JP6223214B2 - 光応答性架橋型液晶高分子フィルムの製造方法および該製造方法により得られる光応答性架橋型液晶高分子フィルム - Google Patents

光応答性架橋型液晶高分子フィルムの製造方法および該製造方法により得られる光応答性架橋型液晶高分子フィルム Download PDF

Info

Publication number
JP6223214B2
JP6223214B2 JP2014017807A JP2014017807A JP6223214B2 JP 6223214 B2 JP6223214 B2 JP 6223214B2 JP 2014017807 A JP2014017807 A JP 2014017807A JP 2014017807 A JP2014017807 A JP 2014017807A JP 6223214 B2 JP6223214 B2 JP 6223214B2
Authority
JP
Japan
Prior art keywords
film
photoresponsive
liquid crystal
crystal polymer
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014017807A
Other languages
English (en)
Other versions
JP2015145449A (ja
Inventor
直之 松尾
直之 松尾
須藤 剛
剛 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014017807A priority Critical patent/JP6223214B2/ja
Publication of JP2015145449A publication Critical patent/JP2015145449A/ja
Application granted granted Critical
Publication of JP6223214B2 publication Critical patent/JP6223214B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光応答性架橋型液晶高分子フィルムの製造方法および該製造方法により得られる光応答性架橋型液晶高分子フィルムに関する。
光応答性を有する液晶高分子フィルムは、液晶性に基づく異方性と高分子の成形加工性を兼ね備えた高機能性材料であり、応用研究が盛んに行われ、広範囲な分野での実用化が期待されている。
例えば、非特許文献1には、架橋液晶高分子フィルムの光運動におけるアゾベンゼン架橋剤の分子長効果が報告されている。
また、特許文献1には、紫外線や可視光の照射により可逆的に異性化し得るフォトクロミック分子を含有する架橋液晶高分子成形体を備える光駆動型アクチュエータが開示されている。また、特許文献2には、前記架橋液晶高分子成形体を無端状ベルトの形状に成形した光駆動型回転子が開示されている。
ここで、従来の液晶高分子フィルムの製造では、以下に示すような煩雑な工程が必要となる。
図2は、従来の液晶高分子フィルムの製造方法の概略を示す工程図である。
従来の液晶高分子フィルムの製造方法は、原料調製工程、セル作製工程、光重合工程および採取工程を有する。原料調製工程においては、液晶材料、光重合開始剤等を含む各原料を配合し(S101)、減圧乾燥する(S102)。
得られた原料混合物は、通常粉体であり、以下で説明する光重合工程で使用される。一方で、この原料混合物を重合させるためのセル(基板)を作製しておく。セル作製工程では、セルの構成材料であるガラス基板を洗浄し(S103)、ポリイミドを塗布し配向膜を成膜する(S104)。得られた配向膜はアニール処理され(S105)、ラビング処理が施される(S106)。このようにして作製した配向膜付きガラス基板を2枚用意し、これらのガラス基板同士を貼り合わせ、セル(基板)を作製する(S107)。
続いて、光重合工程において、まずセル作製工程で得られたセルを加温し(S108)、原料調製工程で得られた粉体の状態の原料混合物を熔融し、セルの2枚のガラス基板間に毛細管現象を利用して注入し(S109)、降下温度を厳密に制御しながらセルを冷却し(S110)、光照射を行い原料を光重合させる。重合完了後、採取工程にて、ガラス基板からなるセルを破壊し(S112)、液晶高分子フィルムを採取する(S113)。
特許第5224261号公報 特許第5067964号公報
佐々木隆太、間宮純一、木下基、宍戸厚、池田富樹、「架橋液晶高分子フィルムの光運動におけるアゾベンゼン架橋剤の分子長効果」、第60回高分子討論会(2011年)
上記従来の液晶高分子フィルムの製造は煩雑な工程が必要であり、以下のような問題点がある。(1)かなりの手間と長い時間(およそ2日間)を必要とする割には、少量のフィルムしか得られない;(2)連続生産が困難である;(3)ガラス基板を使用するという理由から、大面積化が困難である;(4)セルの2枚のガラス基板間に毛細管現象を利用して原料混合物を注入することから、フィルムの膜厚を制御しにくい。
また、良好な光応答性を発現させるためにフィルムの膜厚を厚くしようとすると、厚み方向への配向規制力が及ばず、分子の配向が乱れて、フィルムが白濁してしまうという問題点もある。
したがって本発明の目的は、前記のような従来技術の課題を解決し、製造上の煩雑さを解消し、簡単に、短時間で、かつ良好な膜厚の制御を達成しながら、大面積化されたフィルムの連続生産を可能にするとともに、フィルムの白濁を防止しつつ厚膜化を達成し良好な光応答性を有する、光応答性架橋型液晶高分子フィルムの製造方法を提供することにある。
本発明者らは鋭意研究を重ねた結果、ウェットコーティング法により光重合性モノマー溶液を配向膜上に複数回塗布することにより、前記課題を解決できることを見出し、本発明を完成することができた。
すなわち本発明は、以下の通りである。
1.多官能液晶性モノマー、単官能液晶性モノマー、多官能光応答性モノマー、光重合開始剤および溶媒を少なくとも含有する光重合性モノマー溶液を、ウェットコーティング法により配向膜上に塗布し、溶媒を除去する工程を繰り返して、少なくとも2層の光重合性膜を形成する工程と、
非酸素雰囲気下、前記少なくとも2層の光重合性膜に対して光照射を行い、前記モノマーを共重合させ、フィルムを形成する工程と
を有する、光応答性架橋型液晶高分子フィルムの製造方法。
2.前記多官能光応答性モノマーが、アゾベンゼン構造を有する多官能光応答性モノマーである、前記1に記載の光応答性架橋型液晶高分子フィルムの製造方法。
3.前記少なくとも2層の光重合性膜を形成する工程において、光重合性膜を3〜7層形成する、前記1または2に記載の光応答性架橋型液晶高分子フィルムの製造方法。
4.前記フィルムを形成する工程が、窒素ガス雰囲気下で行われる、前記1〜3のいずれか一つに記載の光応答性架橋型液晶高分子フィルムの製造方法。
5.前記フィルムを形成する工程が、カバー材料で前記光重合性膜を被覆することなく行われる、前記1〜4のいずれか一つに記載の光応答性架橋型液晶高分子フィルムの製造方法。
6.支持体上に25cm以上の前記配向膜を設け、25cm以上の大面積のフィルムを形成する、前記1〜5のいずれか一つに記載の光応答性架橋型液晶高分子フィルムの製造方法。
7.モノマー単位として多官能液晶性モノマー、単官能液晶性モノマーおよび多官能光応答性モノマーを含有する光重合性膜を少なくとも2層有する、25cm以上の大面積の光応答性架橋型液晶高分子フィルム。
8.厚みが1μm〜30μmである、前記7に記載の大面積の光応答性架橋型液晶高分子フィルム。
本発明の製造方法では、特に、光重合性モノマー溶液をウェットコーティング法により配向膜上に塗布して形成した光重合性膜を光重合させているので、従来技術のようにガラス基板を用いる必要がなく、また、光重合性膜の形成速度および制御も容易となるとともに、大面積化も可能となる。さらに、本発明の製造方法では、光重合性モノマー溶液をウェットコーティング法により配向膜上に塗布し、溶媒を除去する工程を繰り返し、少なくとも2層の光重合性膜を形成しているので、フィルムの白濁を防止しつつ厚膜化(例えば、1μm以上)を達成し良好な光応答性を提供することができる。
したがって本発明によれば、製造上の煩雑さを解消し、簡単に、短時間で、かつ良好な膜厚の制御を達成しながら、大面積化されたフィルムの連続生産を可能にするとともに、フィルムの白濁を防止しつつ厚膜化を達成し良好な光応答性を有する、光応答性架橋型液晶高分子フィルムの製造方法を提供することができる。
またアゾベンゼン構造を有する多官能光応答性モノマーを使用する形態によれば、光エネルギーを運動エネルギーに変換可能な光機能性材料を、簡単に、短時間で、かつ膜厚の制御を達成しながら、大面積でもって、良好な光応答性を付与しつつ連続生産することが可能となる。特にアゾベンゼン構造を有する多官能光応答性モノマーは、溶液状態における液晶分子の自由度が低く、液晶分子を所望の方向に配向させることが困難であったため、ウェットコーティング法を採用し難く、従来は前記図2で示すような原料調製工程、セル作製工程、光重合工程および採取工程を採用していたが、本発明によりアゾベンゼン構造を有する多官能光応答性モノマーを使用した場合であってもウェットコーティング法を採用可能であり、上記のような顕著な効果を奏することができる。
また、光重合性膜を3〜7層形成する形態によれば、フィルムの白濁を防止しつつさらなる厚膜化を達成し、一層優れた光応答性を付与することができる。
また、フィルムを形成する工程を、窒素ガス雰囲気下で行う形態によれば、非酸素雰囲気を低コストで準備することが可能となる。
また、フィルムを形成する工程を、カバー材料で光重合性膜を被覆することなく行う形態によれば、フィルム形成に伴う手間およびコストを一層減じることができる。従来技術では、カバー材がなければ(両面を配向膜で囲わなければ)、液晶分子の配向性を充分に確保できないという問題があったが、驚くべきことに、本発明の方法によりカバー材料を用いなくても(配向膜を片面のみ使用しても)、液晶分子の充分な配向性が得られる。また、従来、カバー材料で光重合性膜を被覆すると、液晶分子の凹凸に起因して酸素が残存し、非酸素雰囲気状態としてもこの残存酸素によって光重合反応が阻害されるが、本発明の当該形態では、このような残存酸素の悪影響を防止できる。
また、支持体上に25cm以上の配向膜を設ける形態では、従来にない25cm以上の大面積の光応答性架橋型液晶高分子フィルムを製造することができる。またその厚みも1μm〜30μmであることができ、良好な光応答性を有する。
図1は、本発明の製造方法の概略を示す工程図である。 図2は、従来の液晶高分子フィルムの製造方法の概略を示す工程図である。 図3(a)および(b)は、本発明により得られたフィルムの構造を説明するための図である。 図4(a)および(b)は、実施例で得られたフィルムの偏光顕微鏡での観察結果を示す写真図面である。
以下、本発明をさらに詳細に説明する。
本発明の光応答性架橋型液晶高分子フィルムの製造方法は、多官能液晶性モノマー、単官能液晶性モノマー、多官能光応答性モノマー、光重合開始剤および溶媒を少なくとも含有する光重合性モノマー溶液を、ウェットコーティング法により配向膜上に塗布し、溶媒を除去する工程を繰り返して、少なくとも2層の光重合性膜を形成する工程(光重合性膜の形成工程)と、非酸素雰囲気下、前記少なくとも2層の光重合性膜に対して光照射を行い、前記モノマーを共重合させ、フィルムを形成する工程(フィルムの形成工程)とを有する。
(光重合性膜の形成工程)
本発明で使用される光重合性モノマー溶液は、溶媒中に、多官能液晶性モノマー、単官能液晶性モノマー、多官能光応答性モノマーおよび光重合開始剤を溶解させて得られる。
これらのモノマー類としては、末端に重合性基を有し、これに環状単位等からなるメソゲン基を有するもの等が好適なものとして挙げられる。メソゲン基となる前記環状単位としては、たとえば、ビフェニル系、フェニルベンゾエート系、フェニルシクロヘキサン系、アゾキシベンゼン系、アゾメチン系、アゾベンゼン系、フェニルピリミジン系、ジフェニルアセチレン系、ジフェニルベンゾエート系、ビシクロへキサン系、シクロヘキシルベンゼン系、ターフェニル系等が挙げられる。なお、これら環状単位の末端は、たとえば、シアノ基、アルキル基、アルコキシ基、ハロゲン原子等の置換基を有していてもよい。
また、モノマー類は、屈曲性を付与するスペーサー部を介して結合していてもよい。スペーサー部としては、ポリメチレン鎖、ポリオキシメチレン鎖等が挙げられる。スペーサー部を形成する構造単位の繰り返し数は、メソゲン部の化学構造により適宜に決定されるがポリメチレン鎖の繰り返し単位は0〜20、好ましくは2〜12、ポリオキシメチレン鎖の繰り返し単位は0〜10、好ましくは1〜3である。
これらのモノマー類に含まれる官能基としては、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、ビニルオキシ基、ビニル基、又はエポキシ基等の重合性基が挙げられるが、容易に重合できることから、(メタ)アクリロイルオキシ基や(メタ)アクリルアミド基が好ましい。
多官能液晶性モノマーおよび単官能液晶性モノマーは、本発明の効果の観点から、フェニルベンゾエート系化合物であるのが好ましい。
多官能液晶性モノマーは、例えば下記式(1)で表すことができる。
(式(1)中、nは3〜9の整数を表す。)
式(1)におけるnは、4〜8の整数が好ましく、5〜7の整数がより好ましい。
多官能液晶性モノマーとして、1,4−ビス[4−(6−アクリロイルオキシヘキシルオキシ)ベンゾイルオキシ]−2−メチルベンゼン(式(1)で表される化合物において、nが6である化合物。以下、「C6A」という。)は、例えば、下記スキームのように合成できる。
すなわち、パラヒドロキシ安息香酸エチルにウィリアムソンエーテル合成を行うことにより、化合物1を得、化合物1に脱保護を行うことにより、化合物2を合成する。さらに、化合物2にショッテンバウマン反応を行うことにより、化合物3を得、最後に、化合物3とメチルヒドロキノンを脱水縮合することにより、C6Aを合成する。
また、単官能液晶性モノマーは、例えば下記式(2)で表すことができる。

(式(2)中、nは3〜9の整数を表す。)
式(2)におけるnは、4〜8の整数が好ましく、5〜7の整数がより好ましい。
単官能液晶性モノマーとして、4−ヘキシルオキシフェニル4−(6−アクリロイルオキシヘキシルオキシ)ベンゾエート(式(2)で表される化合物において、nが6である化合物。以下、「A6BZ6」という。)は、例えば、下記スキームのように合成できる。
すなわち、ヒドロキノンにウイリアムソンエーテル合成を行うことにより化合物4を得、該化合物4を、上記C6Aの合成のスキームに従い合成した化合物3と脱水縮合することにより、A6BZ6を合成する。

多官能光応答性モノマーとしては、特に限定されず公知のものを用いることができ、例えば、トランス−シス異性化するアゾベンゼン、スチルベン構造等や、開環−閉環光異性化し得るスピロピラン、ジアリール構造等を挙げることができる。中でも、下記式に示すアゾベンゼンは、アゾベンゼン骨格に結合している置換基にもよるが、300〜400nm程度の紫外光を照射すると、棒状のトランス体から屈曲したシス体に異性化する。そして、500〜650nm程度の可視光を照射すると元のトランス体に戻り、異性化の際に分子間距離が大きく変化することから特に好ましい例として挙げることができる。
中でも、本発明の効果の観点から、下記式で表されるアゾベンゼン構造を有する多官能光応答性モノマーが好ましい。
(式(3)中、nは1〜6の整数を表す。)
式(3)におけるnは、2〜5の整数が好ましく、3〜4の整数がより好ましい。
多官能光応答性モノマーとして、4,4’−ビス[3−(アクリロイルオキシ)プロピルオキシ]アゾベンゼン(式(3)で表される化合物において、nが3である化合物。以下、「DA3AB」という。)は、例えば、下記スキームのように合成できる。
すなわち、パラニトロフェノールにウイリアムソンエーテル合成を行うことにより、化合物5を得、化合物5を還元することにより、化合物6を得る。化合物6をアゾカップリングすることにより、化合物7を合成する。さらに化合物7に再度ウイリアムソンエーテル合成を行うことにより、化合物8を得る。最後に化合物8にショッテンバウマン反応を行うことにより、DA3ABを合成する。

前記の各種モノマー類を溶解する溶媒としては、例えば、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロエタン、塩化メチレン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン、オルソジクロロベンゼン等のハロゲン化炭化水素類、フェノール、p−クロロフェノール、o−クロロフェノール、m−クレゾール、o−クレゾール、p−クレゾール等のフェノール類、ベンゼン、トルエン、キシレン、メトキシベンゼン、1,2−ジメトキシベンゼン等の芳香族炭化水素類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2−ピロリドン、N−メチル−2−ピロリドン等のケトン系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、t−ブチルアルコール、グリセリン、エチレングリコール、トリエチレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコール、ジプロピレングリコール、2−メチル−2,4−ペンタンジオールのようなアルコール系溶媒、ジメチルホルムアミド、ジメチルアセトアミドのようなアミド系溶媒、アセトニトリル、ブチロニトリルのようなニトリル系溶媒、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル系溶媒、あるいは二硫化炭素、エチルセロソルブ、ブチルセルソルブ等が挙げられる。これらの溶媒は、単独で、又は2種以上を組み合わせて用いられ得る。
光重合開始剤としては、例えば、例えばベンゾインエーテル系光重合開始剤、アセトフェノン系光重合開始剤、α−ケトール系光重合開始剤、芳香族スルホニルクロリド系光重合開始剤、光活性オキシム系光重合開始剤、ベンゾイン系光重合開始剤、ベンジル系光重合開始剤、ベンゾフェノン系光重合開始剤、ケタール系光重合開始剤、チオキサントン系重合開始剤、アシルホスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤等を用いることができる。光重合開始剤は単独で又は2種以上組み合わせて使用することができる。
具体的には、ベンゾインエーテル系光重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。アセトフェノン系光重合開始剤としては、例えば、1−ヒドロキシシクロヘキシルフェニルケトン[例えば、商品名「イルガキュア184」(チバスペシャリティーケミカル社製)等]、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、4−フェノキシジクロロアセトフェノン、4−(t−ブチル)ジクロロアセトフェノン等が挙げられる。α−ケトール系光重合開始剤としては、例えば、2−メチル−2−ヒドロキシプロピオフェノン、1−[4−(2−ヒドロキシエチル)フェニル]−2−メチルプロパン−1−オン等が挙げられる。芳香族スルホニルクロリド系光重合開始剤としては、例えば、2−ナフタレンスルホニルクロライド等が挙げられる。光活性オキシム系光重合開始剤としては、例えば、1−フェニル−1,1−プロパンジオン−2−(o−エトキシカルボニル)−オキシム等が挙げられる。ベンゾイン系光重合開始剤には、例えば、ベンゾイン等が含まれる。ベンジル系光重合開始剤には、例えば、ベンジル等が含まれる。ベンゾフェノン系光重合開始剤は、例えば、ベンゾフェノン、ベンゾイル安息香酸、3,3’−ジメチル−4−メトキシベンゾフェノン、ポリビニルベンゾフェノン、α−ヒドロキシシクロヘキシルフェニルケトン等が含まれる。ケタール系光重合開始剤には、例えば、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン[例えば、商品名「イルガキュア651」(チバスペシャリティーケミカル社製)等]等が含まれる。チオキサントン系光重合開始剤には、例えば、チオキサントン、2−クロロチオキサントン、2−メチルチオキサントン、2,4−ジメチルチオキサントン、イソプロピルチオキサントン、2,4−ジイソプロピルチオキサントン、ドデシルチオキサントン等が含まれる。アシルホスフィンオキサイド系光重合開始剤としては、例えば、商品名「ルシリンTPO」(BASF社製)等が含まれる。チタノセン系光重合開始剤としては、例えば商品名「イルガキュア784」(BASF社製)等が含まれる。
本発明の光重合性モノマー溶液において、多官能液晶性モノマー(a)、単官能液晶性モノマー(b)、多官能光応答性モノマー(c)の配合割合は、所望のドメインサイズ(例えば0.5μm以上)や架橋密度を考慮して決定すればよいが、例えばモル比として、(a)30〜70モル%、(b)10〜50モル%、(c)10〜40モル%とするのが好ましく、より好ましくは(a)40〜60モル%、(b)20〜40モル%、(c)15〜35モル%である。各モノマーの配合割合が前記範囲であると、混合物の液晶相発現の観点から好ましい。
また、光重合性モノマー溶液において、光重合開始剤の配合割合は、該モノマー類(a),(b),(c)の官能基(重合性基)の総モル数に対して、例えば1〜10モル%とするのが好ましく、より好ましくは2〜5モル%である。光重合開始剤の配合割合が前記範囲であると、反応効率及び分子量制御の観点から好ましい。
なお、光重合性モノマー溶液には、必要に応じて公知の各種添加剤を配合することもできる。添加剤としては、例えば、レベリング剤、カーボンナノチューブ,フラーレン,グラフェンなどの有機系ナノ材料、及び金,銀,銅,シリカなどの無機系ナノ材料等が挙げられる。
また、本発明の光重合性モノマー溶液において、多官能液晶性モノマー、単官能液晶性モノマー、多官能光応答性モノマーおよび光重合開始剤並びに必要に応じて使用される添加剤は、溶媒中に例えば0.01〜0.20質量%の範囲で溶解するのが好ましく、0.02〜0.10質量%の範囲で溶解するのがより好ましい。溶媒に溶解させる全成分の配合量が前記範囲であると、塗工時の溶液粘度調整の観点から好ましい。
光重合性モノマー溶液の調製方法としては、公知の方法により調製できるが、例えば、溶媒に多官能液晶性モノマー、単官能液晶性モノマー、多官能光応答性モノマーおよび光重合開始剤を添加し、必要により加温して、撹拌混合することにより調製することができる。
得られた光重合性モノマー溶液はウェットコーティング法により配向膜上に塗布し、光重合性膜を形成する。
ウェットコーティング法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。
配向膜としては、特に制限はないが、塗布する溶液に用いる溶媒に不溶であるとともに、光重合性モノマー溶液のぬれ性に優れ、多官能液晶性モノマーおよび単官能液晶性モノマーを特定の方向に配向させることができるものが好ましい。このような配向膜として、具体的には、例えば、ポリアミド、ポリイミド、レシチン、シリカ、ポリビニルアルコール、エステル変性ポリビニルアルコール、ポリ酢酸ビニルのケン化度を調節したポリマー、シランカップリング剤等を塗布等して形成した配向膜を挙げられことができる。また、前記基材の表面をそのままラビング処理してもよい。
配向処理の方法としては、例えば、ラビング処理、斜方蒸着処理、マイクログルーブ法、延伸高分子膜法等を挙げることができる。製造工程の容易さや配向均一性の高さの観点においては、配向処理法として、ラビング処理を用いることが好ましい。
ウェットコーティング法により配向膜上に塗布された塗布膜は、乾燥により溶媒を除去する。乾燥温度としては、使用する溶媒により適宜調整すればよいが、ポリビニルアルコールを用いた場合、例えば80〜120℃が好ましく、乾燥時間としては、例えば60〜240秒が好ましい。また、溶媒に水を用いた場合、例えば90〜110℃が好ましく、乾燥時間としては、例えば100〜200秒が好ましい。前記範囲の条件で乾燥することで残存溶媒を低減させることができる。
この乾燥工程により光重合性モノマー溶液から形成された膜表面の分子が一方向に沿って並ぶ。
本発明では、所望の厚膜の光応答性架橋型液晶高分子フィルムを得るために、光重合性モノマー溶液の塗布および乾燥のサイクルを複数回繰り返し、少なくとも2層の光重合性膜を形成する。
第1層目の塗布の厚さとしては、溶媒除去後の厚みが0.3〜5.0μmとなるように塗布するのが好ましく、0.5〜5.0μmがより好ましく、さらに好ましくは0.8〜2.0μmである。第2層目の塗布の厚さとしては、第1層目と同じ厚さであっても異なっていてもよいが、同じ厚さであることが好ましい。また乾燥条件も同じでも異なってもよいが、同じであることが好ましい。このようにして、2層の光重合性膜を形成することができる。
第1層目の光重合性膜は、配向膜上に塗布されていることからモノマー分子が所定の方向に配向している。この上に第2層目の光重合性膜を形成すると、この第2層目の光重合性膜のモノマー分子も、第1層目の光重合性膜と同様の所定の方向に配向する。これにより、フィルムの透明性が確保され、フィルムを厚膜化するとともに白濁を抑制することができる。
なお本発明では、第1層目および第2層目の塗布条件および乾燥条件と同様に、このサイクルを3回以上繰り返し、3層以上の光重合性膜を形成することが好ましい。これにより、フィルムの白濁を防止しつつさらなる厚膜化を達成し、一層優れた光応答性を付与することができる。光重合性膜は、光応答性に影響する紫外線吸収能及び生産性両立の観点から3〜7層形成するのが最も好ましい。
(フィルムの形成工程)
フィルムを形成する工程では、前記光重合性膜の形成工程で得られた少なくとも2層の光重合性膜に対して、非酸素雰囲気下で光照射を行い、光重合性モノマーを重合させる。
ここで本発明でいう非酸素雰囲気下とは、実質的に酸素を含まない、例えば、酸素濃度が500ppm以下であることが好ましく、より好ましくは200ppm以下、更に好ましくは100ppm以下である。中でも、非酸素雰囲気を低コストで準備できるという観点から、窒素ガス雰囲気下でフィルムを形成するのが好ましい。
光照射は、光重合開始剤を活性化させて、モノマー成分の反応を生じさせることができればよい。エネルギー線の照射装置としては、慣用のものを使用できる。例えば、紫外線を照射する場合には、水銀灯、蛍光灯、ナトリウムランプ、メタルハライドランプ、キセノンランプ、ネオン管、ネオンランプ、高輝度放電灯などを用いることができる。
本発明では、カバー材料で前記光重合性膜を被覆することなく、光重合性モノマーを重合させることができる。これにより、フィルム形成に伴う手間およびコストを一層減じることができる。従来技術では、カバー材を用いて光重合性膜の両面を配向膜で囲わなければ、液晶分子の配向性を充分に確保できないという問題があった。しかし本発明では、カバー材料での被覆を省略しても(配向膜を片面のみ使用しても)、液晶分子の充分な配向性が得られる。なお、従来技術では、カバー材料で光重合性膜を被覆すると、液晶分子の凹凸に起因して酸素が残存し、その後に非酸素雰囲気状態を提供してもこの残存酸素によって光重合反応が阻害されるが、本発明では、このような残存酸素の悪影響を防止することができる。
本発明では、従来にはない、25cm以上の大面積の光応答性架橋型液晶高分子フィルムを提供することができる。
このような大面積の光応答性架橋型液晶高分子フィルムは、支持体上に25cm以上の配向膜を設け、前記の光重合性膜の形成工程およびフィルムの形成工程を行えばよい。
支持体の材質としては、例えば、トリアセチルセルロース(TAC)、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、シクロオレフィンポリマー等の汎用性高分子、エラストマー、あるいはシリコンゴム、金属薄膜、紙等の公知の材料を用いることができる。
なお配向膜および支持体の形状は特に制限されない。
また本発明の25cm以上の大面積の光応答性架橋型液晶高分子フィルムの厚みは、良好な光応答性を提供するという観点から、例えば1μm〜30μmであり、好ましくは2〜20μmである。
以下、本発明の光応答性架橋型液晶高分子フィルムの製造方法を図1により説明する。
図1は、上記で説明した本発明の製造方法の概略を示す工程図である。
光重合性膜の形成工程では、溶媒中に、多官能液晶性モノマー、単官能液晶性モノマー、多官能光応答性モノマーおよび光重合開始剤を溶解させ、原料混合物を調製する(S10)。続いて、配向膜を準備し(S11)、ラビング処理を行い(S12)、上記で調製した原料混合物をウェットコーティング法により配向膜上に塗布し、溶媒を除去し、光重合性膜を形成し、さらに、光重合性モノマー溶液の塗布および溶媒除去を繰り返し、少なくとも2層の光重合性膜を形成する(S13)。
フィルムの形成工程では、非酸素雰囲気下、少なくとも2層の光重合性膜に対して光照射を行い、前記光重合性モノマーを重合させ(S14)、形成したフィルムを採取する(S15)。
このように、本発明の製造方法は、図2で示すような従来の液晶高分子フィルムの製造工程における問題点を解決し、(1)短時間(例えば1時間以内)で、(2)連続生産を可能とし、(3)大面積化を達成でき、(4)ウェットコーティング法を採用することから、フィルムの膜厚を制御しやすい、という効果を奏する。
さらに本発明の製造方法は、ウェットコーティング法による光重合性モノマー溶液の複数回の塗布および溶媒除去を行い、2層以上、好ましくは3〜7層の光重合性膜を形成しているため、厚み方向への配向規制力が及ぶようになり、良好な分子の配向性を獲得し、フィルムを白濁させることなく、良好な光応答性を提供することができる。
本発明の光応答性架橋型液晶高分子フィルムは、液晶の配向に直接関与するハードコア部であるメソゲンの配向可能領域たるドメイン領域が存在し、図3に示すように高分子骨格が三次元網構造30を形成している。これにより、配向したメソゲンが高分子マトリックス内に緩やかに拘束され、高分子骨格の動きがメソゲンの配向と強く相関した構造となる。架橋構造は、長距離に亘って配向秩序が保たれた構造をとっていることがより好ましい。
上記のように、多官能光応答性モノマーとしてアゾベンゼン構造を有するモノマー32を採用した場合、紫外光を照射すると、図3(a)で示す棒状のトランス体から図3(b)で示す屈曲したシス体に異性化する。そして異性化したアゾベンゼンに可視光を照射すると元のトランス体に戻る。トランス体からシス体への異性化によって、メソゲンの配向秩序が低下し、矢印Aに示すように異方的収縮が誘起される。なお図3中、34は多官能液晶性モノマーであり、36は単官能液晶性モノマーである。
以下、本発明を実施例によりさらに説明するが、本発明は下記例に制限されるものではない。
〔実施例1〕
(光重合性膜の形成工程)
光重合性モノマー溶液として、以下の各モノマーを使用した。
多官能液晶性モノマー:C6A(上記スキームにより作製)
単官能液晶性モノマー:A6BZ6(上記スキームにより作製)
多官能光応答性モノマー:DA3AB(上記スキームにより作製)
光重合開始剤:下記式で表されるBASF社製チタノセン系光重合開始剤(商品名「イルガキュア784」)
溶媒:テトラヒドロフラン(THF)
添加剤:BYK−Chemie社製レベリング剤(商品名「BYK361」)
光重合性モノマー溶液中、多官能液晶性モノマー:単官能液晶性モノマー:多官能光応答性モノマーは、60:20:20(モル%)の割合で混合した。光重合開始剤は、該モノマー類の官能基(重合性基)の総モル数に対して2モル%となるように配合した。レベリング剤は、光重合性モノマー溶液全体に対して0.05質量%となるように配合した。これら各原料の全体の濃度が15質量%となるようにTHFに溶解し、攪拌機で1時間撹拌し、光重合性モノマー溶液を調製した。
以下に光重合性モノマー溶液に配合した各原料の詳細を示す。
続いて、支持体として、ケン化処理したTAC(富士フィルム社製トリアセチルセルロース、40μm厚)を用いた。
前記TACに対して、ポリビニルアルコール(PVA)水溶液(JVP社製VC−10、完全ケン化型、5wt%水溶液)をワイヤーバー#5で塗工・成膜し、100℃、3分の条件で乾燥オーブンへ投入、乾燥させて、TAC上にPVA膜を成膜した。成膜したPVA膜面をレーヨン製の布で一方向に5回ほど擦り、ラビング処理を施して、液晶分子を配向させる配向膜を得た。なお、次のウェットコーティングの際に光重合性モノマー溶液のハジキを抑制する目的で、キーエンス社製イオナイザーSJ−F305を用い、上記TACおよびPVA膜の除電処理を行った。
続いて、光重合性モノマー溶液をワイヤーバー#4で前記PVA配向膜上に塗布し、50℃、3分の条件で乾燥オーブンにて乾燥させて溶媒を除去した。溶媒除去後、ドライ状態(製膜後)の断面を走査型電子顕微鏡(SEM)で観察したところ、光重合性膜の厚みは350nmであった。このサイクルを3回繰り返すことで、3層の光重合性膜(TAC/PVC膜/3層の光重合性膜)を得た。
(フィルムの形成工程)
次に、窒素パージ(酸素濃度≦100ppm)されたパージボックス内へ前記TAC/PVC膜/3層の光重合性膜を投入し、波長フィルタ(渋谷光学社製ロングパスフィルタ、OG530、3mm厚及び渋谷光学社製熱線吸収フィルタ、KG5、2mm厚)を介して500乃至600nmの波長を有する光が選択的に透過する状態として、且つ被照射面にて2〜3mW/cmの照射エネルギー密度となるように出力調整をした超高圧水銀ランプ(ジャテック社製UV−CURE850)を光重合性膜へ約30分照射して光重合性モノマーを重合させ、200mm×300mmサイズのフィルムを形成した。
得られたフィルムについて、以下の評価を行なった。
(1)光学特性
(1−1)ヘイズメータで測定したところ、波長590nmにおいて透過率88.4%、ヘイズ1.2%の透明度及び配向性の高いフィルムであることが確認できた。
(1−2)偏光顕微鏡で得られたフィルムを観察したところ、偏光板と直交時は暗視野、偏光板軸に対して回転させて傾斜をつけた際は明視野を示したことから液晶分子の配向性が高いことが確認された。図4は、その結果を示す写真である。図4(a)は偏光板と直交時の暗視野、(b)はフィルムを偏光板軸に対して回転させて傾斜をつけた際の明視野を示している。
(1−3)走査型電子顕微鏡(SEM)で、凍結ミクロトームにて断面出しを行ったサンプルフィルムの製膜部の厚み測定を行ったところ、1μm厚程度の厚みを有することが確認された。
(2)光応答性
<測定条件>
装置:TA Instruments社製粘弾性計測装置RSA IIIの引張モード
サンプル:TACに含まれるUV吸収剤による評価ばらつきを排除する目的で、アクリル系粘着剤(25mm厚)/PET(ポリエチレンテレフタレート、25mm厚)/アクリル系粘着剤(25mm厚)からなる基材に、重合した光応答性架橋型液晶高分子層を転写して、被評価検体とした。
被評価検体セッティング条件:被評価検体幅5mm、チャック間距離10mm、歪み0.1%(一定)
UV照射条件:被評価検体をチャッキングして0.1%歪みを与えて、10分待機したのち、チャッキング部全面に対して波長365nm、照射エネルギー密度80mW/cmの条件でUV(紫外線)を照射した。UV照射によって光応答性架橋型液晶高分子層のアゾベンゼンが異性化し、それに伴ってサンプルが屈曲する応力を評価した。
発生応力の定義:UV照射前の応力と照射後の応力最大値の差が光応答によって発生した応力[MPa]と定義付けた。
なお、「歪み0.1%」とは、初期チャック距離の0.1%の長さを引っ張ることを意味する。
上記の条件で評価した結果、被評価検体は、13.5MPaの高い発生応力を示すことが確認された。
〔比較例1〕
図2で説明した従来技術に従い、膜厚1μmのフィルムを製造した。その結果、実施例1と同等の特性を示す光応答性架橋型液晶高分子フィルムが製造できたが、製造時間がかかり(実施例1より25時間以上かかった)、サイズは10mm×10mmと小さく、実用性に乏しいものであった。
〔参考例1〕
光重合性モノマー溶液を積層せずに1回のみワイヤーバー#10で約1.2μmの厚さで塗工・乾燥したこと以外は実施例1と同様の条件で、フィルムを製造した。
得られたフィルムは液晶分子が配向していないために白濁しており、透明性が低い塗膜であった。
本発明の製造方法は、製造上の煩雑さを解消し、簡単に、短時間で、かつ良好な膜厚の制御を達成しながら、大面積化されたフィルムを連続生産することができ、また良好な光応答性を達成した光応答性架橋型液晶高分子フィルムを提供でき、得られたフィルムは、例えばアクチュエータ、プラスチックモータ、マイクロ流路(バルブ)、ロボットアーム等に有用である。
30 三次元網目構造
32 アゾベンゼン構造を有するモノマー
34 多官能液晶性モノマー
36 単官能液晶性モノマー

Claims (8)

  1. 多官能液晶性モノマー、単官能液晶性モノマー、多官能光応答性モノマー、光重合開始剤および溶媒を少なくとも含有する光重合性モノマー溶液を、ウェットコーティング法により配向膜上に塗布し、溶媒を除去する工程を繰り返して、少なくとも2層の光重合性膜を形成する工程と、
    非酸素雰囲気下、前記少なくとも2層の光重合性膜に対して光照射を行い、前記モノマーを共重合させ、フィルムを形成する工程と
    を有する、光応答性架橋型液晶高分子フィルムの製造方法。
  2. 前記多官能光応答性モノマーが、アゾベンゼン構造を有する多官能光応答性モノマーである、請求項1に記載の光応答性架橋型液晶高分子フィルムの製造方法。
  3. 前記少なくとも2層の光重合性膜を形成する工程において、光重合性膜を3〜7層形成する、請求項1または請求項2に記載の光応答性架橋型液晶高分子フィルムの製造方法。
  4. 前記フィルムを形成する工程が、窒素ガス雰囲気下で行われる、請求項1〜請求項3のいずれか一項に記載の光応答性架橋型液晶高分子フィルムの製造方法。
  5. 前記フィルムを形成する工程が、カバー材料で前記光重合性膜を被覆することなく行われる、請求項1〜請求項4のいずれか一項に記載の光応答性架橋型液晶高分子フィルムの製造方法。
  6. 支持体上に25cm以上の前記配向膜を設け、25cm以上の大面積のフィルムを形成する、請求項1〜請求項5のいずれか一項に記載の光応答性架橋型液晶高分子フィルムの製造方法。
  7. モノマー単位として多官能液晶性モノマー、単官能液晶性モノマーおよび多官能光応答性モノマーを含有する光重合性膜を少なくとも2層有する、25cm以上の大面積の光応答性架橋型液晶高分子フィルム。
  8. 厚みが1μm〜30μmである、請求項7に記載の大面積の光応答性架橋型液晶高分子フィルム。
JP2014017807A 2014-01-31 2014-01-31 光応答性架橋型液晶高分子フィルムの製造方法および該製造方法により得られる光応答性架橋型液晶高分子フィルム Active JP6223214B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014017807A JP6223214B2 (ja) 2014-01-31 2014-01-31 光応答性架橋型液晶高分子フィルムの製造方法および該製造方法により得られる光応答性架橋型液晶高分子フィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014017807A JP6223214B2 (ja) 2014-01-31 2014-01-31 光応答性架橋型液晶高分子フィルムの製造方法および該製造方法により得られる光応答性架橋型液晶高分子フィルム

Publications (2)

Publication Number Publication Date
JP2015145449A JP2015145449A (ja) 2015-08-13
JP6223214B2 true JP6223214B2 (ja) 2017-11-01

Family

ID=53889848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014017807A Active JP6223214B2 (ja) 2014-01-31 2014-01-31 光応答性架橋型液晶高分子フィルムの製造方法および該製造方法により得られる光応答性架橋型液晶高分子フィルム

Country Status (1)

Country Link
JP (1) JP6223214B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044192A1 (ja) * 2017-08-31 2019-03-07 ソニー株式会社 三次元構造物の製造方法、三次元構造物及び三次元構造物を製造する製造装置
CN112321872B (zh) * 2020-10-29 2022-04-15 合肥乐凯科技产业有限公司 一种彩色光学膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183950B2 (ja) * 2002-02-21 2008-11-19 隆史 加藤 光応答性液晶組成物、情報記録媒体および情報記録方法
JP5067964B2 (ja) * 2006-10-11 2012-11-07 国立大学法人東京工業大学 光誘起回転方法,光駆動型回転子,動力伝達システム,及び動力伝達装置
JP5247321B2 (ja) * 2008-09-12 2013-07-24 ユニチカ株式会社 光駆動型アクチュエータ及びその製造方法,並びに動力伝達システム
JP2013245296A (ja) * 2012-05-25 2013-12-09 Daiken Iki Kk 架橋型液晶高分子材料の変形方法、光駆動型成形体

Also Published As

Publication number Publication date
JP2015145449A (ja) 2015-08-13

Similar Documents

Publication Publication Date Title
KR102313192B1 (ko) 액정성 조성물, 고분자 액정 화합물, 광흡수 이방성막, 적층체 및 화상 표시 장치
JP6223215B2 (ja) 光応答性架橋型液晶高分子フィルムの製造方法および該製造方法により得られる光応答性架橋型液晶高分子フィルム
JP6236327B2 (ja) 光応答性架橋型液晶高分子フィルムの製造方法
WO2008056597A1 (fr) Composition pour film de photo-alignement, film de photo-alignement et isomère optique
JP5564773B2 (ja) 重合性液晶化合物、重合性液晶組成物、液晶性高分子及び光学異方体
CN105378033A (zh) 具有横向电场驱动型液晶表示元件用液晶取向膜的基板的制造方法
TWI769265B (zh) 聚合性液晶組成物及相位差板
TW201734183A (zh) 液晶組成物
JPWO2009028576A1 (ja) ポリマー液晶、光学異方性膜、および光学素子
JP6010911B2 (ja) 光学フィルム及びその製造方法
TW201807169A (zh) 液晶組成物
JP5396815B2 (ja) 重合性化合物、重合性液晶化合物、重合性液晶組成物、液晶性高分子及び光学異方体
JP4802451B2 (ja) 重合性液晶組成物及びこれの重合物
WO2003040788A1 (fr) Procede de fabrication de dispositif optique
CN105492964A (zh) 具有横向电场驱动型液晶表示元件用液晶取向膜的基板的制造方法
JP6223214B2 (ja) 光応答性架橋型液晶高分子フィルムの製造方法および該製造方法により得られる光応答性架橋型液晶高分子フィルム
TW202102556A (zh) 聚合物組成物及單層相位差材
TWI645020B (zh) 垂直配向液晶膜之製造方法
TW202015900A (zh) 積層體
KR20180094104A (ko) 액정 배향제, 액정 배향막, 및 액정 표시 소자
TW201908378A (zh) 積層體及其製造方法、液晶配向劑、液晶配向膜、光學補償膜的形成方法、帶有相位差膜的偏光膜及其製造方法以及液晶顯示元件的製造方法
TW200932801A (en) Process of manufacturing optical film
JP2006251780A (ja) 光学素子およびこの光学素子からなる位相差板、光学積層体ならびに表示装置
CN105658730A (zh) 具有横向电场驱动型液晶表示元件用液晶取向膜的基板的制造方法
CN101185011B (zh) 光学各向异性材料的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6223214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250