JP6372444B2 - 非接触送電装置 - Google Patents

非接触送電装置 Download PDF

Info

Publication number
JP6372444B2
JP6372444B2 JP2015156075A JP2015156075A JP6372444B2 JP 6372444 B2 JP6372444 B2 JP 6372444B2 JP 2015156075 A JP2015156075 A JP 2015156075A JP 2015156075 A JP2015156075 A JP 2015156075A JP 6372444 B2 JP6372444 B2 JP 6372444B2
Authority
JP
Japan
Prior art keywords
power
primary coil
frequency
inverter
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015156075A
Other languages
English (en)
Other versions
JP2017034948A (ja
Inventor
崇弘 三澤
崇弘 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015156075A priority Critical patent/JP6372444B2/ja
Publication of JP2017034948A publication Critical patent/JP2017034948A/ja
Application granted granted Critical
Publication of JP6372444B2 publication Critical patent/JP6372444B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

この発明は、非接触送電装置に関し、特に、受電装置に非接触で送電する非接触送電装置における電力制御技術に関する。
従来から送電装置から受電装置に非接触で電力を送電する非接触電力伝送システムが知られている(特許文献1〜6参照)。送電装置は、送電コイルを含み、受電装置は、受電コイルを含む。
たとえば、特開2014−207795号公報(特許文献6)に開示される非接触給電システムにおいて、給電装置は、送電コイルと、インバータと、制御部とを備える。送電コイルは、車両に搭載された受電コイルへ非接触で送電する。インバータは、駆動周波数に応じた交流電流を生成して送電コイルへ出力する。制御部は、バッテリへの充電電力指令とバッテリへの出力電力とを車両側から取得し、出力電力が充電電力指令に追従するようにインバータの駆動周波数をフィードバック制御する(特許文献6参照)。
特開2013−154815号公報 特開2013−146154号公報 特開2013−146148号公報 特開2013−110822号公報 特開2013−126327号公報 特開2014−207795号公報
インバータが、電圧形のインバータであり、駆動周波数に応じた送電電力を送電部へ供給する場合に、インバータ出力電圧のデューティ(duty)を調整することによって送電電力を制御することができる。また、インバータの駆動周波数を調整することによって、一次コイル(送電コイル)に流れる一次コイル電流を制御することができる。
詳しくは後述するが、非接触電力伝送システムにおいては、送電電力が一定である場合に、一次コイル電流が小さくなるほど伝送効率が高くなることが分かっている。したがって、非接触電力伝送システムにおいては、送電装置による送電開始から早期に一次コイル電流が小さく制御されることが望ましい。
一方、一次コイルと二次コイルとの位置関係が変化する等の環境変化により一次コイル電流が変化する場合がある。したがって、一次コイル電流のフィードバック制御のみでは、一次コイル電流が小さくなるインバータの駆動周波数の探索に時間がかかる可能性がある。送電装置による送電開始から早期に一次コイル電流を小さくするという課題及びその解決手段について、上記の特許文献1〜6では特に検討されていない。
この発明は、このような課題を解決するためになされたものであって、その目的は、送電開始から早期に一次コイル電流を小さくすることができる非接触送電装置を提供することである。
この発明のある局面に従う非接触送電装置は、一次コイルと、電圧形のインバータと、制御部とを備える。一次コイルは、受電装置の二次コイルに非接触で送電するように構成される。電圧形のインバータは、一次コイルへ送電電力を供給する。制御部は、インバータを制御する。また、制御部は、第1の制御と第2の制御とを実行する。第1の制御は、インバータの出力電圧のデューティを調整することによって送電電力を目標電力に制御する。第2の制御は、インバータの駆動周波数を調整することによって、一次コイルに生じる一次コイル電流を制御する。そして、制御部は、目標電力において一次コイル電流が最小となるときの駆動周波数を示す第1の関係式から目標電力において一次コイル電流が最小となる駆動周波数を算出し、算出された駆動周波数を用いて第2の制御を実行する。第1の関係式は、駆動周波数と一次コイル電流との関係を示す第2の関係式から導出された関係式である。
この非接触送電装置においては、一次コイル電流の制御(第2の制御)は、一次コイル電流が最小となる駆動周波数を示す第1の関係式から算出される駆動周波数を用いて実行される。第1の関係式から算出された駆動周波数でインバータを駆動したとしても必ずしも一次コイル電流は最小とはならないが、算出された駆動周波数が一次コイル電流が実際に最小となる駆動周波数の近傍に存在する可能性は高い。したがって、この非接触送電装置によれば、算出された駆動周波数が用いられずに最適な駆動周波数が探索される制御と比較して、インバータの駆動周波数を早期に一次コイル電流が小さくなる駆動周波数に設定することができる。
この発明によれば、送電開始から早期に一次コイル電流を小さくすることができる非接触送電装置を提供することができる。
実施の形態における電力伝送システムの全体構成図である。 送電部及び受電部の回路構成の一例を示した図である。 送電電力制御、ターンオン電流制御及び一次コイル電流制御の制御ブロック図である。 最適周波数ωopを用いた動作点探索動作を説明するための図である。 動作点探索動作を示すフローチャートである。
以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
(電力伝送システムの構成)
図1は、この発明の実施の形態による非接触送電装置が適用される電力伝送システムの全体構成図である。図1を参照して、この電力伝送システムは、送電装置10と、受電装置20とを備える。受電装置20は、たとえば、送電装置10から供給され蓄えられた電力を用いて走行可能な車両等に搭載され得る。
送電装置10は、力率改善(PFC(Power Factor Correction))回路210と、インバータ220と、フィルタ回路230と、送電部240とを含む。また、送電装置10は、電源ECU(Electronic Control Unit)250と、通信部260と、電圧センサ270と、電流センサ272とをさらに含む。
PFC回路210は、交流電源100(たとえば系統電源)から受ける交流電力を整流及び昇圧してインバータ220へ供給するとともに、入力電流を正弦波に近づけることで力率を改善することができる。このPFC回路210には、公知の種々のPFC回路を採用し得る。なお、PFC回路210に代えて、力率改善機能を有しない整流器を採用してもよい。
インバータ220は、PFC回路210から受ける直流電力を、所定の伝送周波数を有する送電電力(交流)に変換する。インバータ220によって生成された送電電力は、フィルタ回路230を通じて送電部240へ供給される。インバータ220は、電圧形インバータであり、インバータ220を構成する各スイッチング素子に逆並列に還流ダイオードが接続されている。インバータ220は、たとえば単相フルブリッジ回路によって構成される。
フィルタ回路230は、インバータ220と送電部240との間に設けられ、インバータ220から発生する高調波ノイズを抑制する。フィルタ回路230は、たとえば、インダクタ及びキャパシタを含むLCフィルタによって構成される。
送電部240は、伝送周波数を有する交流電力(送電電力)をインバータ220からフィルタ回路230を通じて受け、送電部240の周囲に生成される電磁界を通じて、受電装置20の受電部310へ非接触で送電する。送電部240は、たとえば、受電部310へ非接触で送電するための共振回路を含む。共振回路は、コイルとキャパシタとによって構成され得る。
電圧センサ270は、インバータ220の出力電圧を検出し、その検出値を電源ECU250へ出力する。電流センサ272は、インバータ220の出力電流を検出し、その検出値を電源ECU250へ出力する。電圧センサ270及び電流センサ272の検出値に基づいて、インバータ220から送電部240へ供給される送電電力(すなわち、送電部240から受電装置20へ出力される電力)が検出され得る。
電源ECU250は、CPU(Central Processing Unit)、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各種センサや機器からの信号を受けるとともに、送電装置10における各種機器の制御を行なう。一例として、電源ECU250は、送電装置10から受電装置20への電力伝送の実行時に、インバータ220が送電電力(交流)を生成するようにインバータ220のスイッチング制御を行なう。各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
電源ECU250により実行される主要な制御として、電源ECU250は、送電装置10から受電装置20への電力伝送の実行時に、送電電力を目標電力に制御するためのフィードバック制御(以下「送電電力制御」とも称する。)を実行する。具体的には、電源ECU250は、インバータ220の出力電圧のデューティ(duty)を調整することによって、送電電力を目標電力に制御する。なお、出力電圧のデューティは、出力電圧波形(矩形波)の周期に対する正(又は負)の電圧出力時間の比として定義される。インバータ220のスイッチング素子(オン/オフデューティ0.5)の動作タイミングを変化させることによって、インバータ出力電圧のデューティを調整することができる。目標電力は、たとえば、受電装置20の受電状況に基づいて生成され得る。この実施の形態では、受電装置20において、受電電力の目標値と検出値との偏差に基づいて送電電力の目標電力が生成され、受電装置20から送電装置10へ送信される。
また、電源ECU250は、上記の送電電力制御を実行するとともに、インバータ220におけるターンオン電流が制限値を超えないようにする制御(以下「ターンオン電流制御」とも称する。)を実行する。具体的には、電源ECU250は、インバータ220の駆動周波数(スイッチング周波数)を調整することによって、ターンオン電流が制限値を超えないように制御する。ターンオン電流とは、インバータ220の出力電圧の立上り時におけるインバータ220の出力電流の瞬時値である。ターンオン電流が正であると、インバータ220の還流ダイオードに逆方向のリカバリー電流が流れ、還流ダイオードにおいて発熱すなわち損失が発生する。そこで、ターンオン電流制御の上記制限値(ターンオン電流制限値)は、インバータ220の還流ダイオードにリカバリー電流が生じない範囲に設定され、基本的には0以下の所定値とされる(なお、リカバリー電流による損失が問題とならない程度に小さい正値に設定してもよい。)。
また、電源ECU250は、送電部240に含まれる一次コイル242(後述)に生じる一次コイル電流の制御(以下「一次コイル電流制御」とも称する。)を実行する。具体的には、電源ECU250は、インバータ220の駆動周波数を調整することによって、一次コイル電流を制御する。詳細については後述するが、非接触での電力伝送システムにおいて、一定の電力を伝送する場合には、一次コイル電流が小さいほど伝送効率が改善される。そこで、一次コイル電流制御においては、一次コイル電流が最小となるようにインバータ220の駆動周波数が調整される。
通信部260は、受電装置20の通信部370と無線通信するように構成され、受電装置20から送信される送電電力の目標値(目標電力)を受信するほか、送電の開始/停止や受電装置20の受電状況等の情報を受電装置20とやり取りする。
一方、受電装置20は、受電部310と、フィルタ回路320と、整流部330と、リレー回路340と、蓄電装置350とを含む。また、受電装置20は、充電ECU360と、通信部370と、電圧センサ380と、電流センサ382とをさらに含む。
受電部310は、送電装置10の送電部240から出力される電力(交流)を非接触で受電する。受電部310は、たとえば、送電部240から非接触で受電するための共振回路を含む。共振回路は、コイルとキャパシタとによって構成され得る。受電部310は、受電した電力をフィルタ回路320を通じて整流部330へ出力する。
フィルタ回路320は、受電部310と整流部330との間に設けられ、受電時に発生する高調波ノイズを抑制する。フィルタ回路320は、たとえば、インダクタ及びキャパシタを含むLCフィルタによって構成される。整流部330は、受電部310によって受電された交流電力を整流して蓄電装置350へ出力する。
蓄電装置350は、再充電可能な直流電源であり、たとえばリチウムイオン電池やニッケル水素電池などの二次電池によって構成される。蓄電装置350は、整流部330から出力される電力を蓄える。そして、蓄電装置350は、その蓄えられた電力を図示しない負荷駆動装置等へ供給する。
リレー回路340は、整流部330と蓄電装置350との間に設けられ、送電装置10による蓄電装置350の充電時にオンされる。
電圧センサ380は、整流部330の出力電圧(受電電圧)を検出し、その検出値を充電ECU360へ出力する。電流センサ382は、整流部330からの出力電流(受電電流)を検出し、その検出値を充電ECU360へ出力する。電圧センサ380及び電流センサ382の検出値に基づいて、受電部310による受電電力(すなわち、蓄電装置350の充電電力)を検出することができる。
充電ECU360は、CPU、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各種センサや機器からの信号を受けるとともに、受電装置20における各種機器の制御を行なう。各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
充電ECU360により実行される主要な制御として、充電ECU360は、送電装置10からの受電中に、受電装置20における受電電力が所望の目標値となるように、送電装置10における送電電力の目標値(目標電力)を生成する。具体的には、充電ECU360は、受電電力の検出値と目標値との偏差に基づいて、送電装置10における送電電力の目標値を生成する。そして、充電ECU360は、生成された送電電力の目標値(目標電力)を通信部370によって送電装置10へ送信する。
通信部370は、送電装置10の通信部260と無線通信するように構成され、充電ECU360において生成される送電電力の目標値(目標電力)を送電装置10へ送信するほか、電力伝送の開始/停止に関する情報を送電装置10とやり取りしたり、受電装置20の受電状況(受電電圧や受電電流、受電電力等)を送電装置10へ送信したりする。また、詳細については後述するが、通信部370は、電源ECU250による一次コイル電流制御のために必要な情報を送電装置10へ送信する。具体的には、通信部370は、後述する二次コイル312のインダクタンス、抵抗316の抵抗値、キャパシタ314の容量値、及び蓄電装置350の内部抵抗を導出するために必要な情報を送電装置10へ送信する。
図2は、図1に示した送電部240及び受電部310の回路構成の一例を示した図である。図2を参照して、送電部240は、一次コイル242、キャパシタ244、及び抵抗246を含む。キャパシタ244は、送電電力の力率を補償するために設けられ、一次コイル242及び抵抗246に直列に接続される。抵抗246は、一次コイル242の巻線抵抗である。受電部310は、二次コイル312、キャパシタ314、及び抵抗316を含む。キャパシタ314は、受電電力の力率を補償するために設けられ、二次コイル312及び抵抗316に直列に接続される。抵抗316は、二次コイル312の巻線抵抗である。
再び図1を参照して、この電力伝送システムにおいては、インバータ220からフィルタ回路230を通じて送電部240へ送電電力(交流)が供給される。送電部240及び受電部310の各々は、コイルとキャパシタとを含み、伝送周波数において共振するように設計されている。送電部240及び受電部310の共振強度を示すQ値は、100以上であることが好ましい。
送電装置10において、インバータ220から送電部240へ送電電力が供給されると、送電部240のコイルと受電部310のコイルとの間に形成される電磁界を通じて、送電部240から受電部310へエネルギー(電力)が移動する。受電部310へ移動したエネルギー(電力)は、フィルタ回路320及び整流部330を通じて蓄電装置350へ供給される。
(各制御の制御ブロックの説明)
図3は、電源ECU250により実行される送電電力制御、ターンオン電流制御及び一次コイル電流制御の制御ブロック図である。図3を参照して、電源ECU250は、コントローラ420,440、及び最適周波数算出部450を含む。コントローラ420及び制御対象のインバータ220によって構成されるフィードバックループが、送電電力制御を構成する。また、コントローラ440及びインバータ220によって構成されるフィードバックループが、ターンオン電流制御及び一次コイル電流制御を構成する。なお、ターンオン電流制御及び一次コイル電流制御を構成するフィードバックループには、最適周波数算出部450により算出された最適周波数ωopが入力される。
コントローラ420は、目標電力Psrから送電電力Psの検出値を減算し、目標電力Psrと送電電力Psとの偏差に基づいて、インバータ220の出力電圧Voのデューティ指令値を生成する。送電電力Psが目標電力Psrに近づくように出力電圧Voのデューティが調整され、送電電力Psが目標電力Psrに制御される。
コントローラ440は、ターンオン電流が制限値を超えない範囲でインバータ220の駆動周波数(スイッチング周波数)が最適周波数ωopに近づくようにインバータ220の駆動周波数指令値を生成する。詳しくは後述するが、最適周波数ωopとは、目標電力において一次コイル電流が最小となるときのインバータ220の駆動周波数を示す関係式から算出される駆動周波数であり、目標電力において一次コイル電流が最小となるときの駆動周波数のことである。最適周波数算出部450は、この関係式を用いて最適周波数ωopを算出し、算出した最適周波数ωopをコントローラ440に出力する。なお、ターンオン電流Itの検出値は、電圧センサ270(図1)により出力電圧Voの立上りが検知されたときの電流センサ272(図1)の検出値(瞬時値)である。なお、ターンオン電流制御は、必ずしもターンオン電流が制限値を超えないように制御される構成でなくてもよく、たとえば、ターンオン電流が所定の目標値(たとえば、0)となるように制御されるフィードバック制御であってもよい。
また、一次コイル電流制御において、コントローラ440は、最適周波数ωop近傍において、一次コイル電流I1が最小となるようにインバータ220の駆動周波数指令値を生成する。これにより、一次コイル電流I1は、最小となるように制御される。上述の関係式には、受電装置20の性能により決まるパラメータが含まれている。したがって、電源ECU250が把握する受電装置20の性能と実際の性能とに差がある場合には、この関係式により算出された駆動周波数でインバータ220を駆動したとしても一次コイル電流が最小とはならない。よって、コントローラ440は、一次コイル電流I1を最小にする制御を行う必要がある。
このような電力伝送システムにおいては、伝送効率を改善するため、なるべく早期に一次コイル電流を小さくすることが望ましい。しかしながら、一次コイル242と二次コイル312との位置関係が変化する等の環境変化により一次コイル電流が変化することもある。したがって、一次コイル電流のフィードバック制御のみでは、一次コイル電流が小さくなるインバータ220の駆動周波数の探索に時間がかかる可能性がある。
そこで、この実施の形態に従う非接触送電装置においては、目標電力における一次コイル電流が最小となるときのインバータ220の駆動周波数を示す関係式から目標電力における一次コイル電流が最小となる最適周波数ωopが算出され、算出された最適周波数ωopを用いて一次コイル電流が制御される。
このように、この送電装置10においては、最適周波数ωopが関係式を用いて予め算出されるフィードフォワード制御が実行される。上述の通り、この関係式により算出された最適周波数ωopでインバータ220を駆動したとしても必ずしも一次コイル電流は最小とはならないが、一次コイル電流が最小となるインバータ220の駆動周波数が最適周波数ωopの近傍に存在する可能性は高い。したがって、この送電装置10によれば、予め最適周波数ωopを算出し、算出した最適周波数ωopを用いて一次コイル電流を制御することで、一次コイル電流が小さくなるインバータ220の駆動周波数を早期に見つけ得る。以下、最適周波数ωopを示す関係式、及び最適周波数ωopを用いたインバータ220の動作点探索方法について説明する。
(一次コイル電流最小時の駆動周波数を示す関係式)
再び図2を参照して、一次コイル242及び二次コイル312のインダクタンスをそれぞれL1及びL2とする。抵抗246及び316の抵抗値をそれぞれr1及びr2とする。キャパシタ244及び314のコンデンサ容量をそれぞれC1及びC2とする。一次コイル電流及び二次コイル電流をそれぞれI1及びI2とする。そして、受電部310からみた負荷の等価抵抗をRlとする。
こうした場合に、この電力伝送システムにおける伝送効率ηは、次の式(1)により表される。
Figure 0006372444
この式(1)からも分かるように、一次コイル電流I1が小さいほど、伝送効率ηの値は大きくなる。
式(1)の分母に含まれる項のうち、一次コイル電流I1が含まれる項に関して次の式(2)が成り立つ。
Figure 0006372444
ここで、式(2)に含まれるMは、一次コイル242と二次コイル312との相互インダクタンスを表す。また、ωは、一次コイル電流I1の周波数、すなわち、インバータ220の駆動周波数を表す。式(2)は、インバータ220の駆動周波数と一次コイル電流I1との関係を示す関係式ともいえる。二次コイル電流I2は、受電装置20による受電電力が一定である場合には一定となる。したがって、受電装置20による受電電力が一定であるとすると、式(2)の右項が最小となる場合の駆動周波数ωが最適周波数ωopということになる。式(2)をωで微分すると、ωの最小値ωop(最適周波数ωop)を次の式(3)のように表せる。
Figure 0006372444
式(3)に含まれるパラメータの各々は、受電装置20の性能に関わるパラメータである。電源ECU250は、これらのパラメータの情報を通信部370,260を介して受電装置20から受信することで最適周波数ωopを算出することができる。このうち、インダクタンスL2、コンデンサ容量C2、抵抗r2は一定値である。受電部310からみた等価抵抗Rlは、受電装置20の受電電力の関数であり、受電電力の大きさによって変動する。受電装置20の受電電力は、送電装置10の送電電力と相関がある。したがって、最適周波数ωopは、送電装置10による送電電力の大きさにより変動する。したがって、電源ECU250は、目標電力に対する最適周波数ωopを算出し、算出した最適周波数ωopを用いて一次コイル電流制御を含む動作点探索を実行する。
次に、受電装置20の性能に関わる情報を受信することにより算出された最適周波数ωopを用いてどのようにインバータ220の動作点探索を行うのかについて説明する。
(動作点探索)
図4は、最適周波数ωopを用いた動作点探索を説明するための図である。図4を参照して、横軸はインバータ220の駆動周波数(スイッチング周波数)を示し、縦軸はインバータ220の出力電圧のデューティを示す。点線PL1は、送電部240による送電電力の等高線を示す。この例において、送電部240による送電電力の目標電力は、点線PL1で示される電力に設定されている。一点鎖線IL1,IL2は、ターンオン電流が0となる等高線を示す。また、この実施の形態において、駆動周波数を操作することができる範囲である可動周波数帯は一部の範囲に限られている。
斜線で示される領域S1は、インバータ220においてリカバリー電流が生じる領域である。すなわち、領域S1に含まれるインバータ220の動作点では、ターンオン電流が0よりも大きくなり、インバータ220においてリカバリー電流が生じる。以下では、この領域S1を「禁止帯S1」とも称する。なお、この実施の形態では、禁止帯S1の境界は、ターンオン電流0のラインではなく、小さい正値のターンオン電流は許容するものとしている。
この実施の形態においては、インバータ220の動作点は、最適周波数ωopに対応する点線PL1上の動作点T1に向けて制御される。
また、この実施の形態においては、最適周波数ωopが、可動周波数帯の中央に位置する中央周波数ωcを基準に、下端周波数fLに寄っているか、上端周波数fHに寄っているかによりインバータ220の起動時の周波数(起動周波数)が決定される。具体的には、最適周波数ωopが下端周波数fLに寄っている場合には、下端周波数fLに起動周波数が設定され、最適周波数ωopが上端周波数fHに寄っている場合には、上端周波数fHに起動周波数が設定される。これは、最適周波数ωopに近い端部から動作点探索を行った方が、より早く動作点を最適値に設定できるからである。なお、最適周波数ωopは、インバータ220の起動処理の実行前に、受電装置20の性能に関する各種情報が取得され、式(3)を用いて算出される。
また、この実施の形態においては、動作点のデューティが目標電力に達する前の段階で所定値以上の大きさのターンオン電流が所定時間以上生じた場合に、動作点探索を可動周波数帯における反対側の端部からやりなおす。ここで、ターンオン電流の大きさに関する所定値、及びターンオン電流が流れる時間に関する所定時間には、インバータ220内に生じるリカバリー電流によりインバータ220が故障しない程度の数値が設定される。
実線で示されるラインは、インバータ220の起動処理の実行時における動作点の推移の一例を示したものである。この例においては、最適周波数ωopは、中央周波数ωcを基準に下端周波数fLに寄っている。したがって、起動周波数には、最初、下端周波数fLが設定される。動作点は、下端周波数fLから動作点T1に向けて制御される。動作点の制御が開始されると、動作点は禁止帯S1を通る。そして、動作点が動作点M1を通る時点で、所定値以上の大きさのターンオン電流が所定時間以上生じたとする。この場合には、下端周波数fLを起動周波数とする動作点探索は中止され、反対側の端部である上端周波数fHから動作点探索が再開される。
動作点は、上端周波数fHから点線PL1に向けて制御され、点線PL1に達した後、ターンオン電流制御により、点線PL1上を最適周波数ωop側に制御される。そして、動作点は、ターンオン電流制御により、最適周波数ωopに最も近く、かつ、ターンオン電流が0以下となる動作点M2に制御される。動作点が動作点M2に制御されると、ターンオン電流制御に加えて、一次コイル電流制御が開始される。そして、正のターンオン電流が生じない範囲において、一次コイル電流が最小となる動作点の探索が行なわれ、この例では、動作点は動作点M3に制御される。
次に、動作点探索動作の具体的な制御内容について説明する。図5は、動作点探索動作を示すフローチャートである。図5を参照して、電源ECU250は、インバータ220の起動処理の実行前に、通信部260,370を介して、充電ECU360から送電電力の目標電力を示す情報、及び受電装置20の性能に関する情報(インダクタンスL2、コンデンサ容量C2、抵抗r2、及び受電部310からみた等価抵抗Rl等)を受信する(ステップS100)。
送電電力の目標電力を示す情報、及び受電装置20の性能に関する情報が受信されると、電源ECU250は、上述の式(3)及び受電装置20から取得した各種性能情報を用いて最適周波数ωopを算出する(ステップS110)。
最適周波数ωopが算出されると、電源ECU250は、最適周波数ωopが可動周波数帯の下端周波数fL及び上端周波数fHの何れに寄っているかを判断する(ステップS120)。最適周波数ωopが下端周波数fLに寄っていると判断されると(ステップS120において、「低周波数側」)、電源ECU250は、動作点探索の起動周波数として下端周波数fLを設定する(ステップS130)。一方、最適周波数ωopが上端周波数fHに寄っていると判断されると(ステップS120において、「高周波数側」)、電源ECU250は、動作点探索の起動周波数として上端周波数fHを設定する(ステップS140)。
ステップS130、又はステップS140において起動周波数が設定されると、電源ECU250は、インバータ220の動作点探索を実行する(ステップS150)。この実施の形態の動作点探索においては、まずは、送電電力制御及びターンオン電流制御が実行される。そして、インバータ220の駆動周波数が最適周波数ωopに達すると、さらに一次コイル電流制御が実行され、動作点は、最終的な動作点に制御される。なお、ターンオン電流の影響により、インバータ220の駆動周波数を最適周波数ωopに制御することができない場合には、正のターンオン電流が生じない範囲で駆動周波数が最も最適周波数ωopに近づいた時点で一次コイル電流制御が実行される。
動作点探索が実行されると、電源ECU250は、ターンオン電流が閾値を超過したか否かを判断する(ステップS160)。上述した、所定値以上の大きさのターンオン電流が所定時間以上生じた場合に、閾値が超過したと判断される。ターンオン電流が閾値を超過したと判断されると(ステップS160においてYES)、電源ECU250は、動作点探索における起動周波数を反対側の端部の周波数に変更する(ステップS170)。その後、処理はステップS150に移行する。
ターンオン電流が閾値を超過していないと判断されると(ステップS160においてNO)、電源ECU250は、動作点が最適周波数ωopに達したか否か、又は、ターンオン電流の影響により動作点を最適周波数ωopに制御することができない場合には、正のターンオン電流が生じない範囲で最も最適周波数ωopに近接する点に動作点が達したか否かを判断する(ステップS180)。動作点が最適周波数ωopに達していない、又は、正のターンオン電流が生じない範囲で最も最適周波数ωopに近接する点に動作点が達していないと判断されると(ステップS180においてNO)、処理はステップS160に移行する。
動作点が最適周波数ωopに達した、又は、正のターンオン電流が生じない範囲で最も最適周波数ωopに近接する点に動作点が達したと判断されると(ステップS180においてYES)、電源ECU250は、一次コイル電流制御を実行する(ステップS190)。このように、この実施の形態においては、動作点が最適周波数ωopに達するまで、又は、正のターンオン電流が生じない範囲で最も最適周波数ωopに近接する点に動作点が達するまでは、一次コイル電流制御が実行されない。これは、一次コイル電流が最小となる動作点が、最適周波数ωopから大きく離れた場所には存在しない可能性が高く、そのような最適周波数ωopから大きく離れた場所においても一次コイル電流制御を行っていては、一次コイル電流が最小となる動作点に達するまでに長時間を要してしまうからである。
一次コイル電流制御が開始されると、電源ECU250は、正のターンオン電流が生じない範囲において、一次コイル電流が最小となる動作点が発見されたか否かを判断する(ステップS200)。一次コイル電流が最小となる動作点が発見されていないと判断されると(ステップS200においてNO)、処理はステップS200に移行する。一方、一次コイル電流が最小となる動作点が発見されたと判断されると(ステップS200においてYES)、処理はステップS210に移行する。
このように、この送電装置10においては、最適周波数ωopが関係式を用いて予め算出するフィードフォワード制御が実行される。したがって、この送電装置10によれば、予め最適周波数ωopを算出し、算出した最適周波数ωopを用いて一次コイル電流を制御することで、一次コイル電流が小さくなるインバータ220の駆動周波数を早期に見つけ得る。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 送電装置、20 受電装置、100 交流電源、210 PFC回路、220 インバータ、230,320 フィルタ回路、240 送電部、242 一次コイル、244,314 キャパシタ、246,316 抵抗、250 電源ECU、260,370 通信部、270,380 電圧センサ、272,382 電流センサ、310 受電部、312 二次コイル、330 整流部、340 リレー回路、350 蓄電装置、360 充電ECU、420,440 コントローラ、450 最適周波数算出部。

Claims (1)

  1. 受電装置の二次コイルに非接触で送電するように構成された一次コイルと、
    前記一次コイルへ送電電力を供給する電圧形のインバータと、
    前記インバータを制御する制御部とを備え、
    前記制御部は、
    前記インバータの出力電圧のデューティを調整することによって前記送電電力を目標電力に制御する第1の制御と、
    前記インバータの駆動周波数を調整することによって、前記一次コイルに生じる一次コイル電流を制御する第2の制御とを実行し、
    前記制御部は、前記目標電力において前記一次コイル電流が最小となるときの前記駆動周波数を示す第1の関係式から前記目標電力において前記一次コイル電流が最小となる前記駆動周波数を算出し、当該算出された駆動周波数を用いて前記第2の制御を実行し、
    前記第1の関係式は、前記駆動周波数と前記一次コイル電流との関係を示す第2の関係式から導出された関係式である、非接触送電装置。
JP2015156075A 2015-08-06 2015-08-06 非接触送電装置 Expired - Fee Related JP6372444B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156075A JP6372444B2 (ja) 2015-08-06 2015-08-06 非接触送電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156075A JP6372444B2 (ja) 2015-08-06 2015-08-06 非接触送電装置

Publications (2)

Publication Number Publication Date
JP2017034948A JP2017034948A (ja) 2017-02-09
JP6372444B2 true JP6372444B2 (ja) 2018-08-15

Family

ID=57986418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156075A Expired - Fee Related JP6372444B2 (ja) 2015-08-06 2015-08-06 非接触送電装置

Country Status (1)

Country Link
JP (1) JP6372444B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6299779B2 (ja) * 2016-02-02 2018-03-28 トヨタ自動車株式会社 送電装置及び電力伝送システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030288A (ja) * 2012-07-31 2014-02-13 Sony Corp 給電装置および給電システム
EP3032698B1 (en) * 2013-07-31 2018-10-24 Panasonic Corporation Wireless power-transfer system and power-transmission device

Also Published As

Publication number Publication date
JP2017034948A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
KR101853825B1 (ko) 비접촉 송전 장치 및 전력 전송 시스템
US10298063B2 (en) Power-supplying device and wireless power supply system
JPWO2014196239A1 (ja) 給電装置、および非接触給電システム
CN107026514B (zh) 电力发送装置和电力传输***
JP6142901B2 (ja) 非接触送電装置および電力伝送システム
JP2017060328A (ja) 非接触受電装置及び電力伝送システム
JP6176291B2 (ja) 非接触送電装置および電力伝送システム
JP6372444B2 (ja) 非接触送電装置
JP6269570B2 (ja) 非接触送電装置
CN110635542B (zh) 非接触送电装置及非接触电力传送***
JP6414538B2 (ja) 非接触送電装置及び非接触電力伝送システム
JP6579064B2 (ja) 送電装置及び電力伝送システム
JP6565809B2 (ja) 送電装置及び電力伝送システム
JP6481558B2 (ja) 非接触送電装置
JP6354678B2 (ja) 非接触送電装置
CN110875639B (zh) 电力传输装置、电力接收装置和电力传输装置的控制方法
JP6350439B2 (ja) 非接触送電装置
JP6409750B2 (ja) 非接触電力伝送システム
JP2019022266A (ja) 非接触電力伝送システム
JP2017131073A (ja) 送電装置及び電力伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R151 Written notification of patent or utility model registration

Ref document number: 6372444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees