JP2016069925A - Design method for reinforced concrete construction, and reinforced concrete construction - Google Patents

Design method for reinforced concrete construction, and reinforced concrete construction Download PDF

Info

Publication number
JP2016069925A
JP2016069925A JP2014200518A JP2014200518A JP2016069925A JP 2016069925 A JP2016069925 A JP 2016069925A JP 2014200518 A JP2014200518 A JP 2014200518A JP 2014200518 A JP2014200518 A JP 2014200518A JP 2016069925 A JP2016069925 A JP 2016069925A
Authority
JP
Japan
Prior art keywords
stress
reinforced concrete
strength
main
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014200518A
Other languages
Japanese (ja)
Other versions
JP6438257B2 (en
Inventor
義行 村田
Yoshiyuki Murata
義行 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2014200518A priority Critical patent/JP6438257B2/en
Publication of JP2016069925A publication Critical patent/JP2016069925A/en
Application granted granted Critical
Publication of JP6438257B2 publication Critical patent/JP6438257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a design method for reinforced concrete construction for making it easy to perform reinforcement arrangement of a main reinforcement for a beam by providing design allowance with respect to adhesion.SOLUTION: Taking a pillar width D and sizesa,aof high intensity regions 210A as an adhesion examination length L in calculating design adhesive stress τof a main reinforcement 21 for a beam by dividing the adhesion examination length L into a value obtained by multiplying stress of the main reinforcement 21 by its reinforcement diameter provides design allowance with respect to a value of the design adhesive stress τas compared with the conventional design method taking the pillar width D as the adhesion examination length L.SELECTED DRAWING: Figure 2

Description

本発明は、柱と梁との柱梁接合部を備え梁用の主筋が柱梁接合部を貫通した鉄筋コンクリート造を設計する鉄筋コンクリート造の設計方法、及びその設計方法で設計された鉄筋コンクリート造に関する。   The present invention relates to a reinforced concrete structure design method for designing a reinforced concrete structure having a column beam connection portion between a column and a beam, and a beam main reinforcing bar penetrating the column beam connection portion, and a reinforced concrete structure designed by the design method.

鉄筋コンクリート造の梁は、外力作用時に梁の端部での降伏を想定している。このとき、梁用の主筋が柱梁接合部内でのコンクリートとの付着が劣化し、梁用の主筋の抜け出しを防止するために、梁用の主筋が柱梁接合部を貫通した鉄筋コンクリート造を設計するに際して、梁用の主筋の設計用付着応力度τが求められる。鉄筋コンクリート造の設計では、設計用付着応力度τが付着強度より下回っていることを確認することになる。
設計用付着応力度τは、付着検討長さと、梁用の主筋の応力と、梁用の主筋の鉄筋径とに基づいて求められる(非特許文献1)。
つまり、非特許文献1では、Dを梁用の主筋の付着検討長さとしての柱せい(柱幅)、dを梁用の主筋の鉄筋径、γを複筋比(a/a)、aを引張側鉄筋の断面積、aを圧縮側鉄筋の断面積、σyuを梁用の主筋の上限強度算出用強度とすると、設計用付着応力度τは、次の式から求められる。
Reinforced concrete beams are assumed to yield at the ends of the beams when an external force is applied. At this time, in order to prevent the main reinforcement for the beam from adhering to the concrete in the beam-column joint and to prevent the main beam for the beam from coming out, a reinforced concrete structure in which the beam main reinforcement penetrates the beam-column joint is designed. In this case, the design adhesion stress τ j of the main bar for the beam is obtained. In the design of the reinforced concrete structure, it is confirmed that the design adhesion stress τ j is lower than the adhesion strength.
The design adhesion stress degree τ j is obtained based on the adhesion examination length, the stress of the main bar for the beam, and the diameter of the reinforcing bar of the main bar for the beam (Non-Patent Document 1).
That is, in Non-Patent Document 1, the pillars blame (column width) as adhering consideration the length of the main reinforcement for beams of D, rebar diameter of main reinforcement for beams of d b, multiple muscle ratio γ (a c / a t ), A t is the cross-sectional area of the tension side rebar, a c is the cross-sectional area of the compression side rebar, and σ yu is the strength for calculating the upper limit strength of the main bar for the beam, the design adhesive stress τ j is given by It is requested from.

Figure 2016069925
Figure 2016069925

鉄筋コンクリート造建物の靱性保証型耐震設計指針・同解説(日本建築学会1999年)Guideline for toughness-guaranteed seismic design of reinforced concrete buildings and explanation (The Architectural Institute of Japan 1999)

非特許文献1では、柱梁接合部を通った主筋の応力度が危険断面(梁の付け根部)の一端で引張の上限強度に達し、他端で圧縮の上限強度に達しているとして、両者の応力を累加して付着検討長さDを柱せいとしている。
さらに、非特許文献1では、降伏ヒンジを計画する梁又は柱の主筋を柱梁接合部内に通して配筋する場合について、付着の確認をすることが求められている。しかし、降伏ヒンジを計画しない場合については、特に、確認しなくてもよい規定となっており、この規定の付着強度は、主筋が降伏する場合を対象としている。
In Non-Patent Document 1, it is assumed that the stress level of the main bar that has passed through the beam-column joint reaches the upper limit strength of tension at one end of the critical section (the base of the beam) and reaches the upper limit strength of compression at the other end. It is assumed that the adhesion examination length D is a pillar by accumulating the stress.
Further, in Non-Patent Document 1, it is required to confirm the adhesion in the case where the beam or the main bar of the column for which the yield hinge is planned is passed through the column beam joint. However, the case where the yield hinge is not planned is a rule that does not need to be confirmed, and the bond strength of this rule is for the case where the main bar yields.

ここで、普通強度の鉄筋を柱梁接合部に通す鉄筋(通し筋)として用いるのではなく、普通強度部分と高強度部分とを有する主筋を通し筋として用い、高強度部分を柱梁接合部と柱梁接合部の梁長さ方向に沿った高強度領域とに配置し、普通強度部分と高強度部分との境界部で降伏させることが考えられる。この場合には、付着検討長さDが長くなり、付着に対して十分に余裕があるが、非特許文献1で示される式をそのまま適用すると、不経済な設計となる。そのため、強度が十分であるにもかかわらず、主筋の径を小さくして不必要に主筋の本数を増やすことになるので、限られた大きさの梁や柱梁接合部で梁用の主筋を配筋することが煩雑となる。   Here, instead of using a normal reinforcing bar as a reinforcing bar (through bar) that passes through the beam-column joint, a main bar having a normal strength part and a high-strength part is used as a passing bar, and the high-strength part is used as a beam-to-column joint. And a high-strength region along the beam length direction of the column-beam joint, and yielding at the boundary between the normal strength portion and the high strength portion. In this case, the adhesion examination length D becomes long and there is a sufficient margin for adhesion. However, if the formula shown in Non-Patent Document 1 is applied as it is, it becomes an uneconomical design. Therefore, even though the strength is sufficient, the diameter of the main bars will be reduced and the number of main bars will be increased unnecessarily. It becomes complicated to arrange the bars.

本発明の目的は、付着に対する設計に余裕を持たせることで梁用の主筋の配筋が容易となる鉄筋コンクリート造の設計方法及び鉄筋コンクリート造を提供することにある。   An object of the present invention is to provide a design method for a reinforced concrete structure and a reinforced concrete structure in which it is easy to arrange the main bars for the beam by giving a margin to the design for adhesion.

本発明の鉄筋コンクリート造の設計方法は、柱と接合され引張側鉄筋と圧縮側鉄筋として機能する複数の梁用の主筋を備え、前記梁用の主筋は、普通強度部分と、前記普通強度部分よりも強度が大きい高強度部分とを有し、前記高強度部分は、前記梁用の主筋のうち前記柱と接合される柱梁接合部と前記柱梁接合部の互いに反対側に位置する付け根部からそれぞれ梁長さ方向に沿った高強度領域とに配置され、前記普通強度部分は、前記高強度領域を挟んで前記柱梁接合部とは反対側に位置する普通強度領域に配置された鉄筋コンクリート造を設計する方法であって、前記梁用の主筋の応力と前記梁用の主筋の鉄筋径とを乗じた値に付着検討長さを除して前記梁用の主筋の設計用付着応力度τを求めるにあたり、前記付着検討長さを、前記柱せいと前記高強度領域のうち前記梁の長さ方向に沿った寸法との合計の値とすることを特徴とする。 The design method of a reinforced concrete structure of the present invention includes a plurality of beam main bars that are joined to a column and function as a tension side reinforcing bar and a compression side reinforcing bar, and the beam main bar includes a normal strength portion and a normal strength portion. A high-strength portion having a high strength, and the high-strength portion is a beam-to-column joint portion to be joined to the column and a root portion located on the opposite side of the beam-to-column joint portion of the main bars for the beam. Are arranged in a high-strength region along the beam length direction, and the normal-strength portion is disposed in a normal-strength region located on the opposite side of the column-beam joint with the high-strength region in between. A method of designing a structure, which is obtained by multiplying a value obtained by multiplying a stress of the main reinforcing bar for the beam and a reinforcing bar diameter of the main reinforcing bar for the beam by subtracting an adhesion examination length. Upon obtaining the tau j, the adhesion study length, wherein Sexual and characterized by the sum of the values of the dimensions along the length direction of the beam of the high intensity regions.

以上の構成の本発明では、梁用の主筋の応力と梁用の主筋の鉄筋径とを乗じた値を分子とし付着検討長さを分母として設計用付着応力度τを求めるにあたり、付着検討長さを、柱せい及び高強度領域のうち梁の長さ方向に沿った寸法としたので、付着検討長さを柱せいとした従来の設計手法に比べて、設計用付着応力度τの値に余裕ができる。
そのため、梁用の主筋の径を大きなものを用いても、従来の設計手法で求められた設計用付着応力度τの要件を満たすことが可能となるので、主筋を容易に配筋することができる。
その上、降伏ヒンジを、柱梁接合部の梁の付け根部ではなく、付け根部から離れた高強度部分と普通強度部分との境界部とすることで、鉄筋量が少なくてすむ。
従って、本発明では、鉄筋量が少なくてすむので、梁や柱梁接合部の断面積を大きくすることを要せず、そのため、居住空間を広いものにできる。
In the present invention having the above-described configuration, when the bond stress length τ j is determined by using the value obtained by multiplying the stress of the main bar for the beam and the reinforcing bar diameter of the main bar for the beam as the numerator, Since the length is the dimension along the length direction of the beam in the columnar and high-strength region, compared to the conventional design method in which the adhesion examination length is columnar, the design adhesion stress τ j There is room in the value.
Therefore, it is possible to satisfy the requirement of the design adhesion stress τ j obtained by the conventional design method even if the main beam diameter is large, so that the main bars can be easily arranged. Can do.
In addition, the yield hinge is not the base of the beam at the beam-column joint, but the boundary between the high-strength portion and the normal-strength portion away from the base, thereby reducing the amount of reinforcing bars.
Therefore, in the present invention, since the amount of reinforcing bars is small, it is not necessary to increase the cross-sectional area of the beam or the column beam joint, and therefore the living space can be widened.

本発明では、Dを柱せい、lを一方の前記高強度領域の梁長さ方向に沿った長さ、を他方の前記高強度領域の梁長さ方向に沿った長さ、dを前記梁用の主筋の鉄筋径、σを前記引張側鉄筋の応力、σを前記圧縮側鉄筋の応力とすると、前記付着検討長さLは、L=D+lであり、前記設計用付着応力度τを、 In the present invention, D is a pillar, L a l is a length along the beam length direction of one of the high strength regions, and R a l is a length along the beam length direction of the other high strength region. , rebar diameter of main reinforcement for the beam of d b, the stress of the tension side rebar sigma t, when the sigma c is the stress of the compression side reinforcing bar, the adhesion study length L, L = D + L a l + R a l , and the design adhesion stress τ j ,

[数2]
τ={(σ+σ)×d}/{4×(D+l)} …… (1)
[Equation 2]
τ j = {(σ t + σ c ) × d b } / {4 × (D + L a l + R a l )} (1)

の式から求める構成が好ましい。
この構成では、設計用付着応力度τを具体的な数式に基づいて、正確に求めることができる。
The structure obtained from the equation is preferable.
In this configuration, the design adhesion stress τ j can be accurately obtained based on a specific mathematical expression.

本発明では、DUを一方の前記高強度領域に対応した引張側の設計用曲げモーメント、dを圧縮縁から引張側鉄筋重心までの距離、aを前記引張側鉄筋の断面積、DUを他方の前記高強度領域に対応した圧縮側の設計用曲げモーメント、dを圧縮縁から圧縮側鉄筋重心までの距離、aを圧縮側鉄筋の断面積、nを前記梁用の主筋のコンクリートに対するヤング係数比、bを梁幅寸法、とすると、前記引張側鉄筋の応力σと前記圧縮側鉄筋の応力σとを、 In the present invention, L M DU one of the high intensity region for bending tension side design corresponding moment, the distance d from the compressed edge to the tension side rebar centroid, the cross-sectional area of the tension-side Rebar a t, R M DU bending for the other of the high-strength region of the compression side corresponding design moment, the distance of the d c from the compressed edge to the compression side rebar centroid, the cross-sectional area of the compression side rebar a c, n a for the beam If the Young's modulus ratio of the main reinforcement to the concrete and b is the beam width dimension, the stress σ t of the tension side reinforcement and the stress σ c of the compression side reinforcement are expressed as follows:

Figure 2016069925
Figure 2016069925

の式から求める構成が好ましい。
この構成では、引張側鉄筋の応力σ及び圧縮側鉄筋の応力σを前述の式によって求めることができるので、引張側鉄筋の応力σ及び圧縮側鉄筋の応力σの範囲が広範にわたる場合であっても、その数値に基づいて、設計用付着応力度τを正確に求めることができる。
The structure obtained from the equation is preferable.
In this configuration, since the stress σ t of the tension side reinforcing bar and the stress σ c of the compression side reinforcing bar can be obtained by the above-described formulas, the range of the stress σ t of the tension side reinforcing bar and the stress σ c of the compression side reinforcing bar is wide. Even in this case, the design adhesion stress τ j can be accurately obtained based on the numerical value.

本発明では、引張側鉄筋の応力σtと圧縮側鉄筋の応力σcとを、断面内各点のひずみ度が中立軸からの距離に比例し、鉄筋の応力度とひずみ度との関係は弾性とし、圧縮を受けるコンクリートの応力度−ひずみ度関係を、部材実験結果によく適合する算定結果を与える長方形・台形・放物線・3次曲線・指数関数を含む形に仮定したうえで、断面内での応力の釣合いを考慮した断面解析から求める構成が好ましい。
この構成では、鉄筋コンクリート構造計算規準・同解説(日本建築学会)に記載された方法によって引張側鉄筋の応力σtと圧縮側鉄筋の応力σcとを断面解析から求めるので、設計用付着応力度τを精度よく求めることができる。
In the present invention, the stress σ t of the tensile side reinforcing bar and the stress σ c of the compression side reinforcing bar are expressed in terms of the degree of strain at each point in the cross section in proportion to the distance from the neutral axis. Assuming that the stress-strain relationship of concrete subjected to compression is rectangular, trapezoidal, parabolic, cubic curve, and exponential functions that give calculation results that fit well with the results of member experiments, The structure calculated | required from the cross-sectional analysis which considered the balance of the stress in is preferable.
In this configuration, the stress σ t of the tensile side reinforcement and the stress σ c of the compression side reinforcement are obtained from the cross-sectional analysis by the method described in the reinforced concrete structural calculation criteria and explanation (The Architectural Institute of Japan). τ j can be obtained with high accuracy.

本発明では、前記普通強度部分は降伏点又は0.2%耐力がJISG3112で規定され、前記高強度部分は前記普通強度部分よりも降伏点又は0.2%耐力が大きく設定され、
前記梁用の主筋は、前記普通強度部分と同じ強度の1本の普通鉄筋を部分焼入れして前記高強度部分とする構成が好ましい。
この構成では、降伏点又は0.2%耐力がJISG3112で規定される1本の普通鉄筋を部分焼入れして普通強度部分と高強度部分とを形成しているので、柱梁接合部に配置される高強度部分の太さを太くすることを要しない。そのため、この点からも、柱梁接合部の断面積を大きくすることを要しない。しかも、普通強度部分と高強度部分とが1本の鉄筋から構成されるので、現場での取り扱いが容易となる。
In the present invention, the normal strength portion has a yield point or 0.2% yield strength defined by JISG3112, and the high strength portion has a yield point or 0.2% yield strength greater than the normal strength portion,
The main reinforcing bar for the beam preferably has a configuration in which one normal reinforcing bar having the same strength as that of the normal strength portion is partially quenched to form the high strength portion.
In this configuration, a normal strength portion and a high strength portion are formed by partially quenching one ordinary rebar with a yield point or 0.2% proof stress specified in JIS G3112. It is not necessary to increase the thickness of the high strength part. Therefore, also from this point, it is not necessary to increase the cross-sectional area of the column beam joint. Moreover, since the normal strength portion and the high strength portion are composed of a single reinforcing bar, handling on the site is facilitated.

本発明の鉄筋コンクリート造の設計方法は、柱と接合される梁用の主筋を備え、前記梁用の主筋のうち前記柱と接合される柱梁接合部の付け根部から降伏ヒンジの位置が離れた位置となるように補強された鉄筋コンクリート造を設計する方法において、前記梁用の主筋の応力と前記梁用の主筋の鉄筋径とを乗じた値に付着検討長さを除して前記梁用の主筋の設計用付着応力度τjを求めるにあたり、前記付着検討長さを、前記柱せいと前記高強度領域のうち前記梁の長さ方向に沿った寸法との合計の値とすることを特徴とする。
この構成の本発明では、普通強度の領域より鉄筋の数を増やして高強度領域を形成する。そのため、1本の普通鉄筋の一部を焼入れして高強度部分を形成する場合に比べて、鉄筋の製造コストを下げることができる。
The design method of a reinforced concrete structure of the present invention includes a main bar for a beam to be joined to a column, and the position of the yield hinge is separated from a base part of the beam-to-column joint to be joined to the column among the main bars for the beam. In the method of designing a reinforced concrete structure reinforced to be in position, a value obtained by multiplying the stress of the main reinforcing bar for the beam and the reinforcing bar diameter of the main reinforcing bar for the beam by dividing the adhesion examination length is used. In determining the bond stress τj for designing the main bar, the adhesion examination length is a total value of the column and the dimension along the length direction of the beam in the high-strength region, To do.
In the present invention having this configuration, the number of reinforcing bars is increased from the normal strength region to form a high strength region. Therefore, the manufacturing cost of a reinforcing bar can be reduced compared with the case where a part of one normal reinforcing bar is quenched to form a high strength portion.

本発明の鉄筋コンクリート造は、前述の鉄筋コンクリート造の設計方法で設計されたことを特徴とする。
この構成の発明では、前述の効果と同じ効果を奏することができる。
The reinforced concrete structure of the present invention is characterized by being designed by the above-described reinforced concrete structure design method.
In the invention of this configuration, the same effect as described above can be obtained.

本発明の一実施形態にかかる鉄筋コンクリート造の概略図。Schematic of the reinforced concrete structure concerning one Embodiment of this invention. (A)は梁用の主筋の応力度分布図、(B)は(A)に対応した梁及び柱梁接合部を示す断面図。(A) is a stress intensity distribution diagram of the main reinforcement for the beam, (B) is a cross-sectional view showing the beam and column beam joint corresponding to (A). (A)は主筋の配列状態を示す概略図、(B)は主筋の配列状態を示すもので(A)とは異なる方向から見た概略図、(C)はひずみ分布を示す概略図。(A) is the schematic which shows the arrangement | sequence state of a main muscle, (B) shows the arrangement | sequence state of a main muscle, is the schematic seen from the direction different from (A), (C) is the schematic which shows strain distribution.

本発明の実施形態を図面に基づいて説明する。
本発明の一実施形態を図面の図1及び図2に基づいて説明する。
図1には本実施形態の全体構成が示されている。
図1において、建物は、複数の梁2と、梁2と接合する複数の柱3とを備えた複数階建ての鉄筋コンクリート造であり、鉄筋構造1にコンクリート体100が打設されている。
梁2と柱3とが接合された柱梁接合部200の形態としては、十字形接合S1やト形接合S2があるが、本実施形態では、他の接合に適用されるものでもよい。
Embodiments of the present invention will be described with reference to the drawings.
An embodiment of the present invention will be described with reference to FIGS. 1 and 2 of the drawings.
FIG. 1 shows the overall configuration of the present embodiment.
In FIG. 1, the building is a multi-storey reinforced concrete structure including a plurality of beams 2 and a plurality of columns 3 joined to the beams 2, and a concrete body 100 is placed on the reinforced structure 1.
As a form of the beam-to-column joint 200 in which the beam 2 and the column 3 are joined, there are a cross-shaped joint S1 and a to-shaped joint S2, but in the present embodiment, it may be applied to other joints.

梁2の鉄筋構造1は、水平方向に延びて配筋された複数の梁用の主筋21と、主筋21の軸方向と交差する平面内において主筋21を囲んで等間隔に配筋されて梁2のせん断強度を補強する複数の梁用のせん断補強筋22とを備える。
主筋21は、上下に一対ずつ配置されており、このうち上方の主筋21が圧縮側鉄筋として機能する場合には、下方の主筋21が引張側鉄筋として機能する。
水平方向に隣合う主筋21は、継手4で接合されている。継手4は、機械式継手や、それ以外の継手でもよい。あるいは、端部同士を重ね合わせ、針金等で結線する構成でもよい。さらには、端部同士を突き合わせて溶接等で接合する構成でもよい。
柱3の鉄筋構造1は、垂直方向に延びて所定間隔を空けて配筋された複数の柱用の鉄筋材31と、鉄筋材31の軸方向と交差する平面内において鉄筋材31を囲んで等間隔に鉄筋材31の延出方向に配筋されて柱3のせん断強度を補強する複数の柱用のせん断補強筋32とを備える。鉄筋材31及びせん断補強筋32は、降伏点又は0.2%耐力がJISG3112で規定されている普通鉄筋である。この普通鉄筋の降伏点又は0.2%耐力は、例えば、295MPa(N/mm)以上390MPa(N/mm)以下である。
The reinforcing bar structure 1 of the beam 2 includes a plurality of beam main bars 21 extending in the horizontal direction, and the bars are arranged at equal intervals so as to surround the main bar 21 in a plane intersecting the axial direction of the main bar 21. A plurality of beam reinforcing bars 22 for reinforcing the shear strength 2.
A pair of main bars 21 are arranged one above the other. When the upper main bar 21 functions as a compression side reinforcing bar, the lower main bar 21 functions as a tension side bar.
The main bars 21 adjacent in the horizontal direction are joined by the joint 4. The joint 4 may be a mechanical joint or another joint. Alternatively, the end portions may be overlapped and connected with a wire or the like. Furthermore, the structure which abuts end parts and joins by welding etc. may be sufficient.
The reinforcing bar structure 1 of the pillar 3 surrounds the reinforcing bar 31 in a plane intersecting with the axial direction of the reinforcing bars 31 and a plurality of reinforcing bars 31 for the pillars extending in the vertical direction and arranged at predetermined intervals. There are provided a plurality of column shear reinforcement bars 32 that are arranged at equal intervals in the extending direction of the reinforcing bars 31 and reinforce the shear strength of the columns 3. The reinforcing bar 31 and the shear reinforcing bar 32 are ordinary reinforcing bars whose yield point or 0.2% proof stress is defined by JISG3112. The yield point or 0.2% yield strength of this ordinary reinforcing bar is, for example, 295 MPa (N / mm 2 ) or more and 390 MPa (N / mm 2 ) or less.

十字形接合S1を含む領域において、主筋21は、その中央部分に高強度部分211があり、その両端部にそれぞれ普通強度部分212がある。高強度部分211と普通強度部分212との境界部Qが降伏ヒンジの位置である。
高強度部分211は、十字形接合S1と十字形接合S1から梁長さ方向に沿った高強度領域210Aとに配置される。普通強度部分212は、高強度領域210Aを挟んで十字形接合S1とは反対側に位置する普通強度領域210Bに配置されている。高強度部分211及び普通強度部分212は、1本の鉄筋から一体に形成されている。
普通強度部分212は、降伏点又は0.2%耐力がJISG3112で規定されている。
高強度部分211は、普通強度部分212より高強度である。
例えば、高強度部分211の降伏点又は0.2%耐力は、490MPa(N/mm)以上1000MPa(N/mm)以下である。普通強度部分212の降伏点又は0.2%耐力は、295MPa(N/mm)以上390MPa(N/mm)以下である。
以上の構成の主筋21は、普通強度部分212と同じ強度の1本の普通鉄筋(SD345)を部分焼入れして高強度部分211にする。
In the region including the cruciform joint S1, the main muscle 21 has a high-strength portion 211 at the center portion and normal strength portions 212 at both ends thereof. The boundary portion Q between the high strength portion 211 and the normal strength portion 212 is the position of the yield hinge.
The high-strength portion 211 is disposed in the cruciform joint S1 and the high-strength region 210A along the beam length direction from the cruciform joint S1. The normal strength portion 212 is disposed in a normal strength region 210B located on the opposite side of the cruciform joint S1 across the high strength region 210A. The high-strength portion 211 and the normal-strength portion 212 are integrally formed from a single reinforcing bar.
The normal strength portion 212 has a yield point or 0.2% yield strength defined by JISG3112.
The high strength portion 211 is stronger than the normal strength portion 212.
For example, the yield point or 0.2% proof stress of the high strength portions 211 is less 490MPa (N / mm 2) or more 1000MPa (N / mm 2). The yield point or 0.2% yield strength of the normal strength portion 212 is 295 MPa (N / mm 2 ) or more and 390 MPa (N / mm 2 ) or less.
The main reinforcing bar 21 having the above-described configuration is made by partially quenching one normal reinforcing bar (SD345) having the same strength as that of the normal strength portion 212 into the high strength portion 211.

ト形接合S2を含む領域において、主筋21は、その一端部分に高強度部分211があり、その他端部に普通強度部分212がある。
高強度部分211は、ト形接合S2とト形接合S2から梁長さ方向に沿った高強度領域210Aとに配置される。普通強度部分212は、高強度領域210Aを挟んでト形接合S2とは反対側に位置する普通強度領域210Bに配置されている。
In the region including the G-shaped joint S2, the main muscle 21 has a high-strength portion 211 at one end portion and a normal-strength portion 212 at the other end portion.
The high-strength portion 211 is disposed in the G-shaped joint S2 and the high-strength region 210A along the beam length direction from the G-shaped joint S2. The normal strength portion 212 is disposed in a normal strength region 210B located on the opposite side of the toroidal joint S2 across the high strength region 210A.

次に、本実施形態において、鉄筋コンクリート造を設計する方法について説明する。
図2では、梁用の主筋21の応力度分布が(A)に示され、柱梁接合部200及び梁2の平断面が(B)に示されている。なお、図2(B)において、断面部分のハッチが省略して図示されている。
図2(B)に示される通り、主筋21は、柱梁接合部200と、柱梁接合部200を挟んで左右両側に配置された高強度領域210Aとに位置するように高強度部分211が配置されている。
高強度部分211が配置される寸法は、付着検討長さLである。
Dを柱せい、lを左側の高強度領域210Aの梁長さ方向に沿った長さ、lを右側の高強度領域210Aの梁長さ方向に沿った長さとすると、付着検討長さLは、L=D+ll-である。
Next, a method for designing a reinforced concrete structure in this embodiment will be described.
In FIG. 2, (A) shows the stress distribution of the main bars 21 for the beam, and (B) shows the plane cross sections of the beam-column joint 200 and the beam 2. In FIG. 2B, the cross-sectional hatch is omitted.
As shown in FIG. 2B, the main reinforcement 21 has the high-strength portion 211 such that the high-strength portion 211 is positioned in the column-beam joint portion 200 and the high-strength regions 210A disposed on both the left and right sides of the column-beam joint portion 200. Has been placed.
The dimension in which the high-strength portion 211 is arranged is the adhesion examination length L.
If D is a pillar, L a l is the length along the beam length direction of the left high strength region 210A, and R a l is the length along the beam length direction of the right high strength region 210A, the adhesion study the length L is L = D + L a l + R a l-.

図3には、梁用の主筋21の配列状態が(A)(B)に示され、ひずみ分布が(C)に示されている。
図3(A)(B)に示される通り、上下にそれぞれ主筋21が複数本(4本)配置されている。
梁2の梁幅寸法はbである。前述の通り、上方に配置された主筋21が圧縮側鉄筋であり、下方に配置された主筋21が引張側鉄筋である。下方の引張側鉄筋としての主筋21の重心と梁2の圧縮縁(上面)との距離をd、主筋21の直径(鉄筋径)をd、引張側の設計用曲げモーメントをDU、引張側鉄筋の断面積をa、圧縮側の設計用曲げモーメントをDU、圧縮縁(梁下面)から圧縮側鉄筋重心までの距離をd、圧縮側鉄筋の断面積a、梁用の主筋21のコンクリートに対するヤング係数比をnとすると、設計用付着応力度τは、数4の式(1)〜(4)に基づいて求められる。なお、梁用の主筋21のコンクリートに対するヤング係数比nは、表1から選択されるものである。
In FIG. 3, the arrangement state of the main bars 21 for beams is shown in (A) and (B), and the strain distribution is shown in (C).
As shown in FIGS. 3 (A) and 3 (B), a plurality (four) of main muscles 21 are arranged above and below, respectively.
The beam width dimension of the beam 2 is b. As described above, the main reinforcing bar 21 arranged above is a compression side reinforcing bar, and the main reinforcing bar 21 arranged below is a tension side reinforcing bar. The distance between the center of gravity of the main bar 21 as the lower tension side reinforcing bar and the compression edge (upper surface) of the beam 2 is d, the diameter (rebar diameter) of the main bar 21 is d b , and the design bending moment on the tension side is L M DU , tension side cross-sectional area a t rebar, the bending moment for the design of the compression side R M DU, distance d c from the compression edge (beam lower surface) to the compression side rebar centroid, the cross-sectional area a c compression side reinforcing bars, beams If the Young's modulus ratio of the main reinforcing bar 21 to the concrete is n, the design adhesion stress τ j is obtained based on the equations (1) to (4) of Equation 4. In addition, the Young's modulus ratio n of the main reinforcing bar 21 for the concrete is selected from Table 1.

Figure 2016069925
Figure 2016069925

Figure 2016069925
Figure 2016069925

図2(A)で示される通り、左側の高強度領域210Aに対応した引張側鉄筋の応力σは、柱梁接合部200の左側の付け根部Rにおける主筋21の応力である。右側の高強度領域210Aに対応した圧縮側鉄筋の応力σは、柱梁接合部200の右側の付け根部Rにおける主筋21の応力である。
数4の式(2)で示される通り、引張側鉄筋の応力σは、引張側の設計用曲げモーメントDUと、引張側鉄筋の断面積aと、引張側鉄筋としての主筋21の重心と梁2の圧縮縁との距離dとに基づいて求められる。引張側鉄筋の応力σは、鉄筋コンクリート構造計算規準・同解説(日本建築学会2010年2月20日第8版第1刷)に準拠する。
鉄筋コンクリート構造計算規準・同解説によれば、梁の引張側鉄筋比が釣合鉄筋比以下のときは、式(A)がなりたつ。
DU=aσj ……(A)
ここで、aは引張側鉄筋断面積であり、jは梁の応力中心距離である。dを梁の有効せいとすると(図3参照)、jは(7/8)dあるいは0.9dとしてもよい。式(A)から、
σDU/(0.9×ad)=DU/(a×j)
である。曲げモーメントDUは、付け根部Rにおける値であり、従来と同様の方法により求められる。
As shown in FIG. 2A, the stress σ t of the tension-side reinforcing bar corresponding to the left high-strength region 210A is the stress of the main bar 21 at the base R on the left side of the beam-column joint 200. The stress σ c of the compression-side reinforcing bar corresponding to the right-side high-strength region 210 </ b > A is the stress of the main reinforcing bar 21 at the base portion R on the right side of the beam-column joint 200.
As shown by the number 4 in the formula (2), the stress sigma t tensile side reinforcement, and the moment L M DU for bending tension side design, the cross-sectional area a t the tension side reinforcement, main reinforcement of the tension side reinforcement 21 And the distance d between the compression center of the beam 2 and the compression edge of the beam 2. The stress σ t of the tensile steel bars is in accordance with the Reinforced Concrete Structure Calculation Standards / Explanation (The Architectural Institute of Japan, February 20, 2010, 8th edition, first print).
According to the Reinforced Concrete Structure Calculation Criteria and the same commentary, when the tension side reinforcement ratio of the beam is equal to or less than the balanced reinforcement ratio, equation (A) is satisfied.
L M DU = a t σ t j ...... (A)
Here, a t is a tension side reinforcement cross-sectional area, j is the stress center distance of the beam. If d is an effective beam (see FIG. 3), j may be (7/8) d or 0.9d. From equation (A)
σ t = L M DU /(0.9×a t d) = L M DU / (a t × j)
It is. The bending moment L M DU is a value at the base portion R, and is obtained by a method similar to the conventional method.

数4の式(3)で示される通り、圧縮側鉄筋の応力σは、圧縮側の設計用曲げモーメントDUと、引張側鉄筋の断面積aと、圧縮側鉄筋の断面積aと、圧縮側鉄筋としての主筋21の重心と梁2の圧縮縁との距離d、中立軸位置xとに基づいて求められる。
中立軸位置xは式(4)から求められる。圧縮側鉄筋の応力σは、引張側鉄筋の応力σと同様に、鉄筋コンクリート構造計算規準・同解説の式(A)に基づいて求められる。
As shown by the number 4 in the formula (3), the stress sigma c compression side rebar, and the moment R M DU bending for design of the compression side, and cross-sectional area a t the tension side reinforcement, the cross-sectional area of the compression-side reinforcing bars a c , the distance d c between the center of gravity of the main reinforcing bar 21 as the compression side reinforcing bar and the compression edge of the beam 2 and the neutral axis position x n are obtained.
The neutral axis position xn is obtained from the equation (4). The stress σ c of the compression side reinforcing bar is obtained based on the formula (A) of the reinforced concrete structure calculation criteria and the same explanation as the stress σ t of the tensile side reinforcing bar.

式(4)は、次の式から求められる。
図3(C)には、ひずみ分布が示されている。図3(C)に示される通り、梁2の圧縮縁(上面)に生じるひずみは、圧縮側のひずみであり、梁2のうち下方に配置された主筋21に生じるひずみは、引張側のひずみである。
圧縮側にかかるひずみ量をεとし、引張側にかかるひずみ量をεとすると、中立軸位置xにおいてひずみ量は、0となる。
梁2のうち上方に配置された主筋21におけるひずみ量をεとすると、図3(C)から、
ε/xε/(x−d) ……(B)
ε/xε/(d−x) ……(C)
ε/(x−d)=ε/(d−x) ……(D)
である。
Equation (4) is obtained from the following equation.
FIG. 3C shows the strain distribution. As shown in FIG. 3C, the strain generated at the compression edge (upper surface) of the beam 2 is the compression side strain, and the strain generated at the main bar 21 disposed below the beam 2 is the strain on the tension side. It is.
Assuming that the strain amount applied to the compression side is c ε c and the strain amount applied to the tension side is t ε s , the strain amount is 0 at the neutral shaft position xn .
Assuming that the strain amount in the main muscle 21 arranged above the beam 2 is c ε s , from FIG.
c ε c / x n = c ε s / (x n -d c) ...... (B)
c ε c / x n = t ε s / (d-x n) ...... (C)
c ε s / (x n -d c) = t ε s / (d-x n) ...... (D)
It is.

式(B)〜(D)から、
εε×{(x−d)/(d−x)}……(E)
である。
引張側鉄筋の応力、圧縮側鉄筋の応力及び圧縮側コンクリートの応力の釣り合いの関係から、次の式を導くことができる。なお、下記の式におけるEsは、主筋21のコンクリートに対するヤング係数比である。
引張側鉄筋の応力=ε×Es×a
圧縮側鉄筋の応力=ε×Es×a
圧縮側コンクリート(三角形分布)の応力=(1/2)×ε×(Es/n)×x×b
引張側鉄筋の応力−圧縮側鉄筋の応力−圧縮側コンクリートの応力=0であるから、
ε×Es×aε×Es×a−(1/2)×ε×(Es/n)×x×b=0であり、この式と、式(E)とから、
(1/2n)×x ×b+(a+a)×x−a×d−(ac×d)=0
……(F)
となる。式(F)からxを求めると、式(4)となる。
From the formulas (B) to (D),
c ε s = t ε s × {(x n -d c) / (d-x n)} ...... (E)
It is.
The following equation can be derived from the relationship between the stress of the tension side reinforcement, the stress of the compression side reinforcement, and the stress of the compression side concrete. Note that Es in the following equation is a Young's modulus ratio of the main reinforcement 21 to the concrete.
Of tensile side rebar stress = t ε s × Es × a t
Compression side rebar stress = c ε s × Es × ac
Stress on compression side concrete (triangle distribution) = (1/2) x c ε c x (Es / n) x x n x b
Since the stress on the tension side rebar-the stress on the compression side rebar-the stress on the compression side concrete = 0,
t ε s × Es × a t - c ε s × Es × a c - (1/2) × c ε c × (Es / n) a × x n × b = 0, and this equation, equation (E And
(1 / 2n) × x n 2 × b + (a t + a c) × x n -a t × d- (ac × d c) = 0
...... (F)
It becomes. When xn is obtained from Expression (F), Expression (4) is obtained.

従って、本実施形態では、次の効果を奏することができる。
(1)梁用の主筋21の応力と鉄筋径dとを乗じた値に付着検討長さLを除して主筋21の設計用付着応力度τを求めるにあたり、付着検討長さLを、柱せいD及び高強度領域210Aの寸法lとしたから、付着検討長さLを柱せいDとした従来の設計手法に比べて、設計用付着応力度τの値に余裕ができる。そのため、主筋21の径を小さなものを用いても、従来の設計手法で求められた設計用付着応力度τの要件を満たすことが可能となるので、主筋21を容易に配筋することができる。その上、降伏ヒンジを、柱梁接合部の梁の付け根部ではなく、付け根部から離れた高強度部分211と普通強度部分212との境界部とすることで、鉄筋量が少なくてすむ。
Therefore, in this embodiment, the following effects can be achieved.
(1) Upon determining the design for bond stress of tau j of stress and reinforcing bar diameter d b and by dividing the value in the deposition study length L multiplied by the main reinforcement 21 of the main reinforcement 21 for the beam, the adhesion study length L since the size of the pillars sei D and high intensity regions 210A L a l, and R a l, the adhesion study length L than the conventional design methods and pillars sei D, design affixing stresses tau j value Can afford. Therefore, even if the main bar 21 has a small diameter, it is possible to satisfy the requirement of the design adhesion stress τ j obtained by the conventional design method. Therefore, the main bar 21 can be easily arranged. it can. In addition, the amount of reinforcing bars can be reduced by using the yield hinge as a boundary portion between the high strength portion 211 and the normal strength portion 212 apart from the base portion instead of the base portion of the beam at the beam-column joint.

(2)設計用付着応力度τを、式(1)から求めたから、設計用付着応力度τの値を正確に求めることができる。
(3)引張側鉄筋の応力σ及び圧縮側鉄筋の応力σを、式(2)〜(4)に基づいて求めたから、引張側鉄筋の応力σ及び圧縮側鉄筋の応力σの範囲が広範にわたる場合であっても、設計用付着応力度τの値を正確なものにできる。
(2) Since the design adhesion stress τ j is obtained from the equation (1), the design adhesion stress τ j can be accurately obtained.
(3) Since the stress σ t of the tension side reinforcing bar and the stress σ c of the compression side reinforcing bar are obtained based on the equations (2) to (4), the stress σ t of the tension side reinforcing bar and the stress σ c of the compression side reinforcing bar Even when the range is wide, the value of the design adhesion stress τ j can be made accurate.

(4)1本の普通鉄筋を部分焼入れして普通強度部分212と高強度部分211とを形成したから、主筋21の現場での取り扱いが容易となる。 (4) Since one normal reinforcing bar is partially quenched to form the normal strength portion 212 and the high strength portion 211, the main bar 21 can be easily handled in the field.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、本発明では、建築構造物以外にも、橋等の土木構造物にも適用することができる。
前記実施形態では、1本の普通鉄筋を部分焼入れして普通強度部分212と高強度部分211とを形成したが、本発明では、普通強度部分212を複数本の普通鉄筋から構成し、高強度部分211を、これらの主筋と、隣合う主筋の間に配置された補強筋とから構成するものでもよい。
即ち、梁用の主筋21のうち柱梁接合部200の付け根部から降伏ヒンジの位置が離れた位置となるように補強された鉄筋コンクリート造を設計する方法において、前記実施形態と同様に、梁用の主筋21の応力と鉄筋径dとを乗じた値に付着検討長さLを除して主筋21の設計用付着応力度τを求めるにあたり、付着検討長さLを、柱せいD及び高強度領域210Aの寸法lとする。
補強にあたっては、普通強度の領域より鉄筋の数を増やして高強度の領域を形成する。そのため、1本の普通鉄筋の一部を焼入れして高強度部分211を形成する場合に比べて、鉄筋の製造コストを下げることができる。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, the present invention can be applied to civil engineering structures such as bridges in addition to building structures.
In the above-described embodiment, one normal reinforcing bar is partially quenched to form the normal strength portion 212 and the high strength portion 211. However, in the present invention, the normal strength portion 212 is composed of a plurality of normal reinforcing bars and has a high strength. The part 211 may be constituted by these main bars and reinforcing bars arranged between adjacent main bars.
That is, in the method of designing a reinforced concrete structure reinforced so that the position of the yield hinge is away from the base of the column beam joint 200 in the beam main reinforcement 21, as in the above embodiment, Upon determination of the main reinforcement 21 of the stress and the reinforcing bar diameter d b and the design for bond stress of tau j values for deposition study by dividing the length L main reinforcement 21 multiplied by adhering consider the length L, the pillar Seiji D and dimensions L a l high strength region 210A, and R a l.
In reinforcement, the number of reinforcing bars is increased from the normal strength region to form a high strength region. Therefore, the manufacturing cost of the reinforcing bars can be reduced as compared with the case where the high strength portion 211 is formed by quenching a part of one ordinary reinforcing bar.

さらに本発明では、引張側鉄筋の応力σtと圧縮側鉄筋の応力σcとを、断面内各点のひずみ度が中立軸からの距離に比例し、鉄筋の応力度とひずみ度と関係は弾性とし、圧縮を受けるコンクリートの応力度−ひずみ度関係は、部材実験結果によく適合する算定結果を与える関係を仮定したうえで、断面内での応力の釣合いを考慮した断面解析から求める構成としてもよい。
即ち、鉄筋コンクリート構造計算規準・同解説(日本建築学会1988改訂、991一部改訂)の第604頁〜第616頁「付20.梁および柱の曲げ終局強度」)に基づいて引張側鉄筋の応力σtと圧縮側鉄筋の応力σcとを求める。
Furthermore, in the present invention, the stress σ t of the tension side reinforcing bar and the stress σ c of the compression side reinforcing bar are expressed in terms of the degree of strain at each point in the cross section in proportion to the distance from the neutral axis. It is assumed that the relationship between the degree of stress and the degree of strain of concrete subjected to compression is obtained from cross-sectional analysis considering the balance of stress in the cross-section, assuming a relationship that gives a calculation result that fits well with the results of member experiments. Also good.
That is, based on the reinforced concrete structural calculation standards and explanations (Revised by Architectural Institute of Japan 1988, 991 partially revised, pages 604 to 616 “Appendix 20. Ultimate strength of bending of beams and columns”) σ t and the stress σ c of the compression side reinforcing bar are obtained.

つまり、曲げ終局強度(曲げ耐力)の算定を、次の基本仮定により行う。
(1)曲げ終局強度は、圧縮縁のコンクリートのひずみ度が一定の終局ひずみ度εuに達するときの曲げモーメントMuにより表す。
(2)曲げ終局強度に達した断面内各点のひずみ度は中立軸からの距離に比例する。
(3)鉄筋の応力度ひずみ度関係は、引張・圧縮とも降伏点強度以下では弾性とし、降伏点強度に相当するひずみ度を超えるひずみ度に対しては、鉄筋の応力度は降伏度強度に等しいものとする。
(4)コンクリートは引張応力度を負担しない。
(5)圧縮を受けるコンクリートの応力度ひずみ関係は、部材実験結果によく適合する算定結果を与えるものであれば、長方形・台形・放物線・3次曲線・指数関数等、どのような形に仮定してもよい。
以後、断面の釣り合いの条件(σを鉄筋の降伏点強度とすると、σt=σ、σc=−σ)を考慮し従来より行われている断面解析から引張側鉄筋の応力σtと圧縮側鉄筋の応力σcとを求める。求められた引張側鉄筋の応力σtと圧縮側鉄筋の応力σcとに基づいて、前記実施形態と同様に、設計用付着応力度τを求める。
That is, the ultimate bending strength (bending strength) is calculated based on the following basic assumptions.
(1) The ultimate bending strength is expressed by the bending moment Mu when the degree of strain of the compression edge concrete reaches a constant ultimate strain εu.
(2) The degree of strain at each point in the cross section where the ultimate bending strength is reached is proportional to the distance from the neutral axis.
(3) The relationship between the strength and the strength of the reinforcing bar is that the tensile strength and compression are both elastic below the yield strength. For the strain exceeding the yield strength, the strength of the reinforcing bar is the yield strength. It shall be equal.
(4) Concrete does not bear the tensile stress.
(5) The stress-strain relationship of concrete subjected to compression is assumed to be any shape such as a rectangle, trapezoid, parabola, cubic curve, exponential function, etc., as long as it gives a calculation result that fits well with the results of member experiments. May be.
Hereinafter, the stress σ of the tension-side rebar is determined from the conventional cross-section analysis in consideration of the condition of the cross-sectional balance (σ t = σ y , σ c = −σ y , where σ y is the yield point strength of the rebar). t and the stress σ c of the compression side reinforcing bar are obtained. Based on the obtained stress σ t of the tension side reinforcing bar and the stress σ c of the compression side reinforcing bar, the adhesion stress τ j for design is obtained in the same manner as in the above embodiment.

また、前記実施形態では、引張側鉄筋の応力σ及び圧縮側鉄筋の応力σを、式(2)〜(4)に基づいた断面解析により求めたが、本発明では、引張側鉄筋の応力σ及び圧縮側鉄筋の応力σをそれぞれ所定値、例えば、降伏点又は0.2%耐力が685N/mmの鉄筋を用いた場合には、鉄筋の応力の最大値である685N/mmとする場合には、式(2)〜(4)は不要である。 Moreover, in the said embodiment, although stress (sigma) t of the tension side reinforcement and stress (sigma) c of the compression side reinforcement were calculated | required by the cross-sectional analysis based on Formula (2)-(4), The stress σ t and the stress σ c of the compression side rebar are respectively predetermined values, for example, when a rebar having a yield point or 0.2% proof stress of 685 N / mm 2 is used, the maximum value of the rebar stress is 685 N / when the mm 2 of the formula (2) to (4) is not required.

本発明は、鉄筋コンクリート造の建築構造物や土木構造物に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a reinforced concrete building structure or a civil engineering structure.

1…鉄筋構造、2…梁、3…柱、21…梁用の主筋、211…高強度部分、212…普通強度部分、S1…十字形接合、200…柱梁接合部、210A…高強度領域、100…コンクリート体、R…付け根部、Q…境界部、L…付着検討長さ、D…柱せい   DESCRIPTION OF SYMBOLS 1 ... Reinforcement structure, 2 ... Beam, 3 ... Column, 21 ... Main reinforcement for beam, 211 ... High strength part, 212 ... Normal strength part, S1 ... Cross joint, 200 ... Column beam joint, 210A ... High strength region , 100: Concrete body, R: Root part, Q: Boundary part, L: Adhesion length, D: Pillar

Claims (8)

柱と接合され引張側鉄筋と圧縮側鉄筋として機能する複数の梁用の主筋を備え、前記梁用の主筋は、普通強度部分と、前記普通強度部分よりも強度が大きい高強度部分とを有し、前記高強度部分は、前記梁用の主筋のうち前記柱と接合される柱梁接合部と前記柱梁接合部の互いに反対側に位置する付け根部からそれぞれ梁長さ方向に沿った高強度領域とに配置され、前記普通強度部分は、前記高強度領域を挟んで前記柱梁接合部とは反対側に位置する普通強度領域に配置された鉄筋コンクリート造を設計する方法であって、
前記梁用の主筋の応力と前記梁用の主筋の鉄筋径とを乗じた値に付着検討長さを除して前記梁用の主筋の設計用付着応力度τを求めるにあたり、
前記付着検討長さを、前記柱せいと前記高強度領域のうち前記梁の長さ方向に沿った寸法との合計の値とすることを特徴とする鉄筋コンクリート造の設計方法。
A plurality of beam main bars that are joined to the column and function as tension-side reinforcing bars and compression-side reinforcing bars, and the main bars for the beams have a normal strength portion and a high-strength portion that is stronger than the normal strength portion. The high-strength portion is a height along the beam length direction from the beam-to-column joint portion to be joined to the column and the root portion located on the opposite side of the beam-to-column joint portion of the main bars for the beam. The normal strength portion is a method of designing a reinforced concrete structure disposed in a normal strength region located on the opposite side to the column beam joint with the high strength region interposed therebetween,
In determining the adhesion stress τ j for design of the main bar for the beam by dividing the adhesion examination length by the value obtained by multiplying the stress of the main bar for the beam and the reinforcing bar diameter of the main bar for the beam,
The method for designing a reinforced concrete structure, wherein the adhesion examination length is a total value of the pillar and a dimension along the length direction of the beam in the high-strength region.
請求項1に記載された鉄筋コンクリート造の設計方法において、
Dを柱せい、
lを一方の前記高強度領域の梁長さ方向に沿った長さ、
を他方の前記高強度領域の梁長さ方向に沿った長さ、
を前記梁用の主筋の鉄筋径、
σを前記引張側鉄筋の応力、
σを前記圧縮側鉄筋の応力とすると、
前記付着検討長さLは、L=D+lであり、
前記設計用付着応力度τを、
[数1]
τ={(σ+σ)×d}/{4×(D+l)} …… (1)
の式から求めることを特徴とする鉄筋コンクリート造の設計方法。
In the design method of the reinforced concrete structure described in Claim 1,
Because of D,
L a l is the length along the beam length direction of one of the high-strength regions,
R al is the length along the beam length direction of the other high-strength region,
The d b rebar diameter of main reinforcement for the beam,
σ t is the stress of the tension side reinforcing bar,
When σ c is the stress of the compression side reinforcing bar,
The adhesion examination length L is L = D + L al + R a l ,
The design adhesive stress degree τ j ,
[Equation 1]
τ j = {(σ t + σ c ) × d b } / {4 × (D + L a l + R a l )} (1)
A method for designing a reinforced concrete structure, characterized in that it is obtained from the following formula.
請求項2に記載された鉄筋コンクリート造の設計方法において、
DUを一方の前記高強度領域に対応した引張側の設計用曲げモーメント、
dを圧縮縁から引張側鉄筋重心までの距離、
を前記引張側鉄筋の断面積、
DUを他方の前記高強度領域に対応した圧縮側の設計用曲げモーメント、
を圧縮縁から圧縮側鉄筋重心までの距離、
を圧縮側鉄筋の断面積、
nを前記梁用の主筋のコンクリートに対するヤング係数比、
bを梁幅寸法、とすると、
前記引張側鉄筋の応力σと前記圧縮側鉄筋の応力σとを、
Figure 2016069925
の式から求めることを特徴とする鉄筋コンクリート造の設計方法。
In the design method of the reinforced concrete structure described in Claim 2,
L M DU is a bending moment for design on the tensile side corresponding to one of the high strength regions,
d is the distance from the compression edge to the center of gravity of the rebar
a t is the cross-sectional area of the tension-side reinforcing bar,
R M DU bending for other of the high-intensity compression side corresponding to the area design moment,
Distance to d c from the compressed edge to the compression side rebar centroid,
a c is the cross-sectional area of the compression side rebar,
n is the Young's modulus ratio of the main reinforcement for the beam to the concrete,
If b is the beam width dimension,
The stress σ t of the tension side reinforcing bar and the stress σ c of the compression side reinforcing bar are
Figure 2016069925
A method for designing a reinforced concrete structure, characterized in that it is obtained from the following formula.
請求項2に記載された鉄筋コンクリート造の設計方法において、
引張側鉄筋の応力σtと圧縮側鉄筋の応力σcとを、
断面内各点のひずみ度が中立軸からの距離に比例し、鉄筋の応力度とひずみ度との関係は弾性とし、圧縮を受けるコンクリートの応力度−ひずみ度関係を、部材実験結果によく適合する算定結果を与える長方形・台形・放物線・3次曲線・指数関数を含む形に仮定したうえで、断面内での応力の釣合いを考慮した断面解析から求めることを特徴とする鉄筋コンクリート造の設計方法。
In the design method of the reinforced concrete structure described in Claim 2,
The stress σ t of the tension side rebar and the stress σ c of the compression side rebar are
The degree of strain at each point in the cross-section is proportional to the distance from the neutral axis, the relationship between the stress level and the strain level of the reinforcing bar is elastic, and the stress-strain level relationship of concrete subjected to compression is well adapted to the results of member experiments Reinforced concrete design method characterized by obtaining from a cross-sectional analysis considering the balance of stress in the cross-section, assuming a shape including a rectangle, trapezoid, parabola, cubic curve, and exponential function .
請求項1乃至請求項4のいずれか1項に記載された鉄筋コンクリート造の設計方法において、
前記普通強度部分は降伏点又は0.2%耐力がJISG3112で規定され、前記高強度部分は前記普通強度部分よりも降伏点又は0.2%耐力が大きく設定され、
前記梁用の主筋は、前記普通強度部分と同じ強度の1本の普通鉄筋を部分焼入れして前記高強度部分とすることを特徴とする鉄筋コンクリート造の設計方法。
In the design method of the reinforced concrete structure described in any one of Claims 1 thru | or 4,
The normal strength portion has a yield point or 0.2% yield strength defined in JIS G3112, and the high strength portion has a yield point or 0.2% yield strength greater than the normal strength portion,
The method for designing a reinforced concrete structure, wherein the main reinforcing bar for the beam is formed by partially quenching one normal reinforcing bar having the same strength as that of the normal strength part to form the high strength part.
柱と接合される梁用の主筋を備え、前記梁用の主筋のうち前記柱と接合される柱梁接合部の付け根部から降伏ヒンジの位置が離れた位置となるように補強された鉄筋コンクリート造を設計する方法において、
前記梁用の主筋の応力と前記梁用の主筋の鉄筋径とを乗じた値に付着検討長さを除して前記梁用の主筋の設計用付着応力度τjを求めるにあたり、
前記付着検討長さを、前記柱せいと前記高強度領域のうち前記梁の長さ方向に沿った寸法との合計の値とすることを特徴とする鉄筋コンクリート造の設計方法。
Reinforced concrete structure comprising a main bar for a beam to be connected to a column and reinforced so that the position of the yield hinge is away from the base of the beam-to-column joint to be connected to the column among the main bars for the beam In how to design
In determining the adhesion stress τj for designing the main bar for the beam by dividing the adhesion examination length by the value obtained by multiplying the stress of the main bar for the beam and the reinforcing bar diameter of the main bar for the beam,
The method for designing a reinforced concrete structure, wherein the adhesion examination length is a total value of the pillar and a dimension along the length direction of the beam in the high-strength region.
請求項1乃至請求項5のいずれか1項に記載された鉄筋コンクリート造の設計方法で設計されたことを特徴とする鉄筋コンクリート造。   A reinforced concrete structure designed by the method for designing a reinforced concrete structure according to any one of claims 1 to 5. 請求項6に記載された鉄筋コンクリート造の設計方法で設計されたことを特徴とする鉄筋コンクリート造。   A reinforced concrete structure designed by the method for designing a reinforced concrete structure according to claim 6.
JP2014200518A 2014-09-30 2014-09-30 Design method of reinforced concrete structure and reinforced concrete structure Active JP6438257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014200518A JP6438257B2 (en) 2014-09-30 2014-09-30 Design method of reinforced concrete structure and reinforced concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014200518A JP6438257B2 (en) 2014-09-30 2014-09-30 Design method of reinforced concrete structure and reinforced concrete structure

Publications (2)

Publication Number Publication Date
JP2016069925A true JP2016069925A (en) 2016-05-09
JP6438257B2 JP6438257B2 (en) 2018-12-12

Family

ID=55866262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014200518A Active JP6438257B2 (en) 2014-09-30 2014-09-30 Design method of reinforced concrete structure and reinforced concrete structure

Country Status (1)

Country Link
JP (1) JP6438257B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697608A (en) * 2020-12-10 2021-04-23 太原理工大学 Method for judging plastic bending resistance bearing capacity of full section of steel member under bidirectional bending
CN117633986A (en) * 2023-12-05 2024-03-01 江苏中碳建筑产业研究院有限公司 Method for calculating bearing capacity of positive section of composite floor slab based on functional gradient material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185440A (en) * 1977-04-22 1980-01-29 Dyckerhoff & Widmann Aktiengesellschaft Method of and parts used in the construction of a prestressed concrete structure
JPH01244040A (en) * 1988-03-24 1989-09-28 Takenaka Komuten Co Ltd Bar arrangement for reinforced concrete column-beam joint
JPH0396556A (en) * 1989-09-11 1991-04-22 Taisei Corp Jointing mechanism for reinforcement
JP2013253441A (en) * 2012-06-08 2013-12-19 Neturen Co Ltd Reinforcement structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185440A (en) * 1977-04-22 1980-01-29 Dyckerhoff & Widmann Aktiengesellschaft Method of and parts used in the construction of a prestressed concrete structure
JPH01244040A (en) * 1988-03-24 1989-09-28 Takenaka Komuten Co Ltd Bar arrangement for reinforced concrete column-beam joint
JPH0396556A (en) * 1989-09-11 1991-04-22 Taisei Corp Jointing mechanism for reinforcement
JP2013253441A (en) * 2012-06-08 2013-12-19 Neturen Co Ltd Reinforcement structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鉄筋コンクリート構造計算規準・同解説−許容応力度設計法− 1999 , JPN6018021659, 20 April 2002 (2002-04-20), JP, pages 106頁〜108頁 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697608A (en) * 2020-12-10 2021-04-23 太原理工大学 Method for judging plastic bending resistance bearing capacity of full section of steel member under bidirectional bending
CN117633986A (en) * 2023-12-05 2024-03-01 江苏中碳建筑产业研究院有限公司 Method for calculating bearing capacity of positive section of composite floor slab based on functional gradient material
CN117633986B (en) * 2023-12-05 2024-05-28 江苏中碳建筑产业研究院有限公司 Method for calculating bearing capacity of positive section of composite floor slab based on functional gradient material

Also Published As

Publication number Publication date
JP6438257B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
RU155973U1 (en) COMPOSITION STEEL CONCRETE BEAM
JP6301747B2 (en) Joint structure of precast floor slab and main girder
JP6023476B2 (en) Rebar structure
JP2018131883A (en) Floor structure
JP6438257B2 (en) Design method of reinforced concrete structure and reinforced concrete structure
JP6227452B2 (en) Wall pillar structure
JP6434767B2 (en) Design method of reinforced concrete structure and reinforced concrete structure
Jolly et al. Structural behaviour of reinforced concrete haunched beam: A study on ANSYS and ETABS
JP6646206B2 (en) Joint structure of RC members
Ibrahim et al. Influence of Concrete Strength on the Cycle Performance of Composite Steel Plate Shear Walls
JP6573111B2 (en) Beam-column joint structure
JP7234084B2 (en) Steel beam with floor slab and its reinforcement method
Sud et al. Effect of different shear wall configurations on seismic response of a moment-resisting frame
JP6568388B2 (en) Design method of reinforced concrete structure and reinforced concrete structure
JP6434766B2 (en) Design method of reinforced concrete structure and reinforced concrete structure
JP6434765B2 (en) Design method for reinforced concrete structures
JP2012215063A (en) Structure for reinforcing beam-column connection
Kaple et al. Seismic analysis of RC frame structure with and without masonry infill walls
JP7234083B2 (en) Steel beam with floor slab and its design method
Senthil et al. Evaluation of RC Frames in Shifting on Seismic Zone 3 to 5 and Retrofitting Techniques using ETABS
JP7137978B2 (en) Plate-shaped member for pillar
JP2023079439A (en) Design method for base plate
Blum et al. Design method for columns with intermediate elastic torsional restraint
JP6487216B2 (en) Reinforced concrete construction method
Thermou et al. Criteria and methods for redesign and retrofit of old structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181116

R150 Certificate of patent or registration of utility model

Ref document number: 6438257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250