JP6301747B2 - Joint structure of precast floor slab and main girder - Google Patents

Joint structure of precast floor slab and main girder Download PDF

Info

Publication number
JP6301747B2
JP6301747B2 JP2014128125A JP2014128125A JP6301747B2 JP 6301747 B2 JP6301747 B2 JP 6301747B2 JP 2014128125 A JP2014128125 A JP 2014128125A JP 2014128125 A JP2014128125 A JP 2014128125A JP 6301747 B2 JP6301747 B2 JP 6301747B2
Authority
JP
Japan
Prior art keywords
floor slab
main girder
opening
shape
precast floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014128125A
Other languages
Japanese (ja)
Other versions
JP2016008394A (en
Inventor
唯堅 趙
唯堅 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2014128125A priority Critical patent/JP6301747B2/en
Publication of JP2016008394A publication Critical patent/JP2016008394A/en
Application granted granted Critical
Publication of JP6301747B2 publication Critical patent/JP6301747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、プレキャスト床版と、主桁との接合構造に関し、より詳細には、超高強度繊維補強コンクリートで製作したプレキャスト床版における、主桁との接合構造に関する。   The present invention relates to a joint structure between a precast floor slab and a main girder, and more particularly to a joint structure with a main girder in a precast floor slab made of ultra high strength fiber reinforced concrete.

図4に、従来のプレキャスト床版と主桁との接合構造を示す。
プレキャスト床版を主桁に設置する際には、図4(a)のように主桁bにスタットジベルc1を設けたり、図4(b)のように孔あきの鋼板ジベルc2を設けたりして、床版aを矩形状に箱抜きした部分(矩形状の箱抜き部a1)に当該ジベルc1,c2を設置し、矩形状の箱抜き部a1にモルタルdを充填して、床版aと主桁bとを接合している。
特許文献1には、図4(b)に示す孔あきの鋼板ジベルを用いた構造が開示されている。
In FIG. 4, the joining structure of the conventional precast floor slab and the main girder is shown.
When the precast floor slab is installed on the main girder, a stat diver c1 is provided on the main girder b as shown in FIG. 4 (a), or a perforated steel plate diver c2 is provided as shown in FIG. 4 (b). The above-mentioned gibels c1 and c2 are installed in a rectangular boxed portion (rectangular boxed portion a1) and the rectangular boxed portion a1 is filled with mortar d, The main girder b is joined.
Patent Document 1 discloses a structure using a perforated steel plate dowel shown in FIG.

特開2002−70227号公報JP 2002-70227 A

しかし、前記従来技術によれば、以下に記載する問題点のうち、少なくとも一つの問題点がある。   However, according to the prior art, there is at least one of the following problems.

(1)スタットジベルの問題点
従来多用されているスタッドジベルは一本当たりの剛性が小さいため、スタッドを多数配置する必要がある。スタッドを多数配置するには、床版の箱抜きの数を増やすか、箱抜きの寸法を大きくしなければならないため、プレキャスト床版に弱部が生じてしまう。
また、充填する結合モルタルの強度が低いため、ずれ止めとしての耐力も低い。箱抜きが大きいと、現場充填のモルタル量が多くなってしまい施工効率が低い。
(1) Problems with Stat Givel Stud gibbles, which have been widely used in the past, have a small rigidity per one, and a large number of studs need to be arranged. In order to arrange a large number of studs, it is necessary to increase the number of unboxing of the floor slab or to increase the size of the unboxing, which causes a weak portion in the precast floor slab.
Moreover, since the strength of the bonded mortar to be filled is low, the yield strength as a stopper is also low. If the box is large, the amount of mortar filled on site will increase and construction efficiency will be low.

(2)孔あき鋼板ジベルの問題点
孔あき鋼板ジベルは、スタッドに比べ剛性が大きいが、耐力は同程度のため、スタッドと同じように、箱抜きの数か大きさを増やさなければならない。
また、プレキャスト床版の場合は、孔あき鋼板ジベルの連続配置は困難である。
(2) Problems with perforated steel plate gibels Perforated steel plate gibels are more rigid than studs, but have the same strength, so the number or size of boxes must be increased as with studs.
Moreover, in the case of a precast floor slab, it is difficult to continuously arrange perforated steel plate gibbles.

(3)接合部の問題点
プレキャスト床版の箱抜き部分の充填作業は現場施工であるため、充填材としてダクタル(登録商標)などの超高強度繊維補強コンクリートを用いることは、凝結が遅く不向きである。
よって、プレキャスト床版を、超高強度繊維補強コンクリートで製作したとしても、結局床版の箱抜き部分はモルタル充填となるため、床版が高強度であっても、接合部が弱部となってしまう。
(3) Problems with joints Since the filling work for the boxed part of the precast floor slab is on-site construction, it is not suitable to use ultra-high-strength fiber reinforced concrete such as DUCTAL (registered trademark) as the filler. It is.
Therefore, even if the precast floor slab is made of ultra high strength fiber reinforced concrete, the boxed part of the floor slab will eventually be filled with mortar, so even if the floor slab is high strength, the joint will be weak. End up.

以上の通り、プレキャスト床版の場合、いかにジベル鋼材自体をコンパクトにし、且つ耐力と剛性を上げるか、同時にジベルの相手となる充填モルタルの強度を上げるかが重要である。
特に、床版の軽量化を図るために高強度の材料(例えば超高強度繊維補強コンクリート)を適用する場合には、接合部が弱部とならないように接合部の剛性を高めて、床版と接合部の耐力バランスを確保することが特に重要である。
また、超高強度繊維補強コンクリート製の床版自体の高強度性を有効に生かすことができれば、なお望ましい。
As described above, in the case of a precast floor slab, it is important how to make the gibber steel material compact and increase the proof stress and rigidity, and at the same time, increase the strength of the filling mortar which is the partner of the gibber.
In particular, when applying a high-strength material (for example, ultra-high-strength fiber reinforced concrete) to reduce the weight of the floor slab, increase the rigidity of the joint so that the joint does not become weak. It is particularly important to ensure the balance of the strength of the joint.
It is further desirable if the high strength of the floor slab itself made of ultra high strength fiber reinforced concrete can be utilized effectively.

よって、本願発明は、ジベル鋼材自体をコンパクトにしつつ、且つ耐力と剛性を上げることが可能で、床版と接合部の耐力バランスを確保に寄与する接合構造の提供を目的の一つとする。   Therefore, it is an object of the present invention to provide a joint structure that can increase the proof stress and rigidity while making the gibber steel material itself compact and contribute to ensuring the proof stress balance between the floor slab and the joint.

上記課題を解決すべくなされた本願の第1発明は、超高強度繊維補強コンクリートで製作したプレキャスト床版と、主桁との接合構造であって、前記主桁の上面に設け、平面視して略直交する第1の面および第2の面を有する形鋼からなり、前記第1の面または第2の面のうち何れかが、対向する複数面を設けている、ジベルと、前記床版に設け、平面視して前記対向する複数面の間に、床版本体から連続する領域であるコッター部が嵌合するように、前記ジベルの形状に沿って箱抜きした、開口部と、をからなり、前記開口部に前記ジベルを挿入して、該ジベルと開口部との隙間に充填材を充填してなることを特徴とする。
また、本願の第2発明は、前記第1発明において、前記形鋼の平面視先端形状と平面視投影形状とが同一であることを特徴とする。
また、本願の第3発明は、前記第1または第2発明において、前記ジベルが、H形鋼、I形鋼、又は溝形鋼であることを特徴とする。
The first invention of the present application, which has been made to solve the above-mentioned problems, is a joint structure of a precast floor slab made of ultra-high strength fiber reinforced concrete and a main girder, which is provided on the upper surface of the main girder and is viewed in plan view. Do the shaped steel having a first face and a second face substantially orthogonal Te Ri, one of the first surface or second surface is provided with a plurality of surfaces facing the dowel, the An opening formed on the floor slab and boxed along the shape of the dowel so that a cotter portion, which is a continuous area from the floor slab body, fits between the plurality of opposed surfaces in plan view; and And the gap is formed by inserting the dive into the opening and filling the gap between the dive and the opening .
In addition, the second invention of the present application is characterized in that, in the first invention, the shape of the shape of the shape steel in plan view and the shape of projection in plan view are the same .
According to a third invention of the present application, in the first or second invention, the gibber is an H-shaped steel, an I-shaped steel, or a grooved steel.

本願発明によれば、以下に記載する効果のうち、少なくとも一つの効果を得ることができる。
(1)ジベルを形鋼とすることで、外形寸法をコンパクトにしながら、大きな支圧面積、周長、断面積および断面二次モーメントが得られ、ジベル鋼材のせん断耐力と剛性が向上する。
(2)開口部をジベルの外形に沿った形状とし、ジベルと開口部とを嵌めあうことで、例えばジベルをH形鋼としたとき、H形鋼の前面(フランジ側)の支圧抵抗と、側面のコッター方式せん断抵抗のダブル抵抗機構が生まれ、外形寸法をコンパクトにしながら、コンクリート(モルタル)側も高耐力・高剛性を実現することができる。
(3)プレキャスト床版に超高強度繊維補強コンクリートを適用することで、側面のコッターが強くなるので、ずれ止めのせん断耐力が向上する。
(4)箱抜き領域が小さくなるので、プレキャスト床版の断面欠損が小さくなる。
(5)箱抜き領域が小さくなるので、現場充填モルタルの量が少なくなり、施工性が向上する。
(6)ジベルが、平面視して略直交する第1の面および第2の面を有することで、2つの抵抗機構の破壊面が直交するため、1方向のひび割れが発生してもずれ止め耐力と剛性への影響が少ない。
(7)H形鋼、I形鋼、又は溝形鋼を切断して用いることができるので、ジベルの製作性が良く、材料コストも低く抑えることができる。
(8)ジベルとなる形鋼に穴をあけておけば、十分な引抜抵抗が得られ、ずれ変形に伴うプレキャスト床版と主桁間の目開きを拘束できる。
According to the present invention, at least one of the effects described below can be obtained.
(1) By making the gibber a shape steel, a large bearing area, circumferential length, cross-sectional area, and cross-sectional secondary moment can be obtained while making the outer dimensions compact, and the shear strength and rigidity of the diver steel material are improved.
(2) The opening portion is shaped along the outer shape of the dowel, and the dowel and the opening portion are fitted together. For example, when the dowel is an H-shaped steel, the bearing resistance of the front surface (flange side) of the H-shaped steel The double resistance mechanism of the side cotter type shear resistance was born, and the concrete (mortar) side can realize high proof stress and high rigidity while making the outer dimensions compact.
(3) By applying ultra-high strength fiber reinforced concrete to the precast floor slab, the side cotter becomes stronger, so the shear strength of the slip stopper is improved.
(4) Since the box opening area is reduced, the cross-sectional defect of the precast floor slab is reduced.
(5) Since the box opening area is reduced, the amount of on-site filling mortar is reduced, and workability is improved.
(6) Since the dowel has a first surface and a second surface that are substantially orthogonal to each other in plan view, the fracture surfaces of the two resistance mechanisms are orthogonal to each other, so that even if a unidirectional crack is generated, the displacement is prevented. Less impact on yield strength and rigidity.
(7) Since the H-shaped steel, the I-shaped steel, or the groove-shaped steel can be cut and used, the manufacturability of the gibber is good and the material cost can be kept low.
(8) If a hole is made in the shape steel to be the gibber, sufficient pulling resistance can be obtained, and the opening between the precast floor slab and the main girder accompanying the displacement deformation can be restrained.

本発明の接合構造の一例を示す概略図。Schematic which shows an example of the junction structure of this invention. 実施例1に係る接合構造の機能作用を示す概略図。FIG. 3 is a schematic diagram showing the functional action of the joint structure according to Example 1. 本発明の接合構造のその他の実施例を示す概略図。Schematic which shows the other Example of the junction structure of this invention. 従来の接合構造を示す概略図。Schematic which shows the conventional joining structure.

以下、図面を参照しながら本発明の各実施例について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に、本発明の接合構造の一例を示す。
本発明に係る床版Aと主桁Bとの接合構造は、前記主桁Bの上面に設けたジベル1と、前記床版Bに設け前記ジベル1の外形に沿って箱抜きした開口部2とを備え、前記開口部2にジベル1を挿入し、該ジベル1と開口部2との間の隙間にモルタルを充填して構成する。
FIG. 1 shows an example of the joining structure of the present invention.
The joint structure of the floor slab A and the main girder B according to the present invention is a gibber 1 provided on the upper surface of the main girder B, and an opening 2 provided on the floor slab B and boxed along the outer shape of the diver 1. In this case, the diver 1 is inserted into the opening 2 and the gap between the diver 1 and the opening 2 is filled with mortar.

ジベル1は、平面視して略直交する第1の面および第2の面を有し、且つ第1の面または第2の面のうち何れかが、対向する複数面を設けた態様である。
開口部2は、前記ジベル1の対向する複数面の間に、床版A本体の領域が存するように設けてあることを要する。
これらの条件を満たす限り、ジベル1および開口部2の形状は、如何なる形状を呈してもよい。
以下、各構成要素の詳細について説明する。
The gibber 1 has a first surface and a second surface that are substantially orthogonal to each other in plan view, and either the first surface or the second surface is provided with a plurality of opposing surfaces. .
The opening 2 needs to be provided so that the area of the floor slab A main body exists between a plurality of opposing surfaces of the dowel 1.
As long as these conditions are satisfied, the shape of the gibber 1 and the opening 2 may be any shape.
Details of each component will be described below.

床版Aは、道路橋などのコンクリート構造物の床版を構成するプレキャスト部材である。
床版Aの素材は、一般的なコンクリートを用いることができるが、本実施例では、超高強度繊維補強コンクリートを用いている。
The floor slab A is a precast member constituting a floor slab of a concrete structure such as a road bridge.
As the material of the floor slab A, general concrete can be used, but in this embodiment, ultra high strength fiber reinforced concrete is used.

床版Aにダクタル(登録商標)などの超高強度繊維補強コンクリートを用いた場合、以下の点で実用性が高いものと考えられる。
(1)軽量化(鉛直荷重・地震荷重の低減、下部工縮減、架設設備縮減、特に長大橋に対して効果的。)
(2)耐久性(疲労耐久性、化学的耐久性、維持管理・メンテナンス費用縮減、長寿命による環境負荷削減。)
(3)施工性(製作省力化(鉄筋組立無し)、現場工期短縮、軽量化による施工重機の軽量化。)
これらのメリットの詳細について以下説明する。
When super high strength fiber reinforced concrete such as Ductal (registered trademark) is used for the floor slab A, it is considered that the practicality is high in the following points.
(1) Lightweight (Effective for vertical and seismic loads, substructure reduction, erection equipment reduction, especially for long bridges.)
(2) Durability (fatigue durability, chemical durability, reduction of maintenance and maintenance costs, reduction of environmental burden due to long life)
(3) Workability (Production labor saving (no rebar assembly), shortened construction period on site, weight reduction of construction heavy machinery by weight reduction.)
Details of these advantages will be described below.

床版Aを超高強度繊維補強コンクリート製とすれば、ひび割れ耐力や破壊耐力を低下させることなく主鉄筋、配力筋、継手部の補強鉄筋などを省略あるいは削減することが可能となるので、配筋作業の簡略化とプレキャスト床版の軽量化を図ることが可能となる。   If the floor slab A is made of ultra-high strength fiber reinforced concrete, it is possible to omit or reduce main reinforcing bars, distribution reinforcing bars, reinforcing reinforcing bars of joints, etc. without reducing cracking strength and fracture strength. It is possible to simplify the bar arrangement work and reduce the weight of the precast floor slab.

また、床版Aを超高強度繊維補強コンクリート製とすれば、PC鋼材に対する付着強度が高まるので、プレテンション方式では必要定着長が短くなり、太径のPC鋼材を使用することが可能となる。
太径のPC鋼材を使用すれば、高いプレストレスを導入することが可能となるので、ひび割れ耐力と破壊耐力が向上する、あるいはひび割れ耐力と破壊耐力が低下せずに、プレキャスト床版のスラブとリブの断面薄肉化を図ることが可能となり、構造物の軽量化を図ることが可能となる。
Further, if the floor slab A is made of ultra-high strength fiber reinforced concrete, the adhesion strength to the PC steel material is increased, so that the required fixing length is shortened in the pre-tension method, and it becomes possible to use a large diameter PC steel material. .
By using a large-diameter PC steel, it becomes possible to introduce high prestress, so that the crack strength and fracture strength are improved, or the crack strength and fracture strength are not reduced, The rib can be thinned in cross section, and the structure can be reduced in weight.

また、超高強度繊維補強コンクリートは、付着強度が高いため、プレキャスト製の床版Aに埋め込んだ継手鋼材の定着耐力が数倍向上する。さらに、支圧強度は圧縮強度よりもさらに高いため、ボルト継手やポストテンション方式PC鋼材端部の定着板を小さくすることができ、ひいては、プレキャスト床版および継手部の断面縮小と軽量化を図ることが可能となる。   Further, since the ultra high strength fiber reinforced concrete has high adhesion strength, the fixing strength of the joint steel material embedded in the precast floor slab A is improved several times. Furthermore, since the bearing strength is higher than the compressive strength, the fixing plate at the end of the bolt joint or the post-tension type PC steel material can be made smaller, and consequently, the cross-section reduction and weight reduction of the precast floor slab and the joint can be achieved. It becomes possible.

プレキャスト製の床版Aとして使用する場合の超高強度繊維補強コンクリートは、圧縮強度が100N/mm以上、割裂引張強度が4N/mm以上、曲げ強度が10N/mm以上、500年中性化深さの推定値が5mm以下、塩化物イオン拡散係数が0.01cm/年)等の強度・特性を備える。 Ultra high strength fiber reinforced concrete when used as a precast floor slab A has a compressive strength of 100 N / mm 2 or more, a split tensile strength of 4 N / mm 2 or more, a bending strength of 10 N / mm 2 or more, Strength and characteristics such as an estimated value of the oxidization depth of 5 mm or less and a chloride ion diffusion coefficient of 0.01 cm 2 / year).

なお、前記した強度・特性を有する超高強度繊維補強コンクリートは、例えば、セメントとポゾラン系反応粒子と最大粒径2.5mm以下の骨材とを含むプレミックス紛体に高性能減水剤と水とを混入して得られたセメント系マトリックスに、直径が0.1−0.25mmで長さが10−20mmの形状を有する鋼繊維を1.0容積%以上混入することで得ることができる。
なお、水セメント比は、0.24以下であることが望ましい。
ここで、ポゾラン系反応粒子とは、例えば、シリカフューム、フライアッシュ、高炉スラグのほか、カオリンの誘導体から選定した化合物、沈降シリカ、火山灰、シリカゾル等からなる粒子のことである。
具体的な配合の一例を表1に示す。
The ultra-high-strength fiber reinforced concrete having the strength and characteristics described above is, for example, a premix powder containing cement, a pozzolanic reaction particle, and an aggregate having a maximum particle size of 2.5 mm or less, a high-performance water reducing agent and water. It can be obtained by mixing 1.0% by volume or more of steel fiber having a shape with a diameter of 0.1-0.25 mm and a length of 10-20 mm in a cementitious matrix obtained by mixing.
The water cement ratio is desirably 0.24 or less.
Here, the pozzolanic reaction particles are particles made of, for example, silica fume, fly ash, blast furnace slag, a compound selected from kaolin derivatives, precipitated silica, volcanic ash, silica sol, and the like.
An example of a specific formulation is shown in Table 1.

Figure 0006301747
Figure 0006301747

主桁Bは、道路橋などの鋼コンクリート構造物の主桁を構成する部材である。
主桁Bは、公知の構造、素材等を用いればよく、詳細な説明は省略する。
The main girder B is a member constituting the main girder of a steel concrete structure such as a road bridge.
For the main beam B, a known structure, material, or the like may be used, and detailed description thereof is omitted.

ジベル1は、床版Aと主桁Bとを接合する為の部材である。
ジベル1は、主桁Bの上面に溶接等で配置する。ジベル1の配置位置、配置数は、特段限定されない。
本発明では、ジベル1は形鋼を用いることができる。
なお、本実施例ではジベル1は平面視してH形形状を呈しており、例えば公知材料のH形鋼を、長手方向に適宜切断したものを用いることができる。
よって、本実施例では、ジベル1のウェブ11が第1の面に相当し、フランジ12が第2の面に相当する。
本実施例では、ジベル1を構成するH形鋼のウェブ11に貫通孔111を設けているが、本発明の必須要件ではない。この貫通孔111を設けておけば、十分な引抜抵抗が得られるため、ずれ変形に伴うプレキャスト床版と主桁間の目開きを拘束する機能を発揮することができる。
The gibber 1 is a member for joining the floor slab A and the main beam B.
The gibber 1 is disposed on the upper surface of the main beam B by welding or the like. The arrangement position and the number of arrangement of the gibber 1 are not particularly limited.
In the present invention, the gibber 1 can use a shape steel.
In the present embodiment, the diver 1 has an H-shape in plan view, and for example, a well-known H-section steel cut appropriately in the longitudinal direction can be used.
Therefore, in this embodiment, the web 11 of the gibber 1 corresponds to the first surface, and the flange 12 corresponds to the second surface.
In the present embodiment, the through hole 111 is provided in the H-shaped steel web 11 constituting the gibber 1, but this is not an essential requirement of the present invention. If this through-hole 111 is provided, sufficient pulling resistance can be obtained, so that the function of restraining the opening between the precast floor slab and the main girder due to displacement deformation can be exhibited.

開口部2は、前記ジベル1を嵌合して、床版Aと主桁Bとを接合するための部材である。
開口部2は、前記床版Aを箱抜きして形成する。
また、開口部2は、前記ジベル1の外形に対応した形状を呈する。
この「ジベルの外形に対応した形状」とは、ジベル1の外形に沿ってジベル1から一回り大きくした形状のもの、形状の一部がジベル1の外形に沿ったもの、等が含まれる。なお、開口部2を矩形状に箱抜きしたものは従来技術であるため、本発明からは除かれる。
The opening 2 is a member for fitting the floor 1 and the main girder B by fitting the above-mentioned dowel 1.
The opening 2 is formed by unboxing the floor slab A.
Further, the opening 2 has a shape corresponding to the outer shape of the gibber 1.
The “shape corresponding to the outer shape of the diver” includes a shape that is slightly larger than the diver 1 along the outer shape of the diver 1, a shape whose part is along the outer shape of the diver 1, and the like. In addition, since what opened the opening part 2 in the rectangular shape is a prior art, it is excluded from this invention.

図2を参照しながら、本発明の接合構造の施工手順について説明する。
図2では、ジベル1の形状をH形形状としてある場合の、主桁Bと床版Aとが接合された状態の平面図を示している。
まず、主桁Bのジベル1に対し、床版Aに設けた開口部2を嵌め込む。
このとき、開口部2と、ジベル1との間には僅かな隙間が生まれており、この隙間に充填材を充填して、充填部3となす。
充填材には、モルタルや、コンクリートを用いることができる。
前記モルタルは、従来使用されるモルタルでもよいし、施工効率の向上(急速施工)のために、急結性(速硬性)高強度無収縮モルタルや繊維補強モルタルを使用してもよい。
前記コンクリートは、一般的なコンクリートでもよいし、豆砂利コンクリートでも繊維補強コンクリートでもいいし、施工効率の向上(急速施工)のために、急結性(速硬性)高強度コンクリートを使用してもよい。 また、本発明の接合構造の耐力と剛性を最大にするために、充填モルタルは超高強度繊維補強コンクリートを使用することもできる。
The construction procedure of the joint structure of the present invention will be described with reference to FIG.
FIG. 2 shows a plan view of the state where the main beam B and the floor slab A are joined when the shape of the gibber 1 is an H shape.
First, the opening 2 provided in the floor slab A is fitted into the gibber 1 of the main beam B.
At this time, a slight gap is created between the opening 2 and the dowel 1, and a filler is filled in the gap to form the filling portion 3.
As the filler, mortar or concrete can be used.
The mortar may be a conventionally used mortar, or may be a quick setting (rapid hardening) high-strength non-shrink mortar or a fiber reinforced mortar for improving construction efficiency (rapid construction).
The concrete may be general concrete, bean gravel concrete, fiber reinforced concrete, or may be a quick setting (fast-hardening) high-strength concrete to improve construction efficiency (rapid construction). Good. In addition, in order to maximize the yield strength and rigidity of the joint structure of the present invention, the filling mortar can use ultra high strength fiber reinforced concrete.

再度、図2を参照しながら、本発明の接合構造の機能・作用について説明する。
この接合構造では、ジベル1のフランジ12が前面の支圧抵抗として機能する。
また、床版Aの一部である、ジベル1のフランジ12間の領域は、コッター部4としてせん断抵抗として機能する。
よって、本発明に係る接合構造では、前面側の支圧抵抗と、側面側のコッター式せん断抵抗とのダブル抵抗が機能することとなる。
With reference to FIG. 2 again, the function and operation of the joint structure of the present invention will be described.
In this joining structure, the flange 12 of the gibber 1 functions as a bearing resistance on the front surface.
Moreover, the area | region between the flanges 12 of the gibber 1 which is a part of the floor slab A functions as a cotter part 4 as a shear resistance.
Therefore, in the joint structure according to the present invention, the double resistance of the bearing resistance on the front side and the cotter type shear resistance on the side surface functions.

図3に、本発明のその他の実施例について示す。
図3(a)は、図1に係るジベルを90°回転させた態様である。
図3(b)は、ジベルとして、溝形鋼を用いた態様である。
図3(c)は、図3(b)に係るジベルを90°回転させた態様である。
図3(d)は、図3(b)に係るジベルを180°回転させた態様である。
このように、本発明は、ジベルにおける第1の面、第2の面が略直交する態様であって、それらの面が、橋軸方向又は橋軸直交方向を向く態様であれば、如何なる向きであってもよい。
また、図3に係るジベルは橋軸方向(主桁直交方向)に対となる面を設けているが、当該面は、単数でも、3つ以上でも良い。
FIG. 3 shows another embodiment of the present invention.
FIG. 3 (a) is a mode in which the dowel according to FIG. 1 is rotated by 90 °.
FIG.3 (b) is the aspect which used the grooved steel as a dowel.
FIG.3 (c) is the aspect which rotated 90 degree | times the jebel which concerns on FIG.3 (b).
FIG. 3D is a mode in which the dowel according to FIG. 3B is rotated by 180 °.
As described above, the present invention is an aspect in which the first surface and the second surface of the dowel are substantially orthogonal, and the surfaces are oriented in the bridge axis direction or the bridge axis orthogonal direction. It may be.
In addition, although the dowel according to FIG. 3 is provided with a pair of surfaces in the bridge axis direction (main girder orthogonal direction), the surface may be singular or three or more.

A 床版
B 主桁
1 ジベル
11 ウェブ
111 貫通孔
12 フランジ
3 充填部
4 コッター部
a 床版
a1 矩形状の箱抜き部
b 主桁
c1 スタットジベル
c2 孔あき鋼板ジベル
d モルタル
A Floor slab B Main girder 1 Giber 11 Web 111 Through-hole 12 Flange 3 Filling part 4 Cotter part a Floor slab a1 Rectangular box opening b Main girder c1 Stud diver c2 Perforated steel plate diver d Mortar

Claims (3)

超高強度繊維補強コンクリートで製作したプレキャスト床版と、主桁との接合構造であって、
前記主桁の上面に設け、平面視して略直交する第1の面および第2の面を有する形鋼からなり、前記第1の面または第2の面のうち何れかが、対向する複数面を設けている、ジベルと、
前記床版に設け、平面視して前記対向する複数面の間に、床版本体から連続する領域であるコッター部が嵌合するように、前記ジベルの形状に沿って箱抜きした、開口部と、
をからなり、
前記開口部に前記ジベルを挿入して、該ジベルと開口部との隙間に充填材を充填してなる、プレキャスト床版と、主桁との接合構造。
It is a precast floor slab made of ultra high strength fiber reinforced concrete and the main girder structure,
Provided on the upper surface of the main beam, Ri Do from the shape steel having a first face and a second face substantially orthogonal in plan view, one of the first surface or the second surface, opposed Giver with multiple surfaces ,
An opening provided in the floor slab and boxed along the shape of the dowel so that a cotter part, which is a continuous area from the floor slab body, fits between the plurality of opposing surfaces in plan view. When,
Consists of
A joining structure of a precast floor slab and a main girder, in which the above-described opening is inserted into the opening and a filler is filled in the gap between the opening and the opening.
前記形鋼の平面視先端形状と平面視投影形状とが同一であることを特徴とする、請求項1に記載のプレキャスト床版と、主桁との接合構造。 The joint structure of the precast floor slab and the main girder according to claim 1, wherein the shape of the shape steel in plan view and the projection shape in plan view are the same . 前記ジベルが、H形鋼、I形鋼、又は溝形鋼であることを特徴とする、請求項1または2に記載のプレキャスト床版と、主桁との接合構造。 The joint structure of a precast floor slab and a main girder according to claim 1 or 2, wherein the gibber is an H-shaped steel, an I-shaped steel, or a grooved steel.
JP2014128125A 2014-06-23 2014-06-23 Joint structure of precast floor slab and main girder Active JP6301747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128125A JP6301747B2 (en) 2014-06-23 2014-06-23 Joint structure of precast floor slab and main girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128125A JP6301747B2 (en) 2014-06-23 2014-06-23 Joint structure of precast floor slab and main girder

Publications (2)

Publication Number Publication Date
JP2016008394A JP2016008394A (en) 2016-01-18
JP6301747B2 true JP6301747B2 (en) 2018-03-28

Family

ID=55226163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128125A Active JP6301747B2 (en) 2014-06-23 2014-06-23 Joint structure of precast floor slab and main girder

Country Status (1)

Country Link
JP (1) JP6301747B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6419564B2 (en) * 2014-12-12 2018-11-07 鹿島建設株式会社 Junction structure
CN105803939A (en) * 2016-04-27 2016-07-27 长安大学 Open steel tube and reinforced-concrete combined girder bridge structure
JP6837343B2 (en) * 2017-02-03 2021-03-03 首都高速道路株式会社 Floor slab replacement method for synthetic girders
JP6987010B2 (en) * 2018-03-29 2021-12-22 鹿島建設株式会社 Manufacturing method of precast members
JP7072773B2 (en) * 2018-04-24 2022-05-23 国立大学法人東京工業大学 Lateral stiffening structure of steel beam
CN109736198B (en) * 2018-12-07 2021-05-14 东南大学 Combined type interface pre-tightening connection high-performance steel-UHPC sheet combined structure system
CN109736197B (en) * 2018-12-07 2020-11-27 东南大学 Steel plate support-inclined nail cluster type interface connection steel-UHPC (ultra high performance polycarbonate) thin plate combined structure system
CN109736199B (en) * 2018-12-07 2021-05-14 东南大学 Interface composite type connection high-performance steel-UHPC sheet combination structure
CN109736200B (en) * 2018-12-07 2020-11-27 东南大学 Steel-UHPC sheet combination structure system for quickly assembling steel plate support-cluster inclined nail
CN110067313B (en) * 2019-05-22 2024-04-26 重庆交通大学 Pressure-bearing shearing type connecting piece
KR102618251B1 (en) * 2023-07-25 2023-12-27 (주) 대현이엔씨 Bridge Deck Replacement Construction Method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027122U (en) * 1983-07-29 1985-02-23 石川島建材工業株式会社 floor slab
JPH078673Y2 (en) * 1987-02-27 1995-03-06 川鉄建材工業株式会社 Composite beam structure
JP2803537B2 (en) * 1993-10-25 1998-09-24 日本鋼管株式会社 Synthetic floor slab
JP3917806B2 (en) * 2000-09-01 2007-05-23 新日本製鐵株式会社 Perforated steel gibber
JP2004124492A (en) * 2002-10-02 2004-04-22 Nippon Steel Corp Slippage stop
JP4527011B2 (en) * 2005-06-17 2010-08-18 大成建設株式会社 Girder structure and its construction method
JP4059909B2 (en) * 2006-10-26 2008-03-12 新日本製鐵株式会社 Composite panel structure and panel bridge structure and construction method of continuous composite girder bridge
JP5285305B2 (en) * 2008-03-05 2013-09-11 大成建設株式会社 Precast member joint structure
JP2009243134A (en) * 2008-03-31 2009-10-22 Ihi Corp Dowel apparatus for joining concrete of steel member
JP5346676B2 (en) * 2009-05-08 2013-11-20 大成建設株式会社 Floor slab unit, floor slab joining structure and floor slab construction method
US8316495B2 (en) * 2009-08-18 2012-11-27 Yidong He Method to compress prefabricated deck units with external tensioned structural elements
JP5307682B2 (en) * 2009-10-09 2013-10-02 大成建設株式会社 Girder member and precast slab joint structure and slab erection method
JP5474620B2 (en) * 2010-03-15 2014-04-16 株式会社熊谷組 Shear reinforcement structure of concrete structure
JP5718133B2 (en) * 2011-04-08 2015-05-13 横河工事株式会社 Precast floor slab and its joint structure

Also Published As

Publication number Publication date
JP2016008394A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP6301747B2 (en) Joint structure of precast floor slab and main girder
CN107178163B (en) Energy dissipation and shock absorption horizontal connecting device for fabricated shear wall and construction method of energy dissipation and shock absorption horizontal connecting device
JP6338473B2 (en) Precast structure joining method
JP6652754B2 (en) Joint structure of precast concrete slab for rapid construction and its construction method
JP2008285906A (en) Bridge upper structure and method of constructing bridge superstructure
CN107012988A (en) A kind of corrugated steel tube reinforced column
CN103806594B (en) A kind of precast concrete
JP5307682B2 (en) Girder member and precast slab joint structure and slab erection method
Hwang et al. Cyclic Loading Test for TSC Beam-PSRC Column Connections
KR101577327B1 (en) Hybrid composite girder
JP4022205B2 (en) Joining structure of members
JP6143094B2 (en) Joint structure of reinforced concrete member and steel member
JP6432779B2 (en) Joint structure of reinforced concrete column and steel beam
Hwang et al. The pushout Test of Seismic Reinforcement System (SRM) connection that respond to earthquake extensive level
Wang et al. Behavior of deconstructable steel-concrete shear connection in composite beams
JP2007077628A (en) Joint structure of joint and its construction method
Wu et al. Flexural behavior of precast concrete wall-steel shoe composite assemblies with dry connection
JP2016069925A (en) Design method for reinforced concrete construction, and reinforced concrete construction
JP2017071912A (en) Joint structure for beam and column
JP3620651B2 (en) Joining structure of members
JP6312130B2 (en) Column beam structure and beam end members
JP4674721B2 (en) Method for joining concrete members
JP6152973B2 (en) Joint structure of reinforced concrete member and steel member
JP5248784B2 (en) Column and beam joint structure
KR100749521B1 (en) Steel reinforced concrete commposit structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R150 Certificate of patent or registration of utility model

Ref document number: 6301747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250