JP6125916B2 - Conductive composite particles, and positive electrode and secondary battery for secondary battery using the same - Google Patents

Conductive composite particles, and positive electrode and secondary battery for secondary battery using the same Download PDF

Info

Publication number
JP6125916B2
JP6125916B2 JP2013123222A JP2013123222A JP6125916B2 JP 6125916 B2 JP6125916 B2 JP 6125916B2 JP 2013123222 A JP2013123222 A JP 2013123222A JP 2013123222 A JP2013123222 A JP 2013123222A JP 6125916 B2 JP6125916 B2 JP 6125916B2
Authority
JP
Japan
Prior art keywords
composite particles
conductive composite
conductive
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013123222A
Other languages
Japanese (ja)
Other versions
JP2014241229A (en
Inventor
裕輝 名古
裕輝 名古
川崎 卓
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2013123222A priority Critical patent/JP6125916B2/en
Publication of JP2014241229A publication Critical patent/JP2014241229A/en
Application granted granted Critical
Publication of JP6125916B2 publication Critical patent/JP6125916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、導電性複合粒子、およびそれを用いた二次電池用正極、二次電池に関する。 The present invention relates to conductive composite particles, a positive electrode for a secondary battery using the same, and a secondary battery.

リチウムイオンの吸蔵、放出が可能な材料を用いて負極を形成したリチウムイオン二次電池は、金属リチウムを用いて負極を形成したリチウム電池に比べてデンドライドの析出を抑制することができる。そのため、電池の短絡を防止して安全性を高めた上で高容量なエネルギー密度の高い電池を提供できるという利点を有している。   A lithium ion secondary battery in which a negative electrode is formed using a material capable of occluding and releasing lithium ions can suppress the deposition of dendride compared to a lithium battery in which a negative electrode is formed using metallic lithium. Therefore, there is an advantage that a battery having a high capacity and a high energy density can be provided while safety is improved by preventing a short circuit of the battery.

近年ではこのリチウムイオン二次電池のさらなる高容量化が求められている。このため
一般に電池反応物質であるリチウム金属酸化物正極材や炭素系負極材の充填密度を高める工夫が行われている。
In recent years, a further increase in capacity of this lithium ion secondary battery has been demanded. For this reason, generally, the device which raises the packing density of the lithium metal oxide positive electrode material and carbon-type negative electrode material which are battery reaction materials is performed.

また、近年では電気自動車やハイブリッドカー用途の電池として電池抵抗の低減による優れた高出力特性および高速充電性が求められている。この点で従来では活物質の小粒径化や電極内空隙の増加、電極の薄形化によるイオン伝導抵抗の低減、さらには導電剤添加量の増加による電気抵抗の低減等の工夫がなされてきた。しかし、活物質の小粒径化や電極内空隙の増加は電極充填密度の低下につながり、電極の薄形化は電極集電体の体積を相対的に増大させることから電池全体としての容量密度を低下させる。また導電剤添加量の増加によっても電池反応物質の充填密度が相対的に低下する。このため、高出力特性および高速充電性と高容量化とを同時に達成することが困難であった。   Further, in recent years, excellent high output characteristics and high-speed chargeability due to reduction of battery resistance are required as batteries for electric vehicles and hybrid cars. In this regard, in the past, contrivances have been made such as reducing the particle size of the active material, increasing the gap in the electrode, reducing the ionic conduction resistance by making the electrode thinner, and further reducing the electrical resistance by increasing the amount of conductive agent added. It was. However, the reduction in the active material particle size and the increase in the gap in the electrode lead to a decrease in the electrode packing density, and the reduction in the thickness of the electrode relatively increases the volume of the electrode current collector. Reduce. Also, the packing density of the battery reactant is relatively lowered by increasing the amount of conductive agent added. For this reason, it has been difficult to simultaneously achieve high output characteristics, high-speed chargeability, and high capacity.

高出力特性および高速充電性と高容量化とを同時に達成するために、以下のような検討がなされてきた。特許文献1では、正極活物質を細孔を有する球状凝集体とすることにより、高い充填性とイオン伝導抵抗の低減とを両立することができるとしている。しかし、細孔内の電解質と活物質の接する界面には電子伝導パスが到達していないため、界面における電荷移動反応の速度を高める効果が十分でなく、高出力特性を向上させる効果は高いものではなかった。   In order to achieve high output characteristics, high-speed chargeability and high capacity simultaneously, the following studies have been made. In patent document 1, it is supposed that high filling property and reduction of ion conduction resistance can both be achieved by making the positive electrode active material into a spherical aggregate having pores. However, since the electron conduction path does not reach the interface between the electrolyte and the active material in the pores, the effect of increasing the charge transfer reaction speed at the interface is not sufficient, and the effect of improving the high output characteristics is high. It wasn't.

特許文献2では、正極活物質の粒子形態を炭素材料で被覆された一次粒子の凝集体とし、かつ凝集粒子に一定の細孔径と細孔容量をもった細孔を設けることにより、界面における電荷移動反応の高速化と高い充填性とを両立することができるとしている。また特許文献3では、正極活物質の凝集体である細孔を有する二次粒子と、前記二次粒子の細孔の一部に充填された導電性微粉末とを有することを特徴とする複合材料を用いることで、高出力特性と高密度化を両立することができるとしている。しかしながら、前記のいずれの形態においても、活物質粒子間の導電性は十分でないため、高出力特性および高速充電性を得るためには導電剤をさらに加えて電極を形成する必要があり、結果として電極密度を向上させる効果は高いものではなかった。 In Patent Document 2, the particle shape of the positive electrode active material is an aggregate of primary particles coated with a carbon material, and the aggregated particles are provided with pores having a certain pore diameter and pore volume, thereby providing a charge at the interface. It is said that both speeding up of the transfer reaction and high filling properties can be achieved. Patent Document 3 discloses a composite comprising secondary particles having pores that are aggregates of a positive electrode active material, and conductive fine powder filled in a part of the pores of the secondary particles. By using materials, it is said that both high output characteristics and high density can be achieved. However, in any of the above-mentioned forms, the conductivity between the active material particles is not sufficient, so that in order to obtain high output characteristics and fast chargeability, it is necessary to further add a conductive agent to form an electrode. The effect of improving the electrode density was not high.

特開2009−117261号公報JP 2009-117261 A 特開2009−152188号公報JP 2009-152188 A 特開2009−117241号公報JP 2009-117241 A

本発明は、上記問題と実情に鑑み、粒子間の導電性が著しく向上した導電性複合粒子を提供することを目的とする。さらに、この導電性複合粒子を用いて製造される高出力特性、高速充電性に優れた二次電池用正極および二次電池を提供することを目的とする。   An object of this invention is to provide the electroconductive composite particle which the electroconductivity between particle | grains improved remarkably in view of the said problem and the actual condition. Furthermore, it aims at providing the positive electrode for secondary batteries and secondary battery which were excellent in the high output characteristic manufactured using this electroconductive composite particle, and high-speed chargeability.

すなわち、本発明は上記の課題を解決するために、以下の手段を採用する。
(1)炭素からなる導電剤と、LiNi Mn (2−X) 、Xが0<X<2で表されるスピネル型リチウム塩である活物質の二次凝集体からなる導電性複合粒子であって、前記導電剤の一部が前記二次凝集体の外表面を被覆してなり、さらに一部が前記二次凝集体細孔内の活物質表面を被覆してなり、かつ水銀圧入法により測定した細孔径10〜1000nmの細孔容積が0.01〜0.40cc/g、細孔分布のピークが50〜1000nmである導電性複合粒子。
(2)前記炭素からなる導電剤が、カーボンナノファイバー、繊維状有機物の炭化物およびアセチレンブラックから選択される少なくとも1種を含む、(1)に記載の導電性複合粒子。
(3)前記カーボンナノファイバーの平均繊維径が、5〜150nmである、(2)に記載の導電性複合粒子。
(4)前記繊維状有機物の平均繊維径が、5〜1000nmである、(2)に記載の導電性複合粒子。
(5)前記炭素からなる導電剤の含有量が、0.01〜10質量%である、請求項1〜4のいずれか一項に記載の導電性複合粒子。
)24MPaの荷重下で測定した体積抵抗率が100Ωcm以下である、(1)〜()のいずれかに記載の導電性複合粒子。
)(1)〜()のいずれかに記載の導電性複合粒子を用いて製造される、二次電池
用正極。
)()に記載の二次電池用正極を用いて製造される、二次電池。
That is, the present invention employs the following means in order to solve the above problems.
(1) A conductive composite comprising a conductive agent made of carbon, and a secondary aggregate of an active material of LiNi X Mn (2-X) O 4 , a spinel type lithium salt where X is represented by 0 <X <2. A part of the conductive agent covering the outer surface of the secondary aggregate, and a part of the conductive agent covering the surface of the active material in the pores of the secondary aggregate; and mercury. Conductive composite particles having a pore volume of 0.01 to 0.40 cc / g and a pore distribution peak of 50 to 1000 nm measured by a press-fitting method.
(2) The conductive composite particle according to (1), wherein the conductive agent made of carbon includes at least one selected from carbon nanofibers, fibrous organic carbides, and acetylene black.
(3) The conductive composite particles according to ( 2), wherein the carbon nanofibers have an average fiber diameter of 5 to 150 nm.
(4) The conductive composite particles according to ( 2), wherein the fibrous organic matter has an average fiber diameter of 5 to 1000 nm.
(5) The conductive composite particle according to any one of claims 1 to 4, wherein a content of the conductive agent made of carbon is 0.01 to 10% by mass.
( 6 ) The conductive composite particles according to any one of (1) to ( 5 ), wherein the volume resistivity measured under a load of 24 MPa is 100 Ωcm or less.
( 7 ) The positive electrode for secondary batteries manufactured using the electroconductive composite particle in any one of (1)-( 6 ).
( 8 ) Secondary battery manufactured using the positive electrode for secondary batteries as described in ( 7 ).

本発明では、導電剤の一部が二次凝集体の外表面を被覆することで、導電性複合粒子間の導電性が顕著に改善されることを見出した。また、特定の細孔容量と細孔径を有する前記導電性複合粒子では、電解質の複合粒子細孔内への高い浸透性を有し、さらに導電材の一部が細孔内の活物質表面を被覆することで、細孔内の電解質と活物質の接する界面に電子伝導パスが到達し、界面における電荷移動反応の速度が改善される。このため、本発明の導電性複合粒子を用いた二次電池用正極により作製された二次電池は、高出力特性および高速充電性に優れる。   In the present invention, it has been found that the conductivity between the conductive composite particles is remarkably improved by coating a part of the conductive agent on the outer surface of the secondary aggregate. In addition, the conductive composite particles having a specific pore volume and pore diameter have high permeability to the composite particle pores of the electrolyte, and a part of the conductive material covers the active material surface in the pores. By coating, the electron conduction path reaches the interface between the electrolyte and the active material in the pores, and the charge transfer reaction speed at the interface is improved. For this reason, the secondary battery produced by the positive electrode for secondary batteries using the electroconductive composite particle of this invention is excellent in a high output characteristic and fast charge property.

本発明の導電性複合粒子の態様を示す模式断面図である。It is a schematic cross section which shows the aspect of the electroconductive composite particle of this invention.

以下、本発明を詳細に説明する。本発明の導電性複合粒子は、炭素からなる導電剤と、活物質の二次凝集体からなる導電性複合粒子であって、前記導電剤の一部が前記二次凝集体の外表面を被覆してなり、さらに一部が前記二次凝集体細孔内の活物質表面を被覆したものである。   Hereinafter, the present invention will be described in detail. The conductive composite particle of the present invention is a conductive composite particle comprising a conductive agent made of carbon and a secondary aggregate of an active material, wherein a part of the conductive agent covers the outer surface of the secondary aggregate. Further, a part of the surface of the active material in the secondary aggregate pores is coated.

図1に、本発明の導電性複合粒子1の模式図を示す。図1において、活物質の二次凝集体は、該活物質の一次粒子2が凝集した集塊物である。該二次凝集体は、細孔3を備える。
炭素からなる導電剤4の一部は、二次凝集体の外表面5を被覆したものであると共に、さらに一部が二次凝集体細孔3内の活物質6を被覆したものである。
In FIG. 1, the schematic diagram of the electroconductive composite particle 1 of this invention is shown. In FIG. 1, the secondary aggregate of the active material is an agglomerate in which primary particles 2 of the active material are aggregated. The secondary aggregate has pores 3.
A part of the conductive agent 4 made of carbon covers the outer surface 5 of the secondary aggregate, and a part of the conductive agent 4 covers the active material 6 in the secondary aggregate pores 3.

本発明における導電性複合粒子の細孔は、水銀圧入法により測定した細孔径10〜1000nmの細孔容積が0.01〜0.40cc/gであり、0.15〜0.30cc/gであることがより好ましい。細孔径10〜1000nmの細孔容積を0.01cc/g以上とすることで、電解質と活物質との接する界面の面積が大きくなり、イオン伝導抵抗が低減するため、高速充電性および高出力特性が良好となる。また、0.40cc/g以下とすることで、より高密度な電極が得られるため、電池の充放電容量が良好となる。   The pores of the conductive composite particles in the present invention have a pore volume of 0.01 to 0.40 cc / g with a pore diameter of 10 to 1000 nm measured by mercury porosimetry, and 0.15 to 0.30 cc / g. More preferably. By setting the pore volume of the pore diameter of 10 to 1000 nm to 0.01 cc / g or more, the area of the interface between the electrolyte and the active material is increased and the ionic conduction resistance is reduced, so that high-speed chargeability and high output characteristics are achieved. Becomes better. Moreover, since a higher-density electrode is obtained by setting it as 0.40 cc / g or less, the charging / discharging capacity | capacitance of a battery becomes favorable.

また、本発明における導電性複合粒子細孔は、水銀圧入法により測定した細孔分布のピークが50〜1000nmであり、200〜700nmであることがより好ましい。細孔分布のピークを50nm以上とすることで、導電性複合粒子内への電解質の浸透性が向上するため、高速充電性および高出力特性が良好となる。また、1000nm以下とすることで、結着剤の細孔への侵入を防ぎ、電極形成時の結着剤の必要量を低減することにより、高密度な電極が得られるため、電池の充放電容量が良好となる。   In addition, the conductive composite particle pores in the present invention have a pore distribution peak measured by mercury porosimetry of 50 to 1000 nm, and more preferably 200 to 700 nm. By setting the peak of the pore distribution to 50 nm or more, the permeability of the electrolyte into the conductive composite particles is improved, so that high-speed chargeability and high output characteristics are improved. In addition, by setting the thickness to 1000 nm or less, a high-density electrode can be obtained by preventing the binder from entering the pores and reducing the necessary amount of the binder during electrode formation. Capacity is good.

炭素からなる導電剤としては、カーボンナノファイバー、繊維状有機物の炭化物およびアセチレンブラックから選択される少なくとも1種であることが好ましい。
炭素からなる導電剤の含有量は、導電性複合粒子中0.01〜10質量%であることが好ましく、1〜8質量%がより好ましい。導電剤の添加量を0.01質量%以上とすることで、導電性複合粒子間および細孔内の導電性が向上するため、高速充電性および高出力特性が良好となる。また、10質量%以下とすることで、より高密度な電極が得られるため、電池の充放電容量が良好となる。
The conductive agent composed of carbon is preferably at least one selected from carbon nanofibers, fibrous organic carbides, and acetylene black.
The content of the conductive agent made of carbon is preferably 0.01 to 10% by mass and more preferably 1 to 8% by mass in the conductive composite particles. By setting the addition amount of the conductive agent to 0.01% by mass or more, the conductivity between the conductive composite particles and in the pores is improved, so that high-speed chargeability and high output characteristics are improved. Moreover, since a higher-density electrode is obtained by setting it as 10 mass% or less, the charging / discharging capacity | capacitance of a battery becomes favorable.

カーボンナノファイバーは、炭素からなる微小な繊維状の物質であり、構造としては中空円筒型構造、中空部を持たない円筒型構造、フィッシュボーン構造などが挙げられる。また、円筒型構造のものは、炭素層が単層のものと多層のものが挙げられる。   The carbon nanofiber is a fine fibrous material made of carbon, and examples of the structure include a hollow cylindrical structure, a cylindrical structure having no hollow portion, and a fishbone structure. The cylindrical structure includes a single carbon layer and a multilayer carbon layer.

カーボンナノファイバーの平均繊維径としては、5〜150nmが好ましく、9〜20nmがより好ましい。平均繊維径を5nm以上とすることで、導電性複合粒子間および細孔内の導電性が良好となる。また、150nm以下とすることで、導電性複合粒子内への電解質の浸透性を向上することができる。   As an average fiber diameter of carbon nanofiber, 5-150 nm is preferable and 9-20 nm is more preferable. By setting the average fiber diameter to 5 nm or more, the conductivity between the conductive composite particles and in the pores is improved. Moreover, the permeability of the electrolyte into the conductive composite particles can be improved by setting the thickness to 150 nm or less.

繊維状有機物の炭化物は、繊維状有機物を加熱による熱分解もしくは添加剤による脱水反応等で炭化させたものである。加熱によって炭化させる際は、該繊維状有機物が燃焼せず分解するように、不活性雰囲気中、または200〜600℃の空気中で加熱することが好ましい。 The fibrous organic matter carbide is obtained by carbonizing the fibrous organic matter by thermal decomposition by heating or dehydration by an additive. When carbonizing by heating, it is preferable to heat in an inert atmosphere or in air at 200 to 600 ° C. so that the fibrous organic matter decomposes without burning.

繊維状有機物としては、セルロース、アルキルセルロース、酢酸セルロース、ヒドロキ
シアルキルセルロース、カルボキシメチルセルロース、キチン、キトサン、寒天等の多糖類、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリエステル、ポリアクリロニトリル、ポリアミド、ポリビニルピロリドン、ポリアクリル酸またはその塩等の合成繊維が挙げられる。これらの中では、炭化物が非晶質炭素を形成し易い、セルロース、カルボキシメチルセルロースまたはポリエステル等が好ましい。
これらは1種又は2種以上を組み合わせても良い。
Examples of fibrous organic substances include cellulose, alkyl cellulose, cellulose acetate, hydroxyalkyl cellulose, carboxymethyl cellulose, chitin, chitosan, agar and other polysaccharides, polyvinyl alcohol, polyethylene, polypropylene, polyester, polyacrylonitrile, polyamide, polyvinyl pyrrolidone, and polyacryl. Synthetic fibers such as acids or salts thereof may be mentioned. Of these, cellulose, carboxymethyl cellulose, polyester, and the like, in which carbides easily form amorphous carbon, are preferable.
These may be used alone or in combination of two or more.

繊維状有機物の平均繊維径としては、5〜1000nmが好ましく、8〜700nmがより好ましい。平均繊維径を5nm以上とすることで、導電性複合粒子間および細孔内の導電性が向上するため、高速充電性および高出力特性が良好となる。また、1000nm以下とすることで、導電性複合粒子内への電解質の浸透性が向上するため、高速充電性および高出力特性が良好となる。   As an average fiber diameter of fibrous organic substance, 5-1000 nm is preferable and 8-700 nm is more preferable. By setting the average fiber diameter to 5 nm or more, the conductivity between the conductive composite particles and in the pores is improved, so that high-speed chargeability and high output characteristics are improved. Moreover, since the permeability of the electrolyte into the conductive composite particles is improved by setting the thickness to 1000 nm or less, high-speed chargeability and high output characteristics are improved.

アセチレンブラックとしては、BET比表面積が、20〜120m/gであることが好ましく、30〜90m/gであることがより好ましい。20m/g以上とすることで、導電性複合粒子間および細孔内の導電性が向上するため、高速充電性および高出力特性が良好となる。また、120m/g以下とすることで、アセチレン粒子の連結構造が発達し、界面における電荷移動反応の速度が向上するため、高速充電性および高出力特性が良好となる。 The acetylene black, BET specific surface area is preferably 20~120m 2 / g, more preferably 30~90m 2 / g. By setting it as 20 m < 2 > / g or more, since the electroconductivity between electroconductive composite particles and in a pore improves, a high-speed charge property and a high output characteristic become favorable. Moreover, since the connection structure of an acetylene particle develops and it sets to 120 m < 2 > / g or less and the speed | rate of the charge transfer reaction in an interface improves, a high-speed charge property and a high output characteristic become favorable.

本発明では、本発明の効果を損なわない範囲で、ケッチェンブラック(登録商標)、チャンネルブラック、ファーネスブラック、サーマルブラック等のカーボンブラックを導電助剤として使用することができる。   In the present invention, carbon black such as Ketjen Black (registered trademark), channel black, furnace black, thermal black, etc. can be used as a conductive aid within a range not impairing the effects of the present invention.

本発明で使用する活物質としては、LiNiMn(2−X)で表されるスピネル型リチウム塩(但し、Xは0<X<2という関係を満たす)が、活物質自体の電子抵抗が比較的高いため、好ましい。 As an active material used in the present invention, a spinel type lithium salt represented by LiNi X Mn (2-X) O 4 (where X satisfies the relationship 0 <X <2) is an electron of the active material itself. This is preferable because of its relatively high resistance.

本発明で使用する活物質は、導電性複合粒子内で二次凝集体を形成してなる。該導電性複合粒子の平均粒子径としては、本発明の導電性複合粒子の細孔容積および細孔分布を満たす限り制約はないが、1〜50μmが好ましく、2〜20μmがより好ましい。1μm以上とすることで、電極への充填性が良好となり、高密度な電極が得られるため、電池の充放電容量が良好となる。また、50μm以下とすることで、電極の平滑性が良好となり、安全性および安定性の高い電極を作製することができる。   The active material used in the present invention is formed by forming secondary aggregates in the conductive composite particles. Although there is no restriction | limiting as long as the average particle diameter of this electroconductive composite particle satisfy | fills the pore volume and pore distribution of the electroconductive composite particle of this invention, 1-50 micrometers is preferable and 2-20 micrometers is more preferable. By setting the thickness to 1 μm or more, the filling property to the electrode becomes good and a high-density electrode is obtained, so that the charge / discharge capacity of the battery becomes good. Moreover, the smoothness of an electrode becomes favorable because it shall be 50 micrometers or less, and an electrode with high safety | security and stability can be produced.

本発明の導電性複合粒子は、本発明の効果を損なわない範囲で、炭素からなる導電剤および活物質以外の成分を含むことができる。例えば、活物質の導電性またはイオン伝導性を補う目的もしくは活物質と電解液の間の過剰な反応を抑制する目的で、活物質の表面を導電性高分子、黒鉛、グラフェン、非晶質炭素、銅、銀、炭酸リチウム、チタン酸リチウム、リン酸リチウム、リン酸マンガンリチウム、酸化アルミニウム、酸化バナジウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化マグネシウム、酸化亜鉛、フッ化アルミニウムまたはリン酸鉄などで被覆してもよい。   The conductive composite particles of the present invention can contain components other than the conductive agent made of carbon and the active material as long as the effects of the present invention are not impaired. For example, the surface of the active material is made of conductive polymer, graphite, graphene, amorphous carbon for the purpose of supplementing the conductivity or ionic conductivity of the active material or suppressing excessive reaction between the active material and the electrolyte. , Copper, silver, lithium carbonate, lithium titanate, lithium phosphate, lithium manganese phosphate, aluminum oxide, vanadium oxide, zirconium oxide, titanium oxide, boron oxide, magnesium oxide, zinc oxide, aluminum fluoride or iron phosphate, etc. You may coat with.

本発明の導電性複合粒子の製造方法は特に限定されないが、例えば特開2013−010677号公報などに記載の、公知の製造方法を採用することができる。   Although the manufacturing method of the electroconductive composite particle of this invention is not specifically limited, For example, the well-known manufacturing method as described in Unexamined-Japanese-Patent No. 2013-010677 etc. is employable.

本発明の導電性複合粒子の製造方法の好ましい一例は、活物質前駆体となるリチウム化合物および遷移金属化合物と、導電剤またはその前駆体となる繊維状有機物とを混合する工程、混合した原料を造粒する工程、造粒した原料を焼成して導電性複合粒子を得る工程を含むものである。   A preferred example of the method for producing conductive composite particles of the present invention includes a step of mixing a lithium compound and a transition metal compound as active material precursors with a conductive agent or a fibrous organic material as a precursor thereof, and a mixed raw material. It includes a step of granulating and a step of firing the granulated raw material to obtain conductive composite particles.

混合する工程は乾式で行う方法、原料を水などの分散媒に分散または溶解し、湿式で行う方法などをとることができる。造粒する工程は、適度な粒径を持つ球形の二次凝集体が得られる点で、噴霧乾燥法が好ましい。焼成する工程は、不活性ガス雰囲気、空気雰囲気または真空中などで行うことが出来る。焼成温度は活物質の種類などによって適切に選択される必要があるが、空気雰囲気で行う場合は炭素からなる導電材又はその前駆体となる繊維状有機物を燃焼させないため、200〜600℃の温度範囲で行うことが好ましい。   The mixing step may be a dry method, a method in which a raw material is dispersed or dissolved in a dispersion medium such as water, and a wet method. The step of granulating is preferably a spray drying method in that a spherical secondary aggregate having an appropriate particle size can be obtained. The step of firing can be performed in an inert gas atmosphere, an air atmosphere, or a vacuum. The firing temperature needs to be appropriately selected depending on the type of the active material, etc., but when carried out in an air atmosphere, the conductive material made of carbon or the fibrous organic matter that is a precursor thereof is not burned, so the temperature is 200 to 600 ° C. It is preferable to carry out within a range.

なお、前記の製造方法を用いる場合は、活物質前駆体となるリチウム化合物および遷移金属化合物は、噴霧乾燥法による造粒工程および焼成工程において気体を発生し細孔を形成しやすい炭酸塩または水酸化物などを用いることが好ましい。また、細孔の形成を促進させる目的で、原料に例えばポリエチレングリコール、多価アルコールまたはその脂肪酸エステル、脂肪酸またはその塩などの高温において揮発する成分を造孔剤として加えることができる。また、活物質の粒子成長および二次凝集体の高密度化を促進させる目的で、原料に例えば酸化ホウ素、ホウ酸、ホウ酸リチウム、ホウ酸アンモニウム、リン酸、リン酸リチウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、ポリリン酸、ケイ酸塩、二酸化ケイ素、ケイ酸リチウム、ヒ素化合物、ゲルマニウム化合物、酸化鉛、酸化スズ、酸化モリブデン、モリブデン酸リチウム、酸化タングステンまたはタングステン酸リチウムなどを焼結助剤として加えることができる。   In the case of using the above production method, the lithium compound and the transition metal compound that are the active material precursors are carbonate or water that easily generate gas and form pores in the granulation step and the firing step by the spray drying method. It is preferable to use an oxide or the like. In addition, for the purpose of promoting the formation of pores, components that volatilize at high temperatures such as polyethylene glycol, polyhydric alcohols or fatty acid esters thereof, fatty acids or salts thereof can be added to the raw material as a pore-forming agent. In addition, for the purpose of promoting the growth of active material particles and the increase in the density of secondary aggregates, raw materials such as boron oxide, boric acid, lithium borate, ammonium borate, phosphoric acid, lithium phosphate, dihydrogen phosphate are used. Baked ammonium, diammonium hydrogen phosphate, polyphosphoric acid, silicate, silicon dioxide, lithium silicate, arsenic compound, germanium compound, lead oxide, tin oxide, molybdenum oxide, lithium molybdate, tungsten oxide or lithium tungstate Can be added as a binder.

また、前記の製造方法において、原料またはその混合物をボールミル、ビーズミルまたはスタンプミル等により粉砕する工程、造粒した原料または焼成した製品を、所望とする粒子径範囲に解砕または分級する工程を含むことができる。また、最初の混合する工程において一部の原料を加えず、造粒する工程の後でさらに混合する工程を含むことができる。   Further, the above production method includes a step of pulverizing the raw material or a mixture thereof by a ball mill, a bead mill, a stamp mill or the like, and a step of crushing or classifying the granulated raw material or the baked product into a desired particle size range. be able to. In addition, a part of the raw material is not added in the first mixing step, and a step of further mixing after the granulating step can be included.

本発明の導電性複合粒子を用いて電極を作製する際は、導電性複合粒子をバインダーと共に媒体に分散させ、スラリー状態で使用することができる。バインダーとしては、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、SBR(スチレン−ブタジエン共重合体)、PVA(ポリビニルアルコール)、NBR(アクリロニトリリル−ブタジエン共重合体)、カルボン酸変性(メタ)アクリル酸エステル共重合体等のポリマーが挙げられる。これらの中では、耐酸化性の点で、PVDFが好ましい。   When producing an electrode using the conductive composite particles of the present invention, the conductive composite particles can be dispersed in a medium together with a binder and used in a slurry state. As binders, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), SBR (styrene-butadiene copolymer), PVA (polyvinyl alcohol), NBR (acrylonitrile-butadiene copolymer), carboxylic acid modified Examples include polymers such as (meth) acrylic acid ester copolymers. Among these, PVDF is preferable in terms of oxidation resistance.

前記スラリーの分散媒としては、水、N−メチルピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。バインダーとしてPVDFを使用する際は、溶解性の点でN−メチルピロリドンが好ましい。 Examples of the dispersion medium for the slurry include water, N-methylpyrrolidone, cyclohexane, methyl ethyl ketone, and methyl isobutyl ketone. When PVDF is used as a binder, N-methylpyrrolidone is preferable in terms of solubility.

以下、実施例及び比較例により、本発明に係る導電性複合粒子を詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   Hereinafter, the conductive composite particles according to the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

<実施例1>
(導電性複合粒子の作製)
炭酸マンガン及び水酸化ニッケルを、ニッケル原子:マンガン原子のモル比が25:75の割合となるように秤量し、乳鉢上で混合した。さらにこの混合粉95質量部とカーボンナノファイバー(ナノシル社製、「NC7000」、平均繊維径9nm)5質量部を乳鉢上で混合した。これに純水を加え、ビーズミルを用いてスラリー中の固形分の平均粒子径が0.25μmとなるように湿式粉砕処理を行い、噴霧原料スラリーを調製した。なお、スラリー中の固形分の平均粒子径は、レーザー回折・散乱法(ベックマン・コールター社製、LS13320)により求めたメジアン径を平均粒子径として用いた。
<Example 1>
(Preparation of conductive composite particles)
Manganese carbonate and nickel hydroxide were weighed so that the molar ratio of nickel atom: manganese atom was 25:75, and mixed in a mortar. Further, 95 parts by mass of the mixed powder and 5 parts by mass of carbon nanofiber (“NC7000”, average fiber diameter: 9 nm) manufactured by Nanosil Co., Ltd. were mixed on a mortar. Pure water was added thereto, and wet milling was performed using a bead mill so that the average particle size of the solid content in the slurry was 0.25 μm to prepare a spray raw material slurry. In addition, the median diameter calculated | required by the laser diffraction and the scattering method (The Beckman Coulter company make, LS13320) was used for the average particle diameter of solid content in a slurry as an average particle diameter.

次いで、上記で調整した噴霧原料スラリーを、スプレードライヤー(大川原化工機社製、NL−3)で噴霧乾燥し、噴霧乾燥物を得た。このときの乾燥ガスとして空気を用い、熱風入口温度は200℃、スラリー供給速度は0.6kg/時とした。この噴霧乾燥物と炭酸リチウムを、炭酸リチウム中のリチウムと噴霧乾燥物中のマンガン原子のモル比が1.0:1.5となるように混合し、焼成原料を得た。この焼成原料を、空気雰囲気下で600℃、6時間焼成し、導電性複合粒子を得た。なお、得られた導電性複合粒子をX線回折分析したところ、単相のLiNi0.5Mn1.5であることを確認した。また、導電性複合粒子の平均粒子径は、11μmであった。 Subsequently, the spray raw material slurry adjusted as described above was spray-dried with a spray dryer (manufactured by Okawara Chemical Co., Ltd., NL-3) to obtain a spray-dried product. Air was used as the drying gas at this time, the hot air inlet temperature was 200 ° C., and the slurry supply rate was 0.6 kg / hour. This spray-dried product and lithium carbonate were mixed so that the molar ratio of lithium in lithium carbonate and manganese atoms in the spray-dried product was 1.0: 1.5 to obtain a fired raw material. The fired raw material was fired in an air atmosphere at 600 ° C. for 6 hours to obtain conductive composite particles. Incidentally, when the obtained conductive composite particles and X-ray diffraction analysis, it was confirmed that the LiNi 0.5 Mn 1.5 O 4 single phase. The average particle size of the conductive composite particles was 11 μm.

(導電性複合粒子の評価)
導電性複合粒子の物性等は、各々次のようにして評価した。
(Evaluation of conductive composite particles)
The physical properties and the like of the conductive composite particles were evaluated as follows.

[導電剤の含有量]
炭素分析装置(LECO社製、IR412)を用いて炭素含有量Cを測定したところ、導電性複合粒子中の炭素含有量は、4.69%であった。
[Conducting agent content]
When the carbon content C was measured using a carbon analyzer (manufactured by LECO, IR412), the carbon content in the conductive composite particles was 4.69%.

[細孔容積、細孔分布のピーク]
水銀ポロシメーター(島津製作所社製、オートポアIV9520)を用いた水銀圧入法にて、細孔分布を求めた。まず、試料をセル内に封入し、真空下にて5分間の脱揮処理を行った。その後、水銀圧力を大気圧〜60,000psiaの範囲に昇圧し、水銀の圧入量を測定した。得られた圧力と圧入量の曲線より、細孔分布を以下の式より求めた。
D=−(1/P)4γcosψ
但し、Dは細孔直径、Pは水銀圧力、γは水銀の表面張力(485dynes/cmを使用)、ψは水銀の140°における接触角である。
得られた細孔分布より、前記導電性複合粒子の、細孔径10〜1000nmにおける細孔容積は0.28cc/g、細孔分布のピークは440nmであった。
[Pore volume, peak of pore distribution]
The pore distribution was determined by a mercury intrusion method using a mercury porosimeter (manufactured by Shimadzu Corporation, Autopore IV9520). First, the sample was enclosed in a cell and devolatilized for 5 minutes under vacuum. Thereafter, the mercury pressure was increased to the range of atmospheric pressure to 60,000 psia, and the amount of mercury injected was measured. From the obtained pressure and indentation curve, the pore distribution was determined from the following equation.
D = − (1 / P) 4γ cos ψ
Where D is the pore diameter, P is the mercury pressure, γ is the surface tension of mercury (using 485 dynes / cm), and ψ is the contact angle of mercury at 140 °.
From the obtained pore distribution, the pore volume of the conductive composite particles at a pore diameter of 10 to 1000 nm was 0.28 cc / g, and the peak of the pore distribution was 440 nm.

[平均粒子径]
レーザー回折・散乱法(ベックマン・コールター社製、LS13320)により求めたメジアン径を平均粒子径として用いた。
[Average particle size]
The median diameter determined by a laser diffraction / scattering method (LS13320, manufactured by Beckman Coulter, Inc.) was used as the average particle diameter.

[二次凝集体外表面の被覆状態]
得られた導電性複合粒子の表面を走査型電子顕微鏡(日本電子社製、JSM−7400F)の反射電子組成像にて3万倍の倍率で撮影した。任意に得られた画像10枚を観察し、二次凝集体外表面の、導電剤による被覆の有無を確認した。
[Coating state of secondary aggregate outer surface]
The surface of the obtained conductive composite particles was photographed at a magnification of 30,000 with a reflection electron composition image of a scanning electron microscope (manufactured by JEOL Ltd., JSM-7400F). Ten images obtained arbitrarily were observed to confirm whether or not the outer surface of the secondary aggregate was covered with a conductive agent.

[細孔内の活物質表面の被覆状態]
得られた導電性複合粒子を樹脂に包埋し、クロスセクションポリッシャー(日本電子社製、SM09010)を用いて断面観察用試料を作製した。得られた断面観察用試料を、走査型電子顕微鏡(日本電子社製、JSM−7400F)の反射電子組成像にて5万倍の倍率で撮影した。任意に得られた画像10枚を観察し、二次凝集体細孔内の活物質表面の、導電剤による被覆の有無を確認した。
[Coating state of active material surface in pores]
The obtained conductive composite particles were embedded in a resin, and a cross-section observation sample was prepared using a cross section polisher (manufactured by JEOL Ltd., SM09010). The obtained sample for cross-sectional observation was photographed at a magnification of 50,000 times with a reflected electron composition image of a scanning electron microscope (manufactured by JEOL Ltd., JSM-7400F). Ten images obtained arbitrarily were observed, and it was confirmed whether or not the surface of the active material in the secondary aggregate pores was covered with a conductive agent.

[体積抵抗率]
導電性複合粒子4.0gを量り取り、粉体抵抗測定システム(三菱化学アナリテック社製、MCP−PD51型)を用いて、24MPaの荷重下で体積抵抗率を測定したところ、30.9Ωcmであった。
[Volume resistivity]
4.0 g of conductive composite particles were weighed and measured for volume resistivity under a load of 24 MPa using a powder resistance measurement system (MCP-PD51 type, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). there were.

(リチウムイオン二次電池の作製)
前記導電剤複合粒子を正極材として用いて、次のようにしてリチウムイオン二次電池を作製した。
(Production of lithium ion secondary battery)
Using the conductive agent composite particles as a positive electrode material, a lithium ion secondary battery was produced as follows.

作製した導電性複合粒子95質量部に、バインダーとしてポリフッ化ビニリデン粉末(呉羽化学社製、「KFポリマー」)5質量部を加え、さらに分散媒としてN−メチルピロリドン(Aldrich社製)を加えて混合し、正極材スラリーを得た。この正極材スラリーを、ベーカー式アプリケーターを用いて厚さ20μmのアルミニウム箔に塗布、乾燥し、その後、プレス、裁断して、リチウム二次電池用正極電極を得た。負極には金属リチウム(本城金属社製)を用い、これらを電気的に隔離するセパレータとしてオレフィン繊維製不織布を用いた。電解液にはEC(エチレンカーボネート、Aldrich社製)、MEC(メチルエチルカーボネート、Aldrich社製)を体積比で30:70に混合した溶液中に六フッ化リン酸リチウム(LiPF、ステラケミファ社製)を1mol/L溶解したものを用い、CR−2032型コイン電池とした。 To 95 parts by mass of the produced conductive composite particles, 5 parts by mass of polyvinylidene fluoride powder (manufactured by Kureha Chemical Co., “KF polymer”) is added as a binder, and N-methylpyrrolidone (manufactured by Aldrich) is added as a dispersion medium. Mixing was performed to obtain a positive electrode material slurry. This positive electrode material slurry was applied to a 20 μm-thick aluminum foil using a Baker type applicator, dried, then pressed and cut to obtain a positive electrode for a lithium secondary battery. Metal lithium (manufactured by Honjo Metal Co., Ltd.) was used for the negative electrode, and an olefin fiber nonwoven fabric was used as a separator to electrically isolate them. As the electrolyte, lithium hexafluorophosphate (LiPF 6 , Stella Chemifa Corporation) was mixed in a solution in which EC (ethylene carbonate, manufactured by Aldrich) and MEC (methyl ethyl carbonate, manufactured by Aldrich) were mixed at a volume ratio of 30:70. Manufactured by 1 mol / L was used as a CR-2032 type coin battery.

(リチウムイオン二次電池の評価)
上記で作製したリチウムイオン二次電池について、次のようにして評価を行った。
(Evaluation of lithium ion secondary battery)
The lithium ion secondary battery produced above was evaluated as follows.

[初期容量]
まず0.7mA/cmの電流密度、上限電圧5.0Vにて定電流・定電圧充電を行い、次いで0.7mA/cmの電流密度、下限電圧3.0Vにて定電流放電を行った際の放電容量を測定し、正極活物質量で除した容量密度(mAh/g)を算出した。この容量(mAh)を1時間で充放電可能な電流値を「1C」とした。次いで、電流を0.2C、上限電圧を5.0Vとして定電流・定電圧充電を行い、さらに電流を0.2C、下限電圧を3.0Vとして定電流放電を行うことを5回繰り返し、5回目の定電流放電の際の放電容量を正極活物質量で除した値(mAh/g)を初期容量として算出した。本実施例の電池の初期容量は141mAh/gであった。
[Initial capacity]
First, constant current / constant voltage charging was performed at a current density of 0.7 mA / cm 2 and an upper limit voltage of 5.0 V, and then constant current discharging was performed at a current density of 0.7 mA / cm 2 and a lower limit voltage of 3.0 V. The discharge capacity was measured, and the capacity density (mAh / g) divided by the amount of the positive electrode active material was calculated. The current value at which this capacity (mAh) can be charged and discharged in 1 hour was defined as “1C”. Subsequently, constant current / constant voltage charging was performed with a current of 0.2 C and an upper limit voltage of 5.0 V, and a constant current discharge was further repeated 5 times with a current of 0.2 C and a lower limit voltage of 3.0 V. A value (mAh / g) obtained by dividing the discharge capacity at the time of the constant current discharge by the positive electrode active material amount was calculated as the initial capacity. The initial capacity of the battery of this example was 141 mAh / g.

[3C充電容量]
高速充電性の評価として、電流を3C、上限電圧を5.0Vとして定電流充電を行い、この際の充電容量を正極活物質量で除した値(mAh/g)を3C充電容量として算出したところ、118mAh/gであった。
[3C charge capacity]
As an evaluation of high-speed chargeability, constant current charging was performed with a current of 3 C and an upper limit voltage of 5.0 V, and a value (mAh / g) obtained by dividing the charging capacity by the amount of the positive electrode active material was calculated as 3 C charging capacity. However, it was 118 mAh / g.

[3C放電容量]
高出力特性の評価として、電流を0.2C、上限電圧を5.0Vとして定電流・定電圧充電を行った後、電流を3C、下限電圧を3.0Vとして定電流放電を行い、この際の放電容量を正極活物質量で除した値(mAh/g)を3C放電容量として算出したところ、124mAh/gであった。
[3C discharge capacity]
As an evaluation of the high output characteristics, a constant current / constant voltage charge was performed with a current of 0.2 C and an upper limit voltage of 5.0 V, and then a constant current discharge was performed with a current of 3 C and a lower limit voltage of 3.0 V. When the value (mAh / g) obtained by dividing the discharge capacity by the amount of the positive electrode active material was calculated as the 3C discharge capacity, it was 124 mAh / g.

<実施例2>
実施例1のカーボンナノファイバーを、シーナノ社製「Flotube9000」(平均繊維径11nm)5質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<Example 2>
Except for changing the carbon nanofibers of Example 1 to 5 parts by mass of “Flotube 9000” (average fiber diameter of 11 nm) manufactured by Sea Nano Co., Ltd., conductive composite particles, positive electrode material slurry, electrodes and two A secondary battery was prepared and evaluated. The results are shown in Table 1.

Figure 0006125916
Figure 0006125916

<実施例3>
実施例1のカーボンナノファイバーを、エムディーナノテック社製「MDCNF」(平均繊維径15nm)5質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<Example 3>
Except for changing the carbon nanofibers of Example 1 to 5 parts by mass of “MDCNF” (average fiber diameter: 15 nm) manufactured by MD Nanotech Co., Ltd., conductive composite particles, positive electrode material slurry, electrodes and A secondary battery was produced and evaluated. The results are shown in Table 1.

<実施例4>
実施例1のカーボンナノファイバーを、昭和電工社製「VGCF−H」(平均繊維径150nm)5質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<Example 4>
Except for changing the carbon nanofibers of Example 1 to 5 parts by mass of “VGCF-H” (average fiber diameter 150 nm) manufactured by Showa Denko KK, conductive composite particles, positive electrode material slurry, An electrode and a secondary battery were prepared and evaluated. The results are shown in Table 1.

<実施例5>
繊維状有機物として、特開2008−1728号公報の実施例1に記載の方法により、平均繊維径が8nmのセルロース繊維を得た。尚、平均繊維径は以下の方法により求めた。先ず、セルロース繊維を、走査型電子顕微鏡(日本電子社製、JSM−7400F)の反射電子組成像にて20万倍の条件にて撮影した。次に、画像をコンピュータに取り込み、画像解析ソフト(ルーゼックスAP:株式会社ニレコ製)を用いて、10本の繊維径を測定し、その算術平均値を平均繊維径とした。
このセルロース繊維を実施例1と同様な方法で、炭酸マンガン及び水酸化ニッケルと乳鉢上で混合し、噴霧原料スラリーを作製した。
次いで、上記スラリーを、スプレードライヤーで乾燥し、噴霧乾燥物を得た。このときの乾燥ガスとしては、窒素ガスを使用し、熱風入口温度は200℃、スラリー供給速度は0.6kg/時とした。
この噴霧乾燥物と炭酸リチウムを、炭酸リチウム中のリチウムと噴霧乾燥物中のマンガン原子のモル比が1.0:1.5となるように混合し、焼成原料を得た。この焼成原料を、空気雰囲気下で600℃、6時間焼成することで、セルロース繊維を炭化させ導電性複合粒子を得た。
さらに、実施例1と同様な方法で正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<Example 5>
As a fibrous organic substance, cellulose fibers having an average fiber diameter of 8 nm were obtained by the method described in Example 1 of JP-A-2008-1728. The average fiber diameter was determined by the following method. First, the cellulose fiber was image | photographed on 200,000 times conditions in the reflection electron composition image of the scanning electron microscope (The JEOL Co., Ltd. make, JSM-7400F). Next, the image was taken into a computer, 10 fiber diameters were measured using image analysis software (Luzex AP: manufactured by Nireco Corporation), and the arithmetic average value was defined as the average fiber diameter.
In the same manner as in Example 1, this cellulose fiber was mixed with manganese carbonate and nickel hydroxide on a mortar to prepare a spray raw material slurry.
Next, the slurry was dried with a spray dryer to obtain a spray-dried product. Nitrogen gas was used as the drying gas at this time, the hot air inlet temperature was 200 ° C., and the slurry supply rate was 0.6 kg / hour.
This spray-dried product and lithium carbonate were mixed so that the molar ratio of lithium in lithium carbonate and manganese atoms in the spray-dried product was 1.0: 1.5 to obtain a fired raw material. The fired raw material was fired at 600 ° C. for 6 hours in an air atmosphere to carbonize the cellulose fibers to obtain conductive composite particles.
Furthermore, a positive electrode material slurry, an electrode, and a secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 1.

<実施例6>
繊維状有機物として、特開2011−144273号公報の実施例1に記載の方法により、平均繊維径が38nmのセルロース繊維を得た。このセルロース繊維を実施例5と同様な方法で炭化させ、導電性複合粒子を得た。さらに、実施例1と同様な方法で導電性複合粒子、電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<Example 6>
As the fibrous organic matter, cellulose fibers having an average fiber diameter of 38 nm were obtained by the method described in Example 1 of JP2011-144273A. This cellulose fiber was carbonized in the same manner as in Example 5 to obtain conductive composite particles. Furthermore, conductive composite particles, electrodes, and secondary batteries were produced in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 1.

<実施例7>
繊維状有機物として、ポリエステル繊維(帝人ファイバー社製「ナノフロント」(登録商標)、平均繊維径700nm)を用い、実施例5と同様な方法で炭化させ、導電性複合粒子を得た。さらに、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<Example 7>
Polyester fiber (“Nanofront” (registered trademark) manufactured by Teijin Fibers Ltd., average fiber diameter: 700 nm) was used as the fibrous organic material and carbonized by the same method as in Example 5 to obtain conductive composite particles. Further, conductive composite particles, a positive electrode material slurry, an electrode and a secondary battery were produced in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 1.

<実施例8>
炭素からなる導電剤として、実施例1のカーボンナノファイバーを、アセチレンブラック(電気化学工業社製「HS−100」、BET比表面積が、40m/g)5質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<Example 8>
As a conductive agent composed of carbon, the carbon nanofiber of Example 1 was changed to 5 parts by mass of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd., BET specific surface area of 40 m 2 / g). Conductive composite particles, a positive electrode material slurry, an electrode, and a secondary battery were produced in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 1.

<実施例9>
実施例1で使用したカーボンナノファイバー(ナノシル社製、「NC7000」、平均繊維径9nm)を、0.01質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 9>
Conductive composite particles and positive electrodes were produced in the same manner as in Example 1 except that the carbon nanofibers used in Example 1 (“Nanosil”, “NC7000”, average fiber diameter 9 nm) were changed to 0.01 parts by mass. A material slurry, an electrode, and a secondary battery were produced and evaluated. The results are shown in Table 2.

Figure 0006125916
Figure 0006125916

<実施例10>
実施例1で使用したカーボンナノファイバーを、1質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 10>
Except that the carbon nanofibers used in Example 1 were changed to 1 part by mass, conductive composite particles, positive electrode material slurry, electrodes and secondary batteries were produced in the same manner as in Example 1, and each evaluation was performed. did. The results are shown in Table 2.

<実施例11>
実施例1で使用したカーボンナノファイバーを、2.5質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 11>
Except that the carbon nanofibers used in Example 1 were changed to 2.5 parts by mass, conductive composite particles, a positive electrode material slurry, an electrode, and a secondary battery were produced in the same manner as in Example 1 and evaluated. Carried out. The results are shown in Table 2.

<実施例12>
実施例1で使用したカーボンナノファイバーを、7質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 12>
Except that the carbon nanofibers used in Example 1 were changed to 7 parts by mass, conductive composite particles, a positive electrode material slurry, an electrode and a secondary battery were produced in the same manner as in Example 1, and each evaluation was performed. did. The results are shown in Table 2.

<実施例13>
実施例1で使用したカーボンナノファイバーを、10質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 13>
Except that the carbon nanofibers used in Example 1 were changed to 10 parts by mass, conductive composite particles, a positive electrode material slurry, an electrode, and a secondary battery were produced in the same manner as in Example 1, and each evaluation was performed. did. The results are shown in Table 2.

<実施例14>
実施例1で使用したカーボンナノファイバーを、15質量部へ変更した以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 14>
Except that the carbon nanofibers used in Example 1 were changed to 15 parts by mass, conductive composite particles, a positive electrode material slurry, an electrode and a secondary battery were produced in the same manner as in Example 1, and each evaluation was performed. did. The results are shown in Table 2.

<実施例15>
炭酸マンガン及び水酸化ニッケルを、ニッケル原子:マンガン原子のモル比が25:75の割合となるように秤量し、乳鉢上で混合した。この混合粉末96.5質量部と、カーボンナノファイバー(ナノシル社製、「NC7000」、平均繊維径9nm)1質量部と、アセチレンブラック(電気化学工業社製「HS−100」、BET比表面積が、40m/g)2.5質量部を配合し、乳鉢上で混合した。
次に、実施例1と同様な条件にて、湿式粉砕処理を行い、噴霧原料スラリー、導電性複合粒子を得た。得られた、導電性複合粒子の平均粒子径は、13μmであった。
さらに、実施例1と同様な方法で正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表2に示す
<Example 15>
Manganese carbonate and nickel hydroxide were weighed so that the molar ratio of nickel atom: manganese atom was 25:75, and mixed in a mortar. 96.5 parts by mass of the mixed powder, 1 part by mass of carbon nanofiber (Nanosil, “NC7000”, average fiber diameter 9 nm), acetylene black (“HS-100”, manufactured by Denki Kagaku Kogyo Co., Ltd.), and BET specific surface area , 40 m 2 / g) 2.5 parts by mass were mixed and mixed on a mortar.
Next, wet pulverization was performed under the same conditions as in Example 1 to obtain a spray raw material slurry and conductive composite particles. The average particle diameter of the obtained conductive composite particles was 13 μm.
Furthermore, a positive electrode material slurry, an electrode, and a secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 2.

<実施例16>
炭酸マンガン及び水酸化ニッケルを、ニッケル原子:マンガン原子のモル比が25:75の割合となるように秤量し、乳鉢上で混合した。この混合粉末93.5質量部と、実施例1で使用したカーボンナノファイバーを1質量部と、実施例6で使用した繊維状有機物3質量部と、アセチレンブラック(電気化学工業社製「HS−100」、BET比表面積が、40m/g)2.5質量部を配合し、乳鉢上で混合した。
次に、実施例5と同様な条件にて、湿式粉砕処理を行い、噴霧原料スラリー、導電性複合粒子を得た。得られた、導電性複合粒子の平均粒子径は、13μmであった。
さらに、実施例1と同様な方法で正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 16>
Manganese carbonate and nickel hydroxide were weighed so that the molar ratio of nickel atom: manganese atom was 25:75, and mixed in a mortar. 93.5 parts by mass of this mixed powder, 1 part by mass of the carbon nanofibers used in Example 1, 3 parts by mass of fibrous organic matter used in Example 6, and acetylene black (“HS— 100 ”, 2.5 parts by mass of BET specific surface area of 40 m 2 / g) were mixed and mixed on a mortar.
Next, wet pulverization was performed under the same conditions as in Example 5 to obtain a spray raw material slurry and conductive composite particles. The average particle diameter of the obtained conductive composite particles was 13 μm.
Furthermore, a positive electrode material slurry, an electrode, and a secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 2.

参考例17>
炭酸コバルト95質量部とカーボンナノファイバー(シーナノ社製、「Flotube9000」、平均繊維径11nm)5質量部を秤量し、乳鉢上で混合した。次に、実施例1と同様な条件にて、湿式粉砕処理を行い、噴霧原料スラリー、噴霧乾燥物を得た。この噴霧乾燥物と炭酸リチウムを、炭酸リチウム中のリチウムと噴霧乾燥物中のコバルト原子のモル比が1.0:1.0となるように混合し、焼成原料を得た。この焼成原料を、空気雰囲気下で600℃、18時間焼成し、導電性複合粒子を得た。得られた導電性複合粒子をX線回折分析したところ、単相のLiCoOであることを確認した。また、得られた導電性複合粒子の平均粒子径は、10μmであった。
さらに、実施例1と同様な方法で正極材スラリー、電極および二次電池を作製し、各評価を実施した。ただし、二次電池の充電時の上限電圧は4.2V、放電時の下限電圧は2.8Vとした。結果を表3に示す。
< Reference Example 17>
95 parts by mass of cobalt carbonate and 5 parts by mass of carbon nanofibers (manufactured by Seanano, “Flotube 9000”, average fiber diameter 11 nm) were weighed and mixed on a mortar. Next, wet pulverization was performed under the same conditions as in Example 1 to obtain a spray raw material slurry and a spray dried product. The spray-dried product and lithium carbonate were mixed so that the molar ratio of lithium in the lithium carbonate and cobalt atom in the spray-dried product was 1.0: 1.0 to obtain a calcined raw material. The fired raw material was fired in an air atmosphere at 600 ° C. for 18 hours to obtain conductive composite particles. When the obtained electroconductive composite particle was analyzed by X-ray diffraction, it was confirmed to be a single-phase LiCoO 2 . Moreover, the average particle diameter of the obtained conductive composite particles was 10 μm.
Furthermore, a positive electrode material slurry, an electrode, and a secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. However, the upper limit voltage during charging of the secondary battery was 4.2V, and the lower limit voltage during discharge was 2.8V. The results are shown in Table 3.

Figure 0006125916


参考例18>
炭酸マンガン95質量部とカーボンナノファイバー(シーナノ社製、「Flotube9000」、平均繊維径11nm)5質量部を秤量し、乳鉢上で混合した。次に、実施例1と同様な条件にて、湿式粉砕処理を行い、噴霧原料スラリー、噴霧乾燥物を得た。この噴霧乾燥物と炭酸リチウムを、炭酸リチウム中のリチウムと噴霧乾燥物中のマンガン原子のモル比が1.0:2.0となるように混合し、焼成原料を得た。この焼成原料を、空気雰囲気下で600℃、6時間焼成し、導電性複合粒子を得た。得られた導電性複合粒子をX線回折分析したところ、単相のLiMnであることを確認した。また、得られた導電性複合粒子の平均粒子径は、9μmであった。
さらに、実施例1と同様な方法で正極材スラリー、電極および二次電池を作製し、各評価を実施した。ただし、二次電池の充電時の上限電圧は4.3V、放電時の下限電圧は3.0Vとした。結果を表3に示す。
Figure 0006125916


< Reference Example 18>
95 parts by mass of manganese carbonate and 5 parts by mass of carbon nanofiber (manufactured by Seanano, “Flotube 9000”, average fiber diameter 11 nm) were weighed and mixed on a mortar. Next, wet pulverization was performed under the same conditions as in Example 1 to obtain a spray raw material slurry and a spray dried product. This spray-dried product and lithium carbonate were mixed so that the molar ratio of lithium in lithium carbonate and manganese atom in the spray-dried product was 1.0: 2.0 to obtain a fired raw material. The fired raw material was fired in an air atmosphere at 600 ° C. for 6 hours to obtain conductive composite particles. When the obtained electroconductive composite particle was analyzed by X-ray diffraction, it was confirmed to be a single-phase LiMn 2 O 4 . Moreover, the average particle diameter of the obtained conductive composite particles was 9 μm.
Furthermore, a positive electrode material slurry, an electrode, and a secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. However, the upper limit voltage during charging of the secondary battery was 4.3V, and the lower limit voltage during discharge was 3.0V. The results are shown in Table 3.

参考例19>
リン酸鉄リチウム(LiFePO)を、J.Mater.Chem.,2007,17,4803−4810.に記載の方法で合成した。このリン酸鉄リチウム95質量部とカーボンナノファイバー(シーナノ社製、「Flotube9000」、平均繊維径11nm)5質量部を秤量し、乳鉢上で混合した。次に、実施例1と同様な条件にて、湿式粉砕処理を行い、噴霧原料スラリー、噴霧乾燥物を得た。この噴霧乾燥物を、窒素雰囲気下で700℃、2時間焼成し、導電性複合粒子を得た。得られた導電性複合粒子の平均粒子径は、11μmであった。
さらに、実施例1と同様な方法で正極材スラリー、電極および二次電池を作製し、各評価を実施した。ただし、二次電池の充電時の上限電圧は4.1V、放電時の下限電圧は2.1Vとした。結果を表3に示す。
< Reference Example 19>
Lithium iron phosphate (LiFePO 4 ) was prepared according to J. Org. Mater. Chem. , 2007, 17, 4803-4810. It was synthesized by the method described in 1. 95 parts by mass of this lithium iron phosphate and 5 parts by mass of carbon nanofibers (manufactured by Seanano, “Flotube 9000”, average fiber diameter 11 nm) were weighed and mixed on a mortar. Next, wet pulverization was performed under the same conditions as in Example 1 to obtain a spray raw material slurry and a spray dried product. This spray-dried product was calcined at 700 ° C. for 2 hours under a nitrogen atmosphere to obtain conductive composite particles. The average particle diameter of the obtained conductive composite particles was 11 μm.
Furthermore, a positive electrode material slurry, an electrode, and a secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. However, the upper limit voltage during charging of the secondary battery was 4.1 V, and the lower limit voltage during discharge was 2.1 V. The results are shown in Table 3.

参考例20>
水酸化ニッケル、炭酸マンガン及び炭酸コバルトを、ニッケル原子:マンガン原子:コバルト原子のモル比が1:1:1の割合となるように秤量し、乳鉢上で混合した。この混合粉末95質量部と、カーボンナノファイバー(シーナノ社製、「Flotube9000」、平均繊維径11nm)5質量部を秤量し、乳鉢上で混合した。次に、実施例1と同様な条件にて、湿式粉砕処理を行い、噴霧原料スラリー、噴霧乾燥物を得た。この噴霧乾燥物と炭酸リチウムを、炭酸リチウム中のリチウムと噴霧乾燥物中のコバルト原子のモル比が3.0:1.0となるように混合し、焼成原料を得た。この焼成原料を、空気雰囲気下で600℃、18時間焼成し、導電性複合粒子を得た。得られた導電性複合粒子をX線回折分析したところ、単相のLiNi1/3Mn1/3Co1/3であることを確認した。また、得られた導電性複合粒子の平均粒子径は、12μmであった。
さらに、実施例1と同様な方法で正極材スラリー、電極および二次電池を作製し、各評価を実施した。ただし、二次電池の充電時の上限電圧は4.3V、放電時の下限電圧は2.7Vとした。結果を表3に示す。
< Reference Example 20>
Nickel hydroxide, manganese carbonate and cobalt carbonate were weighed so that the molar ratio of nickel atom: manganese atom: cobalt atom was 1: 1: 1 and mixed in a mortar. 95 parts by mass of the mixed powder and 5 parts by mass of carbon nanofibers (manufactured by Seanano, “Flotube 9000”, average fiber diameter 11 nm) were weighed and mixed on a mortar. Next, wet pulverization was performed under the same conditions as in Example 1 to obtain a spray raw material slurry and a spray dried product. This spray-dried product and lithium carbonate were mixed so that the molar ratio of lithium in lithium carbonate and cobalt atom in the spray-dried product was 3.0: 1.0 to obtain a fired raw material. The fired raw material was fired in an air atmosphere at 600 ° C. for 18 hours to obtain conductive composite particles. When the obtained conductive composite particles were analyzed by X-ray diffraction, it was confirmed to be a single-phase LiNi 1/3 Mn 1/3 Co 1/3 O 2 . Moreover, the average particle diameter of the obtained conductive composite particles was 12 μm.
Furthermore, a positive electrode material slurry, an electrode, and a secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. However, the upper limit voltage during charging of the secondary battery was 4.3 V, and the lower limit voltage during discharge was 2.7 V. The results are shown in Table 3.

<比較例1>
実施例1における焼成条件を600℃、24時間とした以外は、実施例1と同様な方法で導電性複合粒子を作製したが、細孔容積は0.005cc/gと著しく低い数値を示し、細孔分布のチャートでは、20〜1000nmの範囲に明確なピークを示さなかった。
得られた導電性複合粒子を用い、正極材スラリー、電極および二次電池を作製し、各評価を実施した結果を表4に示す。
<Comparative Example 1>
Except that the firing conditions in Example 1 were set to 600 ° C. for 24 hours, conductive composite particles were produced in the same manner as in Example 1. However, the pore volume was as low as 0.005 cc / g, The pore distribution chart did not show a clear peak in the range of 20 to 1000 nm.
Using the obtained conductive composite particles, a positive electrode material slurry, an electrode and a secondary battery were produced, and the results of each evaluation are shown in Table 4.

Figure 0006125916
Figure 0006125916

<比較例2>
実施例1における噴霧乾燥条件のうち、熱風入口温度を120℃とした以外は、実施例1と同様な方法で導電性複合粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表4に示す。
<Comparative example 2>
Of the spray drying conditions in Example 1, except that the hot air inlet temperature was 120 ° C., conductive composite particles, a positive electrode material slurry, an electrode, and a secondary battery were produced in the same manner as in Example 1, and each evaluation was performed. Carried out. The results are shown in Table 4.

<比較例3>
実施例1においてカーボンナノファイバーを加える工程を除外した以外は、実施例1と同様な方法で活物質二次凝集体である粒子、正極材スラリー、電極および二次電池を作製し、各評価を実施した。結果を表4に示す。
<Comparative Example 3>
Except for excluding the step of adding carbon nanofibers in Example 1, particles that are active material secondary aggregates, positive electrode material slurry, electrodes, and secondary batteries were prepared in the same manner as in Example 1, and each evaluation was performed. Carried out. The results are shown in Table 4.

表1〜4の結果から、本発明の実施例の導電性複合粒子から得られたリチウムイオン二次電池は、高出力特性および高速充電性に優れることが示される。   From the results of Tables 1 to 4, it is shown that the lithium ion secondary batteries obtained from the conductive composite particles of the examples of the present invention are excellent in high output characteristics and high speed chargeability.

尚、本実施例以外の、各種活物質を使用したリチウムイオン二次電池も、活物質の種類によらず評価結果は良好であった。   In addition, the lithium ion secondary battery using various active materials other than a present Example also had the favorable evaluation result irrespective of the kind of active material.

本発明の導電性複合粒子は、導電性および電解質の浸透性に優れる。これにより、出力および高速充電性に優れたリチウムイオン二次電池やニッケル水素二次電池、電気二重層キャパシタ等を得ることができる。   The conductive composite particles of the present invention are excellent in conductivity and electrolyte permeability. Thereby, a lithium ion secondary battery, a nickel hydride secondary battery, an electric double layer capacitor, etc. excellent in output and high-speed chargeability can be obtained.

1 導電性複合粒子
2 活物質の一次粒子
3 細孔
4 炭素からなる導電剤
5 二次凝集体の外表面
6 細孔内の活物質表面
DESCRIPTION OF SYMBOLS 1 Conductive composite particle 2 Primary particle of active material 3 Pore 4 Conductive agent made of carbon 5 Outer surface of secondary aggregate 6 Active material surface in pore

Claims (8)

炭素からなる導電剤と、LiNi Mn (2−X) 、Xが0<X<2で表されるスピネル型リチウム塩である活物質の二次凝集体からなる導電性複合粒子であって、前記導電剤の一部が前記二次凝集体の外表面を被覆してなり、さらに一部が前記二次凝集体細孔内の活物質表面を被覆してなり、かつ水銀圧入法により測定した細孔径10〜1000nmの細孔容積が0.01〜0.40cc/g、細孔分布のピークが50〜1000nmである導電性複合粒子。 Conductive composite particles comprising a conductive agent made of carbon and secondary aggregates of LiNi X Mn (2-X) O 4 , an active material that is a spinel type lithium salt where X is represented by 0 <X <2. A part of the conductive agent covers the outer surface of the secondary aggregate, and a part of the conductive agent covers the surface of the active material in the pores of the secondary aggregate. Conductive composite particles having a measured pore size of 10 to 1000 nm, a pore volume of 0.01 to 0.40 cc / g, and a pore distribution peak of 50 to 1000 nm. 前記炭素からなる導電剤が、カーボンナノファイバー、繊維状有機物の炭化物およびアセチレンブラックから選択される少なくとも1種を含む、請求項1に記載の導電性複合粒子。   2. The conductive composite particle according to claim 1, wherein the conductive agent comprising carbon includes at least one selected from carbon nanofibers, fibrous organic carbides, and acetylene black. 前記カーボンナノファイバーの平均繊維径が、5〜150nmである、請求項2に記載の導電性複合粒子。 The conductive composite particles according to claim 2 , wherein an average fiber diameter of the carbon nanofibers is 5 to 150 nm. 前記繊維状有機物の平均繊維径が、5〜1000nmである、請求項2に記載の導電性複合粒子。 The conductive composite particles according to claim 2 , wherein the fibrous organic matter has an average fiber diameter of 5 to 1000 nm. 前記炭素からなる導電剤の含有量が、0.01〜10質量%である、請求項1〜4のいれか一項に記載の導電性複合粒子。   5. The conductive composite particle according to claim 1, wherein a content of the conductive agent made of carbon is 0.01 to 10% by mass. 24MPaの荷重下で測定した体積抵抗率が100Ωcm以下である、請求項1〜のいずれか一項に記載の導電性複合粒子。 The electroconductive composite particle as described in any one of Claims 1-5 whose volume resistivity measured under the load of 24 Mpa is 100 ohm-cm or less. 請求項1〜のいずれか一項に記載の導電性複合粒子を用いて製造される、二次電池用正極。 The positive electrode for secondary batteries manufactured using the electroconductive composite particle as described in any one of Claims 1-6 . 請求項に記載の二次電池用正極を用いて製造される、二次電池。
The secondary battery manufactured using the positive electrode for secondary batteries of Claim 7 .
JP2013123222A 2013-06-11 2013-06-11 Conductive composite particles, and positive electrode and secondary battery for secondary battery using the same Active JP6125916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123222A JP6125916B2 (en) 2013-06-11 2013-06-11 Conductive composite particles, and positive electrode and secondary battery for secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123222A JP6125916B2 (en) 2013-06-11 2013-06-11 Conductive composite particles, and positive electrode and secondary battery for secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2014241229A JP2014241229A (en) 2014-12-25
JP6125916B2 true JP6125916B2 (en) 2017-05-10

Family

ID=52140381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123222A Active JP6125916B2 (en) 2013-06-11 2013-06-11 Conductive composite particles, and positive electrode and secondary battery for secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6125916B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633698B (en) * 2014-09-26 2018-08-21 日商太平洋水泥股份有限公司 Positive electrode active material for secondary battery and method of producing the same
KR102289992B1 (en) 2015-03-09 2021-08-18 다이헤이요 세멘토 가부시키가이샤 Positive electrode active substance for secondary cell and method for producing same
WO2016143171A1 (en) * 2015-03-09 2016-09-15 太平洋セメント株式会社 Positive electrode active substance for secondary cell and method for producing same
JP6042511B2 (en) * 2015-03-09 2016-12-14 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP6042512B2 (en) * 2015-03-26 2016-12-14 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP6023295B2 (en) * 2015-03-26 2016-11-09 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP6015835B1 (en) * 2015-09-30 2016-10-26 住友大阪セメント株式会社 Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6128181B2 (en) * 2015-09-30 2017-05-17 住友大阪セメント株式会社 Electrode material for lithium ion secondary battery, method for producing electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018195506A (en) * 2017-05-19 2018-12-06 株式会社東芝 Secondary battery electrode, secondary battery, battery pack and vehicle
JP6368022B1 (en) 2017-05-31 2018-08-01 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN113889616B (en) * 2021-09-13 2023-04-25 武汉大学 High tap density lithium-rich manganese-based positive electrode material and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784085B2 (en) * 2004-12-10 2011-09-28 新神戸電機株式会社 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5671770B2 (en) * 2005-11-16 2015-02-18 三菱化学株式会社 Lithium secondary battery
JP5343347B2 (en) * 2007-11-08 2013-11-13 三菱化学株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5377946B2 (en) * 2007-12-25 2013-12-25 花王株式会社 Composite material for lithium battery positive electrode
US8691441B2 (en) * 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries
KR101103606B1 (en) * 2010-12-22 2012-01-09 한화케미칼 주식회사 A composite comprising an electrode-active transition metal compound and a fibrous carbon material, and a method for preparing the same
JP2012195156A (en) * 2011-03-16 2012-10-11 Toyo Ink Sc Holdings Co Ltd Positive electrode active material substance for lithium secondary battery, method for manufacturing the same, and lithium secondary battery using the same
JP5284400B2 (en) * 2011-03-18 2013-09-11 株式会社田中化学研究所 Carbon composite lithium titanate, method for producing the same, active material for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5725350B2 (en) * 2011-07-29 2015-05-27 トヨタ自動車株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2014241229A (en) 2014-12-25

Similar Documents

Publication Publication Date Title
JP6125916B2 (en) Conductive composite particles, and positive electrode and secondary battery for secondary battery using the same
US11056691B2 (en) Silicon-carbon composite particulate material
JP6229775B2 (en) Carbon material for non-aqueous secondary batteries
JP6365580B2 (en) Carbon material, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6123839B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5143437B2 (en) Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode
CA2781164A1 (en) Positive-electrode material for a lithium ion secondary battery and manufacturing method of the same
JPWO2012042727A1 (en) Positive electrode active material particles for lithium ion secondary battery, positive electrode using the positive electrode active material particles, and lithium ion secondary battery
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
TW202231579A (en) Negative electrode material for lithium ion secondary battery, evaluation method thereof, and manufacturing method thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP2017054815A (en) Carbon material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2021180186A (en) Carbon material for negative electrode of lithium ion secondary battery and manufacturing method thereof, as well as negative electrode and lithium ion secondary battery employing the same
JP7226431B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20240113296A1 (en) Lithium-ion secondary-battery negative electrode material and method for manufacturing same, lithium-ion secondary-battery negative electrode, and lithium ion secondary battery
JP2016189294A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method for the same
JP2015204211A (en) Composite particle and secondary battery positive electrode using the same, and secondary battery
JP7400532B2 (en) Composite carbon material and its manufacturing method, negative electrode active material for lithium ion secondary batteries, and lithium ion secondary batteries
JP2005149792A (en) Carbonaceous negative electrode material for lithium secondary battery
WO2018184555A1 (en) Activated carbon microbead, electrode, and supercapacitor
KR20240026434A (en) Positive electrode active material for lithium secondary battery, method for preparing same, and positive electrode for lithium secondary battery comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6125916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250