JP6134798B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP6134798B2
JP6134798B2 JP2015530634A JP2015530634A JP6134798B2 JP 6134798 B2 JP6134798 B2 JP 6134798B2 JP 2015530634 A JP2015530634 A JP 2015530634A JP 2015530634 A JP2015530634 A JP 2015530634A JP 6134798 B2 JP6134798 B2 JP 6134798B2
Authority
JP
Japan
Prior art keywords
semiconductor element
diode
flywheel diode
flywheel
clamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015530634A
Other languages
English (en)
Other versions
JPWO2015019480A1 (ja
Inventor
千絵 小林
千絵 小林
森 睦宏
森  睦宏
恩田 謙一
謙一 恩田
越智 健太郎
健太郎 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2015019480A1 publication Critical patent/JPWO2015019480A1/ja
Application granted granted Critical
Publication of JP6134798B2 publication Critical patent/JP6134798B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

本発明は、電力変換装置に係り、特に、IGBT(絶縁ゲートバイポーラトランジスタ)などの自己消弧型半導体素子の適用に好適な電力変換装置に関する。
近年、電力制御の分野では、直流を交流に/交流を直流に変換する電力変換装置(インバータ装置)が多く用いられるようになってきた。このインバータ装置のなかでは、大容量インバータ装置の代表的な回路として、例えば、3レベルインバータ装置があげられる。3レベルインバータ装置は、3つの電位即ち正電位P、負電位N及び中間の電位Cを有する直流電圧回路と、これらの正電位P、負電位N及び中間電位Cを出力することができる3レベルインバータブリッジとを有するインバータ装置である。
大容量のインバータ装置を構成するために適用された自己消弧型半導体素子は例えばGTO(ゲートターンオフサイリスタ)等の所謂電流駆動型素子が主流であったが、最近になって電圧駆動型素子であるIGBT(絶縁ゲート型バイポーラトランジスタ)やIEGT(注入促進型ゲートトランジスタ)の大容量化が進み、これらが適用されるようになってきた。
大容量のIGBT(絶縁ゲート型バイポーラトランジスタ)やIEGT(注入促進型ゲートトランジスタ)では、電圧駆動型素子の特徴として複数個の半導体チップをパッケージ内部で並列接続するようにした所謂マルチチップ構成が多く採用される。このパッケージとしては、平型の金属容器に半導体チップを配列して圧力を両側から加えることによって均一な並列回路を実現するようにした圧接型が実用化されている。
インバータ装置に用いられる自己消弧型半導体素子は、誘導性負荷等に対して還流路を確保するために自己消弧型半導体素子に逆並列にフライホイールダイオードが接続される。このフライホイールダイオードは、上述のパッケージ内部に自己消弧型半導体チップと共に収容して複合素子とすることが多い。すなわち、上述のパッケージ内部に、フライホイールダイオードチップと、自己消弧型半導体チップを平型の金属容器に配列している。このような技術は、例えば、特許文献1に記載されている。
特開2001−78467号公報 特開2006−158107号公報
上記の従来技術では、一つのパッケージ内部に自己消弧型半導体チップと共にフライホイールダイオードチップを収容して複合素子としており、一般的にチップ構造がIGBT等の自己消弧型半導体チップではメサ構造であり、ダイオードではチップ構造がフラット構造であるため、圧接する電極径が同じでもチップ表面と電極との間に圧力差が生じてしまう。
一方、フライホイールダイオードを別パッケージに収納した素子も実用化されている。このような技術は、例えば、特許文献2に記載されている。この技術では、パッケージに収納されている自己消弧型半導体素子とフライホイールダイオード素子とを用いてインバータ装置を構成するものの、クランプダイオードと自己消弧型半導体素子が直列的に配置されており、一般的には圧接する半導体パッケージ内のダイオードチップのチップ数と自己消弧型半導体素子のチップ数が異なるものであり、これらの圧接構造体の径を必要最小限の径にすることができずに、大型化が避けられないという問題が生じる。また、異径の半導体パッケージで構成されると、小さい径の半導体パッケージに対して大きい径の半導体パッケージの面圧が低下し、径の大きな半導体パッケージで構成された側で接触熱抵抗の増加と電流集中を招いてしまうという問題が生じる。
本発明は上記に鑑みて為されたもので、本発明の目的とするところは、小型が可能で、接触熱抵抗と電流集中の抑制が可能な電力変換装置を提供することにある。
上記目的を達成するために、本発明では、一方側端子と他方側端子の間に直列接続された第1の半導体素子、第2の半導体素子、第3の半導体素子及び第4の半導体素子と、前記第1の半導体素子、第2の半導体素子、第3の半導体素子及び第4の半導体素子の各々に対応して設けられた第1のフライホイールダイオード、第2のフライホイールダイオード、第3のフライホイールダイオード及び第4のフライホイールダイオードと、前記第1の半導体素子と前記第2の半導体素子との接続部と前記一方側端子と他方側端子の間の電位である中間電位端子とを接続する第1のクランプダイオード、及び前記第3の半導体素子と前記第4の半導体素子との接続部と前記中間電位端子とを接続する第2のクランプダイオードを有し、前記第1の半導体素子、前記第2の半導体素子、前記第3の半導体素子及び前記第4の半導体素子は、各々略同径の第1半導体パッケージで構成され、直列的な配置による圧接接続で接続され、前記第1のフライホイールダイオード、前記第2のフライホイールダイオード、前記第1のクランプダイオード、前記第2のクランプダイオード、前記第3のフライホイールダイオード及び前記第4のフライホイールダイオードは、各々略同径及び前記第1半導体パッケージと異径の第2半導体パッケージで構成され、直列的な配置がなされることにより、前記第1のフライホイールダイオードと前記第2のフライホイールダイオードは圧接により接続され、前記第1のクランプダイオード及び前記第2のクランプダイオードは圧接により接続され、前記第3のフライホイールダイオードと前記第4のフライホイールダイオードは圧接により接続される構成とした。
本発明によれば、小型が可能で、且つ、接触熱抵抗と電流集中の抑制が可能となる。
本発明の実施例1に係るインバータ装置の回路構成とインバータブリッジ1相分の構造図である。 本発明の実施例1に係るインバータ装置の効果を示すための説明図である。 インバータ装置の回路構成とインバータブリッジ1相分の構造図である。 本発明に係るインバータブリッジ1相分の電流経路説明図(a〜c)である。 本発明に係るインバータブリッジ1相分の電流経路説明図(d〜f)である。 2並列構成とした場合のインバータブリッジ1相分の構造図である。 2並列構成とした場合のインバータブリッジ1相分の電流経路説明図(a〜c)である。 2並列構成とした場合のインバータブリッジ1相分の電流経路説明図(d〜f)である。
以下、図面に基づいてこの発明における実施例を説明する。
図1は本発明の実施例1に係る電力変換装置の構成図である。図1(a)は本発明のインバータ装置の回路構成を示すものであり、図1(b)は本発明に係るインバータ装置のインバータブリッジ1相分の構造図を簡易的に示したものである。尚、図1(a)及び図1(b)においては、簡単のためインバータ1相分についてのみの回路構成及び構造を示している。例えば、直流を3相交流に変換するものである場合には、正電位P、負電位Nの間に、フライホイールダイオード6、7、8及び9が夫々逆並列に接続される自己消弧型半導体素子2、3、4及び5の直列回路の組が図示される組の他に2組が接続され、さらに、中間の電位Cと自己消弧型半導体素子2、3、4及び5を接続するクランプダイオード10、11が同様に2組が接続される。
図1(a)において、直流電圧回路1は正電位P、負電位N及び中間の電位Cを持ち、この直流電圧回路1と並列に自己消弧型半導体素子2、3、4及び5の直列回路が接続されている。また、自己消弧型半導体素子2、3、4及び5にはフライホイールダイオード6、7、8及び9が夫々逆並列に接続されている。クランプダイオード10は、直流電圧回路1の電位Cの端子から直列接続された自己消弧型半導体素子2及び3の接続点に向けて電流を流す方向に接続され、またクランプダイオード11は、直列接続された自己消弧型半導体素子4及び5の接続点から直流電圧回路1の電位Cの端子に向けて電流を流す方向に接続されている。尚、OUTは図示しない負荷に接続される出力端子である。
ここで、自己消弧型半導体素子2、3、4及び5は、各々半導体パッケージで構成される。この半導体パッケージは、平型の金属容器の中に半導体チップ(IGBTチップ)を配列して構成され、圧力を両側から加えることによって均一な接続回路を実現するようになっている。フライホイールダイオード6、7、8及び9、クランプダイオード10、11も同様に、平型の金属容器の中にダイオードチップを配列して構成され、圧力を両側から加えることによって、所定の2つの回路がそれぞれ均一な接続回路を実現するようになっている。
次に、図1(b)において、第1の圧接構造体12はフライホイールダイオード6、7、8及び9と並びにクランプダイオード10及び11の6個の半導体パッケージを積み重ねて構成され、各半導体パッケージの間に各々介装された冷却フィン13、14、15、16、17、18、19、20及び21と、絶縁物22及び23を共締めする串型の構造となっている。
また、第2の圧接構造体24は、自己消弧型半導体素子2、3、4及び5と、各々の間に設けられた冷却フィン25、26、27、28及び29とを共締めした串型の構造となっている。
配線30はクランプダイオード10のカソード側に取り付けられた冷却フィン16とフライホイールダイオード7のカソード側に取り付けられた冷却フィン14とを電気的に接続するブスバーである。同様に配線31はクランプダイオード11のアノード側に取り付けられた冷却フィン18とフライホイールダイオード8のアノード側に取り付けられた冷却フィン20とを電気的に接続するブスバーである。また、配線32はフライホイールダイオード7のアノード側に取り付けられた冷却フィン15とフライホイールダイオード8のカソード側に取り付けられた冷却フィン19とを電気的に接続するブスバーである。
配線33、34、35、36及び37は自己消弧型半導体素子とフライホイールダイオードとの渡り配線であり、配線33は自己消弧型半導体素子2のコレクタ側に取り付けられた冷却フィン25とフライホイールダイオード6のカソード側に取り付けられた冷却フィン13、配線34は自己消弧型半導体素子3のコレクタ側に取り付けられた冷却フィン26とフライホイールダイオード7のカソード側に取り付けられた冷却フィン14、配線35は配線32と自己消弧型半導体素子4のコレクタ側に取り付けられた冷却フィン27、配線36は自己消弧型半導体素子5のコレクタ側に取り付けられた冷却フィン28とフライホイールダイオード9のカソード側に取り付けられた冷却フィン20、配線37は自己消弧型半導体素子5のエミッタ側に取り付けられた冷却フィン29とフライホイールダイオード9のアノード側に取り付けられた冷却フィン21とを夫々電気的に接続するブスバーである。尚、以上の配線30乃至37については、その相当部分が図1(a)に図示されている。
ここで、第1の圧接構造体12はダイオードのみで構成し、第2の圧接構造体24は自己消弧型半導体素子のみで構成する。例えば、第1の圧接構造体12において、冷却フィン13と冷却フィン21を各々外側から押圧することで第1の圧接構造体12を構成するフライホイールダイオード6、7の電気的接続を確保し、クランプダイオード10、11の電気的接続を確保し、フライホイールダイオード8、9の電気的接続を確保する。同様に、第2の圧接構造体24において、冷却フィン25と冷却フィン29を各々外側から押圧することで第2の圧接構造体24を構成する自己消弧型半導体素子2、3、4及び5の各々の電気的接続を確保する。
このような構成にすることで、圧接する半導体パッケージ内のダイオードのチップ数と自己消弧型半導体素子のチップ数が異なる場合でも、第1の圧接構造体と第2の圧接構造体の径を必要最小限の径にすることができ、小型化が図れる。例えば、ダイオードの1チップ当たりの許容電流が100 Aで、自己消弧型半導体素子の1チップ当たりの許容電流が50 Aの場合、ダイオードの半導体パッケージに必要なチップ数は自己消弧型半導体素子の半分で良い。従って、ダイオードの半導体パッケージの圧接面に垂直な面積は自己消弧型半導体素子の半分で良いため、図2に示すようにインバータの小型化が可能となる。この時、異径の半導体パッケージで構成された圧接構造体では、小さい径の半導体パッケージに対して大きい径の半導体パッケージの面圧が低下し、径の大きな半導体パッケージで構成されたダイオードの接触熱抵抗の増加と電流集中を招いてしまう。従って、圧接構造体を構成する半導体パッケージは同径である必要がある。
図3に実施例2に係る電力変換装置の構成図を示す。図3(a)は本発明のインバータ装置の回路構成を示すものであり、図3(b)は本発明に係るインバータ装置のインバータブリッジ1相分の構造図を簡易的に示したものである。尚、図3(a)及び図3(b)においては、簡単のためインバータ1相分についてのみの回路構成及び構造を示している。
図3(a)において、直流電圧回路38は正電位P、負電位N及び中間の電位Cを持ち、この直流電圧回路38と逆並列にフライホイールダイオード39、40、41及び42が接続されている。また、フライホイールダイオード39、40、41及び42には自己消弧型半導体素子43、44、45及び46の直列回路が夫々接続されている。さらに、自己消弧型半導体素子43、44、45及び46には自己消弧型半導体素子47、48、49及び50が並列に接続されている。クランプダイオード51は、直流電圧回路38の電位Cの端子から接続されたフライホイールダイオード39及び40の接続点に向けて電流を流す方向に接続され、またクランプダイオード52は、接続されたフライホイールダイオード41及び42の接続点から直流電圧回路38の電位Cの端子に向けて電流を流す方向に接続されている。尚、OUTは図示しない負荷に接続される出力端子である。次に、図3(b)において、第1の圧接構造体53はフライホイールダイオード39、40、41及び42と並びにクランプダイオード51及び52の6個の半導体パッケージを積み重ねて構成され、各半導体パッケージの間に各々介装された冷却フィン54、55、56、57、58、59、60、61及び62と、絶縁物63及び64を共締めする串型の構造となっている。
また、第2の圧接構造体65は、自己消弧型半導体素子43、44、45及び46と、各々の間に設けられた冷却フィン66、67、68、69及び70とを共締めした串型の構造となっている。
さらに、第3の圧接構造体71は、自己消弧型半導体素子47、48、49及び50と、各々の間に設けられた冷却フィン72、73、74、75及び76とを共締めした串型の構造となっている。
配線77はクランプダイオード51のカソード側に取り付けられた冷却フィン57とフライホイールダイオード40のカソード側に取り付けられた冷却フィン55とを電気的に接続するブスバーである。同様に配線78はクランプダイオード52のアノード側に取り付けられた冷却フィン59とフライホイールダイオード41のアノード側に取り付けられた冷却フィン61とを電気的に接続するブスバーである。また、配線79はフライホイールダイオード40のアノード側に取り付けられた冷却フィン56とフライホイールダイオード41のカソード側に取り付けられた冷却フィン60とを電気的に接続するブスバーである。
配線80、81、82、83及び84は自己消弧型半導体素子とフライホイールダイオードとの渡り配線であり、配線80は自己消弧型半導体素子43のコレクタ側に取り付けられた冷却フィン66とフライホイールダイオード39のカソード側に取り付けられた冷却フィン54、配線81は自己消弧型半導体素子44のコレクタ側に取り付けられた冷却フィン67とフライホイールダイオード40のカソード側に取り付けられた冷却フィン55、配線82は配線79と自己消弧型半導体素子45のコレクタ側に取り付けられた冷却フィン68、配線83は自己消弧型半導体素子46のコレクタ側に取り付けられた冷却フィン69とフライホイールダイオード42のカソード側に取り付けられた冷却フィン61、配線84は自己消弧型半導体素子46のエミッタ側に取り付けられた冷却フィン70とフライホイールダイオード42のアノード側に取り付けられた冷却フィン62とを夫々電気的に接続するブスバーである。
配線85、86、87、88及び89は第2の圧接構造体65を構成している自己消弧型半導体素子と第3の圧接構造体71を構成している自己消弧型半導体素子との渡り配線であり、配線85は自己消弧型半導体素子43のコレクタ側に取り付けられた冷却フィン66と自己消弧型半導体素子47のコレクタ側に取り付けられた冷却フィン72、配線86は自己消弧型半導体素子44のコレクタ側に取り付けられた冷却フィン67と自己消弧型半導体素子48のコレクタ側に取り付けられた冷却フィン73、配線87は自己消弧型半導体素子45のコレクタ側に取り付けられた冷却フィン68と自己消弧型半導体素子49のコレクタ側に取り付けられた冷却フィン74、配線88は自己消弧型半導体素子46のコレクタ側に取り付けられた冷却フィン69と自己消弧型半導体素子50のコレクタ側に取り付けられた冷却フィン75、配線89は自己消弧型半導体素子46のエミッタ側に取り付けられた冷却フィン70と自己消弧型半導体素子50のエミッタ側に取り付けられた冷却フィン76とを夫々電気的に接続するブスバーである。尚、以上の配線77乃至89については、その相当部分が図1(a)に図示されている。
ここで、第1の圧接構造体53はダイオードのみで構成し、第2の圧接構造体65と第3の圧接構造体71は自己消弧型半導体素子のみで構成する。このような構成にすることで、並列する自己消弧型半導体素子が多くのBUSやコンデンサを介することなく近傍に位置しているため、回路のインダクタンスのばらつきによる電流のアンバランスが原因で、横流や電流集中による発熱、サージ電圧による半導体チップの破損が発生するのを抑制できる。さらに、1ユニット当たりの容量密度(VA/m3)を大きくすることが可能、かつ圧接構造体が1つ増加するだけであるため、装置全体が大型化せず、装置全体の容量密度(VA/m3)を増加することが可能となる。
以下に、並列に自己消弧型半導体素子のみで構成された第3の圧接構造体を接続するよりも、提案する図3に示す構造の方が回路のインダクタンスのばらつきを小さくし、電流のアンバランスを抑制できる理由について図4−1、図4−2、図5、図6−1、図6−2を参照して説明する。
まず、図4−1、図4−2の本発明の構造においてインバータ動作時に流れる電流経路を示す。電流経路は全部で6パターンとなり、図4−1(a)に示す正電位Pから自己消弧型半導体素子を通り出力端子OUTに流れる経路、図4−1(b)に示す中間の電位Cからクランプダイオード、自己消弧型半導体素子を通り出力端子OUTに流れる経路、図4−1(c)に示す負電位Nからフライホイールダイオードを通り出力端子OUTに流れる経路、図4−2(d)に示す出力端子OUTからフライホイールダイオードを通り負電位Pに流れる経路、図4−2(e)に示す出力端子OUTから自己消弧型半導体素子、クランプダイオードを通り中間の電位Cに流れる経路、図4−2(f)に示す出力端子OUTから自己消弧型半導体素子を通り負電位Nに流れる経路である。
図4−1(a)において、正電位Pから自己消弧型半導体素子43、44を通り出力端子OUTに流れる経路と正電位Pから自己消弧型半導体素子47、48を通り出力端子OUTに流れる経路の長さは等しく1並列目と2並列目を通る電流の配線によるアンバランスは発生しにくい。
また、図4−1(b)において、中間の電位Cからクランプダイオード51、自己消弧型半導体素子44を通り出力端子OUTに流れる経路と中間の電位Cからクランプダイオード51、自己消弧型半導体素子48を通り出力端子OUTに流れる経路の長さは等しく1並列目と2並列目を通る電流の配線によるアンバランスは発生しにくい。
また、図4−2(e)において、出力端子OUTから自己消弧型半導体素子45、クランプダイオード52を通り中間の電位Cに流れる経路と出力端子OUTから自己消弧型半導体素子49、クランプダイオード52を通り中間の電位Cに流れる経路の長さは等しく1並列目と2並列目を通る電流の配線によるアンバランスは発生しにくい。
また、図4−2(f)において、出力端子OUTから自己消弧型半導体素子45、46を通り負電位Nに流れる経路と出力端子OUTから自己消弧型半導体素子49、50を通り負電位Nに流れる経路の長さは等しく1並列目と2並列目を通る電流の配線によるアンバランスは発生しにくい。
尚、図4−1(c)においては、共通のフライホイールダイオード41、42を通るため経路は一通りしかなく電流のアンバランスは発生し得ない。図4−2(d)においても同じように電流が共通のフライホイールダイオード39、40を通るため経路は一通りしかなく電流のアンバランスは発生しない。
次に、図5に第3の圧接構造体接続した構成図を示す。
図5 において、正電位Pと負電位Nに対して並列に自己消弧型半導体素子90、91、92 及び93の直列回路が接続されている。また、自己消弧型半導体素子90、91、92 及び93にはフライホイールダイオード94、95、96及び97が夫々逆並列に接続されている。さらに、フライホイールダイオード94、95、96及び97には自己消弧型半導体素子98、99、100及び101が並列に接続されている。クランプダイオード102は、電位Cの端子から直列接続された自己消弧型半導体素子90及び91の接続点に向けて電流を流す方向に接続され、またクランプダイオード103は、直列接続された自己消弧型半導体素子92及び93の接続点から電位Cの端子に向けて電流を流す方向に接続されている。尚、OUTは図示しない負荷に接続される出力端子である。さらに、第1の圧接構造体104は自己消弧型半導体素子90、91、92及び93並びにクランプダイオード102及び103の6 個の半導体パッケージを積み重ねて構成され、各半導体パッケージの間に各々介装された冷却フィン105、106、107、108、109、110、111、112及び113と、絶縁物114及び115を共締めする串型の構造となっている。
また、第2の圧接構造体116は、フライホイールダイオード94、95、96及び97と、各々の間に設けられた冷却フィン117、118、119、120及び121とを共締めした串型の構造となっている。
さらに、第3の圧接構造体122は、自己消弧型半導体素子98、99、100及び101と、各々の間に設けられた冷却フィン123、124、125、126及び127とを共締めした串型の構造となっている。
配線128はクランプダイオード102のカソード側に取り付けられた冷却フィン108と自己消弧型半導体素子90のエミッタ側に取り付けられた冷却フィン106とを電気的に接続するブスバーである。同様に配線129はクランプダイオード103のアノード側に取り付けられた冷却フィン110と自己消弧型半導体素子92のエミッタ側に取り付けられた冷却フィン112とを電気的に接続するブスバーである。また、配線130は自己消弧型半導体素子91のエミッタ側に取り付けられた冷却フィン107と自己消弧型半導体素子92のコレクタ側に取り付けられた冷却フィン111とを電気的に接続するブスバーである。
配線131、132、133、134及び135は自己消弧型半導体素子とフライホイールダイオードとの渡り配線であり、配線131は自己消弧型半導体素子90のコレクタ側に取り付けられた冷却フィン105とフライホイールダイオード94のカソード側に取り付けられた冷却フィン117、配線132は自己消弧型半導体素子91のコレクタ側に取り付けられた冷却フィン106とフライホイールダイオード95のカソード側に取り付けられた冷却フィン118、配線133は配線130とフライホイールダイオード96のカソード側に取り付けられた冷却フィン119、配線134は自己消弧型半導体素子93のコレクタ側に取り付けられた冷却フィン112とフライホイールダイオード97のカソード側に取り付けられた冷却フィン120、配線135は自己消弧型半導体素子93のエミッタ側に取り付けられた冷却フィン113とフライホイールダイオード97のアノード側に取り付けられた冷却フィン121とを夫々電気的に接続するブスバーである。
配線136、137、138、139及び140は第2の圧接構造体116を構成している自己消弧型半導体素子と第3の圧接構造体122を構成している自己消弧型半導体素子との渡り配線であり、配線136はフライホイールダイオード94のカソード側に取り付けられた冷却フィン117と自己消弧型半導体素子98のコレクタ側に取り付けられた冷却フィン123、配線137はフライホイールダイオード95のカソード側に取り付けられた冷却フィン118と自己消弧型半導体素子99のコレクタ側に取り付けられた冷却フィン124、配線138はフライホイールダイオード96のカソード側に取り付けられた冷却フィン119と自己消弧型半導体素子100のコレクタ側に取り付けられた冷却フィン125、配線139はフライホイールダイオード97のカソード側に取り付けられた冷却フィン120と自己消弧型半導体素子101のコレクタ側に取り付けられた冷却フィン126、配線140はフライホイールダイオード97のアノード側に取り付けられた冷却フィン121と自己消弧型半導体素子101のエミッタ側に取り付けられた冷却フィン127とを夫々電気的に接続するブスバーである。
図6−1、図6−2に第3の圧接構造体接続した構成においてインバータ動作時に流れる電流経路を示す。電流経路は全部で6パターンとなり、図4−1、図4−2の説明と同様に図6−1(a)に示す正電位Pから自己消弧型半導体素子を通り出力端子OUTに流れる経路、図6−1(b)に示す中間の電位Cからクランプダイオード、自己消弧型半導体素子を通り出力端子OUTに流れる経路、図6−1(c)に示す負電位Nからフライホイールダイオードを通り出力端子OUTに流れる経路、図6−2(d)に示す出力端子OUTからフライホイールダイオードを通り負電位Pに流れる経路、図6−2(e)に示す出力端子OUTから自己消弧型半導体素子、クランプダイオードを通り中間の電位Cに流れる経路、図6−2(f)に示す出力端子OUTから自己消弧型半導体素子を通り負電位Nに流れる経路となる。
図6−1(a)において、正電位Pから自己消弧型半導体素子90、91を通り出力端子OUTに流れる経路と正電位Pから自己消弧型半導体素子98、99を通り出力端子OUTに流れる経路の長さは異なり1並列目と2並列目を通る電流の配線によるアンバランスが発生する。
また、図6−1(b)において、中間の電位Cからクランプダイオード102、自己消弧型半導体素子91を通り出力端子OUTに流れる経路と中間の電位Cからクランプダイオード102、自己消弧型半導体素子99を通り出力端子OUTに流れる経路の長さは異なり1並列目と2並列目を通る電流の配線によるアンバランスが発生する。
また、図6−2(e)において、出力端子OUTから自己消弧型半導体素子92、クランプダイオード103を通り中間の電位Cに流れる経路と出力端子OUTから自己消弧型半導体素子100、クランプダイオード103を通り中間の電位Cに流れる経路の長さは異なり1並列目と2並列目を通る電流の配線によるアンバランスが発生する。
また、図6−2(f)において、出力端子OUTから自己消弧型半導体素子92、93を通り負電位Nに流れる経路と出力端子OUTから自己消弧型半導体素子100、101を通り負電位Nに流れる経路の長さは異なり1並列目と2並列目を通る電流の配線によるアンバランスが発生する。
尚、図6−1(c)においては、共通のフライホイールダイオード96、97を通るため経路は一通りしかなく電流のアンバランスは発生し得ない。図6−2(d)においても同じように電流が共通のフライホイールダイオード94、95を通るため経路は一通りしかなく電流のアンバランスは発生しない。
以上のことから、配線によるインダクタンスのばらつきを抑制することができ、1並列目と2並列目を通る電流のアンバランスを抑制することがきでる。
以上の実施例では、容量を増やすためにIGBTを並列接続した場合、電源―出力間を通過する配線の距離が1並列目と2並列目で異なるのを避けて、各経路におけるインダクタンスのばらつきの発生を抑制できる。また、複数台の電力変換装置盤を横方向に列盤するものと比較して、横流抑制のための結合リアクトルの追加や配線の増加などを避けて、装置の小型化が可能となる。さらに、圧接する電極と接触面積の異なる異径電極で圧接構造体を構成するものと比較して、面積の小さな電極側で過大な圧力が生じるのを避けて、冷却フィンの材質がやわらかいことに起因する、圧接する電極径が小さい方に向かってフィンの両端が変形してしまい、電極周辺の熱抵抗と接触抵抗が増大してしまうことが避けられる。同径の電極を追加することによる、冷却フィン表面から冷却水路までの距離が増えて伝達熱抵抗が増加し、冷却能力が下がるという現象を避けることができる。
並列する半導体素子が多くのBUSやコンデンサを介することなく近傍に位置しているため、回路のインダクタンスのばらつきによる電流のアンバランスが原因で、横流や電流集中による発熱、サージ電圧による半導体チップの破損が発生するのを抑制できる。さらに、装置全体の小型化も可能となる。また、圧接構造体のチップ形状や電極径の違いによる接触面の圧力差を軽減できる。
1、38 直流電圧回路
2、3、4、5、43、44、45、46、47、48、49、50、90、91、92、93、98、99、100、101 自己消弧型半導体素子
6、7、8、9、39、40、41、42、94、95、96、97 フライホイールダイオード
10、11、51、52、102、103 クランプダイオード
13、14、15、16、17、18、19、20、21、25、26、27、28、29、54、55、56、57、58、59、60、61、62、66、67、68、69、70、72、73、74、75、76、105、106、107、108、109、110、111、112、113、117、118、119、120、121、123、124、125、126、127 冷却フィン
22、23、63、64、114、115 絶縁物
12、53、104 第1の圧接構造体
24、65、116 第2の圧接構造体
71、122 第3の圧接構造体
30、31、32、33、34、35、36、37、77、78、79、80、81、82、83、84、85、86、87、88、89、128、129、130、131、132、133、134、135、136、137、138、139、140 配線

Claims (8)

  1. 一方側端子と他方側端子の間に直列接続された第1の半導体素子、第2の半導体素子、第3の半導体素子及び第4の半導体素子と、前記第1の半導体素子、第2の半導体素子、第3の半導体素子及び第4の半導体素子の各々に対応して設けられた第1のフライホイールダイオード、第2のフライホイールダイオード、第3のフライホイールダイオード及び第4のフライホイールダイオードと、前記第1の半導体素子と前記第2の半導体素子との接続部と前記一方側端子と他方側端子の間の電位である中間電位端子とを接続する第1のクランプダイオード、及び前記第3の半導体素子と前記第4の半導体素子との接続部と前記中間電位端子とを接続する第2のクランプダイオードを有し、前記第1の半導体素子、前記第2の半導体素子、前記第3の半導体素子及び前記第4の半導体素子は、各々略同径の第1半導体パッケージで構成され、直列的な配置による圧接接続で接続され、前記第1のフライホイールダイオード、前記第2のフライホイールダイオード、前記第1のクランプダイオード、前記第2のクランプダイオード、前記第3のフライホイールダイオード及び前記第4のフライホイールダイオードは、各々略同径及び前記第1半導体パッケージと異径の第2半導体パッケージで構成され、直列的な配置がなされることにより、前記第1のフライホイールダイオードと前記第2のフライホイールダイオードは圧接により接続され、前記第1のクランプダイオード及び前記第2のクランプダイオードは圧接により接続され、前記第3のフライホイールダイオードと前記第4のフライホイールダイオードは圧接により接続されることを特徴とする電力変換装置。
  2. 請求項1において、前記第1のフライホイールダイオード、前記第2のフライホイールダイオード、前記第1のクランプダイオード、前記第2のクランプダイオード、前記第3のフライホイールダイオード及び前記第4のフライホイールダイオードは各々半導体パッケージとして構成され、圧接する半導体パッケージの電極直径が同径であることを特徴とする電力変換装置。
  3. 請求項1において、第5の半導体素子、第6の半導体素子、第7の半導体素子及び第8の半導体素子を有し、前記第5の半導体素子、第6の半導体素子、第7の半導体素子及び第8の半導体素子の各々は前記第1のフライホイールダイオード、第2のフライホイールダイオード、第3のフライホイールダイオード及び第4のフライホイールダイオードと接続されることを特徴とする電力変換装置。
  4. 請求項3において、前記第1のフライホイールダイオード及び前記第2のフライホイールダイオードと、前記第3のフライホイールダイオード及び前記第4のフライホイールダイオードが、前記第1のクランプダイオード及び前記第2のクランプダイオード、を挟みこむ構造となっていることを特徴とする電力変換装置。
  5. 請求項4において、前記第2のフライホイールダイオードと前記第1のクランプダイオードは絶縁部材を介して隣接され、前記第2のクランプダイオードと前記第3のフライホイールダイオードは絶縁部材を介して隣接されることを特徴とする電力変換装置。
  6. 請求項5において、前記第1のクランプダイオードは、前記第1のフライホイールダイオード及び前記第2のフライホイールダイオードの間に設けられた導電体を介して、前記第1の半導体素子と前記第2の半導体素子との接続部に接続され前記第2のクランプダイオードは、前記第3のフライホイールダイオード及び前記第4のフライホイールダイオードの間に設けられた導電体を介して、前記第3の半導体素子と前記第4の半導体素子との接続部に接続されることを特徴とする電力変換装置
  7. 請求項1において、上記電力変換装置は正電位、負電位及び中間電位の3つの端子を有する直流電圧回路と、前記各電位を出力することができる3レベルインバータブリッジとを有し、前記3レベルインバータブリッジの1相分は、1並列目としての前記第1乃至第4の半導体素子と、2並列目としての前記第1乃至第4のフライホイールダイオードおよび前記第1乃至第2のクランプダイオードとで構成され、前記1並列目を通る配線インダクタンスと前記2並列目を通る配線インダクタンスが略等しくなるよう構成したことを特徴とする電力変換装置。
  8. 請求項1において、前記第1乃至第4の半導体素子で構成される直列圧接構造体と平滑コンデンサが並列接続していることを特徴とする電力変換装置。
JP2015530634A 2013-08-09 2013-08-09 電力変換装置 Active JP6134798B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071587 WO2015019480A1 (ja) 2013-08-09 2013-08-09 電力変換装置

Publications (2)

Publication Number Publication Date
JPWO2015019480A1 JPWO2015019480A1 (ja) 2017-03-02
JP6134798B2 true JP6134798B2 (ja) 2017-05-24

Family

ID=52460847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015530634A Active JP6134798B2 (ja) 2013-08-09 2013-08-09 電力変換装置

Country Status (3)

Country Link
JP (1) JP6134798B2 (ja)
TW (1) TWI548199B (ja)
WO (1) WO2015019480A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017118608A (ja) * 2015-12-21 2017-06-29 東芝三菱電機産業システム株式会社 圧接型半導体素子のオン特性を改善した電力変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420021B2 (ja) * 1997-05-19 2003-06-23 株式会社東芝 半導体電力変換装置
JP4582629B2 (ja) * 2004-11-30 2010-11-17 東芝三菱電機産業システム株式会社 3レベルインバータ装置
JP2009142070A (ja) * 2007-12-06 2009-06-25 Fuji Electric Systems Co Ltd 電力用半導体素子のゲート駆動方式
JP2011188676A (ja) * 2010-03-10 2011-09-22 Mitsubishi Electric Corp 電源装置
JP5629664B2 (ja) * 2011-09-07 2014-11-26 東芝三菱電機産業システム株式会社 3レベル電力変換装置

Also Published As

Publication number Publication date
TWI548199B (zh) 2016-09-01
JPWO2015019480A1 (ja) 2017-03-02
TW201524110A (zh) 2015-06-16
WO2015019480A1 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP4920677B2 (ja) 電力変換装置およびその組み立て方法
US10153708B2 (en) Three-level power converter
US8300443B2 (en) Semiconductor module for use in power supply
JP5132175B2 (ja) 電力変換装置
JP6196853B2 (ja) 3レベルコンバータハーフブリッジ
CN108029161B (zh) 感应加热电源设备
JP2011193646A (ja) 半導体装置
JP2016208706A (ja) 電力変換装置
JP2014217270A (ja) 3レベル電力変換装置用ハーフブリッジ
JP6345361B2 (ja) パワー半導体モジュール
JP2004135444A (ja) 電力変換装置のスタック構造
JP5150570B2 (ja) 三相電力変換装置
US20140085950A1 (en) Power conversion device
CN105593989B (zh) 具有缓冲器-电容器的用于变换器的半导体堆叠
JP5557891B2 (ja) 三相電力変換装置
JP4842018B2 (ja) 電力変換装置
JP4582629B2 (ja) 3レベルインバータ装置
JP6134798B2 (ja) 電力変換装置
JP6493171B2 (ja) 電力変換装置
JP4664104B2 (ja) 電力変換装置
JP5488244B2 (ja) パワー半導体モジュール
JP7364103B2 (ja) 電力変換装置
US10833596B1 (en) Integrated power unit for a power supply device
JP6803638B2 (ja) 電力変換装置
TWI665941B (zh) 感應加熱用電源裝置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6134798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150