JP6369827B2 - Plant cultivation method and plant cultivation apparatus - Google Patents

Plant cultivation method and plant cultivation apparatus Download PDF

Info

Publication number
JP6369827B2
JP6369827B2 JP2014051011A JP2014051011A JP6369827B2 JP 6369827 B2 JP6369827 B2 JP 6369827B2 JP 2014051011 A JP2014051011 A JP 2014051011A JP 2014051011 A JP2014051011 A JP 2014051011A JP 6369827 B2 JP6369827 B2 JP 6369827B2
Authority
JP
Japan
Prior art keywords
temperature
stem
heat
heat exchange
plant cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014051011A
Other languages
Japanese (ja)
Other versions
JP2015173612A (en
Inventor
拓也 藤尾
拓也 藤尾
山田 修
修 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate Prefectural Government
Original Assignee
Iwate Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate Prefectural Government filed Critical Iwate Prefectural Government
Priority to JP2014051011A priority Critical patent/JP6369827B2/en
Publication of JP2015173612A publication Critical patent/JP2015173612A/en
Application granted granted Critical
Publication of JP6369827B2 publication Critical patent/JP6369827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Description

本発明は、ガラス室やビニルハウスの温室等において植物の栽培を行う植物の栽培方法及び植物の栽培装置に係り、特に、培地から伸び葉を有した茎の葉節間に花房を生じる果菜植物等の植物に対して、主に高温期に、局所的に冷却温度制御を行って栽培を行う植物の栽培方法及び植物の栽培装置に関する。   The present invention relates to a plant cultivation method and plant cultivation apparatus for cultivating plants in a glass room, a greenhouse of a greenhouse, and the like, and in particular, a fruit vegetable plant that produces flower bunches between leaf nodes of a stem having elongated leaves from a medium. TECHNICAL FIELD The present invention relates to a plant cultivation method and a plant cultivation apparatus for cultivating plants such as the like mainly in the high temperature period by locally controlling the cooling temperature.

従来、この種の植物の栽培方法としては、例えば、特許文献1(特開2011−120569号公報)に掲載されているものが知られている。これは、葉を有した茎の葉節間に花房を生じるトマトからなる植物を栽培する方法であって、植物の近傍であって、垂直方向の所定範囲内に、水平方向に配設された複数のパイプを配置し、このパイプに水を供給手段により供給する。供給手段は、冬季等の低温期においては、例えば30℃〜95℃の温水を供給し、夏季等の高温期においては、例えば5℃〜20℃の冷水を供給し、トマトの周囲を適正温度にして栽培するようにしている。   Conventionally, as a method for cultivating this type of plant, for example, one disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2011-12069) is known. This is a method of cultivating a plant consisting of tomatoes that produce inflorescences between leaf nodes of a stem having leaves, and is arranged in the vicinity of the plant and in a predetermined range in the vertical direction in the horizontal direction. A plurality of pipes are arranged, and water is supplied to the pipes by a supply means. The supply means supplies, for example, hot water of 30 ° C. to 95 ° C. in a low temperature period such as winter, and supplies cold water of 5 ° C. to 20 ° C., for example, in a high temperature period such as summer, so I try to grow it.

ところで、特許文献1記載の技術においては、植物の周囲の空気温度を調節するので、それだけ、エネルギー効率が悪く、コスト高になっているという問題がある。そのため、従来においては、コスト負担を低減するために、例えば、特許文献2(特許第5127589号公報)掲載の技術も知られている。これは、高温期に用いる技術であり、イチゴからなる植物の株元部分を局所的に冷却する方法であって、植物の株元部分にスポンジ等の透水材を接触させて配置し、この透水材に潅水管により液肥を滴下供給し、透水材に敷設した冷却管により冷却水を通水する。これにより、透水材に含有される水分が蒸発する際の気化熱により透水材の周囲を冷却し、これに接触した植物の株元部分を局所的に冷却する。   By the way, in the technique of patent document 1, since the air temperature around a plant is adjusted, there exists a problem that energy efficiency is bad so that it is expensive. Therefore, conventionally, in order to reduce the cost burden, for example, a technique disclosed in Patent Document 2 (Japanese Patent No. 5127589) is also known. This is a technique used in the high temperature period, and is a method of locally cooling the plant root part of a plant made of strawberries, and a water permeable material such as a sponge is placed in contact with the plant root part of the plant. Liquid fertilizer is dripped and supplied to the material with an irrigation pipe, and cooling water is passed through a cooling pipe laid on the water-permeable material. Thereby, the circumference | surroundings of a water-permeable material are cooled with the heat of vaporization at the time of the water | moisture content contained in a water-permeable material evaporating, and the plant | root part of the plant which contacted this is cooled locally.

特開2011−120569号公報JP 2011-120568 A 特許第5127589号公報Japanese Patent No. 5127589

しかしながら、上記従来のイチゴからなる植物の株元部分を局所的に冷却する方法においては、株元部分を冷却しているだけなので、イチゴよりも背の高いトマトのような植物においては、茎の上部にまで冷却効果が及ばないことから、茎の上部に生じる花房(果実)の成長や熟成を阻害してしまうことがあるという問題があった。特に、夏季等の高温期においては、ガラス室やビニルハウスの温室内の外気温度のみならず、太陽の直接光や輻射熱の影響で植物の表面温度、特に、光合成を行う葉の温度が外気温度よりも高くなり、そのため、光合成活性が低下し、それだけ、花房(果実)の成長や熟成に悪影響を与え、収量減の要因になってしまう。   However, in the conventional method of locally cooling the plant root part of a plant made of strawberries, since the root part is only cooled, in plants like tomatoes that are taller than strawberries, Since the cooling effect does not reach the upper part, there has been a problem that the growth and ripening of flower bunches (fruits) occurring at the upper part of the stem may be inhibited. Especially in the high temperature season such as summer, not only the outside temperature in the glass room or greenhouse of the greenhouse, but also the surface temperature of the plant, especially the temperature of the leaves that perform photosynthesis, is affected by the direct sunlight and radiant heat. Therefore, the photosynthetic activity is lowered, and accordingly, the growth and ripening of flower bunches (fruits) are adversely affected, resulting in a decrease in yield.

本発明は上記の点に鑑みて為されたもので、簡易な手段で植物を局所的に冷却できるようにするとともに、高温期において収穫に係る花房(果実)の生育に寄与する葉の温度を下げて光合成機能を活発化させ収量の向上を図った植物の栽培方法及び植物の栽培装置を提供することを目的とする。   The present invention has been made in view of the above points, and enables the plant to be locally cooled by simple means, and the temperature of the leaf contributing to the growth of the flower clusters (fruits) related to the harvest in the high temperature period. An object of the present invention is to provide a plant cultivation method and a plant cultivation apparatus that lowers the photosynthetic function to increase the yield.

本願発明者らは、鋭意研究により、葉を有した茎の葉節間に花房を生じる植物においては、少なくとも花房の前後にある葉の温度を制御することにより、花房に至る養分に差があることを見出し、本発明を完成した。
即ち、このような目的を達成するための本発明の植物の栽培方法は、培地から伸び葉を有した茎の葉節間に花房を生じる植物の栽培方法において、液体が流される熱交換パイプで構成されるとともに上記茎の所要長さ範囲に亘り且つ少なくとも何れか1つの花房の柄の基端を通って該茎に接触させられ該茎との熱交換を行う熱交換部材と、上記熱交換パイプで構成される熱交換部材に上記液体を流す機能を備え該熱交換部材に対して上記茎の表面温度よりも低い温度の冷熱を付与可能な冷熱付与手段とを備えた植物の栽培装置を用い、上記熱交換部材を、茎のうち、少なくとも、収穫対象となる最下位の花房の柄の基端より下に位置する下部位から、収穫対象となる最上位の花房の柄の基端より上に位置する上部位に亘る範囲に接触させ、高温期に、上記冷熱付与手段により該茎を冷却しながら栽培する構成としている。
尚、培地は、土壌のみならず、別の部材や、水耕栽培の液体であってもよい。
The inventors of the present application have found that in plants that produce inflorescences between leaf nodes of stems having leaves, there is a difference in nutrients that reach the inflorescence by controlling the temperature of the leaves at least before and after the inflorescence. As a result, the present invention has been completed.
That cultivation method of the plant of the present invention for achieving the above object, in the method of cultivating a plant producing Hanafusa the mesenchymal clause of stems having a leaf extending from the medium, with the heat exchange pipe which liquid flows a heat exchange member for heat exchange between該茎brought into contact with the該茎through the required over a long range and at least a proximal end of one of Hanabusa handle of the stem with the configuration, the heat exchanger the culture apparatus of plants and a low temperature can be imparted cold heat applying means cold heat than the surface temperature of the stem with respect to the heat exchange member having a function of supplying the liquid to the constructed heat exchange member with a pipe Use the heat exchange member from at least the lower part of the stem located below the base end of the handle of the lowest flower bud to be harvested from the base end of the handle of the uppermost flower bud to be harvested. contacting in a range over the region on which is positioned above, high In the period, and configured to grow while cooling the 該茎 by the cold heat applying means.
In addition, the culture medium may be not only soil but also another member or hydroponics liquid.

葉を有した茎の葉節間に花房を生じる植物としては、例えば、果菜植物をはじめ、バラなどの園芸用の各種花卉類など種々挙げられる。果菜植物としては、例えば、ナス科のトマト,ミディトマト,ミニトマト,フルーツトマト,タマリロ(ツリートマト,こだちトマト),ナス,小茄子,長なす,大長茄子,ペピーノ,タカノツメ,トウガラシ,シシトウガラシ,ハバネロ,ピーマン,パプリカ,カラーピーマン,ウリ科のカボチャ,ズッキーニ,キュウリ,ツノニガウリ(キワノ),シロウリ,マクワウリ,スイカ,メロン,ツルレイシ(ゴーヤ、ニガウリ),トウガン,ヘチマ,ユウガオ,マメ科のインゲンマメ,エンドウ,ソラマメ、アオイ科のオクラ,イネ科のトウモロコシなどが挙げられる。   Examples of plants that produce inflorescences between leaf nodes of stems having leaves include various kinds of horticultural florets such as fruit and vegetable plants and roses. Examples of fruit and vegetable plants include eggplant family tomatoes, midi tomatoes, cherry tomatoes, fruit tomatoes, tamariros (tree tomatoes, kodachi tomatoes), eggplants, small eggplants, long eggplants, large chief eggplants, pepino, Takanotsume, chili pepper, Pepper, Habanero, Peppers, Paprika, Colored Peppers, Pumpkins of Cucurbitaceae, Zucchini, Cucumber, Tsunonigauri (Kiwano), Shirowuri, Macquari, Watermelon, Melon, Tsurureishi (Goya, Nigauri), Togan, Loofah, Papilio Examples include kidney beans, peas, faba beans, okra from the mallow family, and maize from the gramineous family.

これにより、収穫対象となる花房の柄の基端を通って所要範囲で熱交換部材が茎に接触させられ、この部位が局所的に冷却される。そのため、少なからず、花房の前後にある葉に至る水分も冷却され、葉自体が冷却され温度が低下していく。葉温の低下は、葉の気孔からの蒸散作用による気化潜熱が関与していると考えられる。気化潜熱は、液体から気化する際に生じる吸熱反応であり、葉から蒸散する際の水分温度が低ければ気化するための吸熱量が大きくなり、葉温の低下も大きくなる。根から吸収された水分は茎内維管束を移動し、葉の気孔組織から蒸散することになる。茎部冷却では、維管束内の水分温度が低下するため、気温と葉中の水分との温度差が大きくなり、気化潜熱を大きくすることができると考えられる。光合成は主に葉で行われるが、その光合成速度は温度依存性である。そのため、本発明においては、高温期において、茎部冷却により葉温を低下させ、光合成速度を高め、糖やでんぷん等の光合成同化産物を増加させることができ、これを近傍にある花房に供給できることから、それだけ、収穫量や品質を向上させることができるようになる。 As a result, the heat exchange member is brought into contact with the stem in a required range through the proximal end of the handle of the flower cluster to be harvested , and this portion is locally cooled. For this reason, the water reaching the leaves before and after the inflorescence is also cooled, and the leaves themselves are cooled to lower the temperature. It is considered that the decrease in leaf temperature is associated with latent heat of vaporization due to transpiration from the pores of the leaves. The latent heat of vaporization is an endothermic reaction that occurs when vaporizing from a liquid. If the water temperature when transpiration from a leaf is low, the amount of heat absorbed for vaporization increases and the decrease in leaf temperature also increases. Moisture absorbed from the roots travels through the vascular bundle in the stem and transpires from the stoma of the leaves. In stem cooling, the water temperature in the vascular bundle decreases, so the temperature difference between the air temperature and the water in the leaves increases, and it is considered that the latent heat of vaporization can be increased. Photosynthesis is mainly performed in leaves, but the rate of photosynthesis is temperature dependent. Therefore, in the present invention, in the high temperature period, the leaf temperature can be lowered by cooling the stem, the photosynthetic rate can be increased, and photosynthesis assimilation products such as sugar and starch can be increased, and this can be supplied to the inflorescences in the vicinity. Therefore, it will be possible to improve the yield and quality.

また、光合成が関与しない夜冷においても有効になる。これは、呼吸による養分消費量と養分転流が温度依存性であることが要因であると考えられる。植物は光合成を行わない夜間に維持呼吸量が多くなるが、温度上昇に対し指数的に上昇するため葉温の上昇は維持呼吸による糖やでんぷん等の光合成同化産物の消耗を招き、果実の発育のための同化産物が不足し減収につながる。しかしながら、前述の通り、茎部冷却では蒸散による葉温低下が大きくなることから、葉中に存在する光合成同化産物の呼吸による養分消費量を抑制でき、それだけ、果実の増収の向上を図ることができる。また、一般に、温度が高いと幼葉や生長点への養分の転流が促進され、低いと果実や根に転流する。夜温が高いと果実への糖の転流が低下し、夜温が低いと果実の糖含量が上昇する。トマトなどの果菜類では、収穫対象である果実への転流が多い方が果実肥大に良好であることから、茎部冷却は果実への転流を促進することができ、果実の増収を図ることができる。
即ち、本発明によれば、茎を局部的に冷却するという簡易な手段により、高温期において収穫に係る花房(果実)の生育に寄与する葉の温度を下げて光合成機能を活発化させ収量の向上を図ることができるのである。
It is also effective in night cooling where photosynthesis is not involved. This is thought to be due to the fact that nutrient consumption and nutrient translocation due to respiration are temperature dependent. Plants increase maintenance respiration during the night without photosynthesis, but the rise in leaf temperature increases exponentially with increasing temperature, leading to consumption of photosynthetic assimilation products such as sugar and starch due to maintenance respiration, and fruit development. As a result, there is a shortage of assimilation products, leading to a decrease in sales. However, as mentioned above, since the leaf temperature drop due to transpiration increases with stem cooling, the nutrient consumption due to respiration of photosynthetic assimilation products present in the leaves can be suppressed, and the increase in fruit yield can be improved accordingly. it can. In general, when the temperature is high, the translocation of nutrients to young leaves and growth points is promoted, and when the temperature is low, the translocation to fruits and roots is promoted. When the night temperature is high, the translocation of sugar to the fruit decreases, and when the night temperature is low, the sugar content of the fruit increases. In fruits and vegetables such as tomatoes, it is better for fruit enlargement when there is more commutation to the fruits to be harvested, so cooling the stem can promote commutation to the fruits and increase fruit yield be able to.
That is, according to the present invention, by simple means of locally cooling the stem, the temperature of the leaf contributing to the growth of the flower floret (fruit) related to the harvest is lowered in the high temperature period to activate the photosynthetic function and increase the yield. Improvements can be made.

そして、必要に応じ、上記茎の温度が高温期における高温期所定温度Ta以上のとき、上記冷熱付与手段を作動させるようにし、上記高温期所定温度Taを15℃≦Ta≦35℃に設定し、上記熱交換部材の温度Txを、10℃≦Tx≦20℃にした構成としている。
葉温や茎部の温度は、外気温よりも高くなる場合がある。特に、晴天日は日射に含まれる赤外線などの長波長域を含む光線が葉や茎にあたって、熱輻射により加熱されるためである。そのため、本発明では、茎温度を基準に制御する。葉温を測定することが望ましいが、葉は分散しているのでバラつきが多く、精度に劣る。そのため、適正に葉温を制御することができる。一般に、葉の光合成において、大気中における最適温度域は20〜35℃であり、特に25〜30℃で最大となるが、15℃≦Ta≦35℃、望ましくは、15℃≦Ta≦30℃に設定し、10℃≦Tx≦20℃にすることで、葉温を適正温度に制御することができるようになる。また、人為的に二酸化炭素ガスを大気中に放出し、大気中よりも二酸化炭素濃度を高くして栽培するような環境下では葉の光合成の最適温度域が数℃高くなる。このような場合には、例えば、20℃≦Ta≦35℃、10℃≦Tx≦20℃に設定すると良い。
And, if necessary, when the temperature of the stem is equal to or higher than the high temperature period predetermined temperature Ta in the high temperature period, the cooling application means is operated, and the high temperature period predetermined temperature Ta is set to 15 ° C. ≦ Ta ≦ 35 ° C. The temperature Tx of the heat exchange member is 10 ° C. ≦ Tx ≦ 20 ° C.
Leaf temperature and stem temperature may be higher than the outside air temperature. This is because, on a clear day, light including a long wavelength region such as infrared rays included in solar radiation hits leaves and stems and is heated by thermal radiation. Therefore, in this invention, it controls based on stem temperature. It is desirable to measure the leaf temperature, but since the leaves are dispersed, there are many variations and the accuracy is inferior. Therefore, the leaf temperature can be controlled appropriately. In general, in the photosynthesis of leaves, the optimum temperature range in the atmosphere is 20 to 35 ° C., and particularly the maximum is 25 to 30 ° C., but 15 ° C. ≦ Ta ≦ 35 ° C., preferably 15 ° C. ≦ Ta ≦ 30 ° C. By setting to 10 ° C. ≦ Tx ≦ 20 ° C., the leaf temperature can be controlled to an appropriate temperature. In addition, the optimum temperature range for leaf photosynthesis becomes several degrees higher in an environment in which carbon dioxide gas is artificially released into the atmosphere and cultivated with a higher carbon dioxide concentration than in the atmosphere. In such a case, for example, 20 ° C. ≦ Ta ≦ 35 ° C., 10 ° C. ≦ Tx ≦ 20 ° C. may be set.

また、必要に応じ、上記冷熱付与手段から切換えられて用いられ、上記熱交換部材に対して上記茎の表面温度よりも高い温度の温熱を付与可能な温熱付与手段を備えた植物の栽培装置を用い、低温期には、上記温熱付与手段により該茎を加温しながら栽培する構成としている。高温期のみならず、低温期においても、茎加温によって葉温を適正範囲に維持することができるようになり、即ち、収穫に係る花房(果実)の生育に寄与する葉の温度を上げて光合成機能を活発化させ収量の向上を図ることができるようになる。   Moreover, the plant cultivation apparatus provided with the heat | fever provision means which can be switched and used from the said cold-heating provision means as needed, and can provide the heat | fever of the temperature higher than the surface temperature of the said stem with respect to the said heat exchange member. Used in the low temperature period, the stem is cultivated while being warmed by the above-mentioned heat application means. Not only in the high temperature period, but also in the low temperature period, the leaf temperature can be maintained in an appropriate range by warming the stem, that is, by increasing the temperature of the leaf that contributes to the growth of the inflorescence (fruit) related to the harvest. The photosynthetic function can be activated to improve the yield.

この場合、必要に応じ、上記茎の温度が低温期における低温期所定温度Tb以下のとき、上記温熱付与手段を作動させるようにし、上記低温期所定温度Tbを5℃≦Tb≦28℃、且つ、Tb<Taに設定し、上記熱交換部材の温度Tyを、20℃≦Ty≦35℃にした構成としている。
上記のように、一般に、葉の光合成において、大気中における最適温度域は20〜35℃であり、特に25〜30℃で最大となるが、5℃≦Tb≦28℃(但し、Tb<Ta)、20℃≦Ty≦35℃にすることで、低温期にも、葉温を適正温度に制御することができるようになる。
In this case, if necessary, when the temperature of the stem is equal to or lower than the predetermined temperature Tb in the low temperature period, the heat application means is operated, and the predetermined temperature Tb in the low temperature period is 5 ° C. ≦ Tb ≦ 28 ° C. , Tb <Ta, and the temperature Ty of the heat exchange member is set to 20 ° C. ≦ Ty ≦ 35 ° C.
As described above, generally, in the photosynthesis of leaves, the optimum temperature range in the atmosphere is 20 to 35 ° C., and particularly maximum at 25 to 30 ° C., but 5 ° C. ≦ Tb ≦ 28 ° C. (however, Tb <Ta ) By setting 20 ° C. ≦ Ty ≦ 35 ° C., the leaf temperature can be controlled to an appropriate temperature even in the low temperature period.

また、必要に応じ、上記下部位を、上記最下位の花房の柄の基端以下にある葉の柄の基端よりも下に設定し、上記上部位を、上記最上位の花房の柄の基端以上にある葉の柄の基端よりも上に設定した構成としている。これにより、花房近傍の葉を確実に冷却できるようになり、光合成機能を活発化させ、花房に生じる果実の収量の向上を図ることができる。   Further, if necessary, the lower part is set below the base end of the leaf handle that is below the base end of the lowermost flower floret, and the upper part is set to the pattern of the uppermost flower floret. It is configured to be set above the base end of the leaf handle above the base end. As a result, the leaves in the vicinity of the inflorescence can be reliably cooled, the photosynthetic function is activated, and the yield of the fruit produced in the inflorescence can be improved.

更に、上記植物が、トマトである場合、上記熱交換部材を、少なくとも、第6葉節から第26葉節に亘る範囲に接触させたことが有効である。
果菜植物であるトマトにおいては、通常の品種では、発芽後、本葉8葉節から9葉節間に最初の花房(第一花房)が付き、その後は3葉おきに花房を付ける規則性を有している。即ち、1 2 3 4 5 6 7 8 花 9 10 11 花 12 13 14 花 15 16 17 花 18 19 20 花 21 22 23 花 24 25 26(「数字」は葉節、「花」は花房を意味する)の順番になる規則性を有している。一般に、ガラス室やビニルハウスの温室におけるトマト栽培においては、第26葉節以上は摘心(切断)し、それ以下において収穫するが、この収穫に係る花房範囲の茎を確実に冷却できるようになり、トマトの収量の向上を図ることができる。
Furthermore, when the plant is a tomato, it is effective to bring the heat exchange member into contact with at least the range from the sixth leaf node to the 26th leaf node.
In the normal varieties of tomatoes, which are fruit vegetable plants, after germination, the first floret (first floret) is attached between the 8th and 9th leaf of the main leaf, and then the regular floret is added every 3 leaves. Have. That is, 1 2 3 4 5 6 7 8 flower 9 10 11 flower 12 13 14 flower 15 16 17 flower 18 19 20 flower 21 22 23 flower 24 25 26 ("number" means leaf node, "flower" means inflorescence ) In order. In general, in tomato cultivation in glasshouses and greenhouses of greenhouses, the 26th and higher leaf nodes are pinched (cut) and harvested below, but the stems in the inflorescence area related to this harvest can be reliably cooled. The tomato yield can be improved.

また、上記目的を達成するための本発明の植物の栽培装置は、培地から伸び葉を有した茎の葉節間に花房を生じる植物を栽培する植物の栽培装置において、液体が流される熱交換パイプで構成されるとともに上記茎の所要長さ範囲に亘り且つ少なくとも何れか1つの花房の柄の基端を通って該茎に接触させられ該茎との熱交換を行う熱交換部材と、上記熱交換パイプで構成される熱交換部材に上記液体を流す機能を備え該熱交換部材に対して上記茎の表面温度よりも低い温度の冷熱を付与可能な冷熱付与手段とを備えた構成としている。これにより、茎を局部的に冷却するという簡易な機構にすることができ、従来からある冷暖房手段に比較して、大幅にコストダウンを図ることができる。また、上述したように、この装置を用いて植物を栽培することにより、高温期において収穫に係る花房(果実)の生育に寄与する葉の温度を下げて光合成機能を活発化させ収量の向上を図ることができる。 The cultivation device of the plant of the present invention for achieving the above object, the heat exchanger in the culture apparatus of the plant to grow plants produce flower clusters in mesenchymal clause of stems having a leaf extending from the medium, the liquid flows a heat exchange member for heat exchange between該茎brought into contact with the該茎through the required over a long range and at least a proximal end of one of Hanabusa handle of the stem while being constituted by a pipe, the and a structure in which a low temperature cold heat applying means capable impart cold than the surface temperature of the stem with respect to the heat exchange member having a function of supplying the liquid to the constructed heat exchange member in the heat exchange pipe . Thereby, it can be set as the simple mechanism of cooling a stem locally, and a cost reduction can be aimed at significantly compared with the conventional air-conditioning means. In addition, as described above, by cultivating plants using this device, the photosynthetic function is activated by lowering the leaf temperature that contributes to the growth of the inflorescence (fruit) related to the harvest in the high temperature period, thereby improving the yield. Can be planned.

そして、上記熱交換部材を、液体が流される熱交換パイプで構成し、上記冷熱付与手段は、上記液体を上記熱交換パイプに流す機能を備えた構成としていることから、液体によるので、管理が容易になる。
また、必要に応じ、上記冷熱付与手段を、液体を所定の温度範囲に調整する温度調整部と、該温度調整部で調整された液体を送出管を介して上記パイプの入口に送出するポンプとを備えて構成している。構造を容易にすることができる。
更に、必要に応じ、上記パイプの出口からの液体を上記温度調整部に戻す戻し管路を備え、液体を循環させる構成としている。循環させるので無駄が防止される。
And, the upper Symbol heat exchange member, the liquid is constituted by heat exchange pipe flows, the cold heat applying means, the liquid from Being a configuration having a function to flow to the heat exchange pipe, since due to the liquid, Management becomes easy.
Further, if necessary, the cooling heat applying means includes a temperature adjusting unit that adjusts the liquid to a predetermined temperature range, and a pump that sends the liquid adjusted by the temperature adjusting unit to the inlet of the pipe via a sending pipe. It is configured with. The structure can be facilitated.
Furthermore, if necessary, a return pipe for returning the liquid from the outlet of the pipe to the temperature adjusting unit is provided to circulate the liquid. Since it is circulated, waste is prevented.

そしてまた、必要に応じ、上記冷熱付与手段から切換えられて用いられ、上記熱交換部材に対して上記茎の表面温度よりも高い温度の温熱を付与可能な温熱付与手段を備えた構成としている。高温期のみならず、低温期においても、茎加温によって葉温を適正範囲に維持することができるようになり、即ち、収穫に係る花房(果実)の生育に寄与する葉の温度を上げて光合成機能を活発化させ収量の向上を図ることができるようになる。   In addition, it is configured to include a heat application unit that is used by switching from the cold application unit as needed, and that can apply a temperature higher than the surface temperature of the stem to the heat exchange member. Not only in the high temperature period, but also in the low temperature period, the leaf temperature can be maintained in an appropriate range by warming the stem, that is, by increasing the temperature of the leaf that contributes to the growth of the inflorescence (fruit) related to the harvest. The photosynthetic function can be activated to improve the yield.

この場合、必要に応じ、上記温熱付与手段を、液体を所定温度に調整する温度調整部と、該温度調整部で調整された液体を送出管を介して上記パイプの入口に送出するポンプとを備えて構成している。構造を容易にすることができる。
また、必要に応じ、上記パイプの出口からの液体を上記温度調整部に戻す戻し管路を備え、液体を循環させる構成としている。循環させるので無駄が防止される。
In this case, if necessary, the temperature applying unit includes a temperature adjusting unit that adjusts the liquid to a predetermined temperature, and a pump that sends the liquid adjusted by the temperature adjusting unit to the inlet of the pipe through the sending pipe. It is prepared and configured. The structure can be facilitated.
Further, if necessary, a return pipe for returning the liquid from the outlet of the pipe to the temperature adjusting unit is provided to circulate the liquid. Since it is circulated, waste is prevented.

更にまた、必要に応じ、上記茎の表面温度を検知する温度センサと、該温度センサの温度検知に基づいて上記冷熱付与手段及び上記温熱付与手段の作動,停止制御を行う制御部とを備えた構成としている。温度センサ検知に従って冷熱付与手段及び温熱付与手段の切換えを行って作動させることができるので、自動制御を行うことができる。   Furthermore, a temperature sensor for detecting the surface temperature of the stem as necessary, and a control unit for controlling the operation and stop of the cooling heat applying means and the heat applying means based on the temperature detection of the temperature sensor. It is configured. According to the temperature sensor detection, it can be operated by switching between the cold heat applying means and the heat applying means, so that automatic control can be performed.

この場合、必要に応じ、上記制御部は、高温期における高温期所定温度及び該高温期所定温度よりも低い低温期における低温期所定温度を記憶する所定温度記憶手段と、上記温度センサが検知した温度が上記所定温度記憶手段が記憶した高温期所定温度以上になったとき上記冷熱付与手段を作動させ上記温熱付与手段を停止させる一方、上記温度センサが検知した温度が上記所定温度記憶手段が記憶した低温期所定温度以下になったとき上記温熱付与手段を作動させ上記冷熱付与手段を停止させる切換え作動手段とを備えた構成としている。自動制御を確実に行うことができる。   In this case, if necessary, the control unit detects the predetermined temperature storage means for storing the high temperature period predetermined temperature in the high temperature period and the low temperature period predetermined temperature in the low temperature period lower than the high temperature period predetermined temperature, and the temperature sensor detects. When the temperature becomes equal to or higher than the predetermined temperature stored in the predetermined temperature storage means, the cold heat application means is operated to stop the heat application means, while the temperature detected by the temperature sensor is stored in the predetermined temperature storage means. When the temperature falls below the predetermined temperature during the low-temperature period, the heat application unit is operated to stop the cold application unit. Automatic control can be performed reliably.

また、この場合、必要に応じ、上記切換え作動手段は、上記温度センサが検知した温度が上記所定温度記憶手段が記憶した低温期所定温度を越え高温期所定温度に満たない間は、上記温熱付与手段及び上記冷熱付与手段をいずれも停止させる機能を備えた構成としている。適正温度範囲の場合は、装置の作動を停止するので、無駄を防止することができる。   In this case, if necessary, the switching operation means applies the heat while the temperature detected by the temperature sensor exceeds the low temperature period predetermined temperature stored by the predetermined temperature storage means and does not reach the high temperature period predetermined temperature. Both the means and the cooling heat applying means have a function of stopping. In the case of the proper temperature range, the operation of the apparatus is stopped, so that waste can be prevented.

本発明によれば、葉を有した茎の葉節間に花房を生じるトマト等の植物において、熱交換部材によってこの植物の茎を花房の柄の基端を通って局部的に冷却するという簡易な手段により、高温期において収穫に係る花房(果実)の生育に寄与する葉の温度を下げて光合成機能を活発化させ、果実への養分の転流を促進することができ、果実の収量の向上を図ることができる。   According to the present invention, in a plant such as a tomato that produces a flower tuft between leaf nodes of a stem having leaves, the stem of this plant is locally cooled by the heat exchange member through the proximal end of the handle of the flower tuft. By this means, the temperature of the leaves that contribute to the growth of the inflorescence (fruit) for harvesting can be lowered in the high temperature period to activate the photosynthetic function and promote the translocation of nutrients to the fruit. Improvements can be made.

本発明の実施の形態に係る植物の栽培装置を示す図である。It is a figure which shows the cultivation apparatus of the plant which concerns on embodiment of this invention. 本発明の実施の形態に係る植物の栽培装置の制御部及びこれにより制御される要素の関係を示す図である。It is a figure which shows the relationship between the control part of the plant cultivation apparatus which concerns on embodiment of this invention, and the element controlled by this. 本発明の実施の形態に係る植物の栽培装置の制御部の構成を示す図である。It is a figure which shows the structure of the control part of the cultivation apparatus of the plant which concerns on embodiment of this invention. 本発明の実施の形態に係る植物の栽培装置において、熱交換部材としての熱交換パイプの植物に対する接触状態を示す拡大図である。In the plant cultivation apparatus which concerns on embodiment of this invention, it is an enlarged view which shows the contact state with respect to the plant of the heat exchange pipe as a heat exchange member. 本発明の実施例及び比較例に係る植物の温度状態を示し、(a)は茎を冷却しているときの熱画像(写真)、(b)は無処理のときの熱画像(写真)である。The temperature state of the plant which concerns on the Example and comparative example of this invention is shown, (a) is a thermal image (photograph) when the stem is cooled, (b) is a thermal image (photograph) at the time of no processing. is there. 本発明の実施例に係る植物の冷却時及び無処理の場合における葉と茎の温度を示すグラフ図である。It is a graph which shows the temperature of the leaf and stem in the case of cooling of the plant which concerns on the Example of this invention, and the case of no processing. 本発明の実施例に係る植物の冷却時における茎の温度の変化を無処理の場合の茎の温度変化と比較して示すグラフ図である。It is a graph which shows the change of the temperature of the stem at the time of cooling of the plant which concerns on the Example of this invention compared with the temperature change of the stem in the case of no processing. 本発明の実施例に係るチャンバー内での植物の冷却処理において、冷却対象部位を1葉節に限定した場合と無処理の場合の葉節毎の葉温の差を表す図である。In the cooling process of the plant in the chamber which concerns on the Example of this invention, it is a figure showing the difference of the leaf temperature for each leaf node when the object to be cooled is limited to one leaf node and when it is not treated. 本発明の実施例に係る植物の冷却時における葉の気化潜熱量を無処理の場合の葉の気化潜熱量と比較して示すグラフ図である。It is a graph which shows the vaporization latent heat amount of the leaf at the time of cooling of the plant which concerns on the Example of this invention compared with the vaporization latent heat amount of the leaf in the case of no processing. 本発明の実施例に係る植物の冷却処理における収穫量を無処理の場合の収穫量と比較して示す表図である。It is a table | surface shown in comparison with the harvesting amount in the case of no processing in the yield in the cooling process of the plant which concerns on the Example of this invention.

以下、添付図面に基づいて、本発明の実施の形態に係る植物の栽培方法及び植物の栽培装置について詳細に説明する。
図1乃至図4には、本発明の実施の形態に係る植物の栽培装置を示している。本装置Sは、ガラス室やビニルハウス等の温室などで栽培される植物用のものである。植物Pとしては、培地から伸び葉1を有した茎2の葉節1a間に花房3を生じる植物Pが対象となる。
Hereinafter, a plant cultivation method and a plant cultivation apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
1 to 4 show a plant cultivation apparatus according to an embodiment of the present invention. This apparatus S is for plants grown in greenhouses such as glass rooms and vinyl houses. As the plant P, the plant P which produces the flower clusters 3 between the leaf nodes 1a of the stem 2 having the leaf 1 extending from the culture medium is an object.

実施の形態に係る植物Pの栽培装置Sは、植物Pの茎2の所要長さ範囲に亘り且つ少なくとも何れか1つの花房3の柄の基端3aを通って茎2に接触させられ茎2との熱交換を行う熱交換部材10を備えている。熱交換部材10は、液体(実施の形態では水)が流されポリエチレンや塩化ビニル等で形成された筒状の可撓性の熱交換パイプ11で構成されている。この熱交換部材10は、例えば、植物Pがトマトの場合には、少なくとも、葉1の第6葉節から第26葉節に亘る範囲に接触できる長さになっており、培地から温室の天井に向けて所要高さまで伸び、天井に吊下されている。熱交換部材10は、植物Pの茎2にらせん状に巻き付け、あるいは、茎2にテープや紐などで密着固定させられる。 The cultivation apparatus S of the plant P according to the embodiment is brought into contact with the stem 2 over the required length range of the stem 2 of the plant P and through the proximal end 3a of the handle of at least one of the inflorescences 3. The heat exchange member 10 which performs heat exchange with is provided. The heat exchange member 10 is composed of a cylindrical flexible heat exchange pipe 11 made of polyethylene, vinyl chloride or the like through which liquid (in the embodiment, water) flows. For example, when the plant P is a tomato, the heat exchange member 10 has such a length that it can contact at least the range from the sixth leaf node to the 26th leaf node of the leaf 1, and the ceiling of the greenhouse from the culture medium. It extends to the required height toward the ceiling and is suspended from the ceiling. The heat exchange member 10 is wound around the stem 2 of the plant P in a spiral shape, or is tightly fixed to the stem 2 with a tape or a string.

また、本装置Sは、熱交換部材10に対して植物Pの茎2の表面温度よりも低い温度の冷熱を付与可能な冷熱付与手段20を備えている。冷熱付与手段20は、図1に示すように、液体を熱交換部材10としての熱交換パイプ11に流す機能を備えている。詳しくは、冷熱付与手段20は、液体を所定の温度範囲に調整する温度調整部21と、温度調整部21で調整された液体を送出管22を介して熱交換パイプ11の入口13に送出するポンプ23とを備えて構成されている。送出管22には逆止弁24が介装されている。また、パイプの入口13には定量流量弁25が介装されている。定量流量弁25により、多数の熱交換部材10を設置した場合、圧力差による熱交換部材10への流量のばらつきが防止され、処理温度の均一性が保持される。温度調整部21は、液体を貯留する液体タンク26と、この液体タンク26内の液体の温度を所定の温度にするヒートポンプ27とから構成されている。また、パイプ11の出口14からの液体を排出管29を介して温度調整部21の液体タンク26に戻す戻し管路28が設けられており、液体は循環させられる。   Moreover, this apparatus S is provided with the cooling-heat provision means 20 which can provide the cold heat of the temperature lower than the surface temperature of the stem 2 of the plant P with respect to the heat exchange member 10. FIG. As shown in FIG. 1, the cold heat applying means 20 has a function of flowing a liquid through the heat exchange pipe 11 as the heat exchange member 10. Specifically, the cold heat applying means 20 sends the liquid adjusted to a predetermined temperature range to the temperature adjustment unit 21 and the liquid adjusted by the temperature adjustment unit 21 to the inlet 13 of the heat exchange pipe 11 via the delivery pipe 22. And a pump 23. A check valve 24 is interposed in the delivery pipe 22. A fixed flow rate valve 25 is interposed at the inlet 13 of the pipe. When a large number of heat exchange members 10 are installed by the fixed flow rate valve 25, variation in the flow rate to the heat exchange member 10 due to a pressure difference is prevented, and the uniformity of the processing temperature is maintained. The temperature adjusting unit 21 includes a liquid tank 26 that stores liquid, and a heat pump 27 that sets the temperature of the liquid in the liquid tank 26 to a predetermined temperature. Further, a return pipe line 28 is provided for returning the liquid from the outlet 14 of the pipe 11 to the liquid tank 26 of the temperature adjusting unit 21 through the discharge pipe 29, and the liquid is circulated.

更に、本装置Sは、図1に示すように、冷熱付与手段20から切換えられて用いられ、熱交換部材10に対して茎2の表面温度よりも高い温度の温熱を付与可能な温熱付与手段30を備えている。温熱付与手段30は、液体を熱交換部材10としての熱交換パイプ11に流す機能を備えている。詳しくは、温熱付与手段30は、液体を所定の温度範囲に調整する温度調整部31と、温度調整部31で調整された液体を送出管32を介して熱交換パイプ11の入口13に送出するポンプ33とを備えて構成されている。送出管32には逆止弁34が介装されている。温度調整部31は、液体を貯留する液体タンク36と、この液体タンク36内の液体の温度を所定の温度にするヒートポンプ37とから構成されている。また、パイプの出口14からの液体を温度調整部31の液体タンク36に戻す戻し管路38が設けられている。この戻し管路38は、上記の冷熱付与手段20の排出管29から分岐して設けられている。分岐点には3方向切換え電磁弁39が介装され、切換えにより何れか一方の戻し管路を有効にし、他方を無効にする。   Further, as shown in FIG. 1, the present apparatus S is used by being switched from the cold heat applying means 20, and is capable of applying a heat at a temperature higher than the surface temperature of the stem 2 to the heat exchange member 10. 30. The heat application means 30 has a function of flowing a liquid through the heat exchange pipe 11 as the heat exchange member 10. Specifically, the heat application means 30 sends the liquid adjusted to a predetermined temperature range to the temperature adjustment unit 31 and the liquid adjusted by the temperature adjustment unit 31 to the inlet 13 of the heat exchange pipe 11 via the delivery pipe 32. A pump 33 is provided. A check valve 34 is interposed in the delivery pipe 32. The temperature adjustment unit 31 includes a liquid tank 36 that stores liquid, and a heat pump 37 that sets the temperature of the liquid in the liquid tank 36 to a predetermined temperature. Further, a return pipe line 38 is provided for returning the liquid from the outlet 14 of the pipe to the liquid tank 36 of the temperature adjusting unit 31. The return pipe 38 is provided so as to be branched from the discharge pipe 29 of the cold heat applying means 20. A three-way switching electromagnetic valve 39 is interposed at the branch point, and one of the return pipes is made valid and the other is made invalid by the switching.

また、本装置Sにおいては、植物Pの茎2に接触させられこの茎2の表面温度を検知する温度センサ40と、温度センサ40の温度検知に基づいて冷熱付与手段20及び温熱付与手段30の作動,停止制御を行う制御部41とが備えられている。制御部41は、図2及び図3に示すように、高温期における高温期所定温度Ta及び高温期所定温度Taよりも低い低温期における低温期所定温度Tbを記憶する所定温度記憶手段42と、温度センサ40が検知した温度が所定温度記憶手段42が記憶した高温期所定温度Ta以上になったとき冷熱付与手段20を作動させ温熱付与手段30を停止させる一方、温度センサ40が検知した温度が所定温度記憶手段42が記憶した低温期所定温度Tb以下になったとき温熱付与手段30を作動させ冷熱付与手段20を停止させる切換え作動手段43とを備えて構成されている。また、実施の形態では、高温期における高温期所定温度Taは、日中(実施の形態では6:00〜18:00まで)と夜間(18:00〜翌日の6:00まで)とで異ならせている。切換え作動手段43は時計による時間管理を行っており、日中と夜間とで高温期所定温度Taの数値を切換えて判断する機能を備えている。更に、切換え作動手段43は、温度センサ40が検知した温度が所定温度記憶手段42が記憶した低温期所定温度Tbを越え高温期所定温度Taに満たない間は、温熱付与手段30及び冷熱付与手段20をいずれも停止させる機能を備えて構成されている。 Further, in the present device S, the temperature sensor 40 that is brought into contact with the stem 2 of the plant P and detects the surface temperature of the stem 2, and the cold heat applying means 20 and the heat applying means 30 based on the temperature detection of the temperature sensor 40. And a control unit 41 that performs operation and stop control. As shown in FIGS. 2 and 3, the control unit 41 includes a predetermined temperature storage means 42 for storing a high temperature period predetermined temperature Ta in a high temperature period and a low temperature period predetermined temperature Tb in a low temperature period lower than the high temperature period predetermined temperature Ta, When the temperature detected by the temperature sensor 40 is equal to or higher than the high temperature period predetermined temperature Ta stored in the predetermined temperature storage means 42, the cold heat applying means 20 is operated to stop the heat applying means 30, while the temperature detected by the temperature sensor 40 is It is configured to include a switching operation unit 43 that operates the heat application unit 30 and stops the cold application unit 20 when the temperature falls below the low temperature predetermined temperature Tb stored in the predetermined temperature storage unit 42. In the embodiment, the high temperature period predetermined temperature Ta in the high temperature period is different during the daytime (from 6:00 to 18:00 in the embodiment) and at night (from 18:00 to 6:00 on the next day). It is The switching operation means 43 performs time management by a clock and has a function of switching and determining the numerical value of the predetermined temperature Ta during the high temperature period between daytime and nighttime. Further, the switching operation means 43 is provided with the heat application means 30 and the heat application means while the temperature detected by the temperature sensor 40 exceeds the low temperature period predetermined temperature Tb stored in the predetermined temperature storage means 42 and does not reach the high temperature period predetermined temperature Ta. 20 is configured to have a function of stopping all.

より詳しくは、図2に示すように、切換え作動手段43は、切替スイッチ44を介して3方向切換え電磁弁39を切換え、切替スイッチ45を介してモータ23をオンオフし、切替スイッチ46を介してモータ33をオンオフする。符号47は主電源スイッチである。即ち、切換え作動手段43は、温度センサ40が検知した温度が所定温度記憶手段42が記憶した高温期所定温度Tb以上になったとき、スイッチ45をオンにしてポンプ23を駆動し、スイッチ46をオフにしてポンプ33を停止し、三方電磁切換え弁39を切換えて、戻し管路28を有効にし、戻し管路38を無効にする。一方、切換え作動手段43は、温度センサ40が検知した温度が所定温度記憶手段42が記憶した低温期所定温度Tb以下になったとき、スイッチ45をオフにしてポンプ23を停止し、スイッチ46をオンにしてポンプ33を駆動し、三方電磁切換え弁39を切換えて、戻し管路28を無効にし、戻し管路38を有効にする。また、切換え作動手段43は、温度センサ40が検知した温度が所定温度記憶手段42が記憶した低温期所定温度Tbを越え高温期所定温度Taに満たない間は、スイッチ45をオフにしてポンプ23を停止し、スイッチ46をオフにしてポンプ33を停止する。   More specifically, as shown in FIG. 2, the switching operation means 43 switches the three-way switching electromagnetic valve 39 via the changeover switch 44, turns on / off the motor 23 via the changeover switch 45, and passes through the changeover switch 46. The motor 33 is turned on / off. Reference numeral 47 is a main power switch. That is, the switching operation means 43 turns on the switch 45 to drive the pump 23 when the temperature detected by the temperature sensor 40 is equal to or higher than the high temperature period predetermined temperature Tb stored by the predetermined temperature storage means 42. The pump 33 is turned off and the three-way electromagnetic switching valve 39 is switched to enable the return line 28 and disable the return line 38. On the other hand, when the temperature detected by the temperature sensor 40 is equal to or lower than the low temperature predetermined temperature Tb stored by the predetermined temperature storage means 42, the switching operation means 43 turns off the switch 45 to stop the pump 23 and turns off the switch 46. The pump 33 is turned on and the three-way electromagnetic switching valve 39 is switched to disable the return line 28 and enable the return line 38. Further, the switching operation means 43 turns off the switch 45 and turns off the pump 23 while the temperature detected by the temperature sensor 40 exceeds the low temperature period predetermined temperature Tb stored in the predetermined temperature storage means 42 and does not reach the high temperature period predetermined temperature Ta. , And the switch 46 is turned off to stop the pump 33.

また、実施の形態では、高温期における高温期所定温度Taは、15℃≦Ta≦35℃に設定され、冷熱付与手段20の温度調整部21が調整する液体の所定の温度範囲を10℃〜20℃にすることにより、熱交換部材10の温度Txは、10℃≦Tx≦20℃に設定されている。例えば、後述のトマト栽培においては、高温期所定温度Taは、日中(実施の形態では6:00〜18:00まで)において、Ta=24℃、夜間(実施の形態では18:00〜翌日の6:00まで)において、Ta=18℃に設定され、冷熱付与手段20の温度調整部21が調整する液体の所定の温度範囲を16℃〜18℃にすることにより、熱交換部材10の温度Txは、16℃≦Tx≦18℃に設定される。
一方、低温期における低温期所定温度Tbは、5℃≦Tb≦28℃、且つ、Tb<Taに設定され、温熱付与手段30の温度調整部31が調整する液体の所定の温度範囲を20℃〜35℃にすることにより、熱交換部材10の温度Tyは、20℃≦Ty≦35℃に設定されている。例えば、後述のトマト栽培においては、低温期所定温度Tbは、日中及び夜間ともに、Tb=13℃、温熱付与手段30の温度調整部31が調整する液体の所定の温度範囲を20℃〜30℃にすることにより、熱交換部材10の温度Tyは、20℃≦Ty≦30℃に設定される。
Further, in the embodiment, the high temperature period predetermined temperature Ta in the high temperature period is set to 15 ° C. ≦ Ta ≦ 35 ° C., and the predetermined temperature range of the liquid adjusted by the temperature adjustment unit 21 of the cooling / heating device 20 is 10 ° C. to By setting it to 20 ° C., the temperature Tx of the heat exchange member 10 is set to 10 ° C. ≦ Tx ≦ 20 ° C. For example, in tomato cultivation to be described later, the high temperature predetermined temperature Ta is Ta = 24 ° C. during the daytime (from 6:00 to 18:00 in the embodiment), and at night (in the embodiment, 18:00 to the next day). 6:00)), Ta is set to 18 ° C., and the predetermined temperature range of the liquid adjusted by the temperature adjusting unit 21 of the cooling heat applying means 20 is set to 16 ° C. to 18 ° C. The temperature Tx is set to 16 ° C. ≦ Tx ≦ 18 ° C.
On the other hand, the low temperature period predetermined temperature Tb in the low temperature period is set to 5 ° C. ≦ Tb ≦ 28 ° C. and Tb <Ta, and the predetermined temperature range of the liquid adjusted by the temperature adjustment unit 31 of the heat application means 30 is 20 ° C. By setting the temperature to 35 ° C., the temperature Ty of the heat exchange member 10 is set to 20 ° C. ≦ Ty ≦ 35 ° C. For example, in tomato cultivation described later, the low temperature period predetermined temperature Tb is Tb = 13 ° C. for both daytime and nighttime, and the predetermined temperature range of the liquid adjusted by the temperature adjustment unit 31 of the heat application means 30 is 20 ° C. to 30 ° C. By setting it to ° C., the temperature Ty of the heat exchange member 10 is set to 20 ° C. ≦ Ty ≦ 30 ° C.

次に、この実施の形態に係る植物の栽培装置Sを用いた実施の形態に係る植物の栽培方法について本栽培装置Sの作用とともに説明する。対象とする植物Pは、葉1を有した茎2の葉節1a間に花房3を生じる植物Pであり、実施の形態においては、果菜類としてのトマトである。
図1及び図4に示すように、先ず、熱交換部材10を、茎2のうち、少なくとも、収穫対象となる最下位の花房3の柄の基端3aより下に位置する下部位から、収穫対象となる最上位の花房3の柄の基端3aより上に位置する上部位に亘る範囲に接触させるようにする。果菜植物Pであるトマトにおいては、通常の品種では、発芽後、本葉1の第8葉節から第9葉節間に最初の花房3(第一花房)が付き、その後は3葉おきに花房3を付ける規則性を有している。一般に、ガラス室やビニルハウスの温室におけるトマト栽培においては、第26葉節以上は摘心(切断)し、それ以下において収穫する。従って、実施の形態では、熱交換部材10(熱交換パイプ11)を、少なくとも、トマトの第6葉節から第26葉節に亘る範囲に接触させるようにした。
Next, the plant cultivation method according to the embodiment using the plant cultivation apparatus S according to this embodiment will be described together with the operation of the main cultivation apparatus S. The target plant P is a plant P that produces a flower cluster 3 between the leaf nodes 1a of the stem 2 having the leaf 1, and in the embodiment, is a tomato as a fruit vegetable.
As shown in FIG. 1 and FIG. 4, first, the heat exchange member 10 is harvested from at least a lower part of the stem 2 that is located below the base end 3a of the handle of the lowest floret 3 to be harvested. It is made to contact the range over the upper site | part located above the base end 3a of the handle | stole of the topmost flower bunches 3 used as object. In the normal varieties of tomatoes, which are fruit vegetable plants P, after germination, the first inflorescence 3 (first inflorescence) is attached between the 8th and 9th leaf nodes of the main leaf 1, and every 3 leaves thereafter. It has regularity to attach flower bunches 3. In general, in tomato cultivation in a glass room or greenhouse of a greenhouse, the 26th and higher leaf nodes are pinched (cut) and harvested below that. Therefore, in the embodiment, the heat exchange member 10 (heat exchange pipe 11) is brought into contact with at least a range from the sixth leaf node to the 26th leaf node of tomato.

トマトは、苗の段階で温室内の畝に所定間隔で多数植えられ、徐々に成長するが、予め、熱交換部材10は、培地の各苗のある部分からその成長の高さ方向に吊下されており、成長が進む都度、適時に各トマトの茎2を夫々熱交換部材10にテープ等で止着するようにする。温度センサ40は、例えば、代表するトマトの茎2に付設する。尚、ランダムに選んだ複数のトマトの茎2に夫々温度センサ40を付設し、制御部41において、これらが検知する温度の平均値を算出し、あるいは、何れかの温度センサ40の検知する最大温度若しくは最低温度を採用するなど、温度センサ40の検知結果を適宜に用いるようにして良い。   A large number of tomatoes are planted at regular intervals in the greenhouse in the seedling stage and grow gradually, but in advance, the heat exchange member 10 is suspended in the height direction of the growth from a portion of each seedling of the medium. Each time the growth proceeds, the stem 2 of each tomato is fixed to the heat exchange member 10 with a tape or the like in a timely manner. The temperature sensor 40 is attached, for example, to the representative tomato stem 2. A temperature sensor 40 is attached to each of a plurality of randomly selected tomato stems 2 and the control unit 41 calculates an average value of the temperatures detected by the temperature sensor 40 or the maximum value detected by any one of the temperature sensors 40. The detection result of the temperature sensor 40 may be used as appropriate, such as employing the temperature or the minimum temperature.

この状態において、本装置Sの主電源スイッチ47を入れる。夏季等の高温期である場合には、主には、冷熱付与手段20が機能させられ、温熱付与手段30は通常は停止させられる。即ち、温度センサ40はトマトの茎2の温度を検知しており、制御部41においては、日中(実施の形態では6:00〜18:00)において、この温度センサ40が検知した温度が所定温度記憶手段42が記憶した高温期所定温度Ta(=24℃)以上になると、また、夜間(実施の形態では18:00〜翌日の6:00)において、温度センサ40が検知した温度が所定温度記憶手段42が記憶した高温期所定温度Ta(=18℃)以上になるとスイッチ45をオンにしてポンプ23を駆動する。この場合、温熱付与手段30の側のスイッチ46はオフにしてポンプ33を停止し、三方電磁切換え弁39は切換えられて、戻し管路28を有効にし、戻し管路38を無効にする。   In this state, the main power switch 47 of the apparatus S is turned on. In a high temperature period such as summer, the cold heat applying means 20 is mainly operated, and the heat applying means 30 is normally stopped. That is, the temperature sensor 40 detects the temperature of the tomato stalk 2, and the controller 41 detects the temperature detected by the temperature sensor 40 during the daytime (6:00 to 18:00 in the embodiment). When the temperature is higher than the high temperature period predetermined temperature Ta (= 24 ° C.) stored in the predetermined temperature storage means 42, the temperature detected by the temperature sensor 40 at night (in the embodiment, 18:00 to 6:00 on the next day) When the temperature exceeds the predetermined temperature Ta (= 18 ° C.) stored in the predetermined temperature storage means 42, the switch 45 is turned on to drive the pump 23. In this case, the switch 46 on the heat application means 30 side is turned off to stop the pump 33, and the three-way electromagnetic switching valve 39 is switched to enable the return line 28 and disable the return line 38.

これにより、冷熱付与手段20から16℃〜18℃の液体が流され、熱交換部材10の温度Txが、16℃≦Tx≦18℃に設定されるので、茎2が冷却され、収穫対象の花房3の前後にある葉1に至る水分が冷却され、葉1自体が冷却されて温度が低下していく。そのため、葉温が適正温度に制御され、葉1における光合成速度を高め、糖やでんぷん等の光合成同化産物を増加させることができ、これを近傍にある花房3に供給できるようになる。また、光合成が関与しない夜冷においても、葉温の低下により葉中に存在する光合成同化産物の呼吸による養分消費量が抑制され、それだけ、光合成同化産物を近傍にある花房3に供給できるようになる。   Thereby, a liquid of 16 ° C. to 18 ° C. is flowed from the cold heat applying means 20, and the temperature Tx of the heat exchange member 10 is set to 16 ° C. ≦ Tx ≦ 18 ° C. The water reaching the leaves 1 before and after the flower cluster 3 is cooled, and the leaves 1 themselves are cooled and the temperature is lowered. Therefore, the leaf temperature is controlled to an appropriate temperature, the photosynthetic rate in the leaf 1 can be increased, the photosynthetic assimilation products such as sugar and starch can be increased, and this can be supplied to the flower bunches 3 in the vicinity. In addition, even at night cooling where photosynthesis is not involved, the consumption of nutrients due to respiration of the photosynthetic assimilation products present in the leaves is suppressed due to the decrease in leaf temperature, so that the photosynthetic assimilation products can be supplied to the inflorescence 3 in the vicinity. Become.

また、制御部41は、日中において、温度センサ40が検知した温度が所定温度記憶手段42が記憶した高温期所定温度Ta(=24℃)に満たなくなると、また、夜間において、温度センサ40が検知した温度が所定温度記憶手段42が記憶した高温期所定温度Ta(=18℃)に満たなくなると、スイッチ45をオフにしてポンプ23を停止する。この場合も、温熱付与手段30の側のポンプ33は停止状態にあり、戻し管路28が有効で戻し管路38は無効になっている。そのため、トマトは、茎2の温度が比較的低く、葉温もさほど高くならないことから、適正な環境下におかれる。この際は、装置Sの作動を停止するので、無駄を防止することができる。
この結果、本装置Sの茎2を局部的に冷却するという簡易な手段により、高温期において収穫に係る花房3(果実)の生育に寄与する葉1の温度を下げて光合成機能を活発化させ収量の向上を図ることができるようになる。
In addition, when the temperature detected by the temperature sensor 40 does not reach the high temperature period predetermined temperature Ta (= 24 ° C.) stored in the predetermined temperature storage unit 42 during the daytime, the control unit 41 also detects the temperature sensor 40 at night. When the detected temperature does not reach the predetermined temperature Ta (= 18 ° C.) stored in the predetermined temperature storage means 42, the switch 45 is turned off and the pump 23 is stopped. Also in this case, the pump 33 on the heat application means 30 side is in a stopped state, the return line 28 is valid and the return line 38 is invalid. Therefore, the tomato is placed in an appropriate environment because the temperature of the stem 2 is relatively low and the leaf temperature is not so high. At this time, since the operation of the device S is stopped, waste can be prevented.
As a result, the simple means of locally cooling the stem 2 of the device S lowers the temperature of the leaf 1 that contributes to the growth of the inflorescence 3 (fruit) related to the harvest in the high temperature period and activates the photosynthesis function. Yield can be improved.

一方、冬季等の低温期である場合には、温室内の温度が、例えば、0℃〜20℃程度に変化すると、主には、温熱付与手段30が機能させられ、冷熱付与手段20は通常は停止させられる。即ち、温度センサ40はトマトの茎2の温度を検知しており、制御部41においては、この温度センサ40が検知した温度が所定温度記憶手段42が記憶した低温期所定温度Tb(=13℃)以下になると、スイッチ46をオンにしてポンプ33を駆動する。この場合、冷熱付与手段20の側のスイッチ45はオフにしてポンプ23を停止し、三方電磁切換え弁39は切換えられて、戻し管路38を有効にし、戻し管路28を無効にする。   On the other hand, in the low temperature period such as winter, when the temperature in the greenhouse changes to, for example, about 0 ° C. to 20 ° C., the heat application unit 30 is mainly functioned, and the cold application unit 20 is usually used. Is stopped. That is, the temperature sensor 40 detects the temperature of the tomato stalk 2, and in the control unit 41, the temperature detected by the temperature sensor 40 is the low temperature predetermined temperature Tb (= 13 ° C.) stored in the predetermined temperature storage means 42. ) When the following occurs, the switch 46 is turned on to drive the pump 33. In this case, the switch 45 on the cold heat applying means 20 side is turned off to stop the pump 23 and the three-way electromagnetic switching valve 39 is switched to enable the return line 38 and disable the return line 28.

これにより、温熱付与手段30から20℃〜35℃の液体が流され、熱交換部材10の温度Tyが、20℃≦Ty≦35℃に設定されるので、茎2が加温され、収穫対象の花房3の前後にある葉1に至る水分が加温され、葉1自体が加温され温度が上昇していく。そのため、葉温が適正温度に制御され、葉1における光合成速度を高め、糖やでんぷん等の光合成同化産物を増加させることができ、これを近傍にある花房3に供給できるようになる。また、制御部41は、温度センサ40が検知した温度が所定温度記憶手段42が記憶した低温期所定温度Tb(=13℃)を超えると、スイッチ46をオフにしてポンプ33を停止する。この場合も、冷熱付与手段20の側のポンプ23は停止状態にあり、戻し管路38が有効で戻し管路28は無効になっている。そのため、トマトは、茎2の温度が比較的高く、葉温もさほど低くならないことから、適正な環境下におかれる。この際は、装置Sの作動を停止するので、無駄を防止することができる。
この結果、本装置Sの茎2を局部的に加温するという簡易な手段により、低温期においても、収穫に係る花房3(果実)の生育に寄与する葉1の温度を上げて光合成機能を活発化させ収量の向上を図ることができるようになる。
Thereby, the liquid of 20 degreeC-35 degreeC is poured from the heat provision means 30, and since the temperature Ty of the heat exchange member 10 is set to 20 degreeC <= Ty <35 degreeC, the stalk 2 is heated and harvest object Water reaching the leaves 1 before and after the inflorescence 3 is heated, and the leaves 1 themselves are heated and the temperature rises. Therefore, the leaf temperature is controlled to an appropriate temperature, the photosynthetic rate in the leaf 1 can be increased, the photosynthetic assimilation products such as sugar and starch can be increased, and this can be supplied to the flower bunches 3 in the vicinity. When the temperature detected by the temperature sensor 40 exceeds the low temperature period predetermined temperature Tb (= 13 ° C.) stored in the predetermined temperature storage means 42, the control unit 41 turns off the switch 46 and stops the pump 33. Also in this case, the pump 23 on the side of the cold heat applying means 20 is in a stopped state, the return line 38 is valid, and the return line 28 is invalid. Therefore, the tomato is placed in an appropriate environment because the temperature of the stem 2 is relatively high and the leaf temperature is not so low. At this time, since the operation of the device S is stopped, waste can be prevented.
As a result, by simple means of locally heating the stem 2 of the device S, the photosynthetic function is increased by increasing the temperature of the leaf 1 that contributes to the growth of the inflorescence 3 (fruit) related to the harvest even in the low temperature period. It becomes possible to increase the yield by increasing the activity.

尚、夏季等の高温期において、気温が極端に低下し、茎2の温度が13℃以下になると、温熱付与手段30が作動して調整が行われ、一方、冬季等の低温期において、気温が極端に上昇し、茎2の温度が24℃以上(日中)あるいは18℃以上(夜間)になると、冷熱付与手段20が作動して調整が行われる。そのため、本装置Sにおいては、極端な温度変化にも対応することができる。   In the high temperature period such as summer, when the temperature is extremely lowered and the temperature of the stem 2 is 13 ° C. or less, the heat application means 30 is operated and adjusted, while in the low temperature period such as winter, the temperature is adjusted. When the temperature of the stalk 2 rises to 24 ° C. or higher (daytime) or 18 ° C. or higher (nighttime), the cold heat applying means 20 is activated and adjustment is performed. Therefore, the apparatus S can cope with an extreme temperature change.

次に、実施例に係る夏季の高温期における栽培例を示す。トマトの品種は「桃太郎8」を用いた。栽培は岩手県農業研究センター圃場(岩手県北上市)で行い、屋根の被覆資材にPO系フィルム(「スカイコート5」シーアイ化成株式会社製)を用いた雨よけハウスで栽培管理した。熱交換パイプ11として16mmのポリエチレン管を用い、株元から1.8m高まで垂直に配管し、この熱交換パイプ11に栽培株を接触するようテープで固定した。温度センサ40を茎部に密着させた。茎部冷却処理は、地下水を用いた冷却処理とした。使用した地下水は排水した。地下水は送水側で16.1〜18.0℃の範囲となり、比較的安定した冷熱源が得られた。冷却処理は下記の2種類とした。
(a)全日冷却処理
全日冷却処理では、茎部表面温度が24℃を超えた時点で1株かつ1管あたり流量2.5L/minの流量で地下水が株元から上方向にPE管を流れるよう電磁弁で開閉させた。
(b)夜冷処理
夜冷処理では、18:00〜6:00の間、18℃を超えた時点で上記と同様に電磁弁を開閉させて冷却処理を行った。日中6:00〜18:00の間は、冷却処理は行わず成り行き(無処理)で栽培した。
(c)無処理
また、比較例として、冷却しない無処理のものも栽培した。
Next, the example of cultivation in the high temperature season of the summer which concerns on an Example is shown. Tomato variety “Momotaro 8” was used. Cultivation was carried out at the Iwate Agricultural Research Center field (Kitakami City, Iwate Prefecture), and was cultivated and managed in a rain-proof house using a PO-based film ("Sky Coat 5" manufactured by C-I Kasei Co., Ltd.) as a roof covering material. A 16 mm polyethylene pipe was used as the heat exchanging pipe 11 and was vertically plumbed from the plant head to a height of 1.8 m, and the cultivated strain was fixed to the heat exchanging pipe 11 with tape so as to come into contact therewith. The temperature sensor 40 was brought into close contact with the stem. The stem cooling process was a cooling process using groundwater. The groundwater used was drained. Groundwater was in the range of 16.1 to 18.0 ° C. on the water supply side, and a relatively stable cold heat source was obtained. The following two types of cooling treatment were used.
(A) All-day cooling treatment In the all-day cooling treatment, when the stem surface temperature exceeds 24 ° C., groundwater flows upward from the stock source through the PE pipe at a flow rate of 2.5 L / min per tube. It was opened and closed with a solenoid valve.
(B) Night-cooling treatment In the night-cooling treatment, when the temperature exceeded 18 ° C. between 18:00 and 6:00, the solenoid valve was opened and closed in the same manner as described above to perform the cooling treatment. Between 6:00 and 18:00 in the daytime, the cooling treatment was not performed and the cultivation was continued (no treatment).
(C) Untreated As a comparative example, an untreated one that was not cooled was also cultivated.

そして、3月中旬に180mgN/Lの育苗培地を充填した128穴トレイへ播種し、播種25日後に同様の培地を充填した12cm黒ポリポットへ移植した。隔離床はハンモック式の栽培槽とし、畑土ともみ殻を3:2で混合したものを培地として用いた。第1花房開花始期となった苗を、約2ヵ月後(5月中旬)に株間20cmで定植し、千鳥振り分け誘引とした。第6花房開花期に第6花房の上位葉2枚を残し摘心した。培養液はタンクミックスA、B(大塚アグリテクノ株式会社製)を用いて大塚A処方(標準培養液の電気伝導度(EC)2.6dS/m時のミリ当量としての成分組成が、窒素18.6、リン5.1、カリウム8.6、カルシウム8.2、マグネシウム3.0me/Lである培養液)に準じた処方により、生育量に応じて電気伝導度(EC)0.6〜1.6dS/mの範囲でかん水後に培地下部からの排液は破棄するかけ流し方式で養液管理した。茎部冷却処理は、第3花房開花期の日(6月下旬)より行った。収穫は、岩手県青果物等出荷規格(大玉トマト)に準じて1果あたり重量が120g以上で外観の良好な果実を商品果として分類し、果実重量を調査した。   Then, in the middle of March, it was seeded in a 128-well tray filled with a 180 mg N / L seedling culture medium, and transplanted to a 12 cm black polypot filled with the same medium 25 days after sowing. The isolation floor was a hammock-type cultivation tank, and a mixture of field soil and chaff in a ratio of 3: 2 was used as the medium. The seedlings at the beginning of flowering of the first inflorescence were planted at a distance of 20 cm between about 2 months later (mid-May), and a zigzag distribution invitation was made. At the time of flowering of the sixth inflorescence, the upper leaves of the sixth inflorescence were left and pinched. The culture solution is tank mix A, B (manufactured by Otsuka Agritechno Co., Ltd.), Otsuka A formulation (component composition as milliequivalent when the standard culture solution has an electrical conductivity (EC) of 2.6 dS / m). .6, phosphorus 5.1, potassium 8.6, calcium 8.2, magnesium 3.0 me / L) according to the prescription according to the growth amount, the electric conductivity (EC) 0.6 to The nutrient solution was controlled by a pouring method in which the drainage from the lower part of the medium was discarded after irrigation in the range of 1.6 dS / m. The stem portion cooling treatment was carried out from the day of the third inflorescence flowering stage (late June). Harvesting was carried out by classifying fruits with a fruit appearance of 120 g or more and good appearance according to the shipping standard for fruits and vegetables such as Iwate Prefecture (large tomatoes), and examining the fruit weight.

この実施例において、無処理の比較例とともに、各種測定等の試験を行った。以下に結果を示す。
(1)冷却処理の確認
携帯用小型熱画像カメラCPA-0150J(CHINO,FLIR社製)を用い熱画像を得た。図5(a)に茎を冷却しているときの熱画像を示し、図5(b)に無処理のときの熱画像を示す。この熱画像からトマトの葉温が低下しているということが分かる。
In this example, tests such as various measurements were performed together with an untreated comparative example. The results are shown below.
(1) Confirmation of cooling treatment A thermal image was obtained using a portable small thermal imaging camera CPA-0150J (CHINO, manufactured by FLIR). FIG. 5A shows a thermal image when the stem is cooled, and FIG. 5B shows a thermal image when no processing is performed. From this thermal image, it can be seen that the leaf temperature of the tomato is decreasing.

(2)葉温
携帯用小型熱画像カメラCPA-0150J(CHINO,FLIR社製)を用い熱画像を得て葉温を算出し、茎を冷却した場合と、無処理の場合とで比較した。葉温は、内気温が29.5℃のときの、ある群落内の平均とした。
結果を、図6に示す。無処理に比較して葉温と茎温度が低下していることが分かる。
(2) Leaf temperature A thermal image was obtained by using a portable small thermal image camera CPA-0150J (CHINO, manufactured by FLIR), the leaf temperature was calculated, and the case where the stem was cooled was compared with the case where it was not treated. The leaf temperature was the average within a certain community when the inside air temperature was 29.5 ° C.
The results are shown in FIG. It can be seen that the leaf temperature and stem temperature are reduced compared to the untreated case.

(3)茎温変化
栽培中のある一日(24時間)において、茎温度及び内気温の変化を図7に示す。葉温や茎部の温度は、内気温よりも高くなる場合がある。特に晴天日は内気温よりも高くなるが、これは日射に含まれる赤外線などの長波長域を含む光線が葉や茎にあたって、熱輻射により加熱されるためである。この結果から、茎部冷却では、茎温を内気温よりも低く制御することができることがわかる。
(3) Stem temperature change In one day (24 hours) during cultivation, the change of stem temperature and internal temperature is shown in FIG. Leaf temperature and stem temperature may be higher than the internal temperature. Especially on sunny days, the temperature is higher than the inside air temperature because light rays including a long wavelength region such as infrared rays included in solar radiation hit the leaves and stems by heat radiation. From this result, it is understood that the stem temperature can be controlled to be lower than the inside air temperature in the stem cooling.

(4)冷却範囲
また、人工光源下のチャンバー内において茎の1節(約10cm)のみを冷却した場合と、無処理の場合とで熱画像で得た葉節毎の葉温を比較した。結果を図8に示す。茎の1葉節のみを冷却した場合、葉温の低下は冷却した葉節のうち上位3葉節と下位1葉節の範囲にある葉に限定されており、それより上位あるいは下位にある葉節では葉温低下が劣ることから、増収を目的とする本発明では、収穫対象の花房の柄の基端すべてが熱交換部材と接触した状態で茎冷却処理を行う必要があると考えられる。
(4) Cooling range Moreover, the leaf temperature for each leaf node was compared between the case where only one node (about 10 cm) of the stem was cooled in the chamber under the artificial light source and the case where it was not treated. The results are shown in FIG. When only one leaf node of the stem is cooled, the decrease in leaf temperature is limited to the leaves in the range of the upper 3 and lower 1 leaves among the cooled leaves, and the upper or lower leaves Since the leaf temperature drop is inferior at the knot, it is considered that the stem cooling process needs to be performed in a state in which the base end of the handle of the inflorescence target to be harvested is in contact with the heat exchange member in the present invention for increasing the yield.

(5)気化潜熱量
植物Pの根から吸収された水分は、茎の維管束部を通じて葉の気孔で蒸散するため、茎部を冷却することで、移動中の水分が冷却され、蒸散する際の水分温度が低くなり気化潜熱量を大きくすることができることから、間接的に葉温の低下につながるものと考えられる。このことは、葉の蒸散について蒸発散モデルの下記のバルク式で表すことで説明できる。この式では空気密度pa、水平風速Uが一定の条件、言い換えれば同じ温室環境であれば、葉温と気温との差により潜熱量が決定することになる。
(5) Amount of latent heat of vaporization Moisture absorbed from the roots of the plant P transpires in the stomata of the leaves through the vascular part of the stem. Therefore, when the stem part is cooled, the moving water is cooled and transpired. It is considered that the leaf temperature is indirectly reduced because the moisture temperature of the potato is lowered and the amount of latent heat of vaporization can be increased. This can be explained by expressing the transpiration of leaves by the following bulk equation of the evapotranspiration model. In this equation, if the air density pa and the horizontal wind speed U are constant, in other words, in the same greenhouse environment, the amount of latent heat is determined by the difference between the leaf temperature and the air temperature.

バルク式
H=cp・pa・CH・U(Ts−T)
H:水の気化潜熱(W.m-2)、cp:空気の定圧比熱(1004W.s.K-1.kg-1)、pa:空気の密度(kg.m-3)、CH:バルク係数、U:水平風速(m.s-1)、Ts:葉温(℃)、T:気温(℃)
Bulk type H = cp · pa · CH · U (Ts-T)
H: latent heat of vaporization of water (Wm −2 ), cp: constant-pressure specific heat of air (1004 W.sK −1 .kg −1 ), pa: density of air (kg.m −3 ), CH: bulk coefficient, U: Horizontal wind speed (ms -1 ), Ts: Leaf temperature (° C), T: Air temperature (° C)

そして、図6に示す場合において、このバルク式を用いて気化潜熱量を求めた。結果を図9に示す。この結果から、無処理に対し茎部冷却で大きく冷却効果が高いことが認められる。   And in the case shown in FIG. 6, the amount of latent heat of vaporization was calculated | required using this bulk type | formula. The results are shown in FIG. From this result, it is recognized that the cooling effect is greatly increased by the stem cooling compared to the non-treatment.

(6)収量
(a)全日冷却処理及び(b)夜冷処理の実施例と、(c)無処理の比較例とでその収量を比較した。結果を図10に示す。
この結果、全日冷却処理での収量が高いことが分かる。主に光合成は葉で行われるが、その光合成速度は温度依存性である。大気中における最適温度域は20〜35℃であり、特に25〜30℃で最大となる。光合成速度が高ければ光合成同化産物が増加し、収穫量や品質が向上することになる。茎部冷却では葉温が光合成最大温度域に維持することが可能であり、増収したものと考えられる。
(6) Yield The yields were compared between the examples of (a) all-day cooling treatment and (b) night-cooling treatment, and (c) untreated comparative example. The results are shown in FIG.
As a result, it can be seen that the yield in the all-day cooling treatment is high. Photosynthesis is mainly performed in leaves, but the rate of photosynthesis is temperature dependent. The optimum temperature range in the atmosphere is 20 to 35 ° C., particularly 25 to 30 ° C. If the photosynthetic rate is high, the photosynthetic assimilation product increases, and the yield and quality are improved. In stem cooling, the leaf temperature can be maintained within the maximum photosynthetic temperature range, which is thought to increase the sales.

また、夜冷処理においても増収が認められた。これは、呼吸消費と転流が温度依存性であることが要因であると考えられる。植物は光合成を行わない夜間に維持呼吸量が多くなるが、温度上昇に対し指数的に上昇するため葉温の上昇は維持呼吸による光合成同化産物の消耗を招き、果実の発育のための同化産物が不足し減収につながる。前述の通り、茎部冷却では蒸散による葉温低下が大きくなることから、葉中に存在する光合成同化産物の呼吸消費を抑制し、増収へつながるものと考えられる。また、一般に、温度が高いと幼葉や生長点への転流が促進され、低いと果実や根に転流する。夜温が高いと果実への糖の転流が低下し、夜温が低いと果実の糖含量が上昇する。トマトなどの果菜類では、収穫対象である果実への転流が多い方が果実肥大に良好であることから、茎部冷却は果実への転流を促進し増収しているものと考えられる。   In addition, increased sales were observed in the night-cooling treatment. This is thought to be due to the fact that respiratory consumption and commutation are temperature dependent. Plants increase the amount of maintenance respiration at night when photosynthesis is not performed, but the rise in leaf temperature results in an exponential increase with increasing temperature, leading to consumption of photosynthetic assimilation products due to maintenance respiration, and assimilation products for fruit development Leads to a decrease in sales. As described above, stem temperature cooling causes a large decrease in leaf temperature due to transpiration, which is thought to reduce the respiratory consumption of photosynthetic assimilation products present in the leaves, leading to an increase in sales. In general, when the temperature is high, commutation to young leaves and growth points is promoted, and when the temperature is low, commutation to fruits and roots occurs. When the night temperature is high, the translocation of sugar to the fruit decreases, and when the night temperature is low, the sugar content of the fruit increases. In fruits and vegetables such as tomatoes, it is considered that stalk cooling promotes the translocation to the fruit and increases the yield because the more the commutation to the fruit to be harvested, the better the fruit enlargement.

以上のことから、トマトにおいては、夏季の高温期において、冷却処理開始時期は、出蕾や開花よりも早い花芽の分化発達する時期から行うことが望ましい。トマトのような果実生産では花芽の発達する時期から処理することで花芽の発育形成を充実させることができ、果実収穫量を増加することにつながるからである。試験では、本葉6枚期から冷却処理した。葉温の低下や増収効果が認められていることから、トマトでは展開葉6枚期以降から処理開始時期とする。処理期間は、葉温の適温域への制御による同化産物および収穫量の増加する原理であると推察されることから、収穫が終わる時期まで継続して行うことが好ましい。また、処理時期は、東北地域では強日射の影響が強くなる6〜9月が冷却処理に適する。特に、晴天日の葉温は日射があたることで気温よりも高くなるため、葉温を低下する必要がある時期である。   From the above, in tomatoes, it is desirable to start the cooling treatment in the summer high temperature period from the time when the flower buds are differentiated and developed earlier than bud and flowering. This is because in the production of fruits such as tomatoes, the development of flower buds can be enhanced by processing from the time of flower bud development, leading to an increase in fruit yield. In the test, cooling treatment was performed from the 6th leaf of the main leaf. Since the decrease in leaf temperature and the effect of increasing the yield are recognized, in tomato, the treatment start time is set from the 6th leaf stage onwards. The treatment period is presumed to be a principle that increases the amount of assimilated products and the yield by controlling the leaf temperature to an appropriate temperature range, and therefore it is preferable to continue the treatment until the end of harvest. In addition, in the Tohoku region, June to September when the influence of strong solar radiation is strong is suitable for the cooling process. In particular, it is a time when the leaf temperature needs to be lowered because the leaf temperature on a sunny day becomes higher than the temperature due to solar radiation.

尚、上記実施の形態において、高温期所定温度Ta,低温期所定温度Tb及び熱交換部材10の温度Tx,Tyは、上述した数値に限定されるものではなく、適宜に設定してよいことは勿論である。また、上記実施の形態に係る栽培装置Sにおいて、温度調整部21は、液体を貯留する液体タンク26と、この液体タンク26内の液体の温度を所定の温度にするヒートポンプ27とから構成し、液体を循環させるように構成したが、必ずしもこれに限定されるものではなく、例えば、温度調整部21を、比較的温度が安定した地下水を供給する供給源として構成し、ポンプ23で送られた地下水は排水するように構成してもよく、適宜変更して差支えない。更に、上記実施の形態においては、冷熱付与手段20と温熱付与手段30とを別々に設けたが、必ずしもこれに限定されるものではなく、1つに統合し、温度調整部21により所要の温度に調整できるようにしても良く、適宜変更して差支えない。しかしながら、極端な温度変化があるような場合には、冷熱付与手段20と温熱付与手段30との2系統にしておくことが望ましい。   In the above embodiment, the high temperature period predetermined temperature Ta, the low temperature period predetermined temperature Tb, and the temperature Tx, Ty of the heat exchange member 10 are not limited to the above-described numerical values, and may be set appropriately. Of course. Moreover, in the cultivation apparatus S which concerns on the said embodiment, the temperature adjustment part 21 is comprised from the liquid tank 26 which stores a liquid, and the heat pump 27 which makes the temperature of the liquid in this liquid tank 26 predetermined | prescribed temperature, Although it was configured to circulate the liquid, it is not necessarily limited to this. For example, the temperature adjustment unit 21 is configured as a supply source for supplying groundwater having a relatively stable temperature, and is sent by the pump 23. The groundwater may be configured to drain and can be changed as appropriate. Furthermore, in the above-described embodiment, the cold energy applying means 20 and the heat energy applying means 30 are provided separately, but the present invention is not necessarily limited to this, and the temperature adjusting unit 21 integrates them into a required temperature. It may be possible to make adjustments, and may be changed as appropriate. However, when there is an extreme temperature change, it is desirable to use two systems, that is, the cold heat applying means 20 and the heat applying means 30.

また、上記実施の形態においては、本栽培方法をトマトに適用したが、必ずしもこれに限定されるものではなく、葉を有した茎の葉節間に花房を生じる植物であれば、どのような植物に適用して良いことは勿論である。   Moreover, in the said embodiment, although this cultivation method was applied to tomato, it is not necessarily limited to this, As long as it is a plant which produces a flower cluster between the leaf nodes of the stem which has a leaf, what kind of thing Of course, it may be applied to plants.

S 植物の栽培装置
P 植物
1 葉
1a 葉節
2 茎
3 花房
3a 基端
10 熱交換部材
11 熱交換パイプ
20 冷熱付与手段
21 温度調整部
23 ポンプ
28 戻し管路
29 排出管
30 温熱付与手段
31 温度調整部
33 ポンプ
38 戻し管路
39 3方向切換え電磁弁
40 温度センサ
41 制御部
42 所定温度記憶手段
43 切換え作動手段
Ta 高温期所定温度
Tb 低温期所定温度
Tx,Ty 熱交換部材の温度
S Plant Cultivation Device P Plant 1 Leaf 1a Leaf Node 2 Stem 3 Inflorescence 3a Base 10 Heat Exchange Member 11 Heat Exchange Pipe 20 Cold Heating Means 21 Temperature Adjusting Unit 23 Pump 28 Return Pipe 29 Discharge Pipe 30 Heat Heating Means 31 Temperature Adjustment unit 33 Pump 38 Return line 39 Three-way switching solenoid valve 40 Temperature sensor 41 Control unit 42 Predetermined temperature storage unit 43 Switching operation unit Ta High temperature period predetermined temperature Tb Low temperature period predetermined temperature Tx, Ty Temperature of heat exchange member

Claims (15)

培地から伸び葉を有した茎の葉節間に花房を生じる植物の栽培方法において、
液体が流される熱交換パイプで構成されるとともに上記茎の所要長さ範囲に亘り且つ少なくとも何れか1つの花房の柄の基端を通って該茎に接触させられ該茎との熱交換を行う熱交換部材と、上記熱交換パイプで構成される熱交換部材に上記液体を流す機能を備え該熱交換部材に対して上記茎の表面温度よりも低い温度の冷熱を付与可能な冷熱付与手段とを備えた植物の栽培装置を用い、
上記熱交換部材を、茎のうち、少なくとも、収穫対象となる最下位の花房の柄の基端より下に位置する下部位から、収穫対象となる最上位の花房の柄の基端より上に位置する上部位に亘る範囲に接触させ、高温期に、上記冷熱付与手段により該茎を冷却しながら栽培することを特徴とする植物の栽培方法。
In a method for cultivating a plant that produces inflorescences between leaf nodes of a stem having elongated leaves from a medium,
It is composed of a heat exchange pipe through which a liquid flows and is in contact with the stem over the required length range of the stem and through the proximal end of at least one inflorescence handle to exchange heat with the stem. a heat exchange member, and the lower temperature cold heat applying means capable impart cold than the surface temperature of the stem with respect to the heat exchange member having a function of supplying the liquid to the constructed heat exchange member in said heat exchange pipes Using a plant cultivation device equipped with
Above the stem, at least from the lower part of the stem located below the base end of the handle of the lowest flower bud to be harvested and above the base end of the handle of the uppermost flower bud to be harvested A method for cultivating a plant, wherein the plant is brought into contact with a range extending over an upper region, and the stem is cultivated while cooling the stem by the above-mentioned cold heat application means in a high temperature period.
上記茎の温度が高温期における高温期所定温度Ta以上のとき、上記冷熱付与手段を作動させるようにし、上記高温期所定温度Taを15℃≦Ta≦35℃に設定し、上記熱交換部材の温度Txを、10℃≦Tx≦20℃にしたことを特徴とする請求項1記載の植物の栽培方法。   When the temperature of the stem is equal to or higher than the predetermined temperature Ta during the high temperature period, the cooling application means is operated, the predetermined temperature Ta during the high temperature period is set to 15 ° C. ≦ Ta ≦ 35 ° C., 2. The plant cultivation method according to claim 1, wherein the temperature Tx is set to 10 ° C. ≦ Tx ≦ 20 ° C. 上記冷熱付与手段から切換えられて用いられ、上記熱交換部材に対して上記茎の表面温度よりも高い温度の温熱を付与可能な温熱付与手段を備えた植物の栽培装置を用い、
低温期には、上記温熱付与手段により該茎を加温しながら栽培することを特徴とする請求項1または2記載の植物の栽培方法。
Using the plant cultivation apparatus provided with a heat application means that can be used by being switched from the cold heat application means, and capable of applying a temperature higher than the surface temperature of the stem to the heat exchange member,
The plant cultivation method according to claim 1 or 2, wherein in the low temperature period, the stem is cultivated while being heated by the heat application means.
上記茎の温度が低温期における低温期所定温度Tb以下のとき、上記温熱付与手段を作動させるようにし、上記低温期所定温度Tbを5℃≦Tb≦28℃、且つ、Tb<Taに設定し、上記熱交換部材の温度Tyを、20℃≦Ty≦35℃にしたことを特徴とする請求項3記載の植物の栽培方法。 When the temperature of the stem is equal to or lower than the predetermined temperature Tb in the low temperature period, the heat application means is operated, and the predetermined temperature Tb in the low temperature period is set to 5 ° C. ≦ Tb ≦ 28 ° C. and Tb <Ta. The plant cultivation method according to claim 3 , wherein the temperature Ty of the heat exchange member is 20 ° C. ≦ Ty ≦ 35 ° C. 上記下部位を、上記最下位の花房の柄の基端以下にある葉の柄の基端よりも下に設定し、上記上部位を、上記最上位の花房の柄の基端以上にある葉の柄の基端よりも上に設定したことを特徴とする請求項1乃至4何れかに記載の植物の栽培方法。   The lower part is set below the base end of the handle of the leaf located below the base end of the handle of the lowermost inflorescence, and the upper part is a leaf above the base end of the handle of the uppermost end of the tuft. The plant cultivation method according to any one of claims 1 to 4, wherein the plant is set above the base end of the handle. 上記植物が、トマトである場合、上記熱交換部材を、少なくとも、第6葉節から第26葉節に亘る範囲に接触させたことを特徴とする請求項5記載の植物の栽培方法。 6. The plant cultivation method according to claim 5, wherein when the plant is a tomato, the heat exchange member is brought into contact with at least a range from the sixth leaf node to the 26th leaf node. 培地から伸び葉を有した茎の葉節間に花房を生じる植物を栽培する植物の栽培装置において、
液体が流される熱交換パイプで構成されるとともに上記茎の所要長さ範囲に亘り且つ少なくとも何れか1つの花房の柄の基端を通って該茎に接触させられ該茎との熱交換を行う熱交換部材と、上記熱交換パイプで構成される熱交換部材に上記液体を流す機能を備え該熱交換部材に対して上記茎の表面温度よりも低い温度の冷熱を付与可能な冷熱付与手段とを備えたことを特徴とする植物の栽培装置。
In the plant cultivation apparatus for cultivating plants that produce inflorescences between the leaf nodes of a stem having elongated leaves from the medium,
It is composed of a heat exchange pipe through which a liquid flows and is in contact with the stem over the required length range of the stem and through the proximal end of at least one inflorescence handle to exchange heat with the stem. a heat exchange member, and the lower temperature cold heat applying means capable impart cold than the surface temperature of the stem with respect to the heat exchange member having a function of supplying the liquid to the constructed heat exchange member in said heat exchange pipes A plant cultivation apparatus comprising:
上記冷熱付与手段を、液体を所定の温度範囲に調整する温度調整部と、該温度調整部で調整された液体を送出管を介して上記パイプの入口に送出するポンプとを備えて構成したことを特徴とする請求項7記載の植物の栽培装置。 The cooling heat applying means includes a temperature adjusting unit that adjusts the liquid to a predetermined temperature range, and a pump that sends the liquid adjusted by the temperature adjusting unit to the inlet of the pipe via the sending pipe. The plant cultivation apparatus according to claim 7 . 上記パイプの出口からの液体を上記温度調整部に戻す戻し管路を備え、液体を循環させることを特徴とする請求項8記載の植物の栽培装置。 The plant cultivation apparatus according to claim 8 , further comprising a return pipe for returning the liquid from the outlet of the pipe to the temperature adjusting unit, and circulating the liquid. 上記冷熱付与手段から切換えられて用いられ、上記熱交換部材に対して上記茎の表面温度よりも高い温度の温熱を付与可能な温熱付与手段を備えたことを特徴とする請求項7乃至9何れかに記載の植物の栽培装置。 10. The heat application device according to claim 7, further comprising a heat application device that is used by being switched from the cold energy application device and capable of applying a temperature higher than a surface temperature of the stem to the heat exchange member. The plant cultivation apparatus of crab . 上記温熱付与手段を、液体を所定温度に調整する温度調整部と、該温度調整部で調整された液体を送出管を介して上記パイプの入口に送出するポンプとを備えて構成したことを特徴とする請求項10記載の植物の栽培装置。 The temperature applying means includes a temperature adjusting unit that adjusts the liquid to a predetermined temperature, and a pump that sends the liquid adjusted by the temperature adjusting unit to the inlet of the pipe via a sending pipe. The plant cultivation apparatus according to claim 10 . 上記パイプの出口からの液体を上記温度調整部に戻す戻し管路を備え、液体を循環させることを特徴とする請求項11記載の植物の栽培装置。 The plant cultivation apparatus according to claim 11 , further comprising a return conduit for returning the liquid from the outlet of the pipe to the temperature adjusting unit, and circulating the liquid. 上記茎の表面温度を検知する温度センサと、該温度センサの温度検知に基づいて上記冷熱付与手段及び上記温熱付与手段の作動,停止制御を行う制御部とを備えたことを特徴とする請求項10乃至12何れかに記載の植物の栽培装置。 Claims, characterized in that it comprises a temperature sensor for detecting the surface temperature of the stem, the operation of the cold heat applying means and the heat imparting means based on the temperature detection of the temperature sensor, and a control unit for performing stop control The plant cultivation apparatus according to any one of 10 to 12 . 上記制御部は、高温期における高温期所定温度及び該高温期所定温度よりも低い低温期における低温期所定温度を記憶する所定温度記憶手段と、上記温度センサが検知した温度が上記所定温度記憶手段が記憶した高温期所定温度以上になったとき上記冷熱付与手段を作動させ上記温熱付与手段を停止させる一方、上記温度センサが検知した温度が上記所定温度記憶手段が記憶した低温期所定温度以下になったとき上記温熱付与手段を作動させ上記冷熱付与手段を停止させる切換え作動手段とを備えたことを特徴とする請求項13記載の植物の栽培装置。 The control unit includes a predetermined temperature storage means for storing a predetermined temperature during a high temperature period and a predetermined temperature during a low temperature period lower than the predetermined temperature during the high temperature period, and the temperature detected by the temperature sensor is the predetermined temperature storage means. When the temperature is higher than the predetermined temperature stored in the high temperature period, the cooling application means is operated to stop the heating application means, while the temperature detected by the temperature sensor is equal to or lower than the low temperature predetermined temperature stored in the predetermined temperature storage means. 14. The plant cultivation apparatus according to claim 13, further comprising a switching operation unit that operates the heat application unit and stops the cold application unit when the temperature has been reached. 上記切換え作動手段は、上記温度センサが検知した温度が上記所定温度記憶手段が記憶した低温期所定温度を越え高温期所定温度に満たない間は、上記温熱付与手段及び上記冷熱付与手段をいずれも停止させる機能を備えたことを特徴とする請求項14記載の植物の栽培装置。 While the temperature detected by the temperature sensor exceeds the low temperature period predetermined temperature stored in the predetermined temperature storage means and does not reach the high temperature period predetermined temperature, the switching operation means is configured to switch both the heat application means and the heat application means. The plant cultivation apparatus according to claim 14, comprising a function of stopping.
JP2014051011A 2014-03-14 2014-03-14 Plant cultivation method and plant cultivation apparatus Expired - Fee Related JP6369827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014051011A JP6369827B2 (en) 2014-03-14 2014-03-14 Plant cultivation method and plant cultivation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051011A JP6369827B2 (en) 2014-03-14 2014-03-14 Plant cultivation method and plant cultivation apparatus

Publications (2)

Publication Number Publication Date
JP2015173612A JP2015173612A (en) 2015-10-05
JP6369827B2 true JP6369827B2 (en) 2018-08-08

Family

ID=54253418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051011A Expired - Fee Related JP6369827B2 (en) 2014-03-14 2014-03-14 Plant cultivation method and plant cultivation apparatus

Country Status (1)

Country Link
JP (1) JP6369827B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106069099A (en) * 2016-06-29 2016-11-09 固镇县华原家庭农场 A kind of implantation methods of Abelmoschus esculentus
CN106258366B (en) * 2016-08-11 2019-04-09 山东省农业科学院蔬菜花卉研究所 A method of promote female series cucumber variety persistently to sit melon
CN107711339A (en) * 2017-10-31 2018-02-23 桐梓县茅石乡龙会村蔬菜种植场 A kind of cherry tomato implantation methods
CN107996338A (en) * 2018-01-03 2018-05-08 昆明福豆贸易有限公司 A kind of implantation methods of navy bean
CN108739128A (en) * 2018-05-03 2018-11-06 佛山科学技术学院 A kind of implantation methods of cherry tomato and its application
JP2021108585A (en) * 2020-01-10 2021-08-02 株式会社大林組 Farm product cultivation support apparatus, farm product cultivation system, and farm product cultivation support method
JP2022127228A (en) * 2021-02-19 2022-08-31 国立研究開発法人農業・食品産業技術総合研究機構 Environmental information acquisition device
WO2023041474A1 (en) * 2021-09-14 2023-03-23 Signify Holding B.V. A system and method for controlling plant growth
CN115176653B (en) * 2022-06-17 2023-08-18 凯盛浩丰农业有限公司 Multi-head seedling raising method for tomatoes
CN116671383A (en) * 2023-07-20 2023-09-01 华中农业大学 Method for rapid flower formation of kumquat plants through temperature regulation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174835A (en) * 1974-12-24 1976-06-29 Kubota Ltd Shokubutsusaibaino netsukokansochi
JPS63185316A (en) * 1987-01-28 1988-07-30 株式会社日立製作所 Organism growing apparatus
JPH0966A (en) * 1995-06-22 1997-01-07 Susumu Kiyokawa Tree growing method and apparatus therefor
JP4649622B2 (en) * 2005-11-21 2011-03-16 国立大学法人 千葉大学 Method and apparatus for promoting fruit and growth of cultivated plants
JP4888847B2 (en) * 2006-03-28 2012-02-29 福岡県 Eggplant cultivation method
US7845109B2 (en) * 2007-10-10 2010-12-07 Jeffery Lynn Peterson Chemical application line
JP5603669B2 (en) * 2009-11-12 2014-10-08 出光興産株式会社 Temperature control method for plant cultivation, temperature control device for plant cultivation, unit for plant cultivation, and plant for plant cultivation
US20130111811A1 (en) * 2010-06-25 2013-05-09 Sharp Kabushiki Kaisha Apparatus for cooling plant

Also Published As

Publication number Publication date
JP2015173612A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6369827B2 (en) Plant cultivation method and plant cultivation apparatus
KR101231624B1 (en) agreculture apparatus
CN105613199B (en) A kind of method for culturing seedlings of tea tree
WO2007058347A1 (en) Method of promoting fruit setting and growth of cultivated plant and apparatus for promoting fruit setting and growth
JP6306384B2 (en) Method for controlling irrigation supply in plant cultivation and controller thereof
Kubota et al. Greenhouse tomato production.
Murali et al. Hydroponics
CN109121774A (en) A kind of method of Tomato Grafting nursery
KR101199872B1 (en) House for ginseng growing and grow method of ginseng using the same
CN105724203B (en) A kind of three-dimensional mist water spray training flower culture method
JP6029104B2 (en) Control method of leaf blight of eustoma by rhizosphere temperature control
Grigas et al. Hydroponic devices for green fodder production: a review
CN107027404A (en) A kind of culture apparatus accurately controlled for root system of plant temperature
CN109258342A (en) A kind of growth of watermelon method
CN104472275A (en) Temperature regulating and controlling device and breeding method for breeding detoxified seedlings by seedbed in winter
CN110558215A (en) Organic vegetable cultivation method, cultivation tank used by same and application of cultivation tank
KR20180054239A (en) Smart-farm system for Sprout ginseng
CN209660063U (en) A kind of greenhouse gardening cultivation is complementary to support system altogether
JP6503865B2 (en) Plant cultivation equipment
CN204392981U (en) A kind of winter, the temperature control device of virus-elimination seedlings was bred in seedbed
Santosh et al. Advances in Hydroponic Systems: Types and Management
Stanghellini et al. Steering of fogging: control of humidity, temperature or transpiration?
JP3940305B2 (en) Soil disinfection method
JP2003310068A (en) Method for solution culture of deciduous fruit tree
JP7080153B2 (en) How to grow crops in a house

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180703

R150 Certificate of patent or registration of utility model

Ref document number: 6369827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees