JP6175542B1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
JP6175542B1
JP6175542B1 JP2016119375A JP2016119375A JP6175542B1 JP 6175542 B1 JP6175542 B1 JP 6175542B1 JP 2016119375 A JP2016119375 A JP 2016119375A JP 2016119375 A JP2016119375 A JP 2016119375A JP 6175542 B1 JP6175542 B1 JP 6175542B1
Authority
JP
Japan
Prior art keywords
antenna
antenna element
antenna device
amplitude
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016119375A
Other languages
English (en)
Other versions
JP2017225007A (ja
Inventor
雅彦 那須野
雅彦 那須野
恵比根 佳雄
佳雄 恵比根
敏幸 丸山
敏幸 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nazca Co Ltd
Original Assignee
Nazca Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nazca Co Ltd filed Critical Nazca Co Ltd
Priority to JP2016119375A priority Critical patent/JP6175542B1/ja
Application granted granted Critical
Publication of JP6175542B1 publication Critical patent/JP6175542B1/ja
Publication of JP2017225007A publication Critical patent/JP2017225007A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

【課題】アレーアンテナの各アンテナ素子が送信又は受信する高周波の振幅の設定が単純でありながら、ヌルを低減した放射パターンを実現できるアンテナ装置を提供する。【解決手段】アンテナ装置10は、一端10a及び他端10bを有し、一端10aから他端10bにかけて複数のアンテナ素子30が一定の間隔dで配置されたアレーアンテナ20を備え、一端10aのアンテナ素子30から他端10bのアンテナ素子30にかけて一定の割合で振幅を異ならせて高周波を送信又は受信する。【選択図】図2

Description

本発明は、無線通信サービス等に用いられるアンテナ装置に関する。
従来、携帯電話等の無線通信サービスを確立する基地局等に用いられるアレーアンテナは、サービスエリア内での放射パターンが良好となるように調整されている。
例えば、非特許文献1には、放射パターンのヌルを埋める(ヌル・フィル)ために、アレーアンテナの各アンテナ素子が送信する高周波の振幅の平坦度とヌル深さとの関係を求める方法が示されている。
木島 誠,山田 吉英,"アレーアンテナ励振係数と指向性ヌル深さの関係"信学技報,A.P89−35,pp37−42 July 1989
しかしながら、非特許文献1の関係を用いて各アンテナ素子が高周波の振幅を設定すると、与える高周波の振幅が各アンテナ素子にわたって複雑な分布となる場合があり、アレーアンテナの各素子が送信又は受信する高周波の振幅の設定が困難となることがある。
本発明は、アレーアンテナの各アンテナ素子が送信又は受信する高周波の振幅の設定が単純でありながら、ヌルを低減した指向性パターンを実現できるアンテナ装置を提供することを目的とする。
第1の態様のアンテナ装置は、一端及び他端を有し、前記一端から前記他端にかけて直線状に配置された複数のアンテナ素子が一定の間隔で配置されたアレーアンテナを備え、前記一端のアンテナ素子から前記他端のアンテナ素子にかけて一定の割合で振幅を異ならせて高周波を送信し、入力された高周波を、前記振幅の異なる各高周波に分岐する分岐回路部をさらに備える。
本態様では、アレーアンテナの各アンテナ素子が送信する高周波の振幅の設定が単純でありながら、ヌルを低減した放射パターンを実現できることに加え、各アンテナ素子に入力する高周波の都度調整を行うことなく、前記高周波の振幅を一定の割合で異ならせることができる。
第2の態様のアンテナ装置は、一端及び他端を有し、前記一端から前記他端にかけて直線状に配置された複数のアンテナ素子が一定の間隔で配置されたアレーアンテナを備え、前記一端のアンテナ素子から前記他端のアンテナ素子にかけて一定の割合で振幅を異ならせて高周波を受信し、前記アンテナ素子で変換された各高周波を、前記一定の割合で振幅を異ならせて合成する分岐回路部をさらに備える。
本態様では、アレーアンテナの各アンテナ素子が受信する高周波の振幅の設定が単純でありながら、ヌルが低減された電波を受信できることに加え、各アンテナ素子に入力する高周波の都度調整を行うことなく、前記高周波の振幅を一定の割合で異ならせることができる。
第3の態様のアンテナ装置は、一端及び他端を有し、前記一端から前記他端にかけて直線状に配置された複数のアンテナ素子が一定の間隔で配置されたアレーアンテナを備え、前記一端のアンテナ素子から前記他端のアンテナ素子にかけて一定の割合で振幅を異ならせて高周波を送信又は受信し、前記異ならせた振幅の最大振幅をImax、前記アンテナ素子の数をNとし、係数ΔI=Imax/Nとしたとき、前記異ならせた振幅の一定の割合がIn=Imax−(n−1)ΔI(但し、n=1,2,…N)に従って順次異なる。
本態様では、アレーアンテナの各アンテナ素子が受信する高周波の振幅の設定が単純でありながら、ヌルが低減された電波を送信又は受信できることに加え、第一サイドローブと第一ヌル点の差分である偏差を可能な限り小さくすることができるため、ヌルをより一層抑制することができる。
第4の態様のアンテナ装置は、前記一端のアンテナ素子から前記他端のアンテナ素子にかけて位相を異ならせて送信又は受信する第1から第3のいずれかの態様のアンテナ装置であって、前記各アンテナ素子に与える前記位相を一定の移相量で変化させた上に、少なくとも一端のアンテナ素子及び他端のアンテナ素子に付加移相量を加える。
本態様では、サイドローブを低減することができる。
本発明のアンテナ装置は、アレーアンテナの各アンテナ素子が送信する高周波の振幅の設定が単純でありながら、ヌルを低減した指向性パターンを実現できる。
本発明に係る第一実施形態におけるアンテナ装置の設置状況を説明する図である。 本発明に係る第一実施形態におけるアンテナ装置の正面図である。 本発明に係る第一実施形態におけるアンテナ装置の構造を示す斜視図である。 図3におけるIV−IV線断面図である。 本発明に係る第一実施形態における各分岐点の高周波の電流の分岐比率を示す図である。 本発明に係る第一実施形態における各アンテナ素子に与える高周波の電流の振幅を示す図である。 本発明に係る第一実施形態における各アンテナ素子に与える高周波の電流の振幅及び位相を示す表である。 本発明に係る第一実施形態におけるアンテナ装置の伝搬距離特性を示す図である。 本発明に係る第一実施形態におけるアンテナ装置の垂直面内指向性を示す図である。 本発明に係る第一実施形態の変形例におけるアンテナ装置の垂直面内指向性を示す図である。 本発明に係る第一実施形態の他の変形例におけるアンテナ装置の垂直面内指向性を示す図である。 本発明に係る第一実施形態の他の変形例におけるアンテナ装置の垂直面内指向性を示す図である。 参考例におけるアンテナ装置の垂直面内指向性を示す図である。 本発明に係る第一実施形態におけるアンテナ装置の係数ΔIを変えた時の相対利得の変化を示すグラフである。 本発明に係る第一実施形態におけるアンテナ装置の係数ΔIを変えた時の第1ヌル点と第1サイドローブレベルの偏差の変化を示すグラフである。 本発明に係る第二実施形態における各アンテナ素子に与える高周波の電流の振幅及び位相を示す表である。 本発明に係る第二実施形態におけるアンテナ装置の垂直面内指向性を示すグラフである。 本発明に係る第二実施形態の変形例における各アンテナ素子に与える高周波の電流の振幅及び位相を示す表である。 本発明に係る第二実施形態の変形例におけるアンテナ装置の垂直面内指向性を示すグラフである。 本発明に係る第二実施形態におけるアンテナ装置の付加移相量Δφを変化させたときの各垂直面内指向性を示すグラフである。
以下、本発明に係る各種実施形態について、図面を用いて説明する。
「第一実施形態」
本発明に係るアンテナ装置の第一実施形態について、図1〜図15を参照して説明する。
アンテナ装置10は、携帯電話等の無線通信サービスを確立する基地局等に用いられるものである。アンテナ装置10は、構造物を利用して高い場所に設置される。本実施形態では、図1に示すように、アンテナ装置10は、ビルBLの側壁に設置され、地表付近にスモールセルと呼ばれる比較的半径の小さなサービスエリアSAを形成している。
図2に示すように、アンテナ装置10は、放射面10c及び背面10dを一対の板面とする縦長の板形状を有している。アンテナ装置10は、板形状の縦長方向Dabの両端に一端10a及び他端10bを有する。
本実施形態では、アンテナ装置10は、アンテナ装置10の縦長方向Dabがy方向に沿うように設置され、放射面10cから放射される高周波の電波を自由空間に送信する。
アンテナ装置10は、一端10aから他端10bにかけて複数のアンテナ素子30が一定の間隔で配置されたアレーアンテナ20を備える。本実施形態では一端10aから他端10bにかけて16個のアンテナ素子30が一定の間隔dで直線状に並べて配置されている。アンテナ素子30の並びは必ずしも直線状である必要はないが、直線状に並べたほうが、アレーアンテナの理論に沿って指向性パターンを制御できるため、ヌル低減の調整を比較的簡単に行うことができる。
以下、複数のアンテナ素子30のうち、最も一端10aに近いアンテナ素子30を「一端10aのアンテナ素子」といい、最も他端10bに近いアンテナ素子30を「他端10bのアンテナ素子」という。図2において、アンテナ素子30は、カバー40に隠れて見えないので、点線で示されている。
図3に示すように、アンテナ装置10は、放射面10c側から順に、カバー40、アンテナ素子層50、第2分岐層70及び第1分岐層60を備える。カバー40は、中空の構造となっており、内部にアンテナ素子層50、第2分岐層70及び第1分岐層60を収納する構造となっている。図3において、カバー40、アンテナ素子層50、第2分岐層70、第1分岐層60のそれぞれは、理解を容易にするためにz方向に離して図示している。
図3に示すように、アンテナ素子層50の各アンテナ素子30と第2分岐層70の各線路とは、配線により電気的に接続され、第1分岐層60の各線路と第2分岐層70の各線路とは、配線により電気的に接続されている。配線としては、例えばビア配線を用いた配線が適用される。
以下、アンテナ素子層50、第2分岐層70及び第1分岐層60の積層方向をz方向とし、z方向と直交する面をxy平面とする。y方向は、x方向と直交しており、縦長方向Dabに沿った方向となっている。本実施形態において、図2に示すように、y方向が天空方向SK(垂直上向き)となるように、アンテナ装置10は設置される。
(アンテナ素子層)
アンテナ素子層50の構造について説明する。
図4に示すように、アンテナ素子層50は、第1接地層51と、第1接地層51の一面51aに配設された複数のアンテナ素子30とを有する。
第1接地層51はプレート状の導体からなり、アンテナ素子30は矩形状の導体片である。アンテナ素子30は、配線によって、図示しない高周波供給源GENと電気的に接続されている。図4の場合、ビア配線33がアンテナ素子30に電気的に接続される。よって、高周波供給源GENから、第1分岐層60、第2分岐層70及びビア配線33を介して、アンテナ素子30に高周波の電流が流れることによって、アンテナ素子30から高周波の電波が自由空間に放射される。
本実施形態では、アンテナ装置10の背面10d側から後で説明する第1入力部60aに高周波供給源GENから高周波を供給する。
図4に示すように、アンテナ素子30とz方向からの平面視で重なる位置に、パッチアンテナ31を有してもよい。パッチアンテナ31は、導体のプレートからなる。
パッチアンテナ31は、絶縁性を有する支持部32によりアンテナ素子30から離間して配置されている。パッチアンテナ31を有すると、アンテナ装置10が使用する周波数帯域を規制(調整)することができる。アンテナ装置10が使用する周波数帯域によっては、必ずしも必要なものではない。
本実施形態では、矩形状の導体片をアンテナとして、高周波の電流を電波に変換して放射しているが、ダイポールアンテナ、ループアンテナ、スロットアンテナ、マイクロストリップアンテナ等どのようなアンテナを用いてもよい。
(第1分岐層及び第2分岐層)
図3に戻って、第1分岐層60及び第2分岐層70の構造について説明する。
本実施形態の場合、分岐回路部として、第1分岐層60及び第2分岐層70を設けている。アンテナ装置10に給電された高周波は、第1分岐層60及び第2分岐層70で16分岐される。16分岐された各高周波は、16個のアンテナ素子30にそれぞれ供給される。高周波を16分岐するための構造を以下のとおり示す。
第1分岐層60は、1個の第1入力部60a、4個の第1出力部60b及び第2分岐回路60cを備える。本実施形態では、1つの第1入力部60aから、第2分岐回路60cを介して、4つの第1出力部60bに分岐するように構成されている。よって、第1入力部60aに給電された高周波の電流は、第1分岐回路60cでトーナメント状に4つに分岐され、各第1出力部60bに出力される。
第2分岐層70は、4個の第2入力部70a、16個の第2出力部70b及び第2分岐回路70cを備える。第2分岐層70の複数の第2入力部70aは、z方向からの平面視で重なる位置の第1分岐層60の各第1出力部60bとそれぞれ接続される。本実施形態では、各第2入力部70aから、第2分岐回路70cを介して、4つの第2出力部70bにそれぞれ分岐するように構成されている。よって、4つの第2入力部70aに給電された高周波信号は、第2分岐回路70cでトーナメント状にそれぞれ4つに分岐され、16個の第2出力部70bにそれぞれ出力される。
第2分岐層70の各第2出力部70bは、z方向からの平面視で重なる位置のアンテナ素子30にそれぞれ接続される。
第1分岐回路60cについて詳しく説明する。
図3の吹き出し図に示されるように、第1分岐回路60cの線路は、2つの各分岐点において、2つの線路にそれぞれ分岐している。2分岐された各線路は、分岐後において、互いに異なる線路幅及び線路長とすることで、互いに特性インピーダンスを異ならせている。各線路への高周波の分岐比率(分配比)は、当該特性インピーダンスの関係によって決まるため、線路幅及び線路長の簡単な組み合わせによって振幅が異なる4つの高周波に分岐することができる。また、当該第1分岐回路60cによれば、線路幅及び線路長の簡単な組み合わせで分岐比率を調整できるので、アンテナ装置10を製作する上でも簡単である。
本実施形態では、線路幅及び線路長による分岐後の特性インピーダンスの簡単な組み合わせによって、第1分岐回路60cは、後で示すように所望の関係の振幅となるように、伝送損失や反射損失を低減しつつ、所望の分岐比率で高周波を分岐させている。第2分岐層70についても同様である。
本実施形態では、第1分岐回路60c及び第2分岐回路70cをトリプレート線路で構成しているが、高周波を伝搬できるものであればどのようなものでよく、マイクロストリップ線路、同軸線路、コプレナー線路等で構成してもよい。
以上に示すとおり、アンテナ装置10に給電された高周波は、第1分岐回路60cによって4分岐された後、それぞれ第2分岐回路70cによってさらに4分岐されて、全体で16分岐される。すなわち、アンテナ装置10に給電された高周波は、最終的に16分岐される。
第1分岐層60及び第2分岐層70は、各分岐回路の分岐点において所望の分岐比率で高周波を分岐しており、最終的に一端10aのアンテナ素子30から他端10bのアンテナ素子30にかけて、一定の割合で各アンテナ素子30に流れる高周波の電流の振幅を異ならせている。
第1分岐層60及び第2分岐層70の各分岐点における高周波の電流の分岐比率の一例を図5に示す。
図5に示されたトーナメント表の各分岐点が、第1分岐回路60c及び第2分岐回路70cの各分岐点に対応している。
当該トーナメント表の分岐点前後の各線が第1分岐回路60c及び第2分岐回路70cの分岐点前後の各線路に対応している。また、当該トーナメント表の左側、右側の部分は、第1分岐回路60c、第2分岐回路70cにそれぞれ対応する。さらに、当該トーナメント表の上側がアンテナ装置10の一端10a、下側がアンテナ装置10の他端10bに対応する。
一例として、給電された電流を各分岐点で分岐し、隣り合うアンテナ素子30に与える高周波の電流の振幅の差を0.05とした場合について図5を参照して説明する。
図5のトーナメント表の分岐点前後の各線の上に示される数字は、分岐点前後における高周波の分岐状況を示す。当該数字は、高周波供給源GENから給電する電流の振幅Ioに対する各配線に流れる電流の振幅Iの比をdB単位(10×log(I/Io)[dB])で示したものである。
当該16分割されたdB値(−10[dB]〜−16.02[dB])を真値(リニアスケール)で計算し直すと、一端10aから他端10bにかけて、1:0.95:0.90:0.85…0.35:0.3:0.25の比率で分割されていることがわかる。なお当該分岐比率は、一端10aを1とした比率を示した。図5のように分岐比率で分岐した場合、一端10aから他端10bにかけて、0.05刻みで(一定の割合で)高周波の電流の振幅を順次異ならせることができる。言い換えると、第1分岐回路60c及び第2分岐回路70cを用いて図5のような分岐比率で分岐した電流を、各アンテナ素子30にそれぞれ流せば、隣り合うアンテナ素子30に与える高周波の電流の振幅の差を0.05とすることができる。
このように各分岐点での分岐比率をそれぞれ調整することによって、一端10aのアンテナ素子30から他端10bのアンテナ素子30にかけて、一定の割合で各アンテナ素子30に流す高周波の電流の振幅を異ならせることができる。
本実施形態では、分岐回路部として、第1分岐層60及び第2分岐層70によって分岐比率を設定しているので、各アンテナ素子30に与える高周波の分岐比率の都度調整を行う必要がない。
本実施形態では、隣り合うアンテナ素子30に流す高周波の電流の振幅の差をできるだけ大きくしている。以下、図6を参照して詳しく説明する。
図6の上側が、アンテナ装置10の一端10a、図6の下側がアンテナ装置10の他端10bに対応する。
本実施形態では、図6に示すように、最大振幅をImaxとして、一端10aのアンテナ素子30から他端10bのアンテナ素子30にかけて、順にImax、Imax−ΔI、Imax−2ΔI、…の振幅の電流を、各アンテナ素子30に流す。
したがって、各アンテナ素子30に流れる高周波の電流の振幅は、以下の式のように表すことができる。
[数1]
In=Imax−(n−1)ΔI(但し、n=1,2,…N) ・・・(1)
ここで、nは、一端10aから数えたアンテナ素子30の順番である。
Inは、n番目のアンテナ素子に流れる高周波の電流の振幅、Nはアンテナ装置10に設けられた全アンテナ素子の数である。係数ΔIは、隣接するアンテナ素子に与えられる高周波の電流の振幅の差に相当する。
本実施形態では、一端10a側にいちばん近いn=1となるアンテナ素子30に流す高周波の電流の振幅をImax[A]とすると、ΔI=Imax/NとなるようにΔIを設定している。このようにΔIを設定すれば、隣り合うアンテナ素子30に与える高周波の電流の振幅の差をできるだけ大きくすることができる。
本実施形態の場合、N、Imaxはどのような値であっても構わないが、説明を簡単にするために、N=16、Imax=1.0の場合について説明する。
このとき、図7に示すように、隣り合うアンテナ素子30に与える高周波の電流の振幅の差が真値で0.0625、すなわちΔI=0.0625となっていることがわかる。
なお、n番目のアンテナ素子に与える高周波の電流の位相Ψn[°]とすると、本実施形態の場合、Ψn=0としている。すなわち、各アンテナ素子30に与える高周波の電流の位相を同位相としている。各アンテナ素子30に与える高周波の電流の位相の調整は、例えば、分岐後に移相器を設けることによって行ってもよいし、分岐後の各線路や各配線の長さといった電気長を調整することによって行ってもよい。
また、アンテナ装置10の放射面10cから高周波の電波を自由空間に送信される高周波の電波の波長をλとすると、本実施形態の場合、それぞれ隣り合うアンテナ素子30の間隔dを0.67λとしている。
以下の本実施形態のアンテナ装置10のアンテナ特性について説明する。
図8は、本実施形態におけるアンテナ装置10の伝搬距離特性の計算結果を示したものである。横軸に放射面10cからの距離、縦軸に相対伝搬損失を示す。
本実施形態のアンテナ装置10において求められた伝搬距離特性を点線で示す。後に図9に示すように、本実施形態のアンテナ装置10は、垂直面内指向性にヌル・フィルを形成している。
参考例として、本実施形態のアンテナ装置10において、各アンテナ素子30に与える高周波の電流の振幅を一様(同振幅)とした場合の伝搬特性を実線で示す。
なお、図8の伝搬距離特性は、伝搬路を自由空間伝搬とし、アンテナ装置10のアンテナ高を30mとして計算された。
参考例では伝搬路に大きなレベル変動が生じているのに対し、本実施形態では、伝搬路におけるレベル変動が小さくなっていることがわかる。
本実施形態のアンテナ装置10のヌル・フィル特性について説明する。
一般にアレーアンテナの垂直面内の指向性は、以下に示すようなアレーファクターF(θ)の関係式(2)から求めることができる。
Figure 0006175542
ただし,G(θ)は素子指向性、kは位相定数である。
関係式(2)から求めた本実施形態のアンテナ装置10の垂直面内の指向性の計算結果を図9に示す。以下、「アンテナ装置10の垂直面」とは、yz平面であって、アンテナ素子30が並んでいる直線を含む平面のことをいう。
図9の横軸は、アンテナ装置10の垂直面における方位角θであって、z方向をθ=90°とした方位角θを示す。図9の縦軸は、θ=90°における電波の放射レベルの電力Poに対する各θにおける放射レベルの電力Pの比をdB単位(10×log(P/Po)[dB])で示したものである。
図9は、各アンテナ素子30として半波長ダイポールアンテナを配列し、モーメント法により計算したものである。
図9から明らかなように、本実施形態では、後に示す図13の参考例の特性に比べて、ヌルが低減されていることがわかる。
変形例として、本実施形態のアンテナ装置10において、アンテナ素子30の間隔を大きくしてd=1.0λとした場合の指向性を図10に示す。
図10に示すように、アンテナ素子30の間隔を大きくしても、ヌルが低減されていることがわかる。したがって、アンテナ素子間隔が変化してもヌルを低減できることがわかる。
他の変形例として、本実施形態のアンテナ装置10において、d=0.67λのまま、アンテナ素子30の数を少なくしてN=8、N=4とした場合の指向性を図11、図12にそれぞれ示す。すなわち、アンテナ素子の数を1/2にした場合、1/4にした場合の指向性を図11、図12にそれぞれ示す。
図11、図12に示すように、アンテナ素子の数を半減、さらに半減しても、後に示す図13の参考例の特性に比べて、ヌルを低減できることがわかる。
これらの変形例から明らかなように、本実施形態のアンテナ装置は、アンテナ素子の数、アンテナ素子の間隔に依存しないでヌルを低減できる。
なお、図13には、上記参考例(各アンテナ素子30に流す高周波の電流の振幅を一様とした場合)の指向性を示す。
各素子に与えるΔIの誤差の影響を示す。
本実施形態のアンテナ装置10において、ΔIを0.02から0.06まで変えた時の相対利得ΔG[dBi]の変化、第1ヌル点と第1サイドローブレベルの偏差Δppの変化を図14、図15にそれぞれ示す。図13に示すように、Δpp[dB]は、第1ヌル点Pfnでの放射レベルと第1サイドローブPsでの放射レベルの偏差に相当する。ここで、ヌル点のうち、主ビーム(垂直面内指向性の90°における強いビーム)に最も近いヌル点を第1ヌル点Pfnとし、主ビームに最も近いサイドローブを第1サイドローブPsとする。
図15からわかるように、ΔIを0.02から0.06に近づけるほど、偏差Δppは小さくなる。よって、本実施形態のようにΔI=0.0625[A]に設定すれば、偏差Δppを小さくでき、ヌルを抑制することができる。
他方、図14に示すように、ΔIを0.02から0.06に近づけるほど、相対利得ΔG[dBi]は小さくなってしまう。よって、多少のヌルを許容しつつ、相対利得を稼ぎたいときは、ΔIが0.0625[A]より小さくなるように設定してもよい。
ΔIの誤差について説明する。
図15に示すように、ΔIを小さくするとΔppは大きくなる。
例えば、許容されるΔppが最大で3dBとすると、そのときΔI≒0.045となる。よって、ΔIの設定値が0.0625の場合、約30%の誤差が許容できることになる。
「第二実施形態」
本発明に係るアンテナ装置の第二実施形態について、図16〜図20を参照して説明する。
第二実施形態は、第一実施形態と基本的に同じであるが、各アンテナ素子に与える高周波の電流の位相Ψnを変えてビームチルトを持たせるとともに、サイドローブSLを制御している点が異なる。ビームチルトとは、z方向に対して、主ビームを傾斜させることである。以下、z軸に対する垂直面内の主ビームの地表に向かう傾斜角をビームチルト角θtとする。
各アンテナ素子に与える高周波の電流の位相Ψnは、図16に示すように設定される。なお、各アンテナ素子に与える高周波の電流の振幅Inは、第一実施形態の図7の設定と同じである。
ここで位相Ψnは、以下のように決定する。
一端10aのアンテナ素子30から他端10bのアンテナ素子30にかけて、各アンテナ素子30に与える高周波の電流の位相Ψnを移相量φNで変化させると、主ビームにビームチルト角θtを持たせることができる。
本実施形態では、移相量φNを−41.2°に設定し、ビームチルト角θt=−10°としている。よって、図16に示すように、一端10aのアンテナ素子30から他端10bのアンテナ素子30に向かって、各アンテナ素子30の位相Ψnを順に−41.2°ずつ変化させている。
さらに、各アンテナ素子30に流れる電流の位相Ψnを一定の移相量φNで変化させた上に、少なくとも一端10aのアンテナ素子30及び他端10bのアンテナ素子30については、移相量φNに付加移相量Δφを加えている。
本実施形態では、付加移相量Δφ=±20°としている。すなわち、一端10aのアンテナ素子30(n=1)については、移相量φNに対してさらに付加移相量Δφ=+20°でシフトさせた移相量を与えている。また、他端10bのアンテナ素子30(n=16)については、移相量φNに対してさらに付加移相量Δφ=−20°シフトさせた移相量を与えている。具体的には、各アンテナ素子30に与える高周波の電流の位相Ψnは、図16に示すとおりである。
本実施形態のアンテナ装置10の指向性の計算結果を図17に示す。図17において、90°がz方向、180°がy方向にそれぞれ相当する。
変形例として、付加移相量Δφ=±30°に設定されてもよい。具体的には、各アンテナ素子30に与える高周波の電流の位相Ψnは、図1に示すように設定される。
本変形例のアンテナ装置10の指向性の計算結果を図19に示す。
図17と図19を比較してわかるように、Δφを変化させることによって、ビームチルト角θt=−10°を維持しつつ、サイドローブSLを変化させることができる。
例えば、天空方向SKへのサイドローブSLを抑制したいときは、付加移相量をΔφ=±30°とするよりも、付加移相量をΔφ=±20°とするほうがよいことが分かる。
図17や図19の指向性は、「コセカント2乗指向性」と呼ばれる指向性に近似するものである。よって、一端10aのアンテナ素子30及び他端10bのアンテナ素子30だけを移相量φNに対してシフトさせることにより、比較的簡単な構成で、「コセカント2乗指向性」を有する指向性を提供することができる。
付加移相量をΔφ=0°(実線)、±30°(破線)、±60°(点線)に設定したときの各指向性を図20にまとめて示す。
主ビームに加えて、サービスエリアSAにおける電波のレベルをできるだけ向上したいときは、Δφ=0°とするよりも、Δφ=±30°、±60°とした方がよいことが分かる。
また、Δφ=0°とするよりも、Δφ=±30°、±60°とした方がz方向のレベルを低くすることができるため、水平方向にある他のアンテナとの干渉を抑制することができる。
本実施形態では、一端10aのアンテナ素子30及び他端10bのアンテナ素子30だけに付加移相量を加えているが、一端10aのアンテナ素子30から他端10bのアンテナ素子30にかけて付加移相量を加えてもよい。例えば、一端10aのアンテナ素子30をΔφ=+20°でシフトさせ、他端10bのアンテナ素子30に向かって連続的にΔφを減少させて、他端10bのアンテナ素子30をΔφ=−20°でシフトさせるようにしてもよい。
また、本実施形態では、一定の移相量φNに対し、一端10aのアンテナ素子30にプラスの付加移相量、他端10bのアンテナ素子30にマイナスの付加移相量を加えることによって、一端10aのアンテナ素子30及び他端10bのアンテナ素子30の移相量の変化をより大きくしている。
変形例として、一定の移相量φNに対し、一端10aのアンテナ素子30にマイナスの付加移相量、他端10bのアンテナ素子30にプラスの付加移相量を加えて、一端10aのアンテナ素子30及び他端10bのアンテナ素子30の移相量φNをより小さくしてもよい。
例えば、図16の位相Ψnの設定において、一端10aのアンテナ素子30(n=1)の位相をΨn=−20.0°とし、他端10bのアンテナ素子30(n=16)の位相をΨn=−598.0°とした設定としてもよい。
さらに本実施形態では、一端10aのアンテナ素子30及び他端10bのアンテナ素子30の付加移相量の絶対値を同じにしているが、一端10aのアンテナ素子30及び他端10bのアンテナ素子30の付加移相量の絶対値を異ならせてもよい。
例えば、一端10aのアンテナ素子30については、移相量φNに対してさらに付加移相量Δφ=+20°でシフトさせた移相量を与え、他端10bのアンテナ素子30については、移相量φNに対してさらに付加移相量Δφ=−30°シフトさせた移相量を与えてもよい。具体的には、図16の位相Ψnの設定において、一端10aのアンテナ素子30(n=1)の位相をΨn=+20.0°とし、他端10bのアンテナ素子30(n=16)の位相をΨn=−648.0°とした設定としてもよい。
以上、本発明の実施の形態について図面を参照して詳述したが、具体的な構成は上記実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本実施形態においてアンテナ装置10は、放射面10c及び背面10dを一対の板面とする縦長の板形状を有しているが、横長の板形状、正方形板状、円盤形状、直方体状、立方体状等どのような形状であってもよい。
本実施形態では、各アンテナ素子に流れる高周波の電流の振幅を一定の割合で変化させているが、各アンテナ素子に与える高周波の電圧の振幅を一定の割合で変化させるものであってもよい。その際、本実施形態では、各アンテナ素子に与える高周波の電流の位相を変化させているが、各アンテナ素子に与える高周波の電圧の位相を変化させるものであってもよい。
本実施形態では、サービスエリアにヌルを低減した電波を送信できるアンテナ装置について説明しているが、サービスエリアからヌルが低減された電波を受信するアンテナ装置としてもよい。
受信する場合も一端のアンテナ素子から他端のアンテナ素子にかけて一定の割合で振幅を異ならせて高周波を受信するように構成する。具体的には、第1分岐層60及び第2分岐層70からなる分岐回路部を合成回路部として利用し、アンテナ装置10をそのまま利用し、複数のアンテナ素子で変換された各高周波の電流や電圧を、第1分岐層60及び第2分岐層70で一定の割合で振幅を順次異ならせて合成すればよい。合成された高周波は、第1入力部60aから得られる。
本実施形態では、アンテナ装置10は、ビルBLに設置されているが、高い場所に設置できるならば、屋根や電柱など構造物に設置されてもよい。また、アンテナ装置10は、アンテナ装置10の縦長方向がy方向に沿うように設置されているが、放射面10cが地表を向くように傾けて設置されてもよい。
本実施形態では、高周波として4.5GHz帯の高周波を用いているが、いずれもアレーアンテナの理論に基づくものであり、特定の周波数に限られるものではないから、2GHz帯や3.5GHz帯、さらには、HF体、VHF帯、UHF帯、マイクロ波帯、ミリ波帯といったあらゆる電波(電磁波)に適用できる。
10:アンテナ装置
10a:一端
10b:他端
10c:放射面
10d:背面
20:アレーアンテナ
30:アンテナ素子
31:パッチアンテナ
32:支持部
33:ビア配線
40:カバー
50:アンテナ素子層
51:第1接地層
51a:一面
60:第1分岐層
60a:第1入力部
60b:第1出力部
60c:第1分岐回路
70:第2分岐層
70a:第2入力部
70b:第2出力部
70c:第2分岐回路
100:アンテナ装置
BL:ビル
d:間隔
Dab:縦長方向
GEN:高周波供給源
In:振幅
Imax:最大振幅
Pfn:第1ヌル点
Ps:第1サイドローブ
SA:サービスエリア
SK:天空方向
SL:サイドローブ
ΔG:相対利得
ΔI:係数
Δpp:偏差
θ:方位角
θt:ビームチルト角
φN:移相量
Ψn:位相

Claims (4)

  1. 一端及び他端を有し、前記一端から前記他端にかけて直線状に配置された複数のアンテナ素子が一定の間隔で配置されたアレーアンテナを備え、
    前記一端のアンテナ素子から前記他端のアンテナ素子にかけて一定の割合で振幅を異ならせて高周波を送信し、
    入力された高周波を、前記振幅の異なる各高周波に分岐する分岐回路部をさらに備えるアンテナ装置。
  2. 一端及び他端を有し、前記一端から前記他端にかけて直線状に配置された複数のアンテナ素子が一定の間隔で配置されたアレーアンテナを備え、
    前記一端のアンテナ素子から前記他端のアンテナ素子にかけて一定の割合で振幅を異ならせて高周波を受信し、
    前記アンテナ素子で変換された各高周波を、前記一定の割合で振幅を異ならせて合成する分岐回路部をさらに備えるアンテナ装置。
  3. 一端及び他端を有し、前記一端から前記他端にかけて直線状に配置された複数のアンテナ素子が一定の間隔で配置されたアレーアンテナを備え、
    前記一端のアンテナ素子から前記他端のアンテナ素子にかけて一定の割合で振幅を異ならせて高周波を送信又は受信し、
    前記異ならせた振幅の最大振幅をImax、前記アンテナ素子の数をNとし、
    係数ΔI=Imax/Nとしたとき、
    前記異ならせた振幅の一定の割合が
    In=Imax−(n−1)ΔI(但し、n=1,2,…N)
    に従って順次異なるアンテナ装置。
  4. 前記一端のアンテナ素子から前記他端のアンテナ素子にかけて位相を異ならせて送信又は受信する請求項1から3のいずれか一項に記載のアンテナ装置であって、
    前記各アンテナ素子に与える前記位相を一定の移相量で変化させた上に、少なくとも一端のアンテナ素子及び他端のアンテナ素子に付加移相量を加えたアンテナ装置。
JP2016119375A 2016-06-15 2016-06-15 アンテナ装置 Active JP6175542B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016119375A JP6175542B1 (ja) 2016-06-15 2016-06-15 アンテナ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016119375A JP6175542B1 (ja) 2016-06-15 2016-06-15 アンテナ装置

Publications (2)

Publication Number Publication Date
JP6175542B1 true JP6175542B1 (ja) 2017-08-02
JP2017225007A JP2017225007A (ja) 2017-12-21

Family

ID=59505224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016119375A Active JP6175542B1 (ja) 2016-06-15 2016-06-15 アンテナ装置

Country Status (1)

Country Link
JP (1) JP6175542B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057890A (ja) * 2017-09-22 2019-04-11 京セラ株式会社 アレイアンテナ基板
JP2020537459A (ja) * 2017-10-13 2020-12-17 クインテル ケイマン リミテッド 高所での障害物を伴う配備のためのセルラアンテナ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780372A (en) * 1972-01-17 1973-12-18 Univ Kansas Nonuniformly optimally spaced antenna array
JPS58100502A (ja) * 1981-12-09 1983-06-15 Mitsubishi Electric Corp アレイアンテナ装置
JPH07183724A (ja) * 1993-12-24 1995-07-21 Nec Corp 成形ビームアンテナ
JPH10308627A (ja) * 1997-05-08 1998-11-17 Nec Corp 成形ビームアレイアンテナ
JP2001196849A (ja) * 2000-01-04 2001-07-19 Sharp Corp アレーアンテナの給電回路
JP2006197530A (ja) * 2004-07-12 2006-07-27 Nec Corp ヌルフィルアンテナ、オムニアンテナ、無線装置
JP2007329666A (ja) * 2006-06-07 2007-12-20 Ntt Docomo Inc アレーアンテナ装置
JP2009218677A (ja) * 2008-03-07 2009-09-24 Nec Corp アンテナ装置、給電回路および電波送受信方法
JP2014007687A (ja) * 2012-06-27 2014-01-16 Nec Corp アンテナおよびこれを備えた無線通信装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780372A (en) * 1972-01-17 1973-12-18 Univ Kansas Nonuniformly optimally spaced antenna array
JPS58100502A (ja) * 1981-12-09 1983-06-15 Mitsubishi Electric Corp アレイアンテナ装置
JPH07183724A (ja) * 1993-12-24 1995-07-21 Nec Corp 成形ビームアンテナ
JPH10308627A (ja) * 1997-05-08 1998-11-17 Nec Corp 成形ビームアレイアンテナ
JP2001196849A (ja) * 2000-01-04 2001-07-19 Sharp Corp アレーアンテナの給電回路
JP2006197530A (ja) * 2004-07-12 2006-07-27 Nec Corp ヌルフィルアンテナ、オムニアンテナ、無線装置
JP2007329666A (ja) * 2006-06-07 2007-12-20 Ntt Docomo Inc アレーアンテナ装置
JP2009218677A (ja) * 2008-03-07 2009-09-24 Nec Corp アンテナ装置、給電回路および電波送受信方法
JP2014007687A (ja) * 2012-06-27 2014-01-16 Nec Corp アンテナおよびこれを備えた無線通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057890A (ja) * 2017-09-22 2019-04-11 京セラ株式会社 アレイアンテナ基板
JP2020537459A (ja) * 2017-10-13 2020-12-17 クインテル ケイマン リミテッド 高所での障害物を伴う配備のためのセルラアンテナ

Also Published As

Publication number Publication date
JP2017225007A (ja) 2017-12-21

Similar Documents

Publication Publication Date Title
CN108987911B (zh) 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
EP1479130B1 (en) Traveling-wave combining array antenna apparatus
US10230171B2 (en) Travelling wave antenna feed structures
Pan et al. Wideband circularly polarized dielectric bird-nest antenna with conical radiation pattern
US6320542B1 (en) Patch antenna apparatus with improved projection area
CN107949954B (zh) 无源串馈式电子引导电介质行波阵列
CN109643852B (zh) 端射圆极化基片集成波导喇叭天线及其制造方法
US20100309068A1 (en) Methods and apparatus for a low reflectivity compensated antenna
US9263807B2 (en) Waveguide or slot radiator for wide E-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
WO2005074073A1 (en) Antenna arrays using long slot apertures and balanced feeds
US20140333502A1 (en) Array antenna device
US7075494B2 (en) Leaky-wave dual polarized slot type antenna
JP2001521711A (ja) アンテナ性能パラメータおよびアンテナ構成を改良するための方法
GB2548422B (en) Antenna array assembly with conductive sidewalls for improved directivity
JP6175542B1 (ja) アンテナ装置
JP6089924B2 (ja) アンテナ装置
WO2017085871A1 (ja) 給電回路及びアンテナ装置
KR20140139310A (ko) 다수의 l 모양 슬릿을 이용한 삼중대역 원형편파 육각 슬롯 마이크로스트립 안테나
JP2003318649A (ja) 進行波合成アレーアンテナ装置
JPH07336133A (ja) アンテナ装置
Koli et al. Investigating small aperture radial line slot array antennas for medium gain communication links
Bilgic et al. High gain, wideband aperture coupled microstrip antenna design based on gain-bandwidth product analysis
JP2017038123A (ja) 多周波アンテナ装置
Abdelaal et al. Circularly polarized RGW slot antenna fed by ferrite based phase shifter
Zeng et al. A Reconfigurable Millimeter-Wave Antenna Array With Wide-Range Continuous Beamwidth Control (WCBC) Based on Polarization-Mixing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6175542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250