JP6260980B2 - 成膜装置、成膜方法および成膜プログラム - Google Patents

成膜装置、成膜方法および成膜プログラム Download PDF

Info

Publication number
JP6260980B2
JP6260980B2 JP2012197874A JP2012197874A JP6260980B2 JP 6260980 B2 JP6260980 B2 JP 6260980B2 JP 2012197874 A JP2012197874 A JP 2012197874A JP 2012197874 A JP2012197874 A JP 2012197874A JP 6260980 B2 JP6260980 B2 JP 6260980B2
Authority
JP
Japan
Prior art keywords
pulse
bias voltage
microwave
negative bias
voltage pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012197874A
Other languages
English (en)
Other versions
JP2014051715A (ja
Inventor
健太郎 篠田
健太郎 篠田
英樹 金田
英樹 金田
滝 和也
和也 滝
上坂 裕之
裕之 上坂
泰之 高岡
泰之 高岡
隆志 岡本
隆志 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Brother Industries Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Brother Industries Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Brother Industries Ltd, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2012197874A priority Critical patent/JP6260980B2/ja
Priority to PCT/JP2013/073996 priority patent/WO2014038642A1/ja
Publication of JP2014051715A publication Critical patent/JP2014051715A/ja
Priority to US14/638,170 priority patent/US20150174605A1/en
Application granted granted Critical
Publication of JP6260980B2 publication Critical patent/JP6260980B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/007Processes for applying liquids or other fluent materials using an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/001Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work incorporating means for heating or cooling the liquid or other fluent material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Description

本発明は、プラズマを用い、鋼材などの導電性を有する被加工材料の表面へDLCなどの硬質皮膜を高速で形成するための成膜装置、成膜方法、および成膜プログラムに関するものである。
従来、鋼材などの導電性を有する被加工材料の表面にDLC(ダイヤモンドライクカーボン)成膜処理する技術が特許文献1などにより知られている。この特許文献に開示された技術では、プラズマ生成装置が石英窓を通して処理容器内の被加工材料に向けマイクロ波を供給することにより、石英窓内面の周辺領域にプラズマが発生し、シース層がプラズマと被加工材料との境界に生成される。マイクロ波の供給中に、プラズマ生成装置が被加工材料へ負のバイアス電圧を印加する。この結果、被加工材料の表面に沿ってシース層が生成し、生成されたシース層は拡大する。供給されたマイクロ波は、このシース層に沿って伝搬し、プラズマが伸長する。この結果、原料ガスがプラズマによって分解され、被加工材料の表面はDLC成膜処理される。
特開2004−47207号公報
マイクロ波の供給、および負のバイアス電圧の印加の一例として、被加工材料はマイクロ波供給部に近接し、かつマイクロ波供給部から突出するように支持され、被加工材料の一端からマイクロ波パルスが供給され、他端より負のバイアス電圧パルスが印加されることが考えられる。アーキングの発生による被加工材料のダメージを抑制するため、負のバイアス電圧はパルス化され、負のバイアス電圧パルスの印加時間は、マイクロ波パルスの供給時間よりも短く設定されることが考えられる。すなわち、マイクロ波パルスの1パルス毎の供給時間に対する負のバイアス電圧パルスの印加時間の比率が短く設定される。
しかし、DLC成膜処理された膜において、マイクロ波パルスが供給される側、すなわち石英窓近傍の膜は、もっとも硬度が低く、石英窓近傍と反対側の膜は硬度が高くなる。つまり、DLC成膜処理された膜は、硬度の分布に拡がりを有する問題がある。
従って本発明の目的は、上述した問題点を解決し、膜の硬度分布の拡がりを低減する成膜装置、成膜方法、および成膜プログラムを提供することにある。
上記目的を達成するために、請求項1記載の本発明は、導電性を有する被加工材料が備えられた処理容器に炭素、および水素を有する原料ガスと不活性ガスとを供給するガス供給部と、前記被加工材料の処理表面に沿ってプラズマを生成させるマイクロ波パルスを供給するマイクロ波供給部と、前記処理容器の内部に支持された前記被加工材料に、前記被加工材料の処理表面に沿うシース層を拡大させる負のバイアス電圧パルスを印加する印加部と、前記印加部による前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波供給部によるマイクロ波パルスの供給タイミングを制御する制御部とを備え、前記制御部は、マイクロ波1パルスの供給時間内に負のバイアス電圧1パルスの印加時間が入るとともに、マイクロ波1パルスの供給時間に対する負のバイアス電圧1パルスの印加時間の比率が、0.9以上となるように、前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御し、負のバイアス電圧パルスは、負のバイアス電圧パルスのみが前記被加工材料に印加された場合にプラズマを発生しない低電圧に設定されることを特徴とするものである。
請求項1記載の本発明では、前記制御部は、各前記負バイアス電圧パルスが印加開始される前に各前記マイクロ波パルスが供給開始されるように前記負のバイアス電圧パルス1パルス毎の印加タイミング、および前記マイクロ波パルス1パルス毎の供給タイミングを制御する構成であってもよい。
上記目的を達成するために、請求項2記載の本発明は、請求項1記載の成膜装置において、前記制御部は、マイクロ波1パルスの供給時間に対する、マイクロ波1パルスの供給時間内における負のバイアス電圧1パルスの印加時間の比率が、0.99以上となるように前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御することを特徴とするものである。
上記目的を達成するために、請求項3記載の本発明は、請求項1または請求項2記載の成膜装置において、さらに成膜開始時には、前記制御部は、前記印加部により印加開始される前記負のバイアス電圧パルスを、前記マイクロ波供給部によりマイクロ波パルスが供給開始されてから3秒以内であって、マイクロ波パルスの立ち上がりが不安定な期間が経過した後に印加するように前記印加タイミングを制御することを特徴とするものである。
請求項1〜のいずれか記載の発明では、前記マイクロ波供給部は、前記処理容器の内部に指示された前記被加工材料の一端側からマイクロ波パルスを供給し、前記印加部は、前記被加工材料の少なくとも前記処理表面全域に前記負のバイアス電圧パルスを印加する構成であってもよい。
上記目的を達成するために、請求項4記載の本発明は、請求項1〜のいずれか記載の成膜装置において、前記印加部は、前記負のバイアス電圧パルスの印加時間より短い印加時間で、正のバイアス電圧パルスを前記被加工材料に印加し、前記正のバイアス電圧パルスのデューティ比は、前記負のバイアス電圧パルスのデューティ比に対して、10%以下であることを特徴とするものである。
上記目的を達成するために、請求項5記載の本発明は、導電性を有する被加工材料が備えられた処理容器に炭素、および水素を有する原料ガスと不活性ガスとを供給するガス供給ステップと、前記被加工材料の処理表面に沿ってプラズマを生成させるマイクロ波パルスを供給するマイクロ波供給ステップと、前記処理容器の内部に支持された前記被加工材料に、前記被加工材料の処理表面に沿うシース層を拡大させる負のバイアス電圧パルスを印加する印加ステップと、前記印加ステップによる前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波供給ステップによるマイクロ波パルスの供給タイミングを制御する制御ステップとを備え、前記制御ステップは、マイクロ波1パルスの供給時間内に負のバイアス電圧1パルスの印加時間が入るとともに、マイクロ波1パルスの供給時間に対する負のバイアス電圧1パルスの 印加時間の比率が、0.9以上となるように、前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御し、負のバイアス電圧パルスは、負のバイアス電圧パルスのみが前記被加工材料に印加された場合にプラズマを発生しない低電圧に設定されることを特徴とする方法である。
上記目的を達成するために、請求項6記載の本発明は、導電性を有する被加工材料が備えられた処理容器に炭素、および水素を有する原料ガスと不活性ガスとを供給するガス供給部と、前記被加工材料の処理表面に沿ってプラズマを生成させるマイクロ波パルスを供給するマイクロ波供給部と、前記処理容器の内部に支持された前記被加工材料に、前記被加工材料の処理表面に沿うシース層を拡大させる負のバイアス電圧パルスを印加する印加部と、を備える成膜装置を制御するコンピュータに、前記印加部による前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波供給部によるマイクロ波パルスの供給タイミングを制御するタイミング制御ステップを実行させ、前記タイミング制御ステップは、マイクロ波1パルスの供給時間内に負のバイアス電圧1パルスの印加時間が入るとともに、マイクロ波1パルスの供給時間に対する負のバイアス電圧1パルスの 印加時間の比率が、0.9以上となるように、前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御し、負のバイアス電圧パルスは、負のバイアス電圧パルスのみが前記被加工材料に印加された場合にプラズマを発生しない低電圧に設定されることを特徴とするプログラムである。
以上
請求項1、5、および6記載の発明によれば、制御部、制御ステップ、またはタイミング制御ステップは、マイクロ波パルスのマイクロ波1パルスの供給時間に対する、マイクロ波1パルスの供給時間内における負のバイアス電圧1パルスの印加時間比率が、0.9以上となるように負のバイアス電圧パルスの印加タイミング、およびマイクロ波パルスの供給タイミングを制御する。この結果、被加工材料にDLC成膜処理された膜の硬度の分布は、35%以内に抑えることができる。
請求項1記載の発明では、制御部は、各負バイアス電圧パルス1パルスが印加開始される前に各マイクロ波パルス1パルスが供給開始されるように負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御する構成であってもよい。一般に、マイクロ波パルスが供給される際、各マイクロ波パルスの立ち上がり直後はマイクロ波パルスの出力が不安定な時間が発生し、その後出力が安定する。この不安定な時間は電源の特性によって異なるが、一般的には数マイクロ秒である。このマイクロ波パルス出力が不安定な状態において負のバイアス電圧パルスが印加されると不安定な時間が長くなる、またはアーキングの発生などが起きることがあり、成膜品質へ影響を及ぼす。そのため、各マイクロ波パルスが先に供給開始され、マイクロ波パルスの出力が安定してから各負のバイアス電圧パルスが印加開始されるように制御することが望ましい。
請求項2記載の発明によれば、制御部が、マイクロ波パルスの1パルス毎の供給時間における負のバイアス電圧パルスの1パルス毎の印加時間の比率が、0.99以上となるように負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御する。この結果、被加工材料にDLC成膜処理された膜の硬度の分布をなくすことが可能である。
請求項3記載の発明によれば、成膜開始時には制御部が、印加部により印加開始される負のバイアス電圧パルスを、マイクロ波供給部によりマイクロ波パルスが供給開始されてから3秒以内であって、マイクロ波パルスの立ち上がりが不安定な期間が経過した後に印加するように印加タイミングを制御する。一般に、マイクロ波を用いたプラズマ成膜プロセスにおいては、スリースタブチューナなどによりチューニングを行う時間が必要である。このマイクロ波のチューニングに時間がかかれば、その分、硬度が低下する。これに対し、印加部により最初に印加される負のバイアス電圧パルスを、マイクロ波供給部によりマイクロ波パルスが供給されてから3秒以内に印加するように印加タイミングが制御されれば、硬度が20GPaよりも低下することを回避することができる。
請求項1〜3のいずれか記載の発明では、マイクロ波供給部は、処理容器の内部に指示された被加工材料の一端側からマイクロ波パルスを供給し、印加部は、被加工材料の少なくとも処理表面全域に負のバイアス電圧パルスを印加する構成であってもよい。マイクロ波が被加工材料の一端側から供給され、負のバイアス電圧パルスが処理表面全域に印加されるので、プラズマは、被加工材料の処理表面全域を覆う。従って、被加工材料の処理表面全域をDLC成膜処理することができる。
請求項4記載の発明によれば、印加部は、負のバイアス電圧パルスの印加時間より短い印加時間で、正のバイアス電圧パルスを被加工材料に印加し、正のバイアス電圧パルスのデューティ比は、負のバイアス電圧パルスのデューティ比に対して、10%以下である。この結果、正のバイアス電圧パルスを短い時間印加することにより、硬度ムラを抑えながら、アーキングの発生を低減することができる。
成膜装置100の概略構成を示す説明図である。 成膜装置100の電気的構成を示すブロック図である。 制御テーブルを示す図である。 マイクロ波パルスの波形、および負のバイアス電圧パルスの波形の模式図である。 実験結果を示す図である。 実験の成膜条件を示す図である。 マイクロ波パルス、および負のバイアス電圧パルスの印加タイミングを示す図である。 成膜処理を示すフローチャートである。 マイクロ波パルスが印加されてから負のバイアス電圧パルスが印加されるまでの時間に応じた最大硬度の変化を示す図である。
以下に本発明の実施形態を説明する。図1は成膜装置100の実施形態を示す説明図であり、図2は、成膜装置100のブロック図である。成膜装置100は、処理容器1、真空ポンプ2、ガス供給部3、および制御部4を備える。処理容器1は気密構造の処理容器である。真空ポンプ2は、処理容器1の内部を真空排気可能なポンプである。処理容器1の内部には成膜対象である導電性を有する被加工材料Mが治具5により保持されている。この被加工材料Mの材質は、導電性を有していれば、特に限定されるものではないが、この実施形態では低温焼戻し鋼である。ここで低温焼戻し鋼とは、JIS G4051(機械構造用炭素鋼鋼材)、G4401(炭素工具鋼鋼材)、G44−4(合金工具用鋼材)、またはマルエージング鋼材などの材料である。被加工材料は、低温焼戻し鋼以外にも、セラミック、または樹脂に導電性の材料がコーティングされているものでもよい。
ガス供給部3は、処理容器1の内部に成膜用の原料ガスと不活性ガスとを供給する。具体的には、He,Ne、Ar、Kr、またはXeなどの不活性ガスとCH、C、またはTMS(テトラメチルシラン)などの原料ガスとが供給される。本実施形態では、CH、およびTMSの原料ガスにより被加工材料MがDLC成膜処理されるとして説明する。また、ガス供給部3から供給される原料ガス、および不活性ガスの流量、および圧力が後述するCPU20により制御されても良いし、原料ガス、および不活性ガスの流量、および圧力が作業者により制御されても良い。CH、C、またはTMS(テトラメチルシラン)などの原料ガスは、本発明の炭素、および水素を有する化合物の一例である。原料ガスは、アルキン、アルケン、アルカン、芳香族化合物などのCH結合を有する化合物、または炭素が含まれる化合物が含まれるガスであればよい。また、Hが原料ガスに含まれてもよい。
処理容器1の内部に保持された被加工材料Mに対してDLC成膜処理を行うためのプラズマが発生される。このプラズマは、マイクロ波電源6、マイクロ波パルスコントローラ7、負電圧電源8、および負電圧パルスコントローラ9により発生される。本実施形態では、特開2004−47207号公報に開示されたMVP(Microwave Voltage coupled Plasma)法により表面波励起プラズマが発生されるとして説明する。以降の記載では、MVP法を説明する。
マイクロ波パルスコントローラ7は制御部4の指示に従い、パルス信号を発振する。マイクロ波パルスコントローラ7は、発信されたパルス信号をマイクロ波電源6へ供給する。マイクロ波電源6は、マイクロ波パルスコントローラ7からのパルス信号に従って、マイクロ波パルスを発生する。マイクロ波は本実施形態では2.45GHzである。発生されたマイクロ波パルスは石英などのマイクロ波を透過する誘電体等からなるマイクロ波導入口10を経由し、被加工材料Mの処理表面に供給される。被加工材料Mの表面に供給されたマイクロ波パルスにより、マイクロ波導入口10付近にプラズマが生成される。被加工材料Mは例えば棒状であり、その一端は、マイクロ波導入口10に近接して配置される。また、被加工材料Mの他端はマイクロ波導入口10から処理容器1内側に向かって突出するように配置され、負のバイアス電圧パルスを印加するための電極が被加工材料Mに接続されている。
負電圧電源8は、制御部4の指示に従い、負電圧パルスコントローラ9に負のバイアス電圧を供給する。負電圧パルスコントローラ9は、負電圧電源8から供給された負のバイアス電圧をパルス化する。このパルス化の処理は、負電圧パルスコントローラ7が制御部4の指示に従い、負のバイアス電圧パルスのデューティ比を制御する処理である。このデューティ比に従うパルス状の負のバイアス電圧である負のバイアス電圧パルスが、処理容器1の内部に保持された被加工材料Mに印加される。すなわち、被加工材料Mが、金属基材の場合、またはセラミック、または樹脂に導電性の材料がコーティングされた場合であっても、被加工材料Mの少なくとも処理表面全域に負のバイアス電圧パルスが印加される。
詳細は後述するが、発生されたマイクロ波パルス、および負のバイアス電圧パルスの少なくとも一部が同一時間に印加されるように制御されることにより表面波励起プラズマが発生される。マイクロ波は2.45GHzに限らず、0.3GHz〜50GHzの周波数であればよい。負電圧電源8、および負電圧パルスコントローラ9が本発明の印加部の一例である。マイクロ波電源6、マイクロ波パルスコントローラ7、およびマイクロ波導入口10が本発明のマイクロ波供給部の一例である。尚、成膜装置100は負電圧電源8、および負電圧パルスコントローラ9を備えたが、正電圧電源、および正電圧パルスコントローラを備えても良い。
<表面波励起プラズマの説明>
通常、表面波励起プラズマを発生させる場合、ある程度以上の電子(イオン)密度におけるプラズマと、これに接する誘電体との界面に沿ってマイクロ波が供給される。供給されたマイクロ波は、この界面に電磁波のエネルギーが集中した状態で表面波として伝播される。その結果、界面に接するプラズマは高エネルギー密度の表面波によって励起され、さらに増幅される。これにより高密度プラズマが生成されて維持される。ただし、この誘電体を導電性材料に換えた場合、導電性材料は表面波の導波路としては機能せず、好ましい表面波の伝播及びプラズマ励起を生ずることはできない。
一方、プラズマに接する物体の表面近傍には、本質的に単一極性の荷電粒子層、いわゆるシース層が形成される。物体が、負バイアス電圧を加えた導電性を有する被加工材料の場合、シース層とは電子密度が低い層、すなわち、正極性であって、マイクロ波の周波数帯においてはほぼ誘電率ε≒1の層である。このため、印加する負バイアス電圧の絶対値を例えば−100Vの絶対値より大きくすることによりシース層の厚さを厚くできる。すなわちシース層が拡大する。このシース層が、プラズマとプラズマに接する物体との界面に表面波を伝播させる誘電体として作用する。従って、被加工材料Mの一端に近接して配置されたマイクロ波導入口10からマイクロ波が供給され、かつ被加工材料Mに負バイアス電圧が印加されると、マイクロ波はシース層とプラズマとの界面に沿って表面波として伝搬する。この結果、被加工材料Mの表面に沿って表面波に基づく高密度励起プラズマが発生する。この高密度励起プラズマが、上述した表面波励起プラズマである。
このような被加工材料表面の近傍での表面波励起による高密度プラズマの電子密度は1011〜1012cm―3に達する。このMVP法を用いたプラズマCVDによりDLC成膜処理される場合は、通常の負バイアス電圧エネルギーのプラズマCVDによりDLC成膜処理される場合よりも1桁から2桁高い成膜速度10〜100μm/hrが得られる。この結果、MVP法によるプラズマCVDの成膜時間は通常のプラズマCVDの成膜時間の1/10〜1/100となる。
図1、または図2に戻り成膜装置100の説明を続ける。制御部4は、負電圧電源8とマイクロ波パルスコントローラ7、および負電圧パルスコントローラ9とに制御信号を出力して印加電力を制御する。後述するが、制御部4は、制御信号を、負電圧電源8と、マイクロ波パルスコントローラ7、および負電圧パルスコントローラ9とに出力することにより、負電圧パルスコントローラ9によるパルス状の負のバイアス電圧パルスの印加タイミング、およびマイクロ波電源6によるマイクロ波パルスの供給タイミングを制御する。制御部4は、ガス供給部3に流量制御信号を出力して原料ガス、および不活性ガスの供給を制御する。
制御部4は、CPU20と記憶部21とを備え、コンピュータから構成される。CPU20は、図示しないRAMなどの揮発性記憶装置に種々の情報を一時記憶し、後述する成膜処理のプログラムを実行する。成膜処理のプログラムは、図示しないドライバによりCD−ROM、またはDVD−ROMなどの記憶媒体から読み込まれてもよいし、図示しないインターネットなどのネットワークからダウンロードされてもよい。記憶部21は、ROM、またはHDDなどの不揮発記憶装置であり、成膜処理プログラム、および図3に示す制御テーブルを記憶する。制御テーブルは、マイクロ波1パルスの供給時間に対する、マイクロ波1パルスの供給時間内における負のバイアス電圧1パルスの印加時間比率と、最大硬度、最小硬度、および硬度ムラとを関連付けて記憶する。図3では、印加時間の比率は有効時間比率として図示される。
図4に示すパルス波形の模式図を参照して、マイクロ波1パルスの供給時間に対する、マイクロ波1パルスの供給時間内における負のバイアス電圧1パルスの印加時間の比率を説明する。マイクロ波パルスの1パルス毎の供給時間Tmwは、マイクロ波パルスの周期T1、およびマイクロ波パルスのデューティ比DMW(Duty of microwave)により次式で表される。尚、この供給時間Tmwが、マイクロ波1パルスの供給時間に相当する。
Tmw=T1*DMW・・・(1)
負のバイアス電圧パルスの1パルス毎の印加時間Tdcは、負のバイアス電圧パルスの周期T2、および負のバイアス電圧パルスデューティ比DSH(duty of sheath)により次式で表される。尚、この印加時間Tdcが、負のバイアス電圧1パルスの印加時間に相当する。
Tdc=T2*DSH・・・(2)
ただし、マイクロ波パルスの1パルス毎の供給時間に対する、マイクロ波パルスの1パルス毎の供給時間内における負のバイアス電圧パルスの1パルス毎の印加時間の比率は、マイクロ波パルスの1パルスの供給時間、および負のバイアス電圧パルスの1パルスの印加時間により表される。すなわちマイクロ波のパルス幅Tmw、およびマイクロ波1パルスが供給開始されてから負のバイアス電圧1パルスが印加開始されるまでの時間T3、および負のバイアス電圧パルスの供給が終了されてからマイクロ波パルスの供給が終了されるまでの時間T4とにより次式で表される。言い換えると、時間T3は、マイクロ波パルスが立ち上がってから、負のバイアス電圧パルスが立ち上がるまでの時間である。時間T4は、負のバイアス電圧パルスが立ち下がってから、マイクロ波パルスが立ち下がるまでの時間である。
(Tmw−T3−T4)/Tmw・・・(3)
図4に示すパルス波形以外にも、マイクロ波パルスが供給される前に負のバイアス電圧パルスが印加される場合が考えられるが、この場合、時間T3はゼロである。また、負のバイアス電圧パルスの印加が終了される前にマイクロ波パルスの供給が終了される場合、時間T4はゼロである。本実施形態では、負のバイアス電圧パルスの供給が終了される前にマイクロ波パルスの供給が終了されても、負のバイアス電圧パルスによるプラズマの成膜速度はMVP法と比べて1/10〜1/100と遅いため、硬度分布の拡がりの低減、または硬度低下を低減する効果は小さいので、時間T4をゼロとして説明を続ける。
マイクロ波パルスのみが処理容器1の内部に供給された場合は、被加工材料Mの治具5側にプラズマが発生するが、−200Vなど、低電圧の負のバイアス電圧パルスのみが被加工材料Mに印加された場合は、プラズマは発生しない。−400V以上の高電圧の負のバイアス電圧パルスのみが被加工材料Mに供給された場合は、プラズマが発生しうるが、負のバイアス電圧パルスによるプラズマの成膜速度はMVP法と比べて1/10〜1/100と遅く、その効果は小さい。すなわち、マイクロ波パルスが処理容器1の内部に供給されている時間のうち、負のバイアス電圧パルスが印加されている時間が、マイクロ波1パルスの供給時間に対する、マイクロ波1パルスの供給時間内における負のバイアス電圧パルスの 印加時間比率であり、この印加時間の比率を有効時間比率として説明を続ける。
図1に示すように、導電性を有する被加工材料Mの一端からマイクロ波が供給され、他端から負のバイアス電圧パルスが印加されると、DLC膜の硬度はマイクロ波導入口10を中心に分布が生じる。実験によると、治具5近傍に成膜されたDLC膜の硬度は低く、治具5から離れた位置に成膜されたDLC膜の硬度は高くなるので、図1に示すような棒状の被加工材料MはZ軸方向の成膜位置に対する硬度分布を有する。この場合の最小硬度は図1に示すZ軸方向において、治具5近傍位置のDLC膜の硬度である。最大硬度は、図1に示すZ軸方向において治具5側と反対側近傍位置のDLC膜の硬度である。硬度ムラは、最大硬度から最小硬度を引いた値を最大硬度で除した値である。すなわち、硬度ムラは、硬度分布の大きさを示す。有効時間比率、および硬度ムラはパーセント表示される。以下、有効時間比率によりZ軸方向において硬度ムラが発生することを示す実験結果を説明する。
<有効時間比率でDLC成膜処理された場合の膜の硬度の実験結果>
図5は、有効時間比率が50%、90%、および99%に設定された場合の導電性を有する被加工材料Mの硬度を計測した実験結果を示す。図6は、成膜条件を示す表である。図6に示すように、不活性ガスとしてArガス、原料ガスとしてCH、およびTMSが処理容器1にそれぞれ40sccm、200sccm、20sccm供給された。すなわち、処理容器1には、260sccmのガスが供給された。処理容器1の圧力は75Paに制御され、成膜時間は30秒に設定された。2.45GHzのマイクロ波については、電力が1kW電力、マイクロ波パルスの周波数が500Hz、マイクロ波パルスのデューティ比が50%に設定された。負のバイアス電圧パルスについては、電圧が−200V、負のバイアス電圧パルスの周波数が500Hz、負のバイアス電圧パルスのデューティ比が25%、45%、50%の3種類設定された。マイクロ波パルスの供給と負のバイアス電圧パルスの印加のタイミングは8マイクロ秒だけマイクロ波パルスが先行するように設定された。この印加タイミングのずれは、図4に示す時間T3である。3種類の負のバイアス電圧パルスのデューティ比の設定により、有効時間比率が50%、90%、および99%に設定されることになる。
図5に示すように、有効時間比率が99%に設定された場合、50%、90%に設定された場合よりも、最大硬度の値が大きくなり、硬度ムラが抑えられる。以下詳細に実験結果を説明する。有効時間比率が50%に設定された場合は、最大硬度が12.6GPa、最小硬度が5.8GPaであった。この結果、硬度ムラは54%生じた。有効時間比率が90%に設定された場合は、最大硬度が18.2GPa、最小硬度が12.1GPaであった。この結果、硬度ムラは34%生じた。有効時間比率が99%に設定された場合は、最大硬度が22.9GPa、最小硬度が22.9GPaであった。この結果、硬度ムラは発生しなかった。この結果、硬度ムラを低減するには、制御部4は、マイクロ波パルス、および負のバイアス電圧パルスを同時に処理容器1、および被加工材料Mに印加するように、マイクロ波パルスコントローラ7、および負電圧パルスコントローラ9に指示するとよい。図3に示す制御テーブルには、これら実験結果を近似して各有効時間比率に対する最大硬度、最小硬度、および硬度ムラを算出した値が記憶される。この制御テーブルによると、硬度ムラを35%以内にするには、有効時間比率を90%以上に設定するのが望ましい。一般に、測定のばらつきなどを考慮し、硬度ムラが35%以内に収まれば、被加工材料MにDLC膜が成膜された場合に問題ないとされる。特に、有効時間比率が99%以上に設定されれば、被加工材料MにDLC成膜処理された膜の硬度の分布をなくすことが可能である。
特開2004−47207号公報に開示された従来のプラズマの生成方法には、マイクロ波の供給タイミング、負のバイアス電圧の印加タイミング、およびそれらのデューティについての記載がない。しかし、被加工材料である金属基材などへ成膜を行う際にはアーキングの発生による被加工材料へのダメージを軽減するため、負のバイアス電圧をパルス化する必要がある。一般に負のバイアス電圧が印加されていない状態での成膜は、低硬度なDLC膜が成膜されることが知られている。さらに、負のバイアス電圧が印加されていないときは、被加工材料の処理面に沿ってマイクロ波が表面波として伝搬できるほどの厚さにシース層が拡大されないため、プラズマは冶具5近傍にのみ発生する。このため、マイクロ波のみのプラズマ発生期間が長いほど、すなわち、マイクロ波1パルスの供給時間内において、負のバイアス電圧が印加されていない時間が長いほど、治具5近傍の被加工材料M表面には低硬度なDLC膜が厚く堆積すると考えられる。従って、マイクロ波のみが供給されるプラズマの生成方法では、図1に示すZ軸方向において膜厚が不均一、かつ低硬度なDLC膜が形成されることが避けられない。
正のバイアス電圧パルスを断続的に印加するなどアーキング対策を施していれば、マイクロ波パルスが供給されていない時間に負のバイアス電圧パルスのみが印加され、プラズマが生成されたとしても硬度ムラへの影響はない。そのため、負のバイアス電圧パルスのみによりプラズマが生成される値まで負のバイアス電圧パルスを高くしても良い。しかし、負のバイアス電圧パルスのみを用いた成膜とMVP法による成膜との成膜時間を比較すると、MVP法の方が高速で成膜される。このため、マイクロ波パルスが供給されていない時間に負のバイアス電圧パルスが印加され、負のバイアス電圧パルスによりプラズマが生成されて成膜されたとしても、DLC膜厚の大部分はMVP法によって成膜された膜であるため、負のバイアス電圧パルスの印加のみによる成膜時間の短縮の効果は小さい。そのため、マイクロ波パルスが供給されていない時間には負のバイアス電圧パルスが印加されない方がDLC成膜処理の省エネルギー化につながり望ましい。
一方、マイクロ波パルスの供給の後に負のバイアス電圧パルスが印加されると、シース層が被加工材料の処理面に沿って拡大し、マイクロ波のみによって生成されるDLC膜の硬度よりも高硬度であることが知られている。すなわち、治具5近傍の被加工材料M表面には、低硬度なDLC膜の上に高硬度なDLC膜が形成される。従って、図1に示すZ軸方向において、DLC膜の硬度が不均一となることは避けられない。
図7にマイクロ波パルスと負のバイアス電圧パルスとの印加状態を示す。図7(a)は、マイクロ波パルスと負のバイアス電圧パルスとが印加された場合の印加状態を示す図である。図7(b)は、マイクロ波パルスと負のバイアス電圧パルスと正のバイアス電圧パルスとが印加された場合の印加状態を示す図である。図7(a)、および図7(b)において、マイクロ波パルスが印加されている時間は、MW Power (Forward) 1kW/Divが示す黒色の実線で示される。負のバイアス電圧パルスが印加されている時間は、Bias Voltage 100V/Divが示す黒色の実線で示される。図7(a)では、マイクロ波パルスの後に負のバイアス電圧パルスが印加されているが、これは、マイクロ波パルスの立ち上がりが不安定なためである。制御部4は、この不安定な期間を差し引いて、マイクロ波パルス、および負のバイアス電圧パルスを同時に処理容器1、および導電性を有する被加工材料Mに印加するように、マイクロ波パルスコントローラ7、および負電圧パルスコントローラ9に指示する。この不安定な期間は、おおよそ8マイクロ秒である。すなわち、制御部4は、負のバイアス電圧1パルスが印加開始される前にマイクロ波1パルスが供給開始されるように、言い換えれば、各負のバイアス電圧パルスが立ち上がる数マイクロ秒前に、各マイクロ波パルスが立ち上がるように負のバイアス電圧パルスの印加タイミング、およびマイクロ波パルスの供給タイミングを制御する。
図7(b)において、負のバイアス電圧パルスは、成膜時間中、継続して印加される。所定のタイミングで、正のバイアス電圧パルスが印加されることでアーキング抑制効果が得られる。正のバイアス電圧パルスは、絶対値がゼロよりも大きいパルスであって、負のバイアス電圧パルスの印加時間よりも短い印加時間を有し、図7(b)の点線で示すPositive Bias Votage Pulseのように、複数の正のバイアス電圧パルスは、負のバイアス電圧パルスと一体化され、Bias Voltage 100V/Divに含まれる。正のバイアス電圧パルスのデューティ比は、負のバイアス電圧パルスのデューティ比に対し、10%以下が好ましい。この場合、デューティ比パラメータは、負のバイアス電圧パルスが印加される期間から正のバイアス電圧パルスが印加される期間が差し引かれた期間をマイクロ波パルスが供給される期間で除した値である。図7(b)に示すように正のバイアス電圧パルスが印加されることで、硬度ムラは抑えられるが、膜の硬度は、11.7GPaと、図7(a)に示す印加状態よりも硬度が低下する。この結果、最大硬度を高める場合、マイクロ波パルスと負のバイアス電圧パルスのみが印加されよう制御部4が制御することが望ましい。
<成膜処理>
図8に示すフローチャートを参照し成膜処理を説明する。この成膜処理は、治具5に保持された被加工材料Mが処理容器1の内部にセットされた状態で、作業者による成膜開始処理の指示が成膜装置100に入力されたことをCPU20が検知することにより実行される。以下図8のフローチャートに示す処理は、CPU20により実行される。
S1において、マイクロ波パルス、および負のバイアス電圧パルスの周波数が設定される。図5に示す実験では、500Hzに設定されている。この設定は、作業者により手動で設定されてもよいし、記憶部21に予めマイクロ波パルス、および負のバイアス電圧パルスの周波数が記憶され、自動で設定されてもよい。マイクロ波パルス、および負のバイアス電圧パルスの周波数が設定されると、S2に処理を移行する。
S2において、マイクロ波パルスのデューティ比DMWが設定される。図5に示す実験では、50%に設定されている。この設定は、作業者により手動で設定されてもよいし、記憶部21に予めマイクロ波パルスデューティ比が記憶され、自動で設定されてもよい。マイクロ波パルスデューティ比が設定されると、S3に処理を移行する。本実施形態では、マイクロ波パルスの周期T1は、予め記憶部21に記憶されており、この記憶された周期T1がマイクロ波パルスの周期として設定されるが、S2において作業者がマイクロ波パルスの周期T1を設定してもよい。
S3において、負のバイアス電圧パルスのデューティ比DSHが設定される。図5に示す実験では、25%、45%、50%のうちいずれかが設定されている。この設定は、作業者により手動で設定されてもよいし、記憶部21に予め負のバイアス電圧パルスデューティ比が記憶され、自動で設定されてもよい。負のバイアス電圧パルスデューティ比が設定されると、S4に処理を移行する。本実施形態では、負のバイアス電圧パルスの周期T2は、予め記憶部21に記憶されており、この記憶された周期T2が負電圧パルスの周期として設定されるが、S3において作業者が負電圧パルスの周期T2を設定してもよい。
S4において、マイクロ波パルス供給と負のバイアス電圧パルス印加のタイミング時間差が設定される。図5に示す実験では、時間差は、8マイクロ秒設定されている。この時間差は、図4に示す時間T3である。印加タイミングの時間差が設定されると、S5に処理を移行する。また、本実施形態では設定されないが、図4に示す時間T4がS4において設定されてもよい。
S5において、S2、およびS3において設定されたマイクロ波パルスのデューティ比DMW、および負のバイアス電圧パルスのデューティ比DSHと、S4において設定されたマイクロ波パルス供給と負のバイアス電圧パルス印加のタイミング時間差とに基づき以下を判定する。有効時間比率(DSH/DMW)が、0.9以上か否かを判定する。0.9以上であると判定すると、S6に処理を移行する。0.9未満であると判定すると、S7に処理を移行する。S2においてマイクロ波パルスのデューティ比DMWが50%に設定され、S3において、負のバイアス電圧パルスのデューティ比DSHが50%に設定された場合、タイミング時間差に基づき、有効時間比率は99%以上と判定される。
S5において、0.9未満であると判定すると、0.9以上となるように、負のバイアス電圧パルスデューティ比、またはマイクロ波パルスデューティ比、マイクロ波パルス供給と負のバイアス電圧パルス印加とのタイミング時間差を自動的に設定してもよい。
S6において、所定のパラメータを設定し、真空ポンプ2を起動させる。真空ポンプ2が起動されるとS8に処理を移行する。所定のパラメータは、イオンクリーニングパラメータ、ガス流量値、成膜時間、負電圧電源8に指示する電圧値、マイクロ波パルスコントローラ7に指示するパルス信号などのパラメータである。これらのパラメータは、作業者により手動で設定されてもよいし、予め記憶部21に記憶されたパラメータに基づき、自動で設定されてもよい。イオンクリーニングパラメータは、後述するイオンクリーニング処理のパラメータである。
S7において、硬度ムラが発生することを通知する表示を図示しないディスプレイに表示させる。ディスプレイへ表示させるとS2に処理を移行する。また、S2において、0.9未満であると判定すると、硬度ムラが発生することを通知する表示を図示しないディスプレイに表示させ、硬度ムラが発生してもよいと、作業者が選択した場合に、S6に処理を移行してもよい。
S8において、イオンクリーニングを開始するか否かを判定する。この判定は、処理容器1の内部の真空度が、1.0Pa未満か否かを判定する。図示しない真空計により測定された真空度を基に判定する。真空度が、1.0Pa未満であると判定すると、イオンクリーニングを開始し、S9に処理を移行する。真空度が、1.0Pa以上であると判定すると、S8に戻る。本実施形態では、真空度が1.0Paを基に判定されるが、1.0Paに限定されず、3.0Paでも0.1Paでもよい。イオンクリーニングを開始すると判定すると、S9に処理を移行する。
S9において、イオンクリーニングを開始する。このイオンクリーニングは、S6において設定されたイオンクリーニングパラメータに基づき処理される。具体的にイオンクリーニングパラメータは、不活性ガスの流量値、負電圧電源8に指示する電圧値、負電圧パルスコントローラ9に指示する負のバイアス電圧パルスデューティ比、マイクロ波パルスコントローラ7に指示するマイクロ波パルスデューティ比である。不活性ガスの流量値に基づき、ガス供給部3に処理容器1へ不活性ガスを供給させる。次に制御部4は、負のバイアス電圧パルスの電圧値を負電圧電源8に送信する。制御部4は、マイクロ波パルスコントローラ7にマイクロ波パルスのデューティ比の情報、およびマイクロ波電力の情報を送信する。制御部4は、負電圧パルスコントローラ9に負のバイアス電圧パルスのデューティ比の情報を送信する。この結果、負電圧電源8は受信した電圧値に従い、負電圧パルスコントローラ9に負電圧を供給する。負電圧パルスコントローラ9は、供給された負のバイアス電圧と、デューティ比の情報とから負のバイアス電圧パルスを被加工材料Mに印加する。マイクロパルスコントローラ7は、受信したマイクロ波パルスのデューティ比の情報、およびマイクロ波電力の情報に従うパルス信号をマイクロ波電源6に送信する。マイクロ波電源6は、受信したパルス信号に従うマイクロ波パルスを、マイクロ波導入口10を介して被加工材料Mの表面に供給する。これら負のバイアス電圧パルスと、マイクロ波パルスとによりプラズマが発生する。この発生されたプラズマにより、被加工材料Mの表面がイオンクリーニングされ、後述するDLCの膜が形成されやすくなる。イオンクリーニングを開始すると、S10に処理を移行する。
S10において、イオンクリーニングを終了するか否かを判定する。この判定は、アーキング発生頻度が所定の頻度未満か否かにより判定される。所定の頻度は、記憶部21に予め記憶される。所定の頻度未満であると判定すると、S11に処理を移行する。所定の頻度以上であると判定すると、S10の処理に戻る。この終了判定は、イオンクリーニングパラメータとしてイオンクリーニング時間が設定され、この時間が経過したか否かで判定してもよい。
S11において、ガス供給部3に不活性ガス、および原料ガスを供給する流量制御指示を出力する。この流量制御指示は、S6において設定されたガス流量値に基づく。ガス供給部3は、流量制御指示に従い、不活性ガス、および原料ガスを処理容器1の内部に供給する。流量制御指示を出力すると、S12に処理を移行する。
S12において、ガス流量、および圧力の調整が完了したか否かを判定する。この判定は、不活性ガスのガス流量、活性ガスのガス流量、処理容器1の圧力の基準が予め記憶部21に記憶され、これらの値に基づき判定される。調整完了したと判定すると、S13に処理を移行する。調整が完了していないと判定すると、S12の処理に戻る。
S13において、プラズマを発生させ、被加工材料MのDLC成膜処理を開始させる。具体的にはS6において、所定のパラメータとして設定された負電圧の電圧値を負電圧電源8に送信し、マイクロ波電力の電力値をマイクロ波パルスコントローラ7に送信する。図5に示す実験では、負電圧の電圧値は、−200Vであり、マイクロ波電力の電力値は1kWである。制御部4は、マイクロ波パルスコントローラ7、および負電圧パルスコントローラ9にS5において判定された各デューティ比の情報を送信する。この各デューティ比の情報は、周期T1、周期T2、および時間T3も含む。図5に示す実験では、マイクロ波パルスデューティ比は、50%に設定された。負のバイアス電圧パルスは、25%、45%、および50%のいずれかに設定された。負電圧電源8は受信した負電圧の情報に従い、負電圧パルスコントローラ9に負電圧を供給する。負電圧パルスコントローラ9は、供給された負電圧と、負電圧パルスデューティ比の情報とから負のバイアス電圧パルスを被加工材料Mに印加する。マイクロパルスコントローラ7は、受信したマイクロ波パルスのデューティ比の情報、およびマイクロ波電力の情報に従うパルス信号をマイクロ波電源6に送信する。マイクロ波電源6は、受信したパルス信号に従うマイクロ波パルスを、マイクロ波導入口10を介して被加工材料Mの表面に供給する。
マイクロ波パルスが被加工材料Mの処理表面に供給されると、負のバイアス電圧パルスと、マイクロ波パルスとによりプラズマが発生する。各パルスデューティ比に従うマイクロ波パルス、および負のバイアス電圧パルスはS6において設定された成膜時間において、マイクロ波電源6、および負電圧パルスコントローラ9から供給、および印加され、プラズマが発生し続ける。
以下、S13において、成膜開始時におけるマイクロ波パルス、および負のバイアス電圧パルスについて具体的に説明する。成膜開始時には、最初から、マイクロ波1パルスの供給時間に対する、マイクロ波1パルスの供給時間内における負のバイアス電圧1パルスの印加時間の比率が0.9以上となるようにする必要はなく、インピーダンス・マッチングを調整しやすくするために、マイクロ波パルスのみを先行して供給してもよい。
図9は、マイクロ波パルスが先行して供給開始されてから負のバイアス電圧パルスが印加開始されるまでの時間(DC−Delay Time)により、DLC成膜処理された膜の硬度が変化する実験結果を示す。図9に示すように、マイクロ波パルスが印加されてから負のバイアス電圧パルスが印加されるまでの時間が長くなるにつれて、DLC成膜処理された膜の硬度は低くなる。すなわち、S13において最初に印加される負のバイアス電圧パルスの時間T3が長くなるにつれて、DLC成膜処理された膜の硬度は低くなる。特に、マイクロ波パルスが印加されてから負のバイアス電圧パルスが印加されるまで3秒以上経過すると、DLC成膜処理された膜の硬度は、20GPa以下になる。この実験結果より、DLC成膜処理される膜の硬度を20GPa以上にするには、負のバイアス電圧パルスを、マイクロ波パルスが供給されてから3秒以内に印加しないといけない。成膜装置100に電源が供給されてから最初に供給されるマイクロ波パルスは、処理容器1に供給された初期においてインピーダンス・マッチングの整合が取れないなどの影響で反射波が大きくなることなど不安定な状態にある。制御部4は、この不安定な状態において、インピーダンスなどのパラメータを自動で調整し、所望のマイクロ波パルスを処理容器1に供給するように制御してもよいし、作業者により手動で設定されてもよい。所望のマイクロ波パルスか否かは、出力されたマイクロ波パルスの反射電力が所定の値以下になったか否かで判定される。この制御期間が3秒を経過すると、DLC成膜処理される膜の硬度を20GPa以上にできない。この結果、制御期間が3秒を超えるようであれば、成膜装置100に電源が供給されてから最初にDLC成膜処理を実行する場合は、不要な被加工材料を成膜装置100にセットし、マイクロ波パルスを供給してマイクロ波パルスのインピーダンスを調整する手間が必要となる。
S14において、成膜を終了するか否かを判定する。この判定は、S6において設定された成膜時間が経過したか否かで判定する。設定された成膜時間が経過したと判定した場合は、成膜処理を終了する。設定された成膜時間が経過していないと判定した場合は、S14に戻る。なおこの判定は、図示しない膜厚測定装置により所望の膜厚にDLC膜が達したか否かにより判定されてもよい。
[変形例1]
本実施形態では、被加工材料Mは治具5により保持されているが、マイクロ波導入口10に直接支持されてもよい。
1 処理容器
2 真空ポンプ
3 ガス供給部
4 制御部
5 治具
6 マイクロ波電源
7 マイクロ波パルスコントローラ
8 負電圧電源
9 負電圧パルスコントローラ
10 マイクロ波導入口
20 CPU
21 記憶部
以上

Claims (6)

  1. 導電性を有する被加工材料が備えられた処理容器に炭素、および水素を有する原料ガスと不活性ガスとを供給するガス供給部と、
    前記被加工材料の処理表面に沿ってプラズマを生成させるマイクロ波パルスを供給するマイクロ波供給部と、
    前記処理容器の内部に支持された前記被加工材料に、前記被加工材料の処理表面に沿うシース層を拡大させる負のバイアス電圧パルスを印加する印加部と、
    前記印加部による前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波供給部によるマイクロ波パルスの供給タイミングを制御する制御部と
    を備え、
    前記制御部は、マイクロ波1パルスの供給時間内に負のバイアス電圧1パルスの印加時間が入るとともに、マイクロ波1パルスの供給時間に対する負のバイアス電圧1パルスの印加時間の比率が、0.9以上となるように、前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御し、
    負のバイアス電圧パルスは、負のバイアス電圧パルスのみが前記被加工材料に印加された場合にプラズマを発生しない低電圧に設定されること
    を特徴とする成膜装置。
  2. 前記制御部は、マイクロ波1パルスの供給時間に対する、マイクロ波1パルスの供給時間内における負のバイアス電圧1パルスの印加時間の比率が、0.99以上となるように前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御すること
    を特徴とする請求項1に記載の成膜装置。
  3. 前記制御部は、さらに成膜開始時には前記印加部により印加開始される前記負のバイアス電圧パルスを、前記マイクロ波供給部によりマイクロ波パルスが供給開始されてから3秒以内であって、マイクロ波パルスの立ち上がりが不安定な期間が経過した後に印加するように前記印加タイミングを制御すること
    を特徴とする請求項1または請求項2に記載の成膜装置。
  4. 前記印加部は、前記負のバイアス電圧パルスの印加時間より短い印加時間で、正のバイアス電圧パルスを前記被加工材料に印加し、
    前記正のバイアス電圧パルスのデューティ比は、前記負のバイアス電圧パルスのデューティ比に対して、10%以下であること
    を特徴とする請求項1〜3のいずれか記載の成膜装置。
  5. 導電性を有する被加工材料が備えられた処理容器に炭素、および水素を有する原料ガスと不活性ガスとを供給するガス供給ステップと、
    前記被加工材料の処理表面に沿ってプラズマを生成させるマイクロ波パルスを供給するマイクロ波供給ステップと、
    前記処理容器の内部に支持された前記被加工材料に、前記被加工材料の処理表面に沿うシース層を拡大させる負のバイアス電圧パルスを印加する印加ステップと、
    前記印加ステップによる前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波供給ステップによるマイクロ波パルスの供給タイミングを制御する制御ステップと
    を備え、
    前記制御ステップは、マイクロ波1パルスの供給時間内に負のバイアス電圧1パルスの印加時間が入るとともに、マイクロ波1パルスの供給時間に対する負のバイアス電圧パルスの印加時間の比率が、0.9以上となるように、前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御し、
    負のバイアス電圧パルスは、負のバイアス電圧パルスのみが前記被加工材料に印加された場合にプラズマを発生しない低電圧に設定されること
    を特徴とする成膜方法。
  6. 導電性を有する被加工材料が備えられた処理容器に炭素、および水素を有する原料ガスと不活性ガスとを供給するガス供給部と、前記被加工材料の処理表面に沿ってプラズマを生成させるマイクロ波パルスを供給するマイクロ波供給部と、前記処理容器の内部に支持された前記被加工材料に、前記被加工材料の処理表面に沿うシース層を拡大させる負のバイアス電圧パルスを印加する印加部と、を備える成膜装置を制御するコンピュータに、
    前記印加部による前記パルス状の負のバイアス電圧パルス1パルスの印加タイミング、および前記マイクロ波供給部によるマイクロ波パルス1パルスの供給タイミングを制御するタイミング制御ステップを実行させ、
    前記タイミング制御ステップは、マイクロ波1パルスの供給時間内に負のバイアス電圧1パルスの印加時間が入るとともに、マイクロ波1パルスの供給時間に対する負のバイアス電圧パルスの印加時間の比率が、0.9以上となるように、前記負のバイアス電圧パルスの印加タイミング、および前記マイクロ波パルスの供給タイミングを制御し、
    負のバイアス電圧パルスは、負のバイアス電圧パルスのみが前記被加工材料に印加された場合にプラズマを発生しない低電圧に設定されること
    を特徴とする成膜プログラム。
JP2012197874A 2012-09-07 2012-09-07 成膜装置、成膜方法および成膜プログラム Active JP6260980B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012197874A JP6260980B2 (ja) 2012-09-07 2012-09-07 成膜装置、成膜方法および成膜プログラム
PCT/JP2013/073996 WO2014038642A1 (ja) 2012-09-07 2013-09-05 成膜装置、成膜方法および成膜プログラム
US14/638,170 US20150174605A1 (en) 2012-09-07 2015-03-04 Film forming device and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197874A JP6260980B2 (ja) 2012-09-07 2012-09-07 成膜装置、成膜方法および成膜プログラム

Publications (2)

Publication Number Publication Date
JP2014051715A JP2014051715A (ja) 2014-03-20
JP6260980B2 true JP6260980B2 (ja) 2018-01-17

Family

ID=50237248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197874A Active JP6260980B2 (ja) 2012-09-07 2012-09-07 成膜装置、成膜方法および成膜プログラム

Country Status (3)

Country Link
US (1) US20150174605A1 (ja)
JP (1) JP6260980B2 (ja)
WO (1) WO2014038642A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060016B2 (ja) 2013-03-28 2017-01-11 ブラザー工業株式会社 成膜装置、成膜方法及び成膜プログラム
JP6102816B2 (ja) * 2014-03-31 2017-03-29 ブラザー工業株式会社 成膜装置、成膜方法及び成膜プログラム
JP6107730B2 (ja) * 2014-03-31 2017-04-05 ブラザー工業株式会社 成膜装置
JP6358020B2 (ja) * 2014-09-30 2018-07-18 ブラザー工業株式会社 成膜装置
JP6483546B2 (ja) * 2015-06-24 2019-03-13 トヨタ自動車株式会社 プラズマ化学気相成長装置
JP6775771B2 (ja) * 2015-09-10 2020-10-28 国立研究開発法人産業技術総合研究所 マイクロ波プラズマcvd装置及びそれを用いたダイヤモンドの合成方法
US9789497B1 (en) * 2016-06-20 2017-10-17 Nordson Corporation Systems and methods for applying a liquid coating to a substrate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2538691B2 (ja) * 1989-04-27 1996-09-25 富士通株式会社 プラズマ処理装置およびプラズマ処理方法
JP2737377B2 (ja) * 1990-06-25 1998-04-08 富士電機株式会社 プラズマ処理装置
JPH0539578A (ja) * 1991-08-07 1993-02-19 Fuji Electric Co Ltd プラズマ処理装置
TW426888B (en) * 1998-09-18 2001-03-21 Tokyo Electron Ltd Plasma processing method
JP2002184770A (ja) * 2000-12-19 2002-06-28 Shimadzu Corp 基板処理装置
JP4791636B2 (ja) * 2001-01-15 2011-10-12 日華化学株式会社 ハイブリッドパルスプラズマ蒸着装置
JP4779090B2 (ja) * 2001-06-21 2011-09-21 独立行政法人産業技術総合研究所 硬質炭素膜被覆部材の製造方法
JP4152135B2 (ja) * 2002-07-10 2008-09-17 裕之 上坂 導電体近接領域で表面波励起プラズマを発生する方法と装置
JP2004238649A (ja) * 2003-02-04 2004-08-26 National Institute Of Advanced Industrial & Technology 炭素系膜被覆部材の製造方法及び装置
JP4813040B2 (ja) * 2004-10-13 2011-11-09 独立行政法人科学技術振興機構 ダイヤモンド層の形成方法と、それを利用する多層硬質炭素膜の形成方法
JP4578412B2 (ja) * 2006-01-20 2010-11-10 日本碍子株式会社 放電プラズマ発生方法
JP2012233215A (ja) * 2011-04-28 2012-11-29 Tokai Rubber Ind Ltd マイクロ波プラズマ成膜装置、マイクロ波プラズマ成膜方法、およびガスバリアフィルム
JP5870423B2 (ja) * 2012-01-30 2016-03-01 ブラザー工業株式会社 成膜装置および成膜方法

Also Published As

Publication number Publication date
WO2014038642A1 (ja) 2014-03-13
JP2014051715A (ja) 2014-03-20
US20150174605A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6260980B2 (ja) 成膜装置、成膜方法および成膜プログラム
JP4943780B2 (ja) プラズマ処理装置およびプラズマ処理方法
US9972476B2 (en) Film forming device, film forming method, and film forming program
US20110259733A1 (en) Magnetic field control for uniform film thickness distribution in sputter apparatus
WO2002060634A1 (fr) Procede de soudage au laser
JP6081842B2 (ja) 成膜装置
JP6100580B2 (ja) 成膜装置、成膜方法及び成膜プログラム
JP6102816B2 (ja) 成膜装置、成膜方法及び成膜プログラム
US20080053817A1 (en) Plasma processing apparatus and plasma processing method
JP6167795B2 (ja) 成膜装置、温度算出方法及びプログラム
JP6467991B2 (ja) 成膜装置
JP6107731B2 (ja) 成膜装置
JP6296334B2 (ja) 成膜装置
JP6693099B2 (ja) 成膜方法、成膜装置及び成膜プログラム
WO2022044216A1 (ja) プラズマ処理装置
JP6221524B2 (ja) 成膜装置及び治具
JP6358020B2 (ja) 成膜装置
JP6107730B2 (ja) 成膜装置
JP7275927B2 (ja) スパッタ装置の使用方法
JP2017028092A (ja) プラズマ処理装置及びプラズマ処理方法
JP2023130168A (ja) 成膜装置
JP2023018889A (ja) 成膜方法及び成膜装置
JP2015196861A (ja) 連続加工装置、および連続加工方法
JP2008066319A (ja) プラズマ処理装置及びプラズマ処理方法
JP2015105397A (ja) 皮膜形成方法、皮膜形成装置、および皮膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161103

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171206

R150 Certificate of patent or registration of utility model

Ref document number: 6260980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350