JP3940305B2 - Soil disinfection method - Google Patents

Soil disinfection method Download PDF

Info

Publication number
JP3940305B2
JP3940305B2 JP2002069174A JP2002069174A JP3940305B2 JP 3940305 B2 JP3940305 B2 JP 3940305B2 JP 2002069174 A JP2002069174 A JP 2002069174A JP 2002069174 A JP2002069174 A JP 2002069174A JP 3940305 B2 JP3940305 B2 JP 3940305B2
Authority
JP
Japan
Prior art keywords
soil
hot water
temperature
water supply
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002069174A
Other languages
Japanese (ja)
Other versions
JP2003265050A (en
Inventor
勇二 藤本
三一 川本
典夫 石黒
Original Assignee
明伸興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明伸興産株式会社 filed Critical 明伸興産株式会社
Priority to JP2002069174A priority Critical patent/JP3940305B2/en
Publication of JP2003265050A publication Critical patent/JP2003265050A/en
Application granted granted Critical
Publication of JP3940305B2 publication Critical patent/JP3940305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catching Or Destruction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、圃場の土壌を消毒するための土壌消毒方法に関するものである。
【0002】
【従来の技術】
従来の土壌消毒方法として、耕地土壌に小麦皮のフスマを1000m2 当たり深さ15cmに1〜2t投入して耕起し、直ちに100mm程度の灌水を行い、最後にビニールシートによる被覆を行うものがある。
【0003】
上記の土壌消毒方法によれば、前記ビニールシートによる被覆を行った状態で放置しておくだけで、土壌殺菌ができるのである。すなわち、前記フスマの腐敗に伴い土壌中の酸素が消費され、作物に害をなす微生物が酸素不足に陥り死滅するのである。
【0004】
【発明が解決しようとする課題】
しかし、上記の土壌消毒方法では、土壌の温度を25℃以上(好ましくは30℃以上)に保持する必要があるため、この条件を満たす時期(例えば、夏期などの気温が高い時期)や場所でなければ実施できないという問題があった。
【0005】
また、前記土壌消毒方法では、前記圃場の容水量が26%以上必要であり、この値を維持できる圃場でなければ実施できないという問題もあった。
【0006】
本発明は、かゝる実情に鑑みてなされたものであって、その目的は、土壌温度を原因とする時期や場所についての制限および圃場の容水量についての制限を受けずに実施できる土壌消毒方法を提供することである。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明の土壌消毒方法は、土壌に対して、未分解有機物を投入し、灌水を行った後、土壌の上面を密閉体で被覆した状態で、土壌の温度をほぼ30℃以上に保持することにより、未分解有機物の腐敗に伴い土壌中の酸素が消費されながら土壌の還元消毒が行われる土壌消毒方法であって、多数の孔を有する複数の灌水管を土 壌の表面に配置して前記灌水を行い、前記密閉体による被覆を行った状態で、土壌中の温度を検知し、土壌中の温度が前記温度よりも低くなったときに、前記孔から土壌に対して45〜60℃の温湯の供給を行い、土壌中の温度をほぼ30℃以上に維持するようにしたことを特徴としている(請求項1)。
【0008】
【0009】
上記の構成によれば、土壌温度を原因とする時期や場所についての制限および圃場の容水量についての制限を受けずに実施できる土壌消毒方法を提供することが可能となる。
【0010】
また、土壌に対して最低限必要な量だけ温湯を供給すればよく、温湯の供給量や水を温湯にするための加熱に必要なエネルギー量を抑えることが可能となる。
【0011】
また、前記密閉体を、水分の透過を遮断する遮断層と、密閉体に保温性を持たせるための保温層とを含む多層構造とするとしてもよい(請求項)。この場合には、土壌の温度低下を効果的に防止することができ、水を温湯にするための加熱に必要なエネルギー量をより少なくすることが可能となる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の一実施例に係る土壌消毒方法の構成を概略的に示す説明図、図2は、前記土壌消毒方法の要部の構成を概略的に示す縦断面図である。
前記土壌消毒方法は、耕地土壌などの土壌1に対して、未分解有機物としての小麦皮のフスマを、深さ10〜20cm(例えば、15cm)の範囲に1000m2 当たり1〜2t投入して十分に耕起(耕うん)し、直ちに50〜150mm(例えば、100mm)程度の灌水を行った後、土壌1の上面(表面)を密閉体3で被覆した状態とし、この状態で、前記土壌1に対して温湯2の供給を行うものである。
【0013】
また、前記土壌消毒方法では、多数の孔を有する複数の灌水管4,4…を土壌1の表面に配置し、前記孔から土壌1に対する温湯2の供給を行うのであり、さらに、この土壌1に対する温湯2の供給は、土壌1中の温度を常時または一定時間ごとに検知(モニタリング)し、その温度が所定の温度(例えば、25℃、好ましくは30℃)以下となったときに行うのである。
【0014】
そして、前記土壌消毒方法は、水の供給源(図示せず)から給水配管5を通って送られてきた水を加熱するための加熱部6と、この加熱部6からの温湯を土壌に供給するための温湯供給部7と、土壌1中に配置される温度センサ8と、この温度センサ8からの信号に基づいて前記加熱部6から温湯供給部7へ送られる温湯の流量を制御する制御部9とを備えた土壌消毒装置Dを用いて実施される。
【0015】
前記土壌1に対して供給される温湯2の温度は、例えば、45〜60℃(本実施例では50℃)である。
【0016】
前記未分解有機物としては、前記小麦皮のフスマ以外に、例えば、コヌカやサトウキビ粕などを用いてもよい。
【0017】
前記密閉体3は、シート状に形成されており、水分の透過を遮断する遮断層3aと、密閉体3に保温性を持たせるための保温層3bとを含む多層構造となっている。そして、前記密閉体3は、前記遮断層3aが一番下側になるように配置・構成されている。なお、密閉体3を、前記保温層3bが一番下側になるように配置・構成してもよい。
【0018】
前記遮断層3aは、例えば、ビニールシートからなり、前記保温層3bは、保温性に優れた材料をシート状に形成してなる。なお、前記保温層3bは、空気層であってもよく、この場合には、例えば、前記遮断層3aを二層設け、この二つの遮断層3a,3aの間に空気層を形成するようにすればよい。
【0019】
前記灌水管4は、耐熱性および耐腐食性を有している。なお、灌水管4は、例えば、可撓性を有する合成樹脂製のホース(チューブ)を用いて形成してもよいし、可撓性を有しない金属製の配管を用いて形成してもよい。
【0020】
また、各灌水管4からの灌水は、前記孔から温湯を導出することによって行うのであるが、本実施例では、前記孔から温湯を点滴(滴下)するように構成してある。このような構成によって、土壌に対する温湯の灌水をより満遍なく行うことが可能となる。
【0021】
前記加熱部6は、水を加熱するための加熱手段として、石油を燃焼させる手段を有するボイラ(図示せず)によって構成されている。なお、加熱部6は上記の構成からなるボイラに限るものではなく、例えば、水を加熱するための加熱手段として、ガスを燃焼させる手段(図示せず)を有するいわゆるガス式瞬間湯沸器等の湯沸器などであってもよく、この場合には、図1に示すように、前記ガスを加熱部6に供給するためのガスボンベ6aを加熱部6に接続してもよい。
【0022】
そして、前記加熱部6は、その内部から導出する温湯の温度が、例えば、45〜60℃(本実施例では50℃)となるように構成されている。
【0023】
前記温湯供給部7は、土壌1上において、互いにほぼ平行となるように例えば50cm間隔で配置・載置された複数の前記灌水管4,4…と、各灌水管4の一端(上流端)が接続される給湯配管10とを備えている。
【0024】
前記給湯配管10は、連結配管11を介して前記加熱部6に接続されているのであり、この加熱部6からの温湯2が連結配管11を経た後に給湯配管10に至り、そして、給湯配管10に至った温湯が温湯供給部7に送られ、最後に、温湯供給部7の各灌水管4の孔から土壌1に対して温湯2が供給されることになる。
【0025】
なお、前記給湯配管10および連結配管11は、前記灌水管4と同様に、いずれも耐熱性および耐腐食性を有している。
【0026】
また、前記連結配管11の上流部分には、その内部を流れる温湯の流量を調整する流量調整部11aが設けられている。ここで、本実施例では、前記流量調整部11aは、二方電磁弁などの弁であり、加熱部6から温湯供給部7に対して温湯2が供給される供給状態と、供給されない停止状態とに切り換えるための切換手段となるものである。なお、前記流量調整部11aを、前記連結配管11など加熱部6の下流側に設けてもよいが、前記給水配管5の下流部分など加熱部6の上流側に設けてもよい。
【0027】
前記温度センサ8は、土壌の深さ10〜20cm(本実施例では、15cm)程度の位置に配置・埋設され、土壌の温度(地温)を常時または一定時間毎に計測し、その計測値を信号にして前記制御部9に出力するように構成されている。
【0028】
前記制御部9は、温度センサ7と、前記加熱部6の下流側に設けられた前記流量調整部11aとに、電気的に接続されている。そして、制御部9は、前記温度センサ7からの出力に基づいて、前記流量調整部11aの制御(例えば流量調整部11aを構成する弁の開閉)を行うのであり、これによって、温湯供給部7に送られる温湯2の流量の調整がなされる。この流量の調整は、本実施例においては、前記供給状態と停止状態との切り換えによってなされる。
【0029】
次に、上記の構成からなる土壌消毒装置Dを用いた前記土壌消毒方法の実施方法について説明する。
まず、土壌1に対して、小麦皮のフスマを、土壌1の表面から深さ15cmまでの範囲に1000m2 当たり1〜2t投入して十分に耕起し、直ちに土壌1に対してその表面に前記温湯供給部7の灌水管4,4…を適宜に配置し、各灌水管4から100mm程度の灌水を行う。ここで、前記灌水には、加熱してない常温のままの水を用いてもよいし、前記加熱部6で加熱した温湯を用いてもよい
【0030】
上記灌水の後、温度センサ8を土壌1の深さ15cmの位置に埋設する。この温度センサ8の埋設は、前記灌水管4,4…の配置と同時に行ってもよい。
【0031】
続いて、前記土壌1の上面(表面)を密閉体3で被覆し、このように被覆を行った状態で土壌1中の温度を所定温度(例えば、30℃)以下とならないように維持することにより、前記フスマを腐敗させるのである。すなわち、土壌1中の温度が所定温度以下となったときには、前記温度センサ8が制御部9に対して信号を送り、この信号に基づいて制御部9が前記流量調整部11aを制御することにより、加熱部6からの温湯2が温湯供給部7に送られ、温湯供給部7の各灌水管4から土壌1に対して温湯2が供給されるのである。
【0032】
上記土壌1に対する温湯2の供給は、所定時間行うようにしてもよい。
【0033】
前記土壌消毒装置Dによる土壌1の温度管理は、一定期間(例えば、15日程度)にわたって行われる。
【0034】
上記の構成からなる土壌消毒方法によれば、温湯2の供給によって土壌1を温め、土壌1の温度低下を防止できるため、土壌温度を原因とする時期や場所(地域)についての制限を受けずに、土壌消毒を実施することが可能である。
【0035】
また、従来の土壌消毒方法では、土壌1の温度が自然環境などから影響を受けるため、ビニールシートの被覆期間が20〜30日必要であったが、本実施例の土壌消毒方法によれば、土壌1の温度を常時30℃以上に維持することができるため、土壌1の還元消毒効果が著しく高まるとともに処理期間を短縮でき、従来の半分の15日以下とすることが可能となる。
【0036】
さらに、上記の構成からなる土壌消毒方法では、未分解有機物(フスマ)の投入直後に灌水(灌水処理)を行うことから、土壌1を還元状態にし、おもに好気性である糸状菌による土壌病害を軽減し、スイカなどのうり類のつる割病やイチゴ萎黄病など種々のフザリウム菌による病害,コムギ条斑病,立枯病,苗立枯病やトマトやホウレンソウの萎凋病,トマト青枯病等の細菌病などに効果があり、線虫の減少も期待できる。特に、前記土壌消毒方法を施設栽培に用いた場合には、灌水処理による除塩の効果もあり、これによる作物根の健全化をも図ることが可能となる。
【0037】
また、上記土壌消毒方法では、土壌1を適温に保ちながら前記密閉体3による密閉(密閉処理)を行うことから、おもに糸状菌による土壌病害も軽減,防除できる。
【0038】
また、上記土壌消毒方法では、前記密閉体3に保温層3bを設けてあることから、土壌1の温度低下を効果的に防止することができる。
【0039】
また、上記土壌消毒方法では、土壌1に対する灌水を容易に行え、容水量の低い土壌1で実施する場合には、灌水量を増やすなどして対応できることから、圃場の容水量についての制限を受けることなく土壌消毒を行うことが可能である。
【0040】
また、上記土壌消毒方法では、土壌1中の温度を検知し、その温度が所定以下となったときに、土壌1に対する温湯2の供給を行うようにしてあることから、土壌1に対して最低限必要な量だけ温湯2を供給すればよく、温湯2の供給量や水を温湯にするための加熱に必要なエネルギー量を抑えることが可能となる。
【0041】
以下に、上記土壌消毒方法の効果を検証するために行った従来の土壌消毒方法(以下、従来法または温水法という)と本実施例の土壌消毒方法(以下、本法という)との比較試験とその結果について述べる。なお、前記従来法は、本法に比して、密閉体3として保温層3bを有しないビニールシートのみを用いている点と、密閉体3による密閉を行っている状態で、土壌1に対して水および温湯の供給を行っていない点でのみ異なるものである。
【0042】
最初に、4月に、ほぼ同じ条件下となる3つのエリアを設け、1番目のエリアでは本法を実施し、2番目のエリアでは従来法を実施し、3番目のエリアには何の処理も行わず、無処理として、それぞれのエリアにおけるホウレンソウ萎凋病の発病株率(%)への影響について調べた。そのときの結果を図3に示す。
【0043】
図3からわかるように、無処理のエリアでは、ホウレンソウ萎凋病の発病株率が90%を超え(約95%)、従来法を実施したエリアでは、無処理のエリアに比べれば発病株率を抑えることができたものの、それでも35%程度の発病株が認められたのに対して、本法を実施したエリアでは、ホウレンソウ萎凋病の発病株率を1〜2%程度に抑えられたのである。すなわち、これにより、土壌消毒についての本法の効果が実証されたこととなる。
【0044】
次に、気温が低い冬(1月)と気温が高い夏(8月)とにそれぞれ本法および従来法を実施し、ホウレンソウ萎凋病の発病株率(%)への影響について調べた。そのときの結果を図4に示す。
【0045】
図4からわかるように、従来法を実施したエリアでは、8月ではホウレンソウ萎凋病の発病株率を10%程度に抑えられるが、1月では85%程度にまで上昇してしまう。これに対して、本法を実施したエリアでは、8月ではホウレンソウ萎凋病の発病株が認められず、1月でも1〜2%程度に抑えられている。すなわち、これにより、土壌温度を原因とする時期や場所(地域)についての制限を受けずに、土壌消毒を実施することが可能であるという本法の効果が実証されたこととなる。
【0046】
次に、ほぼ同じ条件下となる3つのエリアを設け、1番目のエリアでは本法を実施し、2番目のエリアでは従来法を実施し、3番目のエリアには何の処理も行わず、無処理として、それぞれのエリアにおける土壌の温度(℃)について調べた。そのときの結果を図5に示す。
【0047】
図5からわかるように、無処理のエリアでは、土壌の温度が25℃以上となることがほとんどなく、15℃付近にまで下がることもあり、従来法を実施したエリアでは、ビニールシートによる密閉の効果により、無処理のエリアに比べれば土壌の温度を上げることができたものの、それでも25℃以下となることが多いのに対して、本法を実施したエリアでは、前記温湯2の供給と密閉体3の保温効果とによって、土壌の温度をほぼ30℃以上に維持できたのである。すなわち、これにより、土壌の保温効果についての本法の効果が実証されたこととなる。
【0048】
次に、ほぼ同じ条件下となる3つのエリアを設け、1番目のエリアでは本法を15日間実施し、2番目のエリアでは従来法を30日間実施し、3番目のエリアには何の処理も行わず、無処理として、それぞれのエリアにおけるトマト萎凋病の発病株率(%)への影響について調べた。そのときの結果を図6に示す。
【0049】
図6からわかるように、無処理のエリアでは、トマト萎凋病の発病株率が40%を超え(約46%)、従来法を実施したエリアでは、発病株率を1〜2%程度に抑えられ、本法を実施したエリアでは、発病株が認められなかったのである。すなわち、これにより、本法の実施期間を従来法の約半分の15日としても、土壌消毒について従来法と同等ないしより優れた効果を得られることがわかる。
【0050】
次に、ほぼ同じ条件下となる3つのエリアを設け、1番目のエリアでは本法を実施し、2番目のエリアでは従来法を実施し、3番目のエリアには何の処理も行わず、無処理として、それぞれのエリアにおける土壌の容水量(%)について調べた。そのときの結果を図7に示す。
【0051】
図7からわかるように、無処理のエリアでは、土壌の容水量が25%を上回ることがほとんどなく、従来法を実施したエリアでも、土壌の容水量は無処理のエリアとそれほど変わらないが、本法を実施したエリアでは、土壌の容水量が35%以上を維持していることがわかる。すなわち、これにより、土壌の容水量を上昇させることができるという本法の効果が実証されたことになる。
【0052】
なお、上記実施例において、前記温度センサ8を、土壌消毒を行おうとする土壌1のエリアに対してそのエリアの例えば中央に一つのみを設けてもよいが、前記土壌1のエリアが大きい場合などには、複数の温度センサ8,8…を設けて、これらの温度センサ8,8…を適宜に分散させて土壌1のエリアに配置するとともに、各温度センサ8を前記制御部9に電気的に接続するようにしてもよい。このように複数の温度センサ8,8…を設けた場合、前記制御部9が前記制御を行うためのきっかけとなるトリガーとしては、例えば、複数の温度センサ8のいずれかからの制御部9に対する最初の出力(信号)としてもよいし、2番目以降のいずれかの出力(信号)としてもよいし、また、全体のほぼ半分の温度センサ8,8…から出力信号が送られた状態となったときとしてもよい。
【0053】
また、上記実施例では、前記温度センサ8が、常時または一定時間毎に土壌1の温度を計測し、その計測値を信号にして制御部9に出力するように構成されているが、このような構成に限るものではなく、例えば、温度センサ8が、常時または一定時間毎に土壌1の温度を計測し、この温度が所定温度以下となったときに、その対応を促すための検知信号を制御部9に出力するようにし、制御部9は、前記検知信号の入力に基づき、加熱部6から温湯2を温湯供給部7へと送るような制御を行うようにしてもよい。また、温度センサ8が、常時または一定時間毎に、土壌1の温度を計測するとともに制御部9を待機させておくための待機信号を制御部9に出力し、前記土壌1の温度が所定温度以下となったときに、制御部9に対する待機信号の出力を停止するようにし、制御部9は、前記待機信号の出力の停止に基づき、加熱部6から温湯2を温湯供給部7へと送るような制御を行うようにしてもよい。
【0054】
さらに、上記実施例において、前記加熱部6に送られる水を加熱部6の上流側で加熱することにより、加熱部6による水の加熱を補助するための加熱補助部12を設けてもよい。前記加熱補助部12は、例えば、水(湯)を貯留しておく貯留部(図示せず)と、この貯留部内の水を加熱するための図示しない電熱線(コイルヒータ)と、太陽光線のエネルギーを電力にかえ、この電力を前記電熱線に供給するための太陽電池部12aとを備えた装置によって構成できる。また、この装置は、前記貯留部内の水(湯)を保温する手段や、前記太陽電池部12aによって得られる電力を蓄電する蓄電部などを有しておいてもよい。
【0055】
また、前記加熱補助部12は、下流端が加熱部6に接続される給水配管5の途中に設けてもよいが、この給水配管5の下流端が連結される他の給水配管5’中に設けてもよく、この場合には、二つの給水配管5,5’の連結部分に、給水配管5からの水と給水配管5’からの湯とを適宜に混合して、加熱部6側へと送る湯を適温とするための温度調整バルブを内蔵する温度調整部13を設ければよい。さらに、昼間の時間帯など、前記加熱補助部12が水を十分に加熱できる時間がある場合、その時間には、前記加熱部6を駆動しなくともよい。
【0056】
また、上記実施例では、密閉体3を、遮断層3aと保温層3bとを含む多層構造としているが、このような構成に限るものではなく、例えば、密閉体3を遮断層3aのみを含む一層構造としてもよい。この場合には、前記密閉体3を、ビニールシートなどの一枚のシート状体のみによって構成することが可能となる。
【0057】
【発明の効果】
以上説明したように、本発明によれば、土壌温度を原因とする時期や場所についての制限および圃場の容水量についての制限を受けずに実施できる土壌消毒方法を提供することが可能となる。また、土壌に対して最低限必要な量だけ温湯を供給すればよく、温湯の供給量や水を温湯にするための加熱に必要なエネルギー量を抑えることが可能となる。
【0058】
また、本発明の土壌消毒方法は、ビニールハウスなどの施設内で栽培される作物(例えば、トマト,キュウリ,ホウレンソウなど)についての例えば連作を原因とする土壌病害だけでなく、野外の路地圃場で栽培される作物(例えば、ダイコン,ナス,ナシ,リンゴ,キャベツなど)についての例えば連作を原因とする土壌病害や、果樹の改植にともなう土壌消毒等にも適用することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る土壌消毒方法の構成を概略的に示す説明図である。
【図2】 上記実施例の要部の構成を概略的に示す縦断面図である。
【図3】 ホウレンソウ萎凋病の発病抑制効果について、本法,従来法および無処理の3つの土壌消毒方法を比較した結果を概略的に示すグラフである。
【図4】 ホウレンソウ萎凋病の発病抑制効果について、1月および8月に本法および従来法の2つの土壌消毒方法をそれぞれ比較した結果を概略的に示すグラフである。
【図5】 土壌の保温効果について、本法,従来法および無処理の3つの土壌消毒方法を比較した結果を概略的に示すグラフである。
【図6】 トマト萎凋病の発病抑制効果について、本法,従来法および無処理の3つの土壌消毒方法を、処理日数を変えて実施することにより比較した結果を概略的に示すグラフである。
【図7】 土壌容水量の変化について、本法,従来法および無処理の3つの土壌消毒方法を比較した結果を概略的に示すグラフである。
【符号の説明】
1…土壌、2…温湯、3…密閉体、4…灌水管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soil disinfecting method for disinfecting soil in a field, for example.
[0002]
[Prior art]
As a conventional soil disinfection method, wheat bran bran is put into cultivated soil for 1 to 2 tons at a depth of 15 cm per 1000 m 2 , irrigated about 100 mm immediately, and finally covered with a vinyl sheet. is there.
[0003]
According to the soil disinfection method described above, soil sterilization can be performed simply by leaving it in a state of being covered with the vinyl sheet. That is, oxygen in the soil is consumed with the decay of the bran, and microorganisms that are harmful to the crop fall into oxygen deficiency and die.
[0004]
[Problems to be solved by the invention]
However, in the soil disinfection method described above, the soil temperature needs to be maintained at 25 ° C. or higher (preferably 30 ° C. or higher). There was a problem that it could not be implemented without it.
[0005]
Further, the soil disinfecting method requires a water volume of 26% or more in the field, and there is a problem that it cannot be performed unless the field can maintain this value.
[0006]
The present invention has been made in view of such circumstances, and the purpose thereof is soil disinfection that can be carried out without being restricted with respect to the time and place due to the soil temperature and with respect to the water capacity of the field. Is to provide a method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the soil disinfecting method of the present invention, after introducing undegraded organic matter to the soil and irrigating , the soil temperature is covered with a sealed body on the top surface of the soil. Is a soil disinfection method in which the soil is sterilized while oxygen in the soil is consumed due to the decay of undegraded organic matter, and a plurality of irrigation pipes having a large number of holes are provided. performs the watering arranged on the surface of the soil, while subjected to coating with the sealing member, to detect the temperature of the soil, when the temperature of the soil is lower than the temperature, from the holes There line the supply of hot water in the soil in pairs to 45 to 60 ° C., is characterized in that in order to maintain the temperature in the soil to approximately 30 ° C. or higher (claim 1).
[0008]
[0009]
According to said structure, it becomes possible to provide the soil disinfection method which can be implemented without receiving the restriction | limiting about the time and place which makes soil temperature a cause, and the restriction | limiting about the water capacity of a farm field.
[0010]
Further, it suffices Re to supply the minimum necessary amount of hot water with respect to the soil, it is possible to suppress the amount of energy required for heating to the supply amount or water hot water to hot water.
[0011]
The sealed body may have a multilayer structure including a blocking layer that blocks moisture permeation and a heat insulating layer for imparting heat retaining properties to the sealed body (Claim 2 ). In this case, a decrease in the temperature of the soil can be effectively prevented, and the amount of energy required for heating to make the water warm can be reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view schematically showing a configuration of a soil disinfection method according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view schematically showing a configuration of a main part of the soil disinfection method.
The soil disinfection method is sufficient by introducing 1 to 2 t per 1000 m 2 of wheat skin bran as undegraded organic matter into the soil 1 such as arable soil in a range of 10 to 20 cm (for example, 15 cm) in depth. After plowing (plowing) and immediately irrigating about 50 to 150 mm (for example, 100 mm), the top surface (surface) of the soil 1 is covered with the sealed body 3. On the other hand, the hot water 2 is supplied.
[0013]
In the soil disinfection method, a plurality of irrigation tubes 4, 4... Having a large number of holes are arranged on the surface of the soil 1, and hot water 2 is supplied to the soil 1 from the holes. Since the hot water 2 is supplied to the soil when the temperature in the soil 1 is detected (monitored) constantly or at regular intervals, and the temperature falls below a predetermined temperature (for example, 25 ° C., preferably 30 ° C.). is there.
[0014]
And the said soil disinfection method supplies the heating part 6 for heating the water sent through the water supply piping 5 from the supply source (not shown) of water, and the hot water from this heating part 6 to soil. Control for controlling the flow rate of hot water sent from the heating unit 6 to the hot water supply unit 7 based on a signal from the temperature sensor 8, and a temperature sensor 8 disposed in the soil 1. It implements using the soil disinfection apparatus D provided with the part 9. FIG.
[0015]
The temperature of the hot water 2 supplied to the soil 1 is, for example, 45 to 60 ° C. (50 ° C. in this embodiment).
[0016]
As the undecomposed organic matter, in addition to the wheat barn bran, for example, Konuka or sugar cane may be used.
[0017]
The sealing body 3 is formed in a sheet shape, and has a multilayer structure including a blocking layer 3a that blocks moisture permeation and a heat insulating layer 3b that gives the sealing body 3 heat retention. And the said sealing body 3 is arrange | positioned and comprised so that the said interruption | blocking layer 3a may become the lowest side. In addition, you may arrange | position and comprise the sealing body 3 so that the said heat retention layer 3b may become the lowest side.
[0018]
The blocking layer 3a is made of, for example, a vinyl sheet, and the heat retaining layer 3b is formed by forming a material having excellent heat retaining properties into a sheet shape. The heat insulating layer 3b may be an air layer. In this case, for example, two blocking layers 3a are provided, and an air layer is formed between the two blocking layers 3a and 3a. do it.
[0019]
The irrigation pipe 4 has heat resistance and corrosion resistance. The irrigation pipe 4 may be formed using, for example, a flexible synthetic resin hose (tube) or a metal pipe having no flexibility. .
[0020]
In addition, irrigation from each irrigation pipe 4 is performed by deriving hot water from the hole. In this embodiment, the hot water is instilled (dropped) from the hole. With such a configuration, it is possible to more evenly irrigate the hot water to the soil.
[0021]
The heating unit 6 is constituted by a boiler (not shown) having means for burning oil as a heating means for heating water. The heating unit 6 is not limited to the boiler having the above-described configuration. For example, as a heating unit for heating water, a so-called gas-type instantaneous water heater having a unit (not shown) for burning gas is used. In this case, as shown in FIG. 1, a gas cylinder 6 a for supplying the gas to the heating unit 6 may be connected to the heating unit 6.
[0022]
And the said heating part 6 is comprised so that the temperature of the hot water derived | led-out from the inside may be 45-60 degreeC (50 degreeC in a present Example), for example.
[0023]
The hot water supply unit 7 is arranged on and placed on the soil 1 so as to be substantially parallel to each other, for example, the plurality of irrigation tubes 4, 4... And one end (upstream end) of each irrigation tube 4. Is connected to the hot water supply pipe 10.
[0024]
The hot water supply pipe 10 is connected to the heating unit 6 via a connection pipe 11, and the hot water 2 from the heating unit 6 reaches the hot water supply pipe 10 after passing through the connection pipe 11, and then the hot water supply pipe 10. Then, the hot water 2 is supplied to the hot water supply unit 7, and finally, the hot water 2 is supplied to the soil 1 from the holes of the irrigation pipes 4 of the hot water supply unit 7.
[0025]
The hot water supply pipe 10 and the connecting pipe 11 have both heat resistance and corrosion resistance, like the irrigation pipe 4.
[0026]
In addition, a flow rate adjusting portion 11 a that adjusts the flow rate of the hot water flowing through the inside of the connecting pipe 11 is provided in the upstream portion of the connecting pipe 11. Here, in this embodiment, the flow rate adjusting unit 11a is a valve such as a two-way solenoid valve, and a supply state in which the hot water 2 is supplied from the heating unit 6 to the hot water supply unit 7 and a stop state in which the hot water supply unit 7 is not supplied. It becomes a switching means for switching to. In addition, although the said flow volume adjustment part 11a may be provided in the downstream of the heating parts 6, such as the said connection piping 11, you may provide in the upstream of the heating parts 6, such as the downstream part of the said water supply piping 5. FIG.
[0027]
The temperature sensor 8 is disposed and embedded at a depth of about 10 to 20 cm (15 cm in the present embodiment) of the soil, and measures the temperature (earth temperature) of the soil at regular intervals or every predetermined time. A signal is output to the control unit 9.
[0028]
The control unit 9 is electrically connected to the temperature sensor 7 and the flow rate adjusting unit 11 a provided on the downstream side of the heating unit 6. And the control part 9 controls the said flow volume adjustment part 11a (for example, opening and closing of the valve which comprises the flow volume adjustment part 11a) based on the output from the said temperature sensor 7, Thereby, the hot water supply part 7 The flow rate of the hot water 2 sent to is adjusted. In this embodiment, the flow rate is adjusted by switching between the supply state and the stop state.
[0029]
Next, the implementation method of the said soil disinfection method using the soil disinfection apparatus D which consists of said structure is demonstrated.
First, a wheat barn bran is applied to soil 1 to a depth of 15 cm from the surface of soil 1 to 1 to 2 tons per 1000 m 2, and then plowed sufficiently. The irrigation tubes 4, 4... Of the hot water supply unit 7 are appropriately arranged to perform irrigation of about 100 mm from each irrigation tube 4. Here, the irrigation may be room temperature water that has not been heated, or hot water heated by the heating unit 6 may be used .
[0030]
After the irrigation, the temperature sensor 8 is embedded in the soil 1 at a depth of 15 cm. The embedding of the temperature sensor 8 may be performed simultaneously with the arrangement of the irrigation tubes 4, 4.
[0031]
Subsequently, the upper surface (surface) of the soil 1 is covered with the sealing body 3, and the temperature in the soil 1 is maintained so as not to be lower than a predetermined temperature (for example, 30 ° C.) in such a state where the covering is performed. In this way, the bran is rotted. That is, when the temperature in the soil 1 becomes equal to or lower than a predetermined temperature, the temperature sensor 8 sends a signal to the control unit 9, and the control unit 9 controls the flow rate adjusting unit 11a based on this signal. The hot water 2 from the heating unit 6 is sent to the hot water supply unit 7, and the hot water 2 is supplied to the soil 1 from each irrigation pipe 4 of the hot water supply unit 7.
[0032]
The supply of hot water 2 relative to the soil 1, but it may also be performed a predetermined time.
[0033]
The temperature management of the soil 1 by the soil disinfection device D is performed over a certain period (for example, about 15 days).
[0034]
According to the soil disinfection method having the above-described configuration, the soil 1 can be warmed by supplying hot water 2 and the temperature of the soil 1 can be prevented from being lowered, so that there is no restriction on the time or place (region) caused by the soil temperature. In addition, it is possible to carry out soil disinfection.
[0035]
Moreover, in the conventional soil disinfection method, since the temperature of the soil 1 is affected by the natural environment or the like, the covering period of the vinyl sheet was required for 20 to 30 days, but according to the soil disinfection method of this example, Since the temperature of the soil 1 can always be maintained at 30 ° C. or higher, the reduction and disinfection effect of the soil 1 can be remarkably enhanced and the treatment period can be shortened, and it can be reduced to 15 days or less, which is half the conventional value.
[0036]
Furthermore, in the soil disinfection method having the above-described configuration, irrigation (irrigation treatment) is performed immediately after the undegraded organic matter (husma) is added, so that the soil 1 is brought into a reduced state and soil diseases caused by filamentous fungi that are mainly aerobic Diseases caused by various Fusarium fungi such as vine split disease such as watermelon and strawberry wilt disease, wheat streak disease, leaf blight, seedling blight, tomato and spinach wilt, tomato blight It is effective against bacterial diseases and can reduce nematodes. In particular, when the soil disinfecting method is used for institutional cultivation, there is also an effect of salt removal by irrigation treatment, which makes it possible to achieve a healthy crop root.
[0037]
Further, in the soil disinfection method, since the sealing body 3 is sealed (sealing treatment) while keeping the soil 1 at an appropriate temperature, soil diseases caused mainly by fungi can be reduced and controlled.
[0038]
Moreover, in the said soil disinfection method, since the heat insulation layer 3b is provided in the said sealing body 3, the temperature fall of the soil 1 can be prevented effectively.
[0039]
Moreover, in the soil disinfection method described above, water can be easily irrigated on the soil 1, and when it is performed on the soil 1 having a low water volume, it can be dealt with by increasing the irrigation volume. It is possible to perform soil disinfection without any problems.
[0040]
In the soil disinfection method, the temperature in the soil 1 is detected, and when the temperature falls below a predetermined value, the hot water 2 is supplied to the soil 1. It may be Re to supply limited required amount by hot water 2, it becomes possible to suppress the amount of energy required for heating for the feed rate and water hot water 2 in warm water.
[0041]
Below, a comparison test between the conventional soil disinfection method (hereinafter referred to as the conventional method or the hot water method) conducted for verifying the effect of the soil disinfection method and the soil disinfection method of the present embodiment (hereinafter referred to as the present method). And the results. In addition, compared with this method, the conventional method uses only a vinyl sheet that does not have the heat retaining layer 3b as the sealing body 3, and is in a state where sealing is performed with the sealing body 3, with respect to the soil 1. The only difference is that water and hot water are not supplied.
[0042]
First, in April, three areas under almost the same conditions are set up, the first area is implemented in this method, the second area is implemented in the conventional method, and the third area is processed. Without any treatment, the effect of spinach wilt on the pathogenic strain rate (%) in each area was examined. The result at that time is shown in FIG.
[0043]
As can be seen from FIG. 3, in the untreated area, the pathogenic strain rate of spinach wilt exceeded 90% (about 95%), and in the area where the conventional method was performed, the pathogenic strain rate was higher than that in the untreated area. Although it was possible to suppress the disease, however, about 35% of the disease-causing strains were still observed, whereas in the area where this method was implemented, the rate of spinach wilt disease was reduced to about 1-2%. . That is, this proves the effect of the method on soil disinfection.
[0044]
Next, this method and the conventional method were carried out respectively in winter (January) when the temperature was low and in summer (August) when the temperature was high, and the effect on spinach wilt disease incidence (%) was examined. The result at that time is shown in FIG.
[0045]
As can be seen from FIG. 4, in the area where the conventional method is implemented, the pathogenic strain rate of spinach wilt can be suppressed to about 10% in August, but increases to about 85% in January. On the other hand, in the area where this method was implemented, the pathogenic strain of spinach wilt disease was not observed in August, and it was suppressed to about 1-2% even in January. In other words, this proves the effect of the present method that soil disinfection can be carried out without restrictions on the time and place (region) due to the soil temperature.
[0046]
Next, three areas under almost the same conditions are provided, this method is performed in the first area, the conventional method is performed in the second area, and no processing is performed in the third area. As the untreated, the soil temperature (° C.) in each area was examined. The result at that time is shown in FIG.
[0047]
As can be seen from FIG. 5, in the untreated area, the temperature of the soil rarely reaches 25 ° C. or more, and it may be lowered to about 15 ° C. In the area where the conventional method is performed, the sealing with the vinyl sheet is performed. Due to the effect, although the temperature of the soil could be increased compared to the untreated area, it was still 25 ° C. or less, whereas in the area where this method was implemented, the hot water 2 was supplied and sealed. The temperature of the soil could be maintained at about 30 ° C. or higher due to the heat retaining effect of the body 3. That is, this proves the effect of the present method on the heat retention effect of the soil.
[0048]
Next, there are three areas under almost the same conditions. This method is performed for 15 days in the first area, the conventional method is performed for 30 days in the second area, and what is processed in the third area. No treatment was conducted, and the effect on the pathogenic rate (%) of tomato wilt disease in each area was examined. The result at that time is shown in FIG.
[0049]
As can be seen from FIG. 6, in the untreated area, the pathogenic strain rate of tomato wilt exceeds 40% (about 46%), and in the area where the conventional method is implemented, the pathogenic strain rate is suppressed to about 1-2%. In the area where this method was implemented, the disease-causing strain was not found. That is, it can be seen that even if the implementation period of this method is 15 days, which is about half that of the conventional method, an effect equivalent to or superior to that of the conventional method can be obtained for soil disinfection.
[0050]
Next, three areas under almost the same conditions are provided, this method is performed in the first area, the conventional method is performed in the second area, and no processing is performed in the third area. As untreated, the water content (%) of soil in each area was examined. The result at that time is shown in FIG.
[0051]
As can be seen from FIG. 7, in the untreated area, the water volume of the soil rarely exceeds 25%, and even in the area where the conventional method was performed, the water volume of the soil is not so different from the untreated area, In the area where this method was implemented, it can be seen that the water capacity of the soil is maintained at 35% or more. That is, this proves the effect of the present method that the water capacity of the soil can be increased.
[0052]
In addition, in the said Example, although the said temperature sensor 8 may provide only one in the center of the area with respect to the area of the soil 1 which is going to perform soil disinfection, when the area of the said soil 1 is large Is provided with a plurality of temperature sensors 8, 8... Are appropriately dispersed and arranged in the area of the soil 1, and each temperature sensor 8 is electrically connected to the control unit 9. May be connected to each other. When a plurality of temperature sensors 8, 8... Are provided in this way, as a trigger for the control unit 9 to perform the control, for example, the control unit 9 from any one of the plurality of temperature sensors 8 is provided. It may be the first output (signal) or any of the second and subsequent outputs (signals), and the output signals are sent from almost half of the temperature sensors 8, 8,. It is also good when it happens.
[0053]
Moreover, in the said Example, although the said temperature sensor 8 measures the temperature of the soil 1 always or every fixed time, it is comprised so that the measured value may be output to the control part 9 as a signal. For example, the temperature sensor 8 measures the temperature of the soil 1 constantly or at regular intervals, and when the temperature falls below a predetermined temperature, a detection signal for prompting the response is provided. The control unit 9 may perform control such that the hot water 2 is sent from the heating unit 6 to the hot water supply unit 7 based on the input of the detection signal. In addition, the temperature sensor 8 measures the temperature of the soil 1 at all times or at regular intervals, and outputs a standby signal for causing the control unit 9 to wait, and the temperature of the soil 1 is a predetermined temperature. When it becomes below, the output of the standby signal to the control unit 9 is stopped, and the control unit 9 sends the hot water 2 from the heating unit 6 to the hot water supply unit 7 based on the stop of the output of the standby signal. Such control may be performed.
[0054]
Furthermore, in the said Example, you may provide the heating auxiliary | assistant part 12 for assisting the heating of the heating part 6 by heating the water sent to the said heating part 6 in the upstream of the heating part 6. FIG. The heating auxiliary unit 12 is, for example, a storage unit (not shown) for storing water (hot water), a heating wire (not shown) for heating water in the storage unit (coil heater), and solar light. It can comprise with the apparatus provided with the solar cell part 12a for changing energy into electric power and supplying this electric power to the said heating wire. In addition, this device may include means for keeping water (hot water) in the storage unit, a power storage unit that stores electric power obtained by the solar cell unit 12a, and the like.
[0055]
Moreover, although the said heating auxiliary | assistant part 12 may be provided in the middle of the water supply piping 5 in which a downstream end is connected to the heating part 6, in other water supply piping 5 'to which the downstream end of this water supply piping 5 is connected. In this case, water from the water supply pipe 5 and hot water from the water supply pipe 5 ′ are appropriately mixed in the connecting portion of the two water supply pipes 5, 5 ′, and then to the heating unit 6 side. It is only necessary to provide a temperature adjustment unit 13 having a built-in temperature adjustment valve for adjusting the temperature of hot water to be sent. Furthermore, when there is a time during which the heating auxiliary unit 12 can sufficiently heat water, such as during the daytime, the heating unit 6 may not be driven during that time.
[0056]
Moreover, in the said Example, although the sealing body 3 is made into the multilayer structure containing the interruption | blocking layer 3a and the heat retention layer 3b, it is not restricted to such a structure, For example, the sealing body 3 contains only the interruption | blocking layer 3a. A one-layer structure may be used. In this case, the sealing body 3 can be constituted by only one sheet-like body such as a vinyl sheet.
[0057]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a soil disinfection method that can be carried out without being restricted with respect to the time and place due to the soil temperature and without restriction on the water capacity of the field. Moreover, it is only necessary to supply hot water in the minimum amount to the soil, and it becomes possible to suppress the supply amount of hot water and the amount of energy required for heating to make the water hot water.
[0058]
In addition, the soil disinfecting method of the present invention is applicable not only to soil diseases caused by, for example, continuous cropping of crops (eg, tomatoes, cucumbers, spinach, etc.) cultivated in facilities such as a greenhouse, but also in outdoor alley fields. The present invention can also be applied to soil diseases such as radish, eggplant, pear, apple, cabbage, etc. that are cultivated and soil disinfection caused by replanting of fruit trees.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing the configuration of a soil disinfection method according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view schematically showing a configuration of a main part of the embodiment.
FIG. 3 is a graph schematically showing the results of comparing three soil disinfection methods of this method, the conventional method, and no treatment, with respect to the effect of suppressing the onset of spinach wilt.
FIG. 4 is a graph schematically showing the results of comparing two soil disinfecting methods of this method and the conventional method in January and August, respectively, regarding the disease-inhibiting effect of spinach wilt.
FIG. 5 is a graph schematically showing the results of comparing three soil disinfection methods of the present method, the conventional method, and no treatment with respect to the heat retention effect of the soil.
FIG. 6 is a graph schematically showing the results of comparing the soil sterilization methods of this method, the conventional method, and the untreated by changing the number of treatment days for the disease-inhibiting effect of tomato wilt.
FIG. 7 is a graph schematically showing the results of comparing three soil disinfection methods, this method, the conventional method, and no treatment, with respect to changes in the amount of soil water.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Soil, 2 ... Hot water, 3 ... Sealed body , 4 ... Irrigation pipe | tube .

Claims (3)

土壌に対して、未分解有機物を投入し、灌水を行った後、土壌の上面を密閉体で被覆した状態で、土壌の温度をほぼ30℃以上に保持することにより、未分解有機物の腐敗に伴い土壌中の酸素が消費されながら土壌の還元消毒が行われる土壌消毒方法であって、多数の孔を有する複数の灌水管を土壌の表面に配置して前記灌水を行い、前記密閉体による被覆を行った状態で、土壌中の温度を検知し、土壌中の温度が前記温度よりも低くなったときに、前記孔から土壌に対して45〜60℃の温湯の供給を行い、土壌中の温度をほぼ30℃以上に維持するようにしたことを特徴とする土壌消毒方法。After putting undecomposed organic matter into the soil and irrigating it, the soil temperature is kept at about 30 ° C. or more in a state where the upper surface of the soil is covered with a sealed body, so that the undegraded organic matter is rotted. a with soil disinfection methods with oxygen in the soil is consumed reduced disinfection soil takes place, performs the irrigating a plurality of irrigation tube having a plurality of holes arranged on the surface of the soil, covered by the sealing member the state went to sense the temperature of the soil, when the temperature of the soil is lower than the temperature, have the line supplying the hot water of the pair to 45 to 60 ° C. in the soil from the hole, the soil A soil disinfection method characterized in that the temperature inside is maintained at approximately 30 ° C. or higher . 前記密閉体を、水分の透過を遮断する遮断層と、密閉体に保温性を持たせるための保温層とを含む多層構造とする請求項1に記載の土壌消毒方法。The soil disinfection method according to claim 1, wherein the sealed body has a multilayer structure including a blocking layer that blocks moisture permeation and a heat retaining layer for keeping the sealed body warm. 水の供給源から給水配管を通って送られてきた水を加熱するための加熱部と、この加熱部からの温湯を土壌に供給するための温湯供給部と、土壌中に配置される温度センサと、この温度センサからの信号に基づいて前記加熱部から温湯供給部へ送られる温湯の流量を制御する制御部とを備えた土壌消毒装置を用いて実施され、前記温湯供給部は、土壌上において、互いにほぼ平行となるように配置された複数の前記灌水管と、各灌水管の上流端が接続される給湯配管とを備えており、前記給湯配管は、連結配管を介して前記加熱部に接続されている請求項1または2に記載の土壌消毒方法 A heating unit for heating the water sent from the water supply source through the water supply pipe, a hot water supply unit for supplying the hot water from the heating unit to the soil, and a temperature sensor arranged in the soil And a control unit that controls the flow rate of hot water sent from the heating unit to the hot water supply unit based on a signal from the temperature sensor, and the hot water supply unit A plurality of the irrigation pipes arranged so as to be substantially parallel to each other, and a hot water supply pipe to which an upstream end of each irrigation pipe is connected, the hot water supply pipe being connected to the heating unit The soil disinfection method according to claim 1 or 2, wherein the soil disinfection method is connected to the soil .
JP2002069174A 2002-03-13 2002-03-13 Soil disinfection method Expired - Fee Related JP3940305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069174A JP3940305B2 (en) 2002-03-13 2002-03-13 Soil disinfection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069174A JP3940305B2 (en) 2002-03-13 2002-03-13 Soil disinfection method

Publications (2)

Publication Number Publication Date
JP2003265050A JP2003265050A (en) 2003-09-24
JP3940305B2 true JP3940305B2 (en) 2007-07-04

Family

ID=29200099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069174A Expired - Fee Related JP3940305B2 (en) 2002-03-13 2002-03-13 Soil disinfection method

Country Status (1)

Country Link
JP (1) JP3940305B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843338B2 (en) * 2006-03-09 2011-12-21 独立行政法人農業・食品産業技術総合研究機構 Crop growth method
CN117044704B (en) * 2023-10-12 2023-12-05 济南绿德地生物科技有限公司 Spraying device for nematode control agent

Also Published As

Publication number Publication date
JP2003265050A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
JP6369827B2 (en) Plant cultivation method and plant cultivation apparatus
JP4888847B2 (en) Eggplant cultivation method
CN108353739A (en) A kind of root zone method for increasing temperature promoting cucumber severe winter season slow seedling and normal growth
JP2001269067A (en) Method for heating soil and facility for growing in greenhouse used therefor
JP3940305B2 (en) Soil disinfection method
CN107027404A (en) A kind of culture apparatus accurately controlled for root system of plant temperature
CN104145933A (en) Vegetable pest heat killing device specially used in greenhouse and use method thereof
CN104472275A (en) Temperature regulating and controlling device and breeding method for breeding detoxified seedlings by seedbed in winter
Gerçek et al. Impact of colored water pillows on yield and water productivity of pepper under greenhouse conditions
JPH06237678A (en) Technique for physical soil culture of plant without using agricultural chemical
CN108605582A (en) Cultivate the seedbed of asparagus
CN107711028B (en) A kind of suspension slot type substrate culture system and method
JP3670551B2 (en) Soil heating method and house cultivation equipment used therefor
CN204945856U (en) A kind of intelligent canopy room parameter control system preventing and treating graw mold of tomato
Stanghellini et al. Steering of fogging: control of humidity, temperature or transpiration?
CA2292515A1 (en) Modular plant growth apparatus
JP7342078B2 (en) Cultivation system using liquid fertilizer, humidity, temperature, and air control
KR20060042864A (en) Plants cultivation method and plants cultivation apparatus
CN109744116A (en) A kind of overwintering method of keeping a full stand of seedings of sweet potato seedling
WO2010062185A1 (en) Apparatus and method for temperature control of a growth medium in a greenhouse and use of same for control of plant-pathogenic organisms
JP2004121235A (en) Method for preventing soil from being damaged by disease or insect pest and apparatus for the same
CN108967105A (en) A method of iris bacterial soft rot is prevented and treated by environment conditioning
Elena et al. Bio-disinfestation: an alternative method to control soil pathogens
JPH04121125A (en) Hydroponic culturing device controlling temperature in root region of plant
CN214102547U (en) Seedbed for pepper planting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees