hours.

[実施例3]
合成例3で合成したN,N-ビス(トリメチルシリル)アリルアミンを用いる以外は実施例1と同様にして実験をおこなった。N,N-ビス(トリメチルシリル)アリルアミンのN,N-ビス(トリメチルシリル)アミノプロピル(メチル)ジエトキシシランへの転換率が99.0%となるまでの攪拌時間(メチルジエトキシシラン滴下終了後、110℃で反応継続させた時間)は3時間であった。
[Example 3]
The experiment was performed in the same manner as in Example 1 except that N, N-bis (trimethylsilyl) allylamine synthesized in Synthesis Example 3 was used. Stirring time until conversion of N, N-bis (trimethylsilyl) allylamine to N, N-bis (trimethylsilyl) aminopropyl (methyl) diethoxysilane is 99.0% (after completion of dropping of methyldiethoxysilane, 110 ° C. The time during which the reaction was continued for 3 hours was 3 hours.

[実施例4]
合成例4で合成したN,N-ビス(トリメチルシリル)アリルアミンを用いる以外は実施例1と同様にして実験をおこなった。N,N-ビス(トリメチルシリル)アリルアミンのN,N-ビス(トリメチルシリル)アミノプロピル(メチル)ジエトキシシランへの転換率が99.0%となるまでの攪拌時間(メチルジエトキシシラン滴下終了後、110℃で反応継続させた時間)は7.5時間であった。
[Example 4]
The experiment was performed in the same manner as in Example 1 except that N, N-bis (trimethylsilyl) allylamine synthesized in Synthesis Example 4 was used. Stirring time until conversion of N, N-bis (trimethylsilyl) allylamine to N, N-bis (trimethylsilyl) aminopropyl (methyl) diethoxysilane is 99.0% (after completion of dropping of methyldiethoxysilane, 110 ° C. The time during which the reaction was continued for 7.5 hours was 7.5 hours.

[実施例5]
合成例4で合成したN,N-ビス(トリメチルシリル)アリルアミンと、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液1.0g(白金原子のN,N-ビス(トリメチルシリル)アリルアミンに対する濃度は50ppm)を用いる以外は実施例1と同様にして実験をおこなった。N,N-ビス(トリメチルシリル)アリルアミンのN,N-ビス(トリメチルシリル)アミノプロピル(メチル)ジエトキシシランへの転換率が99.0%となるまでの攪拌時間(メチルジエトキシシラン滴下終了後、110℃で反応継続させた時間)は3時間であった。
[Example 5]
1.0 g of a toluene solution of N, N-bis (trimethylsilyl) allylamine synthesized in Synthesis Example 4 and a platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (N, The experiment was conducted in the same manner as in Example 1 except that the concentration with respect to N-bis (trimethylsilyl) allylamine was 50 ppm. Stirring time until conversion of N, N-bis (trimethylsilyl) allylamine to N, N-bis (trimethylsilyl) aminopropyl (methyl) diethoxysilane is 99.0% (after completion of dropping of methyldiethoxysilane, 110 ° C. The time during which the reaction was continued for 3 hours was 3 hours.

[比較例1]
合成例5で合成したN,N-ビス(トリメチルシリル)アリルアミンを用いる以外は実施例1と同様にして実験をおこなったところ、メチルジエトキシシランを20gを滴下した段階で反応が停止していることを確認したので、実験を中止した。この時点のガスクロマトグラフィーにより、N,N-ビス(トリメチルシリル)アリルアミンのN,N-ビス(トリメチルシリル)アミノプロピル(メチル)ジエトキシシランへの転換率は2.0%であった。
[Comparative Example 1]
When an experiment was conducted in the same manner as in Example 1 except that N, N-bis (trimethylsilyl) allylamine synthesized in Synthesis Example 5 was used, the reaction had stopped when 20 g of methyldiethoxysilane was added dropwise. As a result, the experiment was stopped. According to gas chromatography at this time, the conversion rate of N, N-bis (trimethylsilyl) allylamine to N, N-bis (trimethylsilyl) aminopropyl (methyl) diethoxysilane was 2.0%.

[比較例2]
比較例1で反応が停止した反応混合物を90℃に加熱し、反応が再開するまで白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体を加えた。反応が再開するまでに要した白金触媒はN,N-ビス(トリメチルシリル)アリルアミンに対して1300ppmであった。反応混合物をそのまま攪拌し、反応容器内に残存するメチルジエトキシシランがすべて反応に消費されたことをガスクロマトグラフィーで確認した後メチルジエトキシシランの再滴下を開始したが、合計滴下量が34gに達した段階で反応温度が92℃から151度まで急上昇する反応(=暴走反応)が観察されたので、安全のため実験を中止した。この時点でのN,N-ビス(トリメチルシリル)アリルアミンのN,N-ビス(トリメチルシリル)アミノプロピル(メチル)ジエトキシシランへの転換率は39.4%であり、ガスクロマトグラフィーにより反応混合物中に未反応のメチルジエトキシシランが残存していることを確認した。なお、この時点の反応混合物を110℃に再加熱しても反応は進まなかった。
[Comparative Example 2]
The reaction mixture in which the reaction was stopped in Comparative Example 1 was heated to 90 ° C., and platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was added until the reaction resumed. The platinum catalyst required until the reaction was resumed was 1300 ppm based on N, N-bis (trimethylsilyl) allylamine. The reaction mixture was stirred as it was, and after confirming by gas chromatography that all the methyldiethoxysilane remaining in the reaction vessel had been consumed in the reaction, re-dropping of methyldiethoxysilane was started. Since the reaction temperature rapidly increased from 92 ° C. to 151 ° C. (= runaway reaction) was observed, the experiment was stopped for safety. At this point, the conversion of N, N-bis (trimethylsilyl) allylamine to N, N-bis (trimethylsilyl) aminopropyl (methyl) diethoxysilane was 39.4%, and the reaction mixture was analyzed by gas chromatography. It was confirmed that unreacted methyldiethoxysilane remained. The reaction did not proceed even when the reaction mixture at this time was reheated to 110 ° C.

[比較例3]
合成例6で調製したN,N-ビス(トリメチルシリル)アリルアミンを用いる以外は実施例1と同様にして実験をおこなったところ、メチルジエトキシシラン20gを滴下した段階で反応が停止していることを確認したので、さらに白金触媒を追加した。白金触媒を合計950ppmまで追加すると再び穏やかに反応が進行し始めたので、残存するメチルジエトキシシランが完全に消費されるまで攪拌した。その後、メチルジエトキシシランの滴下を再開したが、合計滴下が35gとなった時点で反応温度が94度から133度まで急上昇する反応(=暴走反応)が観察されたので安全のため実験を中止した。この時点のガスクロマトグラフィーにより、N,N-ビス(トリメチルシリル)アリルアミンのN,N-ビス(トリメチルシリル)アミノプロピル(メチル)ジエトキシシランへの転換率は51.1%であった。
[Comparative Example 3]
When an experiment was conducted in the same manner as in Example 1 except that N, N-bis (trimethylsilyl) allylamine prepared in Synthesis Example 6 was used, it was confirmed that the reaction stopped when 20 g of methyldiethoxysilane was added dropwise. Since it confirmed, the platinum catalyst was further added. When the platinum catalyst was added to a total of 950 ppm, the reaction began to proceed again gently, and the mixture was stirred until the remaining methyldiethoxysilane was completely consumed. Thereafter, the addition of methyldiethoxysilane was resumed, but when the total addition dropped to 35 g, a reaction (= runaway reaction) was observed where the reaction temperature rose rapidly from 94 degrees to 133 degrees. did. According to gas chromatography at this time, the conversion rate of N, N-bis (trimethylsilyl) allylamine to N, N-bis (trimethylsilyl) aminopropyl (methyl) diethoxysilane was 51.1%.

[実施例及び比較例の総括]
実施例1、2、3で示したとおり、N,N-ビス(トリメチルシリル)アリルアミンに含まれるアリルアミン、1−プロパンアミン、トリエチルアミン、およびヘキサメチルジシラザンからなる成分の合計が0.2重量%以下の場合において、白金触媒存在下にメチルジエトキシシランとのヒドロシリル化反応が急激な温度上昇を伴う暴走反応を起こすことなく、制御可能な状態で安全に進行した。いずれの場合においても、メチルジエトキシシランの滴下終了後に110℃で3時間反応させることで、N,N-ビス(トリメチルシリル)アリルアミンのN,N-ビス(トリメチルシリル)アミノプロピル(メチル)ジエトキシシランへの転換率は99.0%以上に到達した。さらに、実施例4に示したとおり、N,N-ビス(トリメチルシリル)アリルアミンに含まれるN-トリメチルシリルアミンの含有量が5.3重量%である場合、白金触媒量を25ppmとすると反応完結までに7.5時間を要したが、実施例5に示したとおり、白金触媒量を50ppmとすると3時間で反応が終了した。一方、N,N-ビス(トリメチルシリル)アリルアミンに含まれるアリルアミン、1−プロパンアミン、トリエチルアミン、およびヘキサメチルジシラザンの合計が0.2重量%以上である比較例1、2、3のいずれの場合においても、メチルトリエトキシシランの滴下途中に反応が停止した。白金触媒を多量に追加投入すると一旦は反応が再開したが、反応温度の急上昇を伴う暴走反応が確認され、安全な実験操作が困難な状況となった。以上のことから、一般式(5)で示される目的化合物を安全に、高効率かつ高収率で製造するためには一般式(1)に示される化合物中に含まれる一般式(6)および一般式(7)で示される化合物の合計含有量を0.2重量%以下とすることが必要不可欠であることがわかる。
[Overview of Examples and Comparative Examples]
As shown in Examples 1, 2, and 3, the total amount of allylamine, 1-propanamine, triethylamine, and hexamethyldisilazane contained in N, N-bis (trimethylsilyl) allylamine is 0.2% by weight or less. In this case, the hydrosilylation reaction with methyldiethoxysilane in the presence of a platinum catalyst proceeded safely in a controllable state without causing a runaway reaction with a rapid temperature rise. In any case, the reaction of N, N-bis (trimethylsilyl) allylamine with N, N-bis (trimethylsilyl) aminopropyl (methyl) diethoxysilane is allowed to react at 110 ° C. for 3 hours after completion of the addition of methyldiethoxysilane. The conversion rate to 99.0% or more. Furthermore, as shown in Example 4, when the content of N-trimethylsilylamine contained in N, N-bis (trimethylsilyl) allylamine is 5.3% by weight, if the platinum catalyst amount is 25 ppm, the reaction is completed. Although 7.5 hours were required, as shown in Example 5, when the platinum catalyst amount was 50 ppm, the reaction was completed in 3 hours. On the other hand, in any of Comparative Examples 1, 2, and 3 in which the total of allylamine, 1-propanamine, triethylamine, and hexamethyldisilazane contained in N, N-bis (trimethylsilyl) allylamine is 0.2% by weight or more The reaction stopped during the dropping of methyltriethoxysilane. When a large amount of platinum catalyst was added, the reaction resumed once, but a runaway reaction with a rapid increase in the reaction temperature was confirmed, making it difficult to conduct a safe experiment. From the above, in order to produce the target compound represented by the general formula (5) safely, with high efficiency and high yield, the general formula (6) and the compound represented by the general formula (1) and It can be seen that it is essential that the total content of the compound represented by the general formula (7) is 0.2% by weight or less.

Figure 0006384890
Figure 0006384890

Figure 0006384890
Figure 0006384890

本発明にかかるビスシリルアミノ基含有有機ケイ素化合物の製造方法は、反応のコントロールがしやすいため、安全かつ生産効率および収率に優れるので、工業的生産スケールでビスシリルアミノ基含有有機ケイ素化合物を大規模かつ安全に生産するための方法として特に有用であり、本製造方法により、当該有機ケイ素化合物を用いるシランカップリング剤、表面処理剤、樹脂変性剤、接着付与剤、低燃費タイヤ用途等に使用される合成ゴム用の変性剤等を安定的かつ大量に供給することが可能になることが期待される。 Since the method for producing a bissilylamino group-containing organosilicon compound according to the present invention is easy to control the reaction, and is safe and excellent in production efficiency and yield, the bissilylamino group-containing organosilicon compound is produced on an industrial production scale. It is particularly useful as a method for producing on a large scale and safely. By this production method, it can be used for silane coupling agents, surface treatment agents, resin modifiers, adhesion-imparting agents, fuel-efficient tires, etc. using the organosilicon compounds. It is expected that the modifier for synthetic rubber used can be supplied stably and in large quantities.

Claims (8)

下記一般式(1):
Figure 0006384890
(式中、Rは窒素原子を含んでもよい炭素数1〜10の2価炭化水素基であり、
Aは、下記一般式(2):
Figure 0006384890
(式中、R2〜R7は、互いに独立に、炭素数1〜20の1価炭化水素基である)
または、下記一般式(3):
Figure 0006384890
(式中、R8はアザジシラシクロアルカン環を形成する炭素数2〜10の2価炭化水素基であり、
2、R、RおよびR7は、互いに独立に、炭素数1〜20の1価炭化水素基である)で示されるビスシリルアミノ基である}
で示されるビスシリルアミノ基含有不飽和炭化水素化合物と、
下記一般式(4):
Figure 0006384890
(式中RおよびR10は、互いに独立に、炭素数1〜20の1価炭化水素基であり、nは0〜2の範囲の整数である)
で示されるケイ素原子結合水素原子含有有機ケイ素化合物をヒドロシリル化反応触媒の存在下でヒドロシリル化反応させて、
下記一般式(5):
Figure 0006384890
(式中A,R、R、R10は上記同様の官能基であり、nは上記と同じ意味である)
で示されるビスシリルアミノ基含有有機ケイ素化合物を製造する方法において、
前記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物が対応するアミノ基含有不飽和炭化水素化合物をシラザンを用いてシリル化したビスシリルアミノ基含有不飽和炭化水素化合物であり、当該ビスシリルアミノ基含有不飽和炭化水素化合物を精留した後に、水洗または吸着剤により処理することにより
下記一般式(6):
Figure 0006384890
(式中、R11〜R16は互いに独立に、炭素数1〜20の1価飽和炭化水素基である)
で示される有機ケイ素化合物、および
下記一般式(7):
Figure 0006384890
(式中、R17〜R19は互いに独立に、炭素数1〜20の1価飽和炭化水素基であり、
m、x、y、zはm+x+y+zの合計が3であり、かつ0〜3の範囲の同一又は異なる整数である)
で示されるアミン化合物をその合計含有量が0.2質量%以下となるように低減する工程を備え、かつ、
前記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、上記一般式(6)で示される有機ケイ素化合物と上記一般式(7)で示されるアミン化合物の合計含有量が0.2質量%以下であるものを用いることを特徴とする、ビスシリルアミノ基含有有機ケイ素化合物の製造方法。
The following general formula (1):
Figure 0006384890
(In the formula, R 1 is a C 1-10 divalent hydrocarbon group which may contain a nitrogen atom,
A represents the following general formula (2):
Figure 0006384890
(Wherein R 2 to R 7 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms)
Or the following general formula (3):
Figure 0006384890
(In the formula, R 8 is a divalent hydrocarbon group having 2 to 10 carbon atoms forming an azadisilacycloalkane ring,
R 2 , R 3 , R 4 and R 7 are each independently a bissilylamino group represented by a monovalent hydrocarbon group having 1 to 20 carbon atoms}
A bissilylamino group-containing unsaturated hydrocarbon compound represented by
The following general formula (4):
Figure 0006384890
(Wherein R 9 and R 10 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and n is an integer in the range of 0 to 2).
A silicon atom-bonded hydrogen atom-containing organosilicon compound represented by the following formula in the presence of a hydrosilylation catalyst:
The following general formula (5):
Figure 0006384890
(In the formula, A, R 1 , R 9 and R 10 are the same functional groups as described above, and n has the same meaning as described above).
In the method for producing a bissilylamino group-containing organosilicon compound represented by:
The bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) is a bissilylamino group-containing unsaturated hydrocarbon compound obtained by silylated the corresponding amino group-containing unsaturated hydrocarbon compound with silazane. The bissilylamino group-containing unsaturated hydrocarbon compound is rectified and then washed with water or treated with an adsorbent to obtain the following general formula (6):
Figure 0006384890
(Wherein R 11 to R 16 are each independently a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms)
And an organic silicon compound represented by the following general formula (7):
Figure 0006384890
(In the formula, R 17 to R 19 are each independently a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms,
m, x, y, and z are the same or different integers in which the sum of m + x + y + z is 3 and in the range of 0 to 3)
A step of reducing the total amount of the amine compound represented by the formula shown below to 0.2% by mass , and
As the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1), the total content of the organosilicon compound represented by the general formula (6) and the amine compound represented by the general formula (7) is A method for producing a bissilylamino group-containing organosilicon compound, wherein the content is 0.2% by mass or less .
上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物および上記の一般式(4)で示されるケイ素原子結合水素原子含有有機ケイ素化合物のヒドロシリル化反応を80℃以上190℃以下の温度範囲において実施することを特徴とする、請求項1に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法。 The hydrosilylation reaction of the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) and the silicon-bonded hydrogen atom-containing organosilicon compound represented by the general formula (4) is performed at 80 ° C. or higher and 190 ° C. which comprises carrying out in the following temperature range, method for producing a bis silyl amino group-containing organosilicon compound according to claim 1. 上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、
下記一般式(8):
Figure 0006384890
(式中、R、R、R、Rは上記同様の官能基である)
で示される化合物の含有量が10質量%以下のものを用いることを特徴とする、請求項1または請求項2に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法。
As the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1),
The following general formula (8):
Figure 0006384890
(Wherein R 1 , R 2 , R 6 and R 7 are the same functional groups as described above)
The method for producing a bissilylamino group-containing organosilicon compound according to claim 1 or 2, wherein the content of the compound represented by formula (1) is 10% by mass or less.
請求項3に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法であって、上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、上記の一般式(8)で示される化合物の含有量が0.25質量%以下のものを用いることを特徴とする、ビスシリルアミノ基含有有機ケイ素化合物の製造方法。 It is a manufacturing method of the bissilylamino group containing organosilicon compound of Claim 3, Comprising: As said bissilylamino group containing unsaturated hydrocarbon compound shown by said General formula (1), said General formula (8) A method for producing a bissilylamino group-containing organosilicon compound, wherein the content of the compound represented by formula (1) is 0.25% by mass or less. 下記一般式(1):
Figure 0006384890
{式中、Rは窒素原子を含んでもよい炭素数1〜10の2価炭化水素基であり、
Aは、下記一般式(2):
Figure 0006384890
(式中、R2〜R7は、互いに独立に、炭素数1〜20の1価炭化水素基である)
または、下記一般式(3):
Figure 0006384890
(式中、R8はジシラシクロアミン環を形成する炭素数2〜10の2価炭化水素基であり、
2、R、RおよびR7は、互いに独立に、炭素数1〜20の1価炭化水素基である)で示されるビスシリルアミノ基である}
で示されるビスシリルアミノ基含有不飽和炭化水素化合物と、
下記一般式(4):
Figure 0006384890
(式中RおよびR10は、互いに独立に、炭素数1〜20の1価炭化水素基であり、nは0〜2の範囲の整数である)
で示されるケイ素原子結合水素原子含有有機ケイ素化合物をヒドロシリル化反応触媒の存在下でヒドロシリル化反応させて、
下記一般式(5):
Figure 0006384890
(式中A,R、R、R10は上記同様の官能基であり、nは上記と同じ意味である)
で示されるビスシリルアミノ基含有有機ケイ素化合物を製造する際のヒドロシリル化反応の促進方法において、
前記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物が対応するアミノ基含有不飽和炭化水素化合物をシラザンを用いてシリル化したビスシリルアミノ基含有不飽和炭化水素化合物であり、当該ビスシリルアミノ基含有不飽和炭化水素化合物を精留した後に、水洗または吸着剤により処理することにより
下記一般式(6):
Figure 0006384890
(式中、R11〜R16は互いに独立に、炭素数1〜20の1価飽和炭化水素基である)
で示される有機ケイ素化合物、および
下記一般式(7):
Figure 0006384890
(式中、R17〜R19は互いに独立に、炭素数1〜20の1価飽和炭化水素基であり、
m、x、y、zはm+x+y+zの合計が3であり、かつ0〜3の範囲の同一又は異なる整数である)
で示されるアミン化合物の合計含有量をその合計含有量が0.2質量%以下となるように低減する工程を備え、かつ、
前記一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、上記一般式(6)で示される有機ケイ素化合物と上記一般式(7)で示されるアミン化合物の合計含有量が0.2質量%以下であるものを用いることを特徴とする、ヒドロシリル化反応の促進方法。
The following general formula (1):
Figure 0006384890
{Wherein R 1 is a C 1-10 divalent hydrocarbon group which may contain a nitrogen atom,
A represents the following general formula (2):
Figure 0006384890
(Wherein R 2 to R 7 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms)
Or the following general formula (3):
Figure 0006384890
(In the formula, R 8 is a divalent hydrocarbon group having 2 to 10 carbon atoms forming a disilacycloamine ring,
R 2 , R 3 , R 4 and R 7 are each independently a bissilylamino group represented by a monovalent hydrocarbon group having 1 to 20 carbon atoms}
A bissilylamino group-containing unsaturated hydrocarbon compound represented by
The following general formula (4):
Figure 0006384890
(Wherein R 9 and R 10 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and n is an integer in the range of 0 to 2).
A silicon atom-bonded hydrogen atom-containing organosilicon compound represented by the following formula in the presence of a hydrosilylation catalyst:
The following general formula (5):
Figure 0006384890
(In the formula, A, R 1 , R 9 and R 10 are the same functional groups as described above, and n has the same meaning as described above).
In the method for promoting the hydrosilylation reaction in producing the bissilylamino group-containing organosilicon compound represented by:
The bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1) is a bissilylamino group-containing unsaturated hydrocarbon compound obtained by silylated the corresponding amino group-containing unsaturated hydrocarbon compound with silazane. , After rectifying the bissilylamino group-containing unsaturated hydrocarbon compound, by washing with water or adsorbent ,
The following general formula (6):
Figure 0006384890
(Wherein R 11 to R 16 are each independently a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms)
And an organic silicon compound represented by the following general formula (7):
Figure 0006384890
(In the formula, R 17 to R 19 are each independently a monovalent saturated hydrocarbon group having 1 to 20 carbon atoms,
m, x, y, and z are the same or different integers in which the sum of m + x + y + z is 3 and in the range of 0 to 3)
And a step of reducing the total content of the amine compound represented by the formula shown below so that the total content is 0.2% by mass or less , and
As the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1), the total content of the organosilicon compound represented by the general formula (6) and the amine compound represented by the general formula (7) is A method for promoting a hydrosilylation reaction, comprising using 0.2% by mass or less .
さらに、上記の一般式(1)で示されるビスシリルアミノ基含有不飽和炭化水素化合物として、
下記一般式(8):
Figure 0006384890
(式中、R、R、R、Rは上記同様の官能基である)
で示される化合物の含有量が10質量%以下のものを用いることを特徴とする、請求項5に記載のヒドロシリル化反応の促進方法。
Furthermore, as the bissilylamino group-containing unsaturated hydrocarbon compound represented by the general formula (1),
The following general formula (8):
Figure 0006384890
(Wherein R 1 , R 2 , R 6 and R 7 are the same functional groups as described above)
The method for promoting a hydrosilylation reaction according to claim 5, wherein the compound represented by the formula (1) has a content of 10% by mass or less.
請求項1〜のいずれか1項に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法をその製造工程に含むことを特徴とする、合成ゴム材料の製造方法。 The manufacturing method of the synthetic rubber material characterized by including the manufacturing method of the bissilylamino group containing organosilicon compound of any one of Claims 1-4 in the manufacturing process. 請求項1〜のいずれか1項に記載のビスシリルアミノ基含有有機ケイ素化合物の製造方法をその製造工程に含むことを特徴とする、自動車用途タイヤゴムの製造方法。 The manufacturing method of the rubber rubber for motor vehicles characterized by including the manufacturing method of the bissilylamino group containing organosilicon compound of any one of Claims 1-4 in the manufacturing process.
JP2018107109A 2018-06-04 2018-06-04 Method for producing bissilylamino group-containing organosilicon compound Active JP6384890B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018107109A JP6384890B1 (en) 2018-06-04 2018-06-04 Method for producing bissilylamino group-containing organosilicon compound
PCT/JP2018/021438 WO2019234805A1 (en) 2018-06-04 2018-06-05 Method for producing organosilicon compound containing bissilylamino group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018107109A JP6384890B1 (en) 2018-06-04 2018-06-04 Method for producing bissilylamino group-containing organosilicon compound

Publications (2)

Publication Number Publication Date
JP6384890B1 true JP6384890B1 (en) 2018-09-05
JP2019210243A JP2019210243A (en) 2019-12-12

Family

ID=63444213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018107109A Active JP6384890B1 (en) 2018-06-04 2018-06-04 Method for producing bissilylamino group-containing organosilicon compound

Country Status (2)

Country Link
JP (1) JP6384890B1 (en)
WO (1) WO2019234805A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340819A (en) * 1993-03-30 1994-12-13 Asahi Glass Co Ltd Moisture-curable composition
JPH1017579A (en) * 1996-07-01 1998-01-20 Shin Etsu Chem Co Ltd N,n-bis(trimethylsilyl)aminopropylsilane and its production
JP2003171418A (en) * 2001-09-27 2003-06-20 Jsr Corp Conjugated diolefin (co)polymer rubber, method for producing the (co)polymer rubber, rubber composition and tire
JP2012031149A (en) * 2010-06-28 2012-02-16 Jsr Corp Alkoxysilane compound and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340819A (en) * 1993-03-30 1994-12-13 Asahi Glass Co Ltd Moisture-curable composition
JPH1017579A (en) * 1996-07-01 1998-01-20 Shin Etsu Chem Co Ltd N,n-bis(trimethylsilyl)aminopropylsilane and its production
JP2003171418A (en) * 2001-09-27 2003-06-20 Jsr Corp Conjugated diolefin (co)polymer rubber, method for producing the (co)polymer rubber, rubber composition and tire
JP2012031149A (en) * 2010-06-28 2012-02-16 Jsr Corp Alkoxysilane compound and its production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 164, JPN6018024422, 1979, pages 11-18 *

Also Published As

Publication number Publication date
JP2019210243A (en) 2019-12-12
WO2019234805A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP5740953B2 (en) Method for producing organosilicon compound
JP4540141B2 (en) Method for producing {hydrocarbonoxy} silyl group-containing compound by hydrosilylation using hydrido {hydrocarbonoxy} silane compound
JP6689005B2 (en) Platinum-catalyzed hydrosilylation reaction using cyclodiene additives
JP5115729B2 (en) Organosilicon compound containing acetoacetate group protected with trialkylsilyl group and process for producing the same
JP5664192B2 (en) Method for producing organosilicon compound
US20050234254A1 (en) Silane compound having at least two protected functional groups and method for preparing the same
CN109999905B (en) Preparation and application of high-selectivity hydrosilylation catalyst
CN108017663B (en) Method for producing silane compound containing bis (silyl) amino group
JP6384890B1 (en) Method for producing bissilylamino group-containing organosilicon compound
JP2017520519A (en) Dialkylcobalt catalysts and their use for hydrosilylation and dehydrogenation silylation
JP2013231009A (en) Organoxysilane compound having secondary amino group protected by silyl group, and method of manufacturing the same
JP2007077136A (en) Method for producing 1-(alkoxysilyl)ethyl-1,1,3,3-tetramethyldisiloxane
JP5640997B2 (en) Method for producing organochlorosilane compound
JP6264309B2 (en) Bissilylethane compound having siloxy group and method for producing the same
JP4222662B2 (en) Method for producing acyloxysilane compound having functional group bonded to silicon atom through Si-C bond
JP5333971B2 (en) Process for producing organosilicon compound containing β-cyanoester group
JP6044361B2 (en) Method for producing dichloromonohydrosilane compound
JP2012025668A (en) Method for producing alkoxysilylated chain hydrocarbon, and alkoxysilylated chain hydrocarbon
EP2032588B1 (en) Method for preparation of alkoxysilanes having reduced halide content
JP5821866B2 (en) Organosilicon compound having conjugated diene structural group and method for producing the same
JP4344936B2 (en) Method for producing organosilicon compound containing amino groups at both ends
JP4009340B2 (en) Method for producing organosilicon compound containing acryloxy group or methacryloxy group
JP3856087B2 (en) Method for producing 3-aminopropyl monoorganodiorganooxysilane
JPH09295987A (en) Production of organic silicon compound containing acryloyl group or methacryloyl group
JP5402808B2 (en) Method for producing halosilylated chain hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180605

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180801

R150 Certificate of patent or registration of utility model

Ref document number: 6384890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250