JP6327263B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6327263B2
JP6327263B2 JP2016032965A JP2016032965A JP6327263B2 JP 6327263 B2 JP6327263 B2 JP 6327263B2 JP 2016032965 A JP2016032965 A JP 2016032965A JP 2016032965 A JP2016032965 A JP 2016032965A JP 6327263 B2 JP6327263 B2 JP 6327263B2
Authority
JP
Japan
Prior art keywords
fuel injection
intake
valve
fuel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016032965A
Other languages
English (en)
Other versions
JP2017150374A (ja
Inventor
中坂 幸博
幸博 中坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016032965A priority Critical patent/JP6327263B2/ja
Priority to DE102017100066.6A priority patent/DE102017100066B4/de
Priority to US15/398,021 priority patent/US10184413B2/en
Publication of JP2017150374A publication Critical patent/JP2017150374A/ja
Application granted granted Critical
Publication of JP6327263B2 publication Critical patent/JP6327263B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10386Sensors for intake systems for flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は内燃機関の制御装置に関する。
吸気弁の閉弁時期を制御可能な可変バルブタイミング機構と、機械圧縮比を変更可能な可変圧縮比機構と、外気から吸気通路内に供給される吸入空気量を検出するための吸入空気量検出器と、吸気通路内に燃料を供給するための燃料噴射弁とを具備しており、吸入空気量検出器により検出された吸入空気量に基づいて空燃比が理論空燃比となるように燃料噴射弁からの燃料噴射量が制御され、機関負荷が低くなるにつれて機械圧縮比を増大すると共に吸気弁の閉弁時期を吸気下死点から圧縮上死点に向けて遅角するようにした内燃機関が公知である(例えば特許文献1を参照)。
特開2007−303423号公報
この内燃機関におけるように、吸気弁の閉弁時期が吸気下死点から圧縮上死点に向けて遅角されると、吸気下死点後、吸気弁が閉弁するまでの間、ピストンの上昇に伴い、燃焼室内のガスが吸気通路内に吹き戻され、この吹き戻されたガスは、次の吸気行程時に、新気と共に燃焼室内に送り込まれる。ところで、このように吸気弁の閉弁時期が遅角された状態で、機関減速運転時に燃料噴射弁からの燃料噴射が一時的に停止されると、燃料噴射が停止されている間、燃焼室内のガスは次第に新気によって置換される。その結果、吸気通路内に吹き戻されるガスの空燃比は次第に大きくなり、最終的には、吸気通路内に吹き戻されるガスは空気となる。従って、燃料噴射の停止後、燃料噴射が再開される頃には、この吹き戻された空気が、次の吸気行程時に、新気と共に燃焼室内に送り込まれることになる。一方、この内燃機関では、吸入空気量検出器により検出された吸入空気量に基づいて燃料噴射量が制御されている。従って、この内燃機関では、燃料噴射が再開されたときにも、外気から吸気通路内に供給される吸入空気、即ち新気に対してだけ、この新気の空燃比を理論空燃比とするのに必要な量の燃料が燃料噴射弁から供給されると考えられる。従って、このとき、吹き戻された空気に対しては燃料が供給されず、吹き戻された空気分だけ燃料量が不足することになるので、燃焼室内の混合気の空燃比は大巾にリーンとなり、従って燃料噴射が再開されたときに良好な燃焼が得られないという問題が生ずる虞がある。
本発明によれば、上記問題が生じないように、吸気弁の閉弁時期を吸気下死点から圧縮上死点の間に設定可能な可変バルブタイミング機構と、燃焼室内に燃料を供給するための燃料噴射弁と、外気中から吸気通路内に供給される吸入空気量を検出するための吸入空気量検出器と、吸気通路内に配置されたスロットル弁と、スロットル弁下流の吸気通路内の圧力を検出するための圧力センサと、電子制御ユニットとを具備しており、一サイクルが吸気行程と、圧縮行程と、膨張行程と、排気行程とからなり、吸入空気量検出器により検出された吸入空気量を燃料噴射量算出の基礎に用いて燃料噴射弁からの燃料噴射量が算出される内燃機関の制御装置において、電子制御ユニットは、機関減速運転時に、燃料噴射弁から燃焼室内に供給される燃料の噴射を一時的に停止させると共に、機関減速運転時の燃料噴射停止後に燃料噴射弁からの燃料の噴射を再開させ、更に電子制御ユニットは、燃料噴射弁からの燃料の噴射が再開されたときに燃焼室内の空気が吸気通路内に吹き戻すときには、燃料噴射弁からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射弁からの燃料噴射量算出の基礎を、吸入空気量検出器により検出された吸入空気量から圧力センサにより検出された吸気通路内の圧力に切換える。
機関減速運転後の燃料噴射の再開時において、燃焼室内の空気が吸気通路内に吹き戻しているときには、燃焼室内に一旦供給された全空気量は、吸気通路内に吹き戻した空気の量と、吸気弁の閉弁後に燃焼室内に留まっている空気の量の和になる。この場合、吸気通路内に吹き戻した空気と、吸気弁の閉弁後に燃焼室内に留まっている空気の全量、即ち、燃焼室内に一旦供給された全空気量に基づいて燃料噴射量を算出すると、燃料噴射の再開時に、燃焼室内に最適な空燃比の混合気を生成することができる。この場合、燃焼室内に一旦供給された全空気量は、スロットル弁下流の吸気通路内の圧力に基づいて算出することができる。従って、本発明では、燃料噴射弁からの燃料の噴射が再開されたときに燃焼室内の空気が吸気通路内に吹き戻すときには、燃料噴射弁からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射弁からの燃料噴射量算出の基礎を、吸入空気量検出器により検出された吸入空気量から圧力センサにより検出された吸気通路内の圧力に切換え、それによって、燃焼室内に最適な空燃比の混合気を生成できるようにしている。
図1は火花点火式内燃機関の全体図である。 図2は可変圧縮比機構の分解斜視図である。 図3Aおよび3Bは図解的に表した内燃機関の側面断面図である。 図4は可変バルブタイミング機構を示す図である。 図5は吸気弁および排気弁のリフト量を示す図である。 図6A,6Bおよび6Cは、機械圧縮比、実圧縮比および膨張比を説明するための図である。 図7は理論熱効率と膨張比との関係を示す図である。 図8Aおよび8Bは、通常のサイクルおよび超高膨張比サイクルを説明するための図である。 図9は機関負荷に応じた機械圧縮比等の変化を示す図である。 図10A,10Bおよび10Cは、吸気弁の閉弁時期等のマップを示す図である。 図11は、吸気弁の閉弁時期と、種々のガス量QC,QA、QRとの関係を示す図である。 図12は、機関減速運転時における種々のガス量QC,QA、QRを示す図である。 図13Aおよび13Bは、夫々吸気弁の境界閉弁時期CXおよび補正係数Fを示す図である。 図14は、好ましくない制御例を説明するための図である。 図15は、機関減速運転時における各フラグの変化を示す図である。 図16は、フラグを制御を行うためのフローチャートである。 図17は、運転制御を行うためのフローチャートである。 図18は、運転制御を行うための変形例を示すフローチャートである。
図1に火花点火式内燃機関の側面断面図を示す。
図1を参照すると、1はクランクケース、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は燃焼室5の頂面中央部に配置された点火栓、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は吸気枝管11を介してサージタンク12に連結され、各吸気枝管11には夫々対応する吸気ポート8内に向けて燃料を噴射するための燃料噴射弁13が配置される。なお、燃料噴射弁13は各吸気枝管11に取付ける代りに各燃焼室5内に配置してもよい。
サージタンク12は吸気ダクト14を介してエアクリーナ15に連結され、吸気ダクト14内にはアクチュエータ16aによって駆動されるスロットル弁16と例えば熱線を用いた吸入空気量検出器17とが配置される。また、サージタンク12内には、サージタンク12の圧力、即ち、スロットル弁16下流の吸入空気通路内の圧力を検出するための圧力センサ18が配置される。一方、排気ポート10は排気マニホルド19を介して例えば三元触媒を内蔵した触媒コンバータ20に連結され、排気マニホルド19内には空燃比センサ21が配置される。
一方、図1に示される実施例ではクランクケース1とシリンダブロック2との連結部にクランクケース1とシリンダブロック2のシリンダ軸線方向の相対位置を変化させることによりピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更可能な可変圧縮比機構Aが設けられており、更に、吸気弁7の閉弁時期を制御可能な可変バルブタイミング機構Bが設けられている。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸入空気量検出器17、圧力センサ18および空燃比センサ21の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁13、スロットル弁駆動用アクチュエータ16a、可変圧縮比機構Aおよび可変バルブタイミング機構Bに接続される。
図2は図1に示す可変圧縮比機構Aの分解斜視図を示しており、図3Aおよび3Bは図解的に表した内燃機関の側面断面図を示している。図2を参照すると、シリンダブロック2の両側壁の下方には互いに間隔を隔てた複数個の突出部50が形成されており、各突出部50内には夫々断面円形のカム挿入孔51が形成されている。一方、クランクケース1の上壁面上には互いに間隔を隔てて夫々対応する突出部50の間に嵌合せしめられる複数個の突出部52が形成されており、これらの各突出部52内にも夫々断面円形のカム挿入孔53が形成されている。
図2に示されるように一対のカムシャフト54,55が設けられており、各カムシャフト54,55上には一つおきに各カム挿入孔51内に回転可能に挿入される円形カム56が固定されている。これらの円形カム56は各カムシャフト54,55の回転軸線と共軸をなす。一方、各円形カム56間には図3Aおよび3Bにおいてハッチングで示すように各カムシャフト54,55の回転軸線に対して偏心配置された偏心軸57が延びており、この偏心軸57上に別の円形カム58が偏心して回転可能に取付けられている。図2に示されるようにこれら円形カム58は各円形カム56間に配置されており、これら円形カム58は対応する各カム挿入孔53内に回転可能に挿入されている。
図3Aに示すような状態から各カムシャフト54,55上に固定された円形カム56を図3Aにおいて実線の矢印で示される如く互いに反対方向に回転させると、偏心軸57が下方中央に向けて移動するために、円形カム58がカム挿入孔53内において図3Aの破線の矢印に示すように円形カム56とは反対方向に回転し、図3Bに示されるように偏心軸57が下方中央まで移動すると円形カム58の中心が偏心軸57の下方へ移動する。
図3Aと図3Bとを比較するとわかるように、クランクケース1とシリンダブロック2の相対位置は円形カム56の中心と円形カム58の中心との距離によって定まり、円形カム56の中心と円形カム58の中心との距離が大きくなるほどシリンダブロック2はクランクケース1から離れる。シリンダブロック2がクランクケース1から離れると、ピストン4が圧縮上死点に位置するときの燃焼室5の容積は増大し、従って各カムシャフト54,55を回転させることによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更することができる。
図2に示されるように各カムシャフト54,55を夫々反対方向に回転させるために駆動モータ59の回転軸には夫々螺旋方向が逆向きの一対のウォームギア61,62が取付けられており、これらウォームギア61,62と噛合する歯車63,64が夫々各カムシャフト54,55の端部に固定されている。この実施例では駆動モータ59を駆動することによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を広い範囲に亘って変更することができる。なお、図1から図3Aおよび3Bに示される可変圧縮比機構Aは一例を示すものであっていかなる形式の可変圧縮比機構でも用いることができる。
一方、図4は図1において吸気弁7を駆動するためのカムシャフト70の端部に取付けられた可変バルブタイミング機構Bを示している。図4を参照すると、この可変バルブタイミング機構Bは機関のクランク軸によりタイミングベルトを介して矢印方向に回転せしめられるタイミングプーリ71と、タイミングプーリ71と一緒に回転する円筒状ハウジング72と、吸気弁駆動用カムシャフト70と一緒に回転しかつ円筒状ハウジング72に対して相対回転可能な回転軸73と、円筒状ハウジング72の内周面から回転軸73の外周面まで延びる複数個の仕切壁74と、各仕切壁74の間で回転軸73の外周面から円筒状ハウジング72の内周面まで延びるベーン75とを具備しており、各ベーン75の両側には夫々進角用油圧室76と遅角用油圧室77とが形成されている。
各油圧室76,77への作動油の供給制御は作動油供給制御弁78によって行われる。この作動油供給制御弁78は各油圧室76,77に夫々連結された油圧ポート79,80と、油圧ポンプ81から吐出された作動油の供給ポート82と、一対のドレインポート83,84と、各ポート79,80,82,83,84間の連通遮断制御を行うスプール弁85とを具備している。
吸気弁駆動用カムシャフト70のカムの位相を進角すべきときは図4においてスプール弁85が右方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート79を介して進角用油圧室76に供給されると共に遅角用油圧室77内の作動油がドレインポート84から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印方向に相対回転せしめられる。
これに対し、吸気弁駆動用カムシャフト70のカムの位相を遅角すべきときは図4においてスプール弁85が左方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート80を介して遅角用油圧室77に供給されると共に進角用油圧室76内の作動油がドレインポート83から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印と反対方向に相対回転せしめられる。
回転軸73が円筒状ハウジング72に対して相対回転せしめられているときにスプール弁85が図4に示される中立位置に戻されると回転軸73の相対回転動作は停止せしめられ、回転軸73はそのときの相対回転位置に保持される。従って可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相を所望の量だけ進角させることができ、遅角させることができることになる。
図5において実線は可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相が最も進角されているときを示しており、破線は吸気弁駆動用カムシャフト70のカムの位相が最も遅角されているときを示している。従って吸気弁7の開弁期間は図5において実線で示す範囲と破線で示す範囲との間で任意に設定することができ、従って吸気弁7の閉弁時期も図5において矢印Cで示す範囲内の任意のクランク角に設定することができる。
図1および図4に示される可変バルブタイミング機構Bは一例を示すものであって、例えば吸気弁の開弁時期を一定に維持したまま吸気弁の閉弁時期のみを変えることのできる可変バルブタイミング機構等、種々の形式の可変バルブタイミング機構を用いることができる。
次に図6A,6Bおよび6Cを参照しつつ本願において使用されている用語の意味について説明する。なお、図6A,6Bおよび6Cには説明のために燃焼室容積が50mlでピストンの行程容積が500mlであるエンジンが示されており、これら図66A,6Bおよび6Cにおいて燃焼室容積とはピストンが圧縮上死点に位置するときの燃焼室の容積を表している。
図6Aは機械圧縮比について説明している。機械圧縮比は圧縮行程時のピストンの行程容積と燃焼室容積のみから機械的に定まる値であってこの機械圧縮比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6Aに示される例ではこの機械圧縮比は(50ml+500ml)/50ml=11となる。
図6Bは実圧縮比について説明している。この実圧縮比は実際に圧縮作用が開始されたときからピストンが上死点に達するまでの実際のピストン行程容積と燃焼室容積から定まる値であってこの実圧縮比は(燃焼室容積+実際の行程容積)/燃焼室容積で表される。即ち、図6Bに示されるように圧縮行程においてピストンが上昇を開始しても吸気弁が開弁している間は圧縮作用は行われず、吸気弁が閉弁したときから実際の圧縮作用が開始される。従って実圧縮比は実際の行程容積を用いて上記の如く表される。図6Bに示される例では実圧縮比は(50ml+450ml)/50ml=10となる。
図6Cは膨張比について説明している。膨張比は膨張行程時のピストンの行程容積と燃焼室容積から定まる値であってこの膨張比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6Cに示される例ではこの膨張比は(50ml+500ml)/50ml=11となる。
次に図7と、図8Aおよび8Bを参照しつつ本発明において用いられている超高膨張比サイクルについて説明する。なお、図7は理論熱効率と膨張比との関係を示しており、図8Aおよび8Bは本発明において負荷に応じ使い分けられている通常のサイクルと超高膨張比サイクルとの比較を示している。
図8Aは吸気弁が下死点近傍で閉弁し、ほぼ吸気下死点付近からピストンによる圧縮作用が開始される場合の通常のサイクルを示している。この図8Aに示す例でも図6A,6Bおよび6Cに示す例と同様に燃焼室容積が50mlとされ、ピストンの行程容積が500mlとされている。図8Aからわかるように通常のサイクルでは機械圧縮比は(50ml+500ml)/50ml=11であり、実圧縮比もほぼ11であり、膨張比も(50ml+500ml)/50ml=11となる。即ち、通常の内燃機関では機械圧縮比と実圧縮比と膨張比とがほぼ等しくなる。
図7における実線は実圧縮比と膨張比とがほぼ等しい場合の、即ち通常のサイクルにおける理論熱効率の変化を示している。この場合には膨張比が大きくなるほど、即ち実圧縮比が高くなるほど理論熱効率が高くなることがわかる。従って通常のサイクルにおいて理論熱効率を高めるには実圧縮比を高くすればよいことになる。しかしながら機関高負荷運転時におけるノッキングの発生の制約により実圧縮比は最大でも12程度までしか高くすることができず、斯くして通常のサイクルにおいては理論熱効率を十分に高くすることはできない。
一方、このような状況下で本出願人の研究者は機械圧縮比と実圧縮比とを厳密に区分して理論熱効率を高めることについて検討し、その結果理論熱効率は膨張比が支配し、理論熱効率に対して実圧縮比はほとんど影響を与えないことを見い出したのである。即ち、実圧縮比を高くすると爆発力は高まるが圧縮するために大きなエネルギーが必要となり、斯くして実圧縮比を高めても理論熱効率はほとんど高くならない。
これに対し、膨張比を大きくすると膨張行程時にピストンに対し押下げ力が作用する期間が長くなり、斯くしてピストンがクランクシャフトに回転力を与えている期間が長くなる。従って膨張比は大きくすれば大きくするほど理論熱効率が高くなる。図7の破線ε=10は実圧縮比を10に固定した状態で膨張比を高くしていった場合の理論熱効率を示している。このように実圧縮比を低い値に維持した状態で膨張比を高くしたときの理論熱効率の上昇量と、図7の実線で示す如く実圧縮比も膨張比と共に増大せしめられる場合の理論熱効率の上昇量とは大きな差がないことがわかる。
このように実圧縮比が低い値に維持されているとノッキングが発生することがなく、従って実圧縮比を低い値に維持した状態で膨張比を高くするとノッキングの発生を阻止しつつ理論熱効率を大巾に高めることができる。図8Bは可変圧縮比機構Aおよび可変バルブタイミング機構Bを用いて、実圧縮比を低い値に維持しつつ膨張比を高めるようにした場合の一例を示している。
図8Bを参照すると、この例では可変圧縮比機構Aにより燃焼室容積が50mlから20mlまで減少せしめられる。一方、可変バルブタイミング機構Bによって実際のピストン行程容積が500mlから200mlになるまで吸気弁の閉弁時期が遅らされる。その結果、この例では実圧縮比は(20ml+200ml)/20ml=11となり、膨張比は(20ml+500ml)/20ml=26となる。図8Aに示される通常のサイクルでは前述したように実圧縮比がほぼ11で膨張比が11であり、この場合に比べると図8Bに示される場合には膨張比のみが26まで高められていることがわかる。これが超高膨張比サイクルと称される所以である。
一般的に言って内燃機関では機関負荷が低いほど熱効率が悪くなり、従って機関運転時における熱効率を向上させるためには、即ち燃費を向上させるには機関負荷が低いときの熱効率を向上させることが必要となる。一方、図8Bに示される超高膨張比サイクルでは圧縮行程時の実際のピストン行程容積が小さくされるために燃焼室5内に吸入しうる吸入空気量は少なくなり、従ってこの超高膨張比サイクルは機関負荷が比較的低いときにしか採用できないことになる。従って本発明では機関負荷が比較的低いときには図8Bに示す超高膨張比サイクルとし、機関高負荷運転時には図8Aに示す通常のサイクルとするようにしている。
次に図9を参照しつつ運転制御全般について説明する。
図9には、或る機関回転数における機関負荷に応じた機械圧縮比、膨張比、吸気弁7の閉弁時期、実圧縮比、吸入空気量、およびスロットル弁16の開度の各変化が示されている。この場合、本発明による実施例では、燃焼室5内における空燃比が目標空燃比にフィードバック制御される。なお、図9に示される例では、触媒コンバータ20内の三元触媒によって排気ガス中の未燃HC,COおよびNOxを同時に低減しうるように通常燃焼室5内における平均空燃比は空燃比センサ21の出力信号に基いて理論空燃比にフィードバック制御されている。
さて、前述したように機関高負荷運転時には図8Aに示される通常のサイクルが実行される。従って図9に示されるようにこのときには機械圧縮比は低くされるために膨張比は低く、吸気弁7の閉弁時期は図5において実線で示される如く進角されている。また、このときには吸入空気量は多く、このときスロットル弁16の開度は全開又はほぼ全開に保持されている。
一方、機関負荷が低くなるとそれに伴って吸入空気量を減少すべく吸気弁7の閉弁時期が遅角される。またこのときには実圧縮比がほぼ一定に保持されるように図9に示される如く機関負荷が低くなるにつれて機械圧縮比が増大され、従って機関負荷が低くなるにつれて膨張比も増大される。なお、このときにもスロットル弁16は全開又はほぼ全開状態に保持されており、従って燃焼室5内に供給される吸入空気量はスロットル弁16によらずに吸気弁7の閉弁時期を変えることによって制御されている。
このように機関高負荷運転状態から機関負荷が低くなるときには実圧縮比がほぼ一定のもとで吸入空気量が減少するにつれて機械圧縮比が増大せしめられる。即ち、吸入空気量の減少に比例してピストン4が圧縮上死点に達したときの燃焼室5の容積が減少せしめられる。従ってピストン4が圧縮上死点に達したときの燃焼室5の容積は吸入空気量に比例して変化していることになる。なお、このとき燃焼室5内の空燃比は理論空燃比となっているのでピストン4が圧縮上死点に達したときの燃焼室5の容積は燃料量に比例して変化していることになる。
機関負荷が更に低くなると機械圧縮比は更に増大せしめられ、機関負荷がやや低負荷寄りの中負荷Lまで低下すると機械圧縮比は燃焼室5の構造上限界となる限界機械圧縮比に達する。機械圧縮比が限界機械圧縮比に達すると、機械圧縮比が限界機械圧縮比に達したときの機関負荷Lよりも負荷の低い領域では機械圧縮比が限界機械圧縮比に保持される。従って低負荷側の機関中負荷運転時および機関低負荷運転時には即ち、機関低負荷運転側では機械圧縮比は最大となり、膨張比も最大となる。別の言い方をすると機関低負荷運転側では最大の膨張比が得られるように機械圧縮比が最大にされる。
一方、図9に示される実施例では機関負荷がLより低くなると吸気弁7の閉弁時期は最大遅角時期に保持される。また、図9に示される実施例では機関負荷がLよりも高いとき、即ち機関高負荷運転側ではスロットル弁16が全開状態に保持され、機関負荷がLよりも低いとき、即ち機関低負荷運転側ではスロットル弁16は機関負荷が低下するにつれて閉弁せしめられる。なお、図9に示される吸気弁7の閉弁時期ICは、機関負荷Lおよび機関回転数Nの関数として図10Aに示すようなマップの形で予めROM32内に記憶されており、図9に示される機械圧縮比CRも、機関負荷Lおよび機関回転数Nの関数として図10Bに示すようなマップの形で予めROM32内に記憶されており、図9に示されるスロットル弁16の開度θも、機関負荷Lおよび機関回転数Nの関数として図10Cに示すようなマップの形で予めROM32内に記憶されている。
次に、図11を参照しつつ、吸気弁7の閉弁時期ICと、燃焼室5内に供給されたガス量QCと、燃焼室5内に留まるガス量QAと、燃焼室5から吸気通路内に吹き戻すガス量QRとの関係を説明する。なお、これらガス中には通常、燃料が含まれている。図11を参照すると、図11の(A)は、吸気弁7の閉弁時期ICが吸気下死点BDCに設定されている場合を示している。この場合には、燃焼室5内に供給されたガスは、吸気通路内に吹き戻されることなくそのまま燃焼室5内に留まるので、燃焼室5内に供給されたガス量QCは燃焼室5内に留まるガス量QAに等しくなる。
図11の(B)は、吸気弁7の閉弁時期ICが吸気下死点BDCよりも若干遅角され、吸気弁7の閉弁時期ICが、吸気慣性による燃焼室5への新気の押し込み作用が最も強い閉弁時期に設定されている場合を示している。この場合にも、燃焼室5内に供給されたガスは、吸気通路内に吹き戻されることなくそのまま燃焼室5内に留まるので、この場合にも、燃焼室5内に供給されたガス量QCは燃焼室5内に留まるガス量QAに等しくなる。なお、図11の(A)と比較すればわかるように、図11の(B)に示される場合には、吸気慣性による燃焼室5への新気の押し込み作用によって、燃焼室5内に留まるガス量QCが増大する。
図11の(D)は、吸気弁7の閉弁時期ICが、かなり遅角側の閉弁時期に設定されている場合を示している。この場合には、吸気下死点BDC後、吸気弁7が閉弁するまでの間、ピストン4の上昇に伴い、燃焼室5内のガスが吸気通路内に吹き戻され、この吹き戻されたガス分だけ燃焼室5内に留まるガス量が減少する。即ち、このときには、燃焼室5に供給されたガスは、吸気通路内に吹き戻されるガスと、吸気弁7の閉弁後に燃焼室5内に留まるガスに分かれる。図11の(D)には、このときの燃焼室5に供給されたガス量QCと、吸気通路内に吹き戻されるガス量QRと、吸気弁7の閉弁後に燃焼室5内に留まるガス量QAとが示されている。吸気弁7の閉弁後に燃焼室5内に留まっているガスは燃焼後、排気行程中に燃焼室5から排出され、次の吸気行程中に、このガス量QAに相当する新気が燃焼室5内に供給されるので、このガス量QAは新気量を表していることになる。即ち、図11の(D)において、QRは吸気通路内に吹き戻されたガス量を表しており、QAは新気量を表していることになる。
一方、図11の(E)は、吸気弁7の閉弁時期ICが吸気下死点BDCから圧縮上死点TDCに向けて更に遅角された場合を示している。この場合には、吸気通路内に吹き戻されるガス量QRが更に増大するので、吸気弁7の閉弁後に燃焼室5内に留まっているガス量QA、即ち、新気量QAが減少することになる。
一方、吸気弁7の閉弁時期ICを、図11の(B)に示される場合に比べて、更に遅角させると、吸気慣性による燃焼室5への新気の押し込み作用が弱められて燃焼室5内に留まるガス量QCが減少し、かつ燃焼室5内のガスが吸気通路内に吹き戻し始める。図11の(C)は、このように燃焼室5内に留まるガス量QCが減少し、かつ燃焼室5内のガスが吸気通路内に吹き戻し始める閉弁時期に、吸気弁7の閉弁時期ICが設定された場合を示している。本発明による実施例では、このように燃焼室5内に留まるガス量QCが減少し、かつ燃焼室5内のガスが吸気通路内に吹き戻し始める吸気弁7の閉弁時期ICを境界閉弁時期IXと称する。従って、本発明による実施例では、吸気弁7の閉弁時期ICが、境界閉弁時期IXよりも遅角側にあるときに、燃焼室5内から吸気通路内へのガスの吹き戻しが生ずることになる。なお、図9にこの境界閉弁時期IXが示されている。
図12は、機関減速運転時に燃料噴射弁13からの燃料噴射が一時的に停止され、燃料噴射の停止後、燃料噴射が再開され場合において、燃料噴射の停止中および燃料噴射の再開時に、図11の(D)および図11の(E)に示されるように、吸気弁7の閉弁時期ICが、境界閉弁時期IXよりも遅角側にある場合、即ち、燃焼室5内から吸気通路内へのガスの吹き戻しが生じている場合を示している。なお、図12には、機関回転数の変化と、燃料噴射弁13からの燃料噴射量の変化と、燃焼室5内から排出される排気ガスの空燃比の変化と、燃焼室5に供給されたガス量QC、吸気通路内に吹き戻されるガス量QR、および吸気弁7の閉弁後に燃焼室5内に留まっているガス量QA、即ち、新気量QAとが示されている。なお、図12の機関回転数において、NSは燃料噴射停止回転数を示しており、NRは燃料噴射復帰回転数を示しており、tは機関減速運転が開始されたときを示している。
図12に示されるように、機関回転数が燃料噴射停止回転数NS、例えば1500rpmよりも高いときに機関減速運転が開始されたときには、機関減速運転が開始されたときに燃料噴射が停止され、機関回転数が燃料噴射復帰回転数NR、例えば1000rpmよりも低下すると燃料噴射が再開される。燃料噴射が停止されると燃焼室5内のガスは新気により徐々に置換されるので、燃焼室5内のガスの空燃比は次第にリーンとなり、従って、図12に示されるように、燃料噴射が停止されると、燃焼室5内から排出される排気ガスの空燃比は次第にリーンとなる。その結果、燃料噴射が停止されている間に、燃焼室5内から吸気通路内へ吹き戻されるガスは空気となり、従って、燃料噴射が再開される頃には、燃焼室5内から吸気通路内へ吹き戻されるガスは空気となっている。なお、この場合、吸気行程時には、吹き戻された空気QAが最初に燃焼室5内に送り込まれ、燃焼室5内への吹き戻された空気QAの送り込み作用が完了すると、その後、新気QAが燃焼室5内に送り込まれる。
従って、燃料噴射が再開されたときに、燃焼室5内に供給される空気量は、燃焼室5内から吸気通路内へ吹き戻された空気量QRと新気量QAとの和となる。一方、このとき吸入空気量検出器17により検出されている空気量は新気量QAであり、従ってこのとき、吸入空気量検出器17により検出された空気量に基づいて、例えば空燃比が理論空燃比となるように燃料噴射弁13からの燃料噴射量が算出されると、燃焼室5内から吸気通路内へ吹き戻された空気量QRに対しては燃料が全く供給されない状態となり、従って、燃焼室5内における混合気の空燃比が大巾にリーンになってしまう。この場合、新気量QAと燃焼室5内から吸気通路内へ吹き戻された空気量QRとの和に基づいて、例えば空燃比が理論空燃比となるように燃料噴射弁13からの燃料噴射量が算出されると、燃焼室5内における混合気の空燃比は理論空燃比となり、従って、燃焼室5内には良好な混合気を生成できることになる。
ここで、新気量QAと燃焼室5内から吸気通路内へ吹き戻された空気量QRとの和は、燃焼室5に供給された空気量QCに一致する。一方、燃焼室5内から吸気通路内への空気の吹き戻し作用が行われているときには、ピストン4が下死点BDCに位置するときの燃焼室5の容積と、このときの燃焼室5内の圧力の積が、燃焼室5に供給された空気量QCを表しており、このときの燃焼室5内の圧力は、スロットル弁16下流の吸気通路内の圧力に一致している。従って、燃焼室5に供給された空気量QCは、ピストン4が下死点BDCに位置するときの燃焼室5の容積と、スロットル弁16下流の吸気通路内の圧力との積から算出できることになる。この場合、ピストン4が下死点BDCに位置するときの燃焼室5の容積は予めわかっているので、燃焼室5に供給された空気量QCは、スロットル弁16下流の吸気通路内の圧力から算出できることになる。このスロットル弁16下流の吸気通路内の圧力は圧力センサ18により検出されている。
さて、本発明による実施例では一サイクルが吸気行程と、圧縮行程と、膨張行程と、排気行程とからなり、燃料噴射の再開時に、燃料噴射弁13から燃料噴射が行われると、次のサイクルでは、燃焼室5内から吸気通路内へ吹き戻されたガスは空気ではなくて混合気となる。従って、スロットル弁16下流の吸気通路内の圧力に基づき燃料噴射量を算出することにより、燃焼室5内の混合気の空燃比を目標空燃比に一致させることができるのは、燃料噴射が再開されたときの最初のサイクルにおける燃料噴射量の算出時だけである。
従って、本発明によれば、吸気弁7の閉弁時期ICを吸気下死点から圧縮上死点の間に設定可能な可変バルブタイミング機構Bと、燃焼室5内に燃料を供給するための燃料噴射弁13と、外気中から吸気通路内に供給される吸入空気量を検出するための吸入空気量検出器17と、吸気通路内に配置されたスロットル弁16と、スロットル弁16下流の吸気通路内の圧力を検出するための圧力センサ18と、電子制御ユニット30とを具備しており、一サイクルが吸気行程と、圧縮行程と、膨張行程と、排気行程とからなり、吸入空気量検出器17により検出された吸入空気量を燃料噴射量算出の基礎に用いて燃料噴射弁13からの燃料噴射量が算出される内燃機関の制御装置において、電子制御ユニット30は、機関減速運転時に、燃料噴射弁13から燃焼室5内に供給される燃料の噴射を一時的に停止させると共に、機関減速運転時の燃料噴射停止後に燃料噴射弁13からの燃料の噴射を再開させ、更に電子制御ユニット30は、燃料噴射弁13からの燃料の噴射が再開されたときに燃焼室5内の空気が吸気通路内に吹き戻すときには、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射弁13からの燃料噴射量算出の基礎を、吸入空気量検出器17により検出された吸入空気量から圧力センサ18により検出された吸気通路内の圧力に切換えている。
一方、このように燃料噴射が再開されたときの最初のサイクルにおける燃料噴射弁13からの燃料噴射量が、圧力センサ18により検出された吸気通路内の圧力に基づいて算出されると、燃料噴射が再開されたときの二度目のサイクルでは、燃焼室5内から吸気通路内へ吹き戻された混合気の空燃比は目標空燃比となっている。従って、このときには、新気の空燃比が目標空燃比となるように新気に対する燃料噴射量を算出することが必要となる。従って、本発明による実施例では、電子制御ユニット30は、機関減速運転時の燃料噴射停止後における燃料噴射弁13からの燃料の噴射が再開されたときの二度目のサイクルでは、燃料噴射弁13からの燃料噴射量算出の基礎を、圧力センサ18により検出された吸気通路内の圧力から吸入空気量検出器17より検出された吸入空気量に戻している。
さて、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射量を、圧力センサ18により検出された吸気通路内の圧力に基づいて行う必要があるのは、燃料噴射弁13からの燃料の噴射が再開されたときに燃焼室5内の空気が吸気通路内に吹き戻しているときである。この場合、前述した図11の(C)に示されるように、吸気弁7の閉弁時期ICを吸気下死点から遅角していくと、燃焼室5内の空気が吸気通路内に吹き戻し始める境界閉弁時期IXが存在する。従って、本発明による実施例では、電子制御ユニット30は、燃料噴射弁13からの燃料の噴射が再開されたときの吸気弁7の閉弁時期ICが境界閉弁時期IXよりも遅角側にあるときには、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射弁13からの燃料噴射量算出の基礎を、吸入空気量検出器17により検出された吸入空気量から圧力センサ18により検出された吸気通路内の圧力に切換えている。
一方、燃料噴射弁13からの燃料の噴射が再開されたときの吸気弁7の閉弁時期ICが境界閉弁時期IXよりも進角側にあるときには、図11の(A)、(B)、(C)からわかるように、燃焼室5内に留まる空気量GCは新気量QAに一致する。従って、本発明による実施例では、電子制御ユニット30は、燃料噴射弁13からの燃料の噴射が再開されたときの吸気弁7の閉弁時期ICが境界閉弁時期IXよりも進角側にあるときには、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射弁13からの燃料噴射量を、吸入空気量検出器17により検出された吸入空気量に基づいて算出している。
なお、機関回転数が高くなるほど、吸気慣性による燃焼室5への新気の押し込み作用は強くなり、従って、図13Aに示されるように、吸気弁7の境界閉弁時期IXは機関回転数が高くなるほど遅角側となる。なお、図13Aにおいて、BDCは吸気下死点を示しており、TDCは圧縮上死点を示している。図13Aに示される吸気弁7の境界閉弁時期IXと機関回転数の関係は、予めROM32内に記憶されている。
一方、前述したように、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルでは、燃料噴射量が圧力センサ18により検出された吸気通路内の圧力に基づいて算出される。このとき、燃焼室5に供給された空気量QCは、ピストン4が下死点BDCに位置するときの燃焼室5の容積と、スロットル弁16下流の吸気通路内の圧力との積から算出される。一方、ピストン4が下死点BDCに位置するときの燃焼室5の容積は、図8Aと図8Bを比較するとわかるように、機械圧縮比CRが低くなるほど大きくなる。従って、燃焼室5に供給された空気量QCは、機械圧縮比CRが低くなるほど増大し、従って、空燃比を目標空燃比とするのに必要な燃料噴射量は、機械圧縮比CRが低くなるほど増大する。
従って、本発明による実施例では、電子制御ユニット30は、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおいて燃料噴射弁13からの燃料噴射量を圧力センサ18により検出された吸気通路内の圧力に基づいて算出するときには、燃料噴射弁13からの燃料噴射量を、機械圧縮比CRが低くなるほど増大させている。なお、本発明による実施例では、ピストン4が下死点BDCに位置するときの燃焼室5の容積として機械圧縮比CRが最大となる機関低負荷運転時における燃焼室5の容積が用いられており、この場合に算出される燃料噴射量に図13Bに示される補正係数Fを乗算することによって、機械圧縮比CRに応じた燃料噴射量が算出される。この場合、図13Bからわかるように、補正係数Fは機械圧縮比CRが低くなるほど大きくなる。なお、図13Bに示される補正係数Fと機械圧縮比CRの関係は、予めROM32内に記憶されている。
次に、図14を参照しつつ、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射量を、吸入空気量検出器17により検出された吸入空気量のみに基づいて算出することが好ましくない理由について簡単に説明する。図14の(A)は、吸入空気量検出器17により検出された吸入空気量QAに基づき算出された燃料噴射量に、予め実験により求めた修正係数KF(=QC/QA)を乗算することによって、燃料噴射再開時における燃料噴射弁13からの燃料噴射量を求めるようにした場合を示している。図14の(A)からわかるように、吸入空気量QAに基づき算出された燃料噴射量に修正係数KF(=QC/QA)を乗算すると、修正係数KFを乗算することによって得られた燃料噴射量は、燃焼室5に供給された空気量QCに対する燃料噴射量を表している。従って、修正係数KF(=QC/QA)の値が変化しない限り、燃焼室5内の混合気の空燃比は目標空燃比とされる。
しかしながら、経時変化によって、例えば吸気弁7の弁部、又はシリンダヘッド3上に形成された吸気弁用弁座部にデポジットが堆積すると、吸気弁7のリフト量が大きいときには、即ち、空気が燃焼室5内に向けて流れているときには、吸気弁7と吸気弁用弁座部間を流れるガス量に大きな変化は生じないが、吸気弁7のリフト量が小さくなったときには、即ち、燃焼室5内の空気が吸気通路内に吹き戻しているときには、吸気弁7と吸気弁用弁座部間を流れるガス量に大きな変化は生じ、このとき吸気弁7と吸気弁用弁座部間を流れるガス量はかなり減少する。従って、吸気弁7の弁部、又は吸気弁用弁座部にデポジットが堆積すると、図14の(B)に示されるように、吸気通路内に吹き戻される空気量QRが減少し、その結果、燃焼室5内に留まる空気量QAが増大する。
このように、吸気弁7の弁部、又は吸気弁用弁座部にデポジットが堆積すると、図14の(B)に示されるように、燃焼室5内に留まる空気量QA、即ち、新気量QAが増大する。従って、このとき、吸入空気量検出器17により検出された吸入空気量QAに基づき算出された燃料噴射量に、予め実験により求めた修正係数KFを乗算することによって、燃料噴射再開時における燃料噴射量を求めると、図14の(B)に示されるように、燃焼室5に供給された空気量QCは変化しないにもかかわらず、燃料噴射量が大巾に増大することになる。その結果、燃焼室5内の混合気の空燃比は目標空燃比に対してかなりリッチとなる。従って、経時変化を考えると、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射量を、吸入空気量検出器17により検出された吸入空気量のみに基づいて算出することには問題があることになる。
次に、図15から図17を参照しつつ、本発明を実行するための運転制御ルーチンについて説明する。図15は、本発明を実行するための運転制御ルーチンにおいて用いられている噴射停止フラグおよび噴射復帰フラグの変化を示している。なお、図15には、図12に示される機関回転数の変化および燃料噴射弁13からの燃料噴射量の変化と同じ機関回転数の変化および燃料噴射量の変化が再度示されている。従って、図15において、NSは燃料噴射停止回転数を示しており、NRは燃料噴射復帰回転数を示しており、tは機関減速運転が開始されたときを示している。
さて、図15を参照すると、機関減速運転が開始されたときに機関回転数が燃料噴射停止回転数NSよりも高い場合には、機関減速運転が開始されると、図15に示されるように、噴射停止フラグがセットされる。噴射停止フラグがセットされると、図15に示されるように燃料噴射が停止される。次いで、機関回転数が燃料噴射復帰回転数NRよりも低下すると噴射停止フラグはリセットされ、噴射復帰フラグがセットされる。噴射復帰フラグがセットされると、燃料噴射が再開される。この噴射復帰フラグは、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおける全ての気筒に対する燃料噴射量の算出が完了するとリセットされる。
図16は、図15に示される噴射停止フラグおよび噴射復帰フラグの制御ルーチンを示している。このルーチンは一定時間毎の割り込みによって実行される。
図16を参照すると、まず初めにステップ100において、噴射停止フラグがセットされているか否かが判別される。噴射停止フラグがセットされていないときにはステップ101に進んで、負荷センサ41の出力信号からアクセルペダル40が開放されたか否か、即ち、機関の減速運転が開始されたか否かが判別される。負荷センサ41の出力信号からアクセルペダル40が開放されたと判別されたとき、即ち、機関の減速運転が開始されたと判別されたときにはステップ102に進む。
ステップ102では、機関回転数Nが燃料噴射停止回転数NSよりも高いか否かが判別される。機関回転数Nが燃料噴射停止回転数NSよりも低いときには処理サイクルを完了する。これに対し、機関回転数が燃料噴射停止回転数NSよりも高いときにはステップ103に進み、噴射停止フラグがセットされる。次いで、処理サイクルを完了する。
噴射停止フラグがセットされると、次の処理サイクルでは、ステップ104に進み、機関回転数Nが燃料噴射復帰回転数NRよりも低下したか否かが判別される。機関回転数Nが燃料噴射復帰回転数NRよりも高いときにはステップ106に進んで、アクセルペダル40が踏み込まれたか否かが判別される。アクセルペダル40が踏み込まれていないときには処理サイクルを完了する。これに対し、ステップ104において、機関回転数Nが燃料噴射復帰回転数NRよりも低下したと判別されたとき、或いは、機関回転数が燃料噴射復帰回転数NRよりも高いが、ステップ105において、アクセルペダル40が踏み込まれたと判別されたときには、ステップ106に進んで噴射停止フラグがリセットされ、次いでステップ107において、噴射復帰フラグがセットされる。
図17は運転制御ルーチンを示している。このルーチンも一定時間毎の割り込みによって実行される。
図17を参照すると、まず初めにステップ200において、噴射停止フラグがセットされているか否かが判別される。噴射停止フラグがセットされていないときには、ステップ201に進んで、噴射復帰フラグがセットされているか否かが判別される。噴射復帰フラグがセットされていないときにはステップ202に進み、ステップ202からステップ205において、吸気弁7の閉弁時期IC、機械圧縮比CRおよびスロットル弁16の駆動制御が行われる。
即ち、ステップ202では、機関負荷Lおよび機関回転数Nに基づいて図10(A)に示すマップから吸気弁7の閉弁時期ICが算出され、次いで、ステップ203では、機関負荷Lおよび機関回転数Nに基づいて図10(B)に示すマップから機械圧縮比CRが算出され、次いで、ステップ204では、機関負荷Lおよび機関回転数Nに基づいて図10(C)に示すマップからスロットル弁16の開度θが算出される。次いでステップ205では、機械圧縮比が機械圧縮比CRとなるように可変圧縮比機構Aが駆動され、吸気弁7の閉弁時期が閉弁時期ICとなるように可変バルブタイミング機構Bが駆動され、スロットル弁16の開度が開度θとなるようにアクチュエータ16aが駆動される。
次いで、ステップ206からステップ209において、燃料噴射弁13からの燃料噴射量、実際には燃料噴射弁13からの燃料噴射時間の算出と、燃料噴射弁13からの燃料噴射処理が行われる。即ち、ステップ206では、吸入空気量検出器17により検出されている吸入空気量QAが読み込まれる。次いで、ステップ207では、この吸入空気量QAを機関回転数Nで除算した値QA/Nに定数αを乗算することによって、空燃比を理論空燃比とするのに必要な各燃料噴射弁13からの基本燃料噴射時間Tpが算出される。次いで、ステップ208では、この基本燃料噴射時間Tpにフィードバック補正係数FAFを乗算することによって、最終的な燃料噴射時間Tiが算出される。このフィードバック補正係数FAFは空燃比センサ21の出力信号に基づいて、各気筒の空燃比が目標空燃比となるように、1.0を中心として変化せしめられる。次いで、ステップ209において、
各燃料噴射弁13から最終的な燃料噴射時間Tiでもって燃料が噴射される。
一方、ステップ200において、噴射停止フラグがセットされていると判別されたときにはステップ210に進んで、各燃料噴射弁13からの燃料噴射が停止される。次いで、ステップ211では、吸気弁7の閉弁時期、機械圧縮比およびスロットル弁16の開度が、夫々、燃料噴射弁13からの燃料噴射が停止されたときの閉弁時期IC、機械圧縮比CR及び開度θに固定される。ただし、この場合、スロットル弁16の開度については固定せず、例えば、スロットル弁16を一時的に閉弁させるような制御を行うことができる。
一方、ステップ201において、噴射復帰フラグがセットされていると判別されたときには、ステップ212に進み、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射制御が行われる。即ち、ステップ212では、吸気弁7の閉弁時期ICが、図13Aに示される境界閉弁時期IXよりも遅角側であるか否かが判別される。吸気弁7の閉弁時期ICが境界閉弁時期IXよりも進角側であると判別されたときにはステップ206に進み、吸入空気量検出器17により検出されている吸入空気量QAに基づいて、燃料噴射弁13からの燃料噴射が制御される。これに対し、ステップ212において、吸気弁7の閉弁時期ICが境界閉弁時期IXよりも遅角側であると判別されたときには、ステップ213に進んで、スロットル弁16下流の吸気通路内の圧力、即ち、圧力センサ18により検出された圧力に基づいて、燃料噴射弁13からの燃料噴射時間が算出される。
即ち、ステップ213では、圧力センサ18により検出されている圧力Pが読み込まれる。次いで、ステップ214では、機械圧縮比CRが最大となる機関低負荷運転時における燃焼室5の容積に、この圧力Pと定数γを乗算することによって、燃焼室5に供給された空気量QCが算出される。次いで、ステップ215では、現在の機械圧縮比CRに基づいて、図13Bに示される関係から、燃料噴射弁13からの燃料噴射量に対する補正係数Fが算出される。次いで、ステップ216では、燃焼室5に供給された空気量QCに、補正係数Fおよび定数βを乗算することによって、空燃比を理論空燃比とするのに必要な各燃料噴射弁13からの基本燃料噴射時間Tpが算出される。
次いで、ステップ217では、全気筒の燃料噴射弁13について、この基本燃料噴射時間Tpの算出が完了したか否かが判別される。全気筒の燃料噴射弁13について、この基本燃料噴射時間Tpの算出が完了していないときにはステップ208に進み、ステップ216において算出された基本燃料噴射時間Tpにフィードバック補正係数FAFを乗算することによって、最終的な燃料噴射時間Tiが算出される。次いで、ステップ209において、対応する燃料噴射弁13から最終的な燃料噴射時間Tiでもって燃料が噴射される。一方、ステップ217において、全気筒の燃料噴射弁13について、基本燃料噴射時間Tpの算出が完了したと判別されたときには、ステップ218に進んで、噴射復帰フラグがリセットされ、次いでステップ208に進む。
このように、燃料噴射が再開されたときの最初のサイクルにおける全気筒の燃料噴射弁13について、圧力センサ18により検出された圧力に基づく基本燃料噴射時間Tpの算出が完了したときに、噴射復帰フラグがリセットされる。噴射復帰フラグがリセットされると、次の処理サイクルでは、ステップ201からステップ202に進み、吸入空気量検出器17により検出されている吸入空気量QAに基づいて、燃料噴射弁13からの燃料噴射が制御される。従って。燃料噴射が再開されたときの二度目のサイクルでは、吸入空気量検出器17により検出されている吸入空気量QAに基づいて、燃料噴射弁13からの燃料噴射が制御されることになる。
一方、噴射停止フラグがセットされておらず、噴射復帰フラグもセットされていないときには、図17からわかるように、吸入空気量検出器17により検出されている吸入空気量QAに基づいて、燃料噴射弁13からの燃料噴射が制御される。即ち、本発明による実施例では、圧力センサ18により検出された圧力に基づいて、燃料噴射弁13からの燃料噴射が制御されるのは、燃料噴射が再開されたときの最初のサイクルだけである。
一方、燃料噴射弁13からの燃料の噴射が行われているときには、常に、吸入空気量検出器17により検出されている吸入空気量QAに基づいて、燃料噴射弁13からの燃料噴射を制御し、燃料噴射が再開されたときの最初のサイクルだけは、圧力センサ18により検出された圧力に基づいて、燃料噴射弁13からの燃料噴射量を補正するように構成することもできる。図18は、このように構成した場合の運転制御ルーチンの変形例を示している。なお、図18に示す運転制御ルーチンにおいて、図17に示す運転制御ルーチンと異なるところは、図17におけるステップ208が、図18ではステップ208bに変更されていると共にステップ208bの前に新たなステップ208aが追加され、図17におけるステップ216とステップ217との間に、図18ではステップ219aとステップ219bが追加されていることだけである。
従って、次に、図17と異なる部分のみについて、図18について説明する。図18を参照すると、ステップ208bでは、新たな補正係数Kが導入されており、ステップ208bでは、基本燃料噴射時間Tpにフィードバック補正係数FAFとこの補正係数Kを乗算することによって、最終的な燃料噴射時間Tiが算出される。この補正係数Kは、ステップ208aにおいて1.0とされており、従って、噴射停止フラグがセットされておらず、噴射復帰フラグもセットされていないとき、即ち、ステップ206からステップ209に進むときには、図18に示す運転制御ルーチンは、図17に示す運転制御ルーチンと実質的に同じとなる。
一方、図18に示す運転制御ルーチンでは、図17に示す運転制御ルーチンと異なり、ステップ219aにおいて、吸入空気量検出器17により検出されている吸入空気量QAが読み込まれ、次いでステップ219bにおいて、補正係数Kが算出される。このステップ219bにおいて算出される補正係数Kは、ステップ216に示される基本燃料噴射時間Tp(=β・F・QC)を、ステップ207に示される基本燃料噴射時間Tp(=α・QA/N)により除算した値(β・F・QC・N)/(α・QA)である。この補正係数Kの値は、図12において、QC/QAに相当する。即ち、図18に示す運転制御ルーチンでは、燃料噴射が再開されたときの最初のサイクルにおける燃料噴射時間Tiを算出するときに、吸入空気量検出器17により検出されている吸入空気量QAに基づいて算出された燃料噴射時間を、圧力センサ18により検出された圧力も考慮に入れた補正係数Kでもって、補正している。
従って、図18に示す運転制御ルーチンでは、電子制御ユニット30は、燃料噴射弁13からの燃料の噴射が再開されたときに燃焼室5内の空気が吸気通路内に吹き戻すときには、燃料噴射弁13からの燃料の噴射が再開されたときの最初のサイクルにおける燃料噴射弁13からの燃料噴射量算出の基礎を、吸入空気量検出器17により検出された吸入空気量から吸入空気量検出器17により検出された吸入空気量および圧力センサ18により検出された吸気通路内の圧力に切換えていることになる。
5 燃焼室
7 吸気弁
16 スロットル弁
17 吸入空気量検出器
18 圧力センサ
A 可変圧縮比機構
B 可変バルブタイミング機構

Claims (7)

  1. 吸気弁の閉弁時期を吸気下死点から圧縮上死点の間に設定可能な可変バルブタイミング機構と、
    燃焼室内に燃料を供給するための燃料噴射弁と、
    外気中から吸気通路内に供給される吸入空気量を検出するための吸入空気量検出器と、
    吸気通路内に配置されたスロットル弁と、
    スロットル弁下流の吸気通路内の圧力を検出するための圧力センサと、
    電子制御ユニットとを具備しており、一サイクルが吸気行程と、圧縮行程と、膨張行程と、排気行程とからなり、前記吸入空気量検出器により検出された吸入空気量を燃料噴射量算出の基礎に用いて前記燃料噴射弁からの燃料噴射量が算出される内燃機関の制御装置において、
    前記電子制御ユニットは、機関減速運転時に、前記燃料噴射弁から前記燃焼室内に供給される燃料の噴射を一時的に停止させると共に、機関減速運転時の燃料噴射停止後に前記燃料噴射弁からの燃料の噴射を再開させ、更に前記電子制御ユニットは、前記燃料噴射弁からの燃料の噴射が再開されたときに前記燃焼室内の空気が前記吸気通路内に吹き戻すときには、前記燃料噴射弁からの燃料の噴射が再開されたときの最初のサイクルにおける前記燃料噴射弁からの燃料噴射量算出の基礎を、前記吸入空気量検出器により検出された吸入空気量から前記圧力センサにより検出された吸気通路内の圧力に切換える内燃機関の制御装置。
  2. 前記電子制御ユニットは、機関減速運転時の燃料噴射停止後における前記燃料噴射弁からの燃料の噴射が再開されたときの二度目のサイクルでは、前記燃料噴射弁からの燃料噴射量算出の基礎を、前記圧力センサにより検出された前記吸気通路内の圧力から前記吸入空気量検出器により検出された吸入空気量に戻す請求項1に記載の内燃機関の制御装置。
  3. 機械圧縮比を制御可能な可変圧縮比機構を具備しており、前記電子制御ユニットは、前記燃料噴射弁からの燃料の噴射が再開されたときの最初のサイクルにおいて前記燃料噴射弁からの燃料噴射量を前記圧力センサにより検出された前記吸気通路内の圧力に基づいて算出するときには、前記燃料噴射弁からの燃料噴射量を、機械圧縮比が低くなるほど増大させる請求項1に記載の内燃機関の制御装置。
  4. 前記吸気弁の閉弁時期を吸気下死点から遅角していくと、前記燃焼室内の空気が前記吸気通路内に吹き戻し始める境界閉弁時期が存在し、前記電子制御ユニットは、前記燃料噴射弁からの燃料の噴射が再開されたときの前記吸気弁の閉弁時期が前記境界閉弁時期よりも遅角側にあるときには、前記燃料噴射弁からの燃料の噴射が再開されたときの最初のサイクルにおける前記燃料噴射弁からの燃料噴射量算出の基礎を、前記吸入空気量検出器により検出された吸入空気量から前記圧力センサにより検出された前記吸気通路内の圧力に切換える請求項1に記載の内燃機関の制御装置。
  5. 前記電子制御ユニットは、前記燃料噴射弁からの燃料の噴射が再開されたときの前記吸気弁の閉弁時期が前記境界閉弁時期よりも進角側にあるときには、前記燃料噴射弁からの燃料の噴射が再開されたときの最初のサイクルにおける前記燃料噴射弁からの燃料噴射量を前記吸入空気量検出器により検出された吸入空気量に基づいて算出する請求項4に記載の内燃機関の制御装置。
  6. 機関排気通路内の空燃比を検出する空燃比センサを具備しており、前記電子制御ユニットは、前記空燃比センサにより排気通路内の空燃比が予め定められた目標空燃比となるように前記燃料噴射弁からの燃料噴射量を制御する請求項1に記載の内燃機関の制御装置。
  7. 前記電子制御ユニットは、前記燃料噴射弁からの燃料の噴射が再開されたときに前記燃焼室内の空気が前記吸気通路内に吹き戻すときには、前記燃料噴射弁からの燃料の噴射が再開されたときの最初のサイクルにおける前記燃料噴射弁からの燃料噴射量算出の基礎を、前記吸入空気量検出器により検出された吸入空気量から前記吸入空気量検出器により検出された吸入空気量および前記圧力センサにより検出された前記吸気通路内の圧力に切換える請求項1に記載の内燃機関の制御装置。
JP2016032965A 2016-02-24 2016-02-24 内燃機関の制御装置 Expired - Fee Related JP6327263B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016032965A JP6327263B2 (ja) 2016-02-24 2016-02-24 内燃機関の制御装置
DE102017100066.6A DE102017100066B4 (de) 2016-02-24 2017-01-04 Steuerungssystem einer Verbrennungskraftmaschine
US15/398,021 US10184413B2 (en) 2016-02-24 2017-01-04 Control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032965A JP6327263B2 (ja) 2016-02-24 2016-02-24 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2017150374A JP2017150374A (ja) 2017-08-31
JP6327263B2 true JP6327263B2 (ja) 2018-05-23

Family

ID=59522688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032965A Expired - Fee Related JP6327263B2 (ja) 2016-02-24 2016-02-24 内燃機関の制御装置

Country Status (3)

Country Link
US (1) US10184413B2 (ja)
JP (1) JP6327263B2 (ja)
DE (1) DE102017100066B4 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103061B2 (ja) * 2018-08-27 2022-07-20 トヨタ自動車株式会社 内燃機関の制御装置
DE102019214230B4 (de) * 2019-09-18 2022-02-10 Vitesco Technologies GmbH Verfahren zur Regelung der Gesamt-Einspritzmasse bei einer Mehrfacheinspritzung
US11428179B1 (en) * 2021-03-03 2022-08-30 Ford Global Technologies, Llc Systems and methods for fuel post injection timing

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122239A (ja) * 1983-12-07 1985-06-29 Mazda Motor Corp エンジンの燃料噴射装置
JPS60178952A (ja) * 1984-02-27 1985-09-12 Mitsubishi Electric Corp 内燃機関の燃料噴射制御装置
JPS61178536A (ja) * 1985-02-04 1986-08-11 Mitsubishi Electric Corp エンジンの燃料制御装置
JPS62276237A (ja) * 1986-05-26 1987-12-01 Mitsubishi Motors Corp 電子制御燃料噴射方法
JPH02112606A (ja) * 1988-10-20 1990-04-25 Isuzu Ceramics Kenkyusho:Kk 電磁力駆動バルブ制御装置
JPH0354257A (ja) 1989-07-24 1991-03-08 Asahi Chem Ind Co Ltd ポリフェニレンスルフィド樹脂よりの組成物
JP3791032B2 (ja) * 1996-01-09 2006-06-28 日産自動車株式会社 内燃機関の燃料噴射制御装置
JP2005127169A (ja) * 2003-10-22 2005-05-19 Hitachi Ltd 内燃機関の制御方法
JP2006283721A (ja) * 2005-04-04 2006-10-19 Nissan Motor Co Ltd 燃料噴射装置
JP4688670B2 (ja) * 2005-12-20 2011-05-25 川崎重工業株式会社 内燃機関の燃焼制御装置および車両
JP2007303423A (ja) 2006-05-12 2007-11-22 Toyota Motor Corp 火花点火式内燃機関
JP4344953B2 (ja) * 2006-09-15 2009-10-14 三菱自動車工業株式会社 内燃機関の排気浄化装置
US7448369B2 (en) * 2006-10-12 2008-11-11 Honda Motor Co., Ltd. Method for controlling a fuel injector
US7597072B2 (en) * 2006-10-24 2009-10-06 Ford Global Technologies, Llc System and method for operating a multiple fuel engine
JP4442693B2 (ja) * 2008-02-13 2010-03-31 トヨタ自動車株式会社 内燃機関の制御装置
JP2010116883A (ja) * 2008-11-14 2010-05-27 Honda Motor Co Ltd 内燃機関の制御装置
JP5516461B2 (ja) * 2011-03-10 2014-06-11 トヨタ自動車株式会社 可変圧縮比機構を備える内燃機関
US9291110B2 (en) * 2011-08-29 2016-03-22 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Also Published As

Publication number Publication date
US20170241361A1 (en) 2017-08-24
US10184413B2 (en) 2019-01-22
DE102017100066A1 (de) 2017-08-24
JP2017150374A (ja) 2017-08-31
DE102017100066B4 (de) 2020-07-09

Similar Documents

Publication Publication Date Title
JP4367439B2 (ja) 火花点火式内燃機関
JP4450024B2 (ja) 火花点火式内燃機関
JP2007303423A (ja) 火花点火式内燃機関
JP4450025B2 (ja) 火花点火式内燃機関
JP2008121499A (ja) 火花点火式内燃機関
JP4367549B2 (ja) 火花点火式内燃機関
JP4631848B2 (ja) 火花点火式内燃機関
JP2009114964A (ja) 火花点火式内燃機関
JP4849188B2 (ja) 火花点火式内燃機関
JP6327263B2 (ja) 内燃機関の制御装置
JP4367551B2 (ja) 火花点火式内燃機関
JP4450026B2 (ja) 火花点火式内燃機関
JP4367548B2 (ja) 火花点火式内燃機関
JP5585490B2 (ja) 可変圧縮比機構を備える多気筒内燃機関
JP5082938B2 (ja) 火花点火式内燃機関
JP2009008016A (ja) 火花点火式内燃機関
JP4930337B2 (ja) 火花点火式内燃機関
JP4367547B2 (ja) 火花点火式内燃機関
JP5196033B2 (ja) 火花点火式内燃機関
JP4911144B2 (ja) 火花点火式内燃機関
JP5585521B2 (ja) 可変圧縮比機構を備える内燃機関
JP5516461B2 (ja) 可変圧縮比機構を備える内燃機関
JP4420105B2 (ja) 火花点火式内燃機関
JP5589707B2 (ja) 内燃機関の制御装置
JP2011117418A (ja) 火花点火式内燃機関

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R151 Written notification of patent or utility model registration

Ref document number: 6327263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees