JP2017054815A - Carbon material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery - Google Patents

Carbon material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery Download PDF

Info

Publication number
JP2017054815A
JP2017054815A JP2016176495A JP2016176495A JP2017054815A JP 2017054815 A JP2017054815 A JP 2017054815A JP 2016176495 A JP2016176495 A JP 2016176495A JP 2016176495 A JP2016176495 A JP 2016176495A JP 2017054815 A JP2017054815 A JP 2017054815A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016176495A
Other languages
Japanese (ja)
Inventor
▲高▼木 嘉則
嘉則 ▲高▼木
Yoshinori Takagi
哲夫 塩出
Tetsuo Shiode
哲夫 塩出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Publication of JP2017054815A publication Critical patent/JP2017054815A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a material for a lithium ion secondary battery negative electrode, which is superior in high rate characteristic even with a high negative electrode density of over 1.5 g/cm, without impairing a capacity, an initial charge/discharge efficiency or a cycle characteristic; a lithium ion secondary battery negative electrode; and a lithium ion secondary battery.SOLUTION: A method for manufacturing a material for a lithium ion secondary battery negative electrode comprises: a metal hydrate formation step of immersing a graphite granulated material having pores therein in a metal alkoxide solution, thereby forming a metal hydrate in pores of the graphite granulated material; a carbon precursor deposition step of depositing a carbon precursor on the graphite granulated material obtained in the metal hydrate formation step, thereby obtaining a carbon precursor-deposited graphite granulated material; and a baking step of baking the carbon precursor-deposited graphite granulated material obtained in the carbon precursor deposition step to make the carbon precursor carbonaceous, and to make the metal hydrate a granular metal oxide, thereby obtaining the material for a lithium ion secondary battery negative electrode, which has the granular metal oxide in an internal space of the resultant carbonaceous coated graphite granulated material.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池負極用炭素材料およびその製造方法、リチウムイオン二次電池負極ならびにリチウムイオン二次電池に関する。   The present invention relates to a carbon material for a negative electrode of a lithium ion secondary battery and a method for producing the same, a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery.

近年、電子機器の小型化、高性能化に伴い、電池の高エネルギー密度化に対する要望がますます高まっている。なかでも、リチウムイオン二次電池は、エネルギー密度が高く、高電圧化が可能であることから注目されている。   In recent years, with the miniaturization and high performance of electronic devices, there is an increasing demand for higher energy density of batteries. Among these, lithium ion secondary batteries are attracting attention because of their high energy density and high voltage.

リチウムイオン二次電池負極用材料としては、リチウムイオンを吸蔵・放出し得る炭素材料を用いることが一般的です。炭素材料としては、黒鉛構造、乱層構造などの多種多様な構造、組織、形態のものが知られており、これら多種多様な構造、組織、形態に応じて、充放電時の作動電圧などの電極性能が大きく異なる。なかでも、高い放電容量と電位平坦性とを示す黒鉛が、現状多く使用されている。   As a material for the negative electrode of a lithium ion secondary battery, it is common to use a carbon material that can occlude and release lithium ions. A wide variety of structures, structures, and forms such as graphite structures and turbulent structures are known as carbon materials. Depending on these various structures, structures, and forms, the operating voltage during charging and discharging, etc. Electrode performance varies greatly. Among them, graphite that exhibits a high discharge capacity and potential flatness is currently used in many cases.

黒鉛材料は、結晶性黒鉛構造が発達するほどリチウムとの層間化合物を安定して形成しやすく、多量のリチウムが炭素網面の層間に挿入されるので、高い放電容量が得られることが報告されている。リチウムの挿入量により種々の層構造を形成し、それらが共存する領域では平坦でかつリチウム金属に近い高い電位を示す。このことから、組電池にした場合には、高出力を得ることが可能となり、一般的に炭素負極材料の理論容量(限界値)は、最終的に黒鉛とリチウムとの理想的な黒鉛層間化合物LiCが形成された場合の放電容量372mAh/gとされている。 It has been reported that graphite materials are more likely to stably form intercalation compounds with lithium as the crystalline graphite structure develops, and that a large amount of lithium is inserted between the layers of the carbon network, resulting in high discharge capacity. ing. Various layer structures are formed depending on the amount of lithium inserted, and in a region where they coexist, they are flat and have a high potential close to lithium metal. Therefore, when an assembled battery is used, it is possible to obtain a high output. Generally, the theoretical capacity (limit value) of a carbon anode material is an ideal graphite intercalation compound of graphite and lithium. The discharge capacity when LiC 6 is formed is 372 mAh / g.

一方、近年では、車載などの動力用やパワーツール用、さらには携帯機器でも高機能化による高出力化で、ハイレート特性が要求されてきている。これに対しては、リチウムを吸蔵・脱離する負極の改良に期待されているところが大きい。   On the other hand, in recent years, high-rate characteristics have been required for high power output due to high functionality for power sources such as in-vehicle use, power tools, and even portable devices. For this, there is a great expectation for improvement of the negative electrode for inserting and extracting lithium.

ハイレート特性がとくに要求されるハイブリッド車用のリチウムイオン二次電池負極材料としては、ハードカーボンがある。ハードカーボンとは、「難黒鉛化炭素」の意味で、上述した黒鉛材料にたいして炭素網面が発達していない材料です。そのため、黒鉛よりも炭素網面の層間や網面構造間の空孔が広いことで、ハイレートでのリチウム吸蔵・脱離に適している。   As a lithium ion secondary battery negative electrode material for a hybrid vehicle that particularly requires high rate characteristics, there is hard carbon. Hard carbon means “non-graphitizable carbon” and is a material that does not have a carbon net surface developed relative to the graphite material described above. Therefore, it is suitable for lithium occlusion / desorption at a high rate because the pores between the carbon network surfaces and between the network surface structures are wider than graphite.

しかしながら、ハードカーボンは優れたハイレート特性を示すものの、リチウムイオン二次電池負極としたときの密度が高々1.0g/cm程度であり、通常1.5g/cm以上で使用される黒鉛材料に対して5割以上も電池容積あたりの容量で劣ることになる。また、ハードカーボンは製造工程が複雑なため、製造コストが高価になる課題もある。 However, although the hard carbon exhibits excellent high rate characteristics, the density when it is used as a negative electrode for a lithium ion secondary battery is at most about 1.0 g / cm 3 , and is usually a graphite material used at 1.5 g / cm 3 or more. On the other hand, the capacity per battery volume is inferior by 50% or more. In addition, since hard carbon has a complicated manufacturing process, there is a problem that the manufacturing cost is high.

一方、黒鉛材料でも比表面積の高い天然黒鉛はハードカーボンに準じるハイレート特性を有することが知られており、エネルギー密度も高いことから、EV用のリチウムイオン電池負極材料として用途が広まっている。しかしながら、この時の負極密度も現状では高々1.5g/cm程度に止まっている。その理由は、低密度では大きな粒子内空隙が存在するのに対し、負極密度をプレスで1.5g/cm超に高めると、粒子内空隙が著しく減少して、有効に利用出来なくなり、ハイレート特性が低下するためです。 On the other hand, natural graphite having a high specific surface area is also known to have a high rate characteristic similar to that of hard carbon, and its energy density is also high, and its use is widening as a lithium ion battery negative electrode material for EV. However, the density of the negative electrode at this time is currently only at most about 1.5 g / cm 3 . The reason for this is that large interstitial voids exist at low density, whereas when the negative electrode density is increased to more than 1.5 g / cm 3 by pressing, the intragranular voids are significantly reduced and cannot be used effectively. This is because the characteristics deteriorate.

ハイレート特性の向上のためには、黒鉛粒子の小粒径化が有効であることが知られている。しかし、極端な小粒径化は、加工が困難であるのみならず、粉体としての嵩密度が低下するため、リチウムイオン二次電池の負極電極とした際の充填密度の低下を招き、好ましくない。   It is known that reducing the particle size of graphite particles is effective for improving the high rate characteristics. However, an extremely small particle size is not only difficult to process, but also reduces the bulk density as a powder, which leads to a decrease in packing density when used as a negative electrode of a lithium ion secondary battery. Absent.

ハイレート特性の向上のための、黒鉛粒子の小粒径化以外の方法としては、黒鉛粒子の内部空隙の細孔を制御する方法が検討されている。   As a method other than reducing the particle size of the graphite particles for improving the high rate characteristics, a method of controlling the pores of the internal voids of the graphite particles has been studied.

特許文献1では、シリコン等の金属化合物を黒鉛粒子と複合化させる材料について記載されているが、本法は焼結による複合化であり黒鉛粒子の細孔構造に変化を与えてハイレート特性を改良するものではなく、容量の向上を目的としたものです。   Patent Document 1 describes a material for compounding a metal compound such as silicon with graphite particles, but this method is compounding by sintering, and changes the pore structure of the graphite particles to improve high-rate characteristics. It is not intended to improve capacity.

特許文献2では、鱗片状黒鉛粒子と焼成炭素からなる内部に空隙を有する球状の複合体が、請求項1に記載され、段落[0015]では、鱗片状黒鉛粒子が、「黒鉛炭素以外の有機材料、無機材料、金属材料との混合物、複合物であってもよく・・シリカ、アルミナ、チタニアなどの金属酸化物の微粒子を付着または埋設したものであってもよく、ケイ素、錫、コバルト、ニッケル、銅、酸化ケイ素、酸化錫、チタン酸リチウムなどの金属または金属化合物を、付着、埋設、複合、内包したものであってもよい。」ことが記載される。これらの金属酸化物粒子と内部の空隙との関係は検討されておらずもとより得られる効果についても検討されていない。   In Patent Document 2, a spherical composite having voids in the inside made of scaly graphite particles and calcined carbon is described in claim 1, and in paragraph [0015], scaly graphite particles are “organic other than graphite carbon”. Materials, inorganic materials, mixtures with metal materials, and composites may be used.- Metal oxide fine particles such as silica, alumina, titania, etc. may be attached or embedded, silicon, tin, cobalt, It may be a metal or metal compound such as nickel, copper, silicon oxide, tin oxide or lithium titanate attached, embedded, compounded or encapsulated. The relationship between these metal oxide particles and the internal voids has not been studied, and the effect obtained has not been studied.

特許文献3では、請求項1に、「結晶質炭素を含むコアと、前記コア表面に位置する金属ナノ粒子および酸化物ナノ粒子と、 これらのナノ粒子を囲んで形成された非晶質炭素を含むコーティング層とを含む、リチウム2次電池用負極活物質。」が記載されている。ここで記載される酸化物ナノ粒子は、「MOx(x=0.5〜1.5、M=Si、Sn、In、Alまたはこれらの組み合わせである。)」と説明され、負極活物質として働く。一方、SiO2、アルミナ等の負極活物質ではない酸化物ナノ粒子の記載はない。   In Patent Document 3, claim 1 states that “a core containing crystalline carbon, metal nanoparticles and oxide nanoparticles located on the core surface, and amorphous carbon formed surrounding these nanoparticles. A negative electrode active material for a lithium secondary battery including a coating layer. " The oxide nanoparticles described here are described as “MOx (x = 0.5 to 1.5, M = Si, Sn, In, Al, or a combination thereof)”, and are used as a negative electrode active material. work. On the other hand, there is no description of oxide nanoparticles that are not negative electrode active materials such as SiO 2 and alumina.

特開2012−124121号公報JP2012-124121A 特開2014−7148号公報JP 2014-7148 A 特開2012−99452号公報JP 2012-99452 A

本発明は、容量、初回充放電効率およびサイクル特性を損ねることなく、1.5g/cmを超える高い負極密度でもハイレート特性に優れるリチウムイオン二次電池負極用材料、リチウムイオン二次電池負極およびリチウムイオン二次電池を提供することを課題とする。 The present invention provides a lithium ion secondary battery negative electrode material having excellent high rate characteristics even at a high negative electrode density exceeding 1.5 g / cm 3 without impairing capacity, initial charge / discharge efficiency, and cycle characteristics, and a lithium ion secondary battery negative electrode and It is an object to provide a lithium ion secondary battery.

本発明者らは、プレスにより負極密度を高めても、黒鉛材料の粒子内空隙を有効に利用出来る構造の実現によって、高いエネルギー密度とハイレート特性を両立する手法を鋭意検討した。
その結果、容量、初回充放電効率およびサイクル特性と合わせ、比較的ハイレート特性にも優れる球状天然黒鉛などの黒鉛粒子に対して、アルミナやシリカなどの金属酸化物前駆体を溶液段階で黒鉛粒子に接触させ、各々適切な製造方法でアルミナやシリカなどの金属酸化物の微小粒子を球状天然黒鉛の粒子内部の空隙中で生成させることで、負極密度を高めても微小な金属酸化物粒子が黒鉛粒子の内部空隙の閉塞を阻止することを見出した。
The present inventors diligently studied a method for achieving both high energy density and high rate characteristics by realizing a structure that can effectively utilize the voids in the graphite material even if the negative electrode density is increased by pressing.
As a result, metal oxide precursors such as alumina and silica are converted into graphite particles at the solution stage, compared to graphite particles such as spherical natural graphite, which have relatively high rate characteristics, combined with capacity, initial charge / discharge efficiency, and cycle characteristics. The metal oxide microparticles such as alumina and silica are produced in the voids inside the spherical natural graphite particles by contact with each other by an appropriate manufacturing method, so that even if the negative electrode density is increased, the fine metal oxide particles are graphite. It has been found that the internal voids of the particles are blocked.

すなわち、本発明は、以下の(1)〜(8)を提供する。
(1)内部に空隙を有する黒鉛造粒物を金属アルコキシド溶液に浸漬して、前記黒鉛造粒物の内部空隙に金属水和物を形成する金属水和物形成工程と、
前記金属水和物形成工程で得られた前記黒鉛造粒物に炭素前駆体を付着させて、炭素前駆体付着黒鉛造粒物を得る炭素前駆体付着工程と、
前記炭素前駆体付着工程で得られた炭素前駆体付着黒鉛造粒物を焼成して、前記炭素前駆体を炭素質とし、前記金属水和物を粒状の金属酸化物として、炭素質被覆された黒鉛造粒物の内部空間に粒状の金属酸化物を有するリチウムイオン二次電池負極用材料を得る焼成工程を有するリチウムイオン二次電池負極用材料の製造方法。
That is, the present invention provides the following (1) to (8).
(1) a metal hydrate forming step of immersing a graphite granule having voids inside in a metal alkoxide solution to form a metal hydrate in the internal voids of the graphite granule;
Attaching a carbon precursor to the graphite granule obtained in the metal hydrate forming step to obtain a carbon precursor-attached graphite granule,
The carbon precursor-attached graphite granule obtained in the carbon precursor attaching step was baked, and the carbon precursor was made carbonaceous, and the metal hydrate was made a granular metal oxide and coated with carbon. The manufacturing method of the material for lithium ion secondary battery negative electrodes which has a baking process which obtains the material for lithium ion secondary battery negative electrodes which has a granular metal oxide in the internal space of a graphite granulated material.

(2)内部に空隙を有する黒鉛造粒物を金属アルコキシド溶液に浸漬して、前記黒鉛造粒物の内部空隙に金属水和物を形成する金属水和物形成工程と、
前記金属水和物形成工程で得られた前記黒鉛造粒物を焼成して、前記金属水和物を粒状の金属酸化物として、前記黒鉛造粒物の内部空間に粒状の金属酸化物を有する黒鉛造粒物を得る金属酸化物形成工程と、
前記金属酸化物形成工程で得られた黒鉛造粒物に炭素前駆体を付着させて、炭素前駆体付着黒鉛造粒物を得る炭素前駆体付着工程と、
炭素前駆体付着工程で得られた炭素前駆体付着黒鉛造粒物を焼成して、前記炭素前駆体を炭素質とし、炭素質被覆された黒鉛造粒物の内部空間に粒状の金属酸化物を有するリチウムイオン二次電池負極用材料を得る焼成工程を有するリチウムイオン二次電池負極用材料の製造方法。
(3)前記金属がアルミニウムおよび/またはケイ素である(1)または(2)に記載のリチウムイオン二次電池負極用材料の製造方法。
(2) a metal hydrate forming step of immersing a graphite granule having voids in a metal alkoxide solution to form a metal hydrate in the internal voids of the graphite granule,
The graphite granule obtained in the metal hydrate formation step is fired, and the metal hydrate is used as a granular metal oxide, and the granular metal oxide is included in the internal space of the graphite granule. A metal oxide forming step for obtaining a graphite granule,
Attaching a carbon precursor to the graphite granule obtained in the metal oxide forming step to obtain a carbon precursor-attached graphite granule,
The carbon precursor-attached graphite granule obtained in the carbon precursor attaching step is fired to make the carbon precursor carbonaceous, and a granular metal oxide is formed in the internal space of the carbon-coated graphite granule. The manufacturing method of the material for lithium ion secondary battery negative electrodes which has a baking process which obtains the material for lithium ion secondary battery negative electrodes which has.
(3) The method for producing a material for a negative electrode of a lithium ion secondary battery according to (1) or (2), wherein the metal is aluminum and / or silicon.

(4)黒鉛造粒物中の内部に空隙を有し、当該内部の空隙中に金属酸化物粒子が内部の空隙の一部を満たし全部を満たさない状態で存在する、リチウムイオン二次電池用負極用炭素材料(以下、負極用炭素材料ということがある)。
(5)球形化処理が行われた黒鉛粒子の内部表面の少なくとも一部に、平均粒径1μm以下の微小な金属酸化物粒子を存在させた、リチウムイオン二次電池負極用炭素材料。
(6)上記(4)または(5)に記載の金属酸化物が、アルミナおよび/またはシリカであるリチウムイオン二次電池負極用炭素材料。
(7)上記(4)ないし(6)のいずれかに記載のリチウムイオン二次電池負極用炭素材料を用いたリチウムイオン二次電池負極。
(8)前記リチウムイオン二次電池負極用炭素材料密度を加圧成型により密度1.7g/cmとした時に、2.0m/g以上のBJH比表面積を有する(7)に記載のリチウムイオン二次電池負極。
(4) For a lithium ion secondary battery having voids in the graphite granule, and in which the metal oxide particles are present in a state that does not satisfy all of the internal voids. Negative electrode carbon material (hereinafter, also referred to as negative electrode carbon material).
(5) A carbon material for a negative electrode of a lithium ion secondary battery in which fine metal oxide particles having an average particle diameter of 1 μm or less are present on at least a part of the inner surface of the spheroidized graphite particles.
(6) A carbon material for a negative electrode of a lithium ion secondary battery, wherein the metal oxide according to (4) or (5) is alumina and / or silica.
(7) A lithium ion secondary battery negative electrode using the carbon material for a lithium ion secondary battery negative electrode according to any one of (4) to (6) above.
(8) The lithium according to (7), which has a BJH specific surface area of 2.0 m 2 / g or more when the carbon material density for the negative electrode of the lithium ion secondary battery is set to a density of 1.7 g / cm 3 by pressure molding. Ion secondary battery negative electrode.

本発明によれば、容量、初回充放電効率およびサイクル特性を損ねることなく、1.5g/cm超の高い負極密度でもハイレート特性に優れるリチウムイオン二次電池負極用材料、リチウムイオン二次電池負極およびリチウムイオン二次電池が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery negative electrode material and lithium ion secondary battery which are excellent in a high-rate characteristic even if the negative electrode density of more than 1.5 g / cm 3 is high, without impairing capacity, initial charge / discharge efficiency, and cycle characteristics A negative electrode and a lithium ion secondary battery are provided.

図1は、評価用のコイン型二次電池を示す断面図です。Fig. 1 is a cross-sectional view showing a coin-type secondary battery for evaluation.

リチウムイオン二次電池負極用炭素材料の製造方法
以下に本発明のリチウムイオン二次電池負極用炭素材料の製造方法について説明するが、本発明の負極用炭素材料の製造方法はこれらの具体例に限定されるものではなく以下の製造方法は好適な製造方法の例示です。
(1)導入法A
金属水和物形成工程−炭素前駆体付着工程−焼成して負極用材料を得る工程
1)金属のアルコキシド溶液を得て、内部に空隙を有する黒鉛造粒物を得られた金属アルコキシド溶液に浸漬して、黒鉛造粒物の内部空隙に金属水和物を形成する金属水和物形成工程と、
2)前記金属水和物形成工程で得られた前記黒鉛造粒物に炭素前駆体を付着させて、炭素前駆体付着黒鉛造粒物を得る炭素前駆体付着工程と、および、
3)前記炭素前駆体付着工程で得られた炭素前駆体付着黒鉛造粒物を焼成して、前記炭素前駆体を炭素質とし、前記金属水和物を粒状の金属酸化物として、炭素質被覆された黒鉛造粒物の内部空間に粒状の金属酸化物を有するリチウムイオン二次電池負極用材料を得る焼成工程。
(2)導入法B
金属水和物形成工程−焼成して粒状金属酸化物を含む黒鉛造粒物を得る工程−炭素前駆体付着工程−焼成して負極用材料を得る工程
1)金属のアルコキシド溶液を得て、内部に空隙を有する黒鉛造粒物を得られた金属アルコキシド溶液に浸漬して、前記黒鉛造粒物の内部空隙に金属水和物を形成する金属水和物形成工程と、
2)前記金属水和物形成工程で得られた前記黒鉛造粒物を焼成して、前記金属水和物を粒状の金属酸化物として、前記黒鉛造粒物の内部空間に粒状の金属酸化物を有する黒鉛造粒物を得る金属酸化物形成工程と、
3)前記金属酸化物形成工程で得られた黒鉛造粒物に炭素前駆体を付着させて、炭素前駆体付着黒鉛造粒物を得る炭素前駆体付着工程と、
4)炭素前駆体付着工程で得られた炭素前駆体付着黒鉛造粒物を焼成して、前記炭素前駆体を炭素質とし、炭素質被覆された黒鉛造粒物の内部空間に粒状の金属酸化物を有するリチウムイオン二次電池負極用材料を得る焼成工程。
Method for producing carbon material for negative electrode of lithium ion secondary battery Hereinafter, a method for producing a carbon material for negative electrode of a lithium ion secondary battery of the present invention will be described. The following manufacturing method is not limited and is an example of a preferable manufacturing method.
(1) Introduction method A
Metal hydrate formation step-carbon precursor adhesion step-Step of obtaining a negative electrode material by firing 1) Obtaining a metal alkoxide solution and immersing the resulting graphite granule having voids in the obtained metal alkoxide solution A metal hydrate forming step of forming a metal hydrate in the internal voids of the graphite granule,
2) a carbon precursor attaching step of attaching a carbon precursor to the graphite granule obtained in the metal hydrate forming step to obtain a carbon precursor adhering graphite granule; and
3) The carbon precursor-attached graphite granule obtained in the carbon precursor attaching step is fired so that the carbon precursor is carbonaceous, the metal hydrate is granular metal oxide, and the carbonaceous coating is formed. A firing step of obtaining a material for a negative electrode of a lithium ion secondary battery having a granular metal oxide in the internal space of the graphite granulated product.
(2) Introduction method B
Metal hydrate formation step-step of obtaining a granulated graphite product containing granular metal oxide-carbon precursor adhesion step-step of obtaining a negative electrode material by firing 1) obtaining a metal alkoxide solution, A metal hydrate forming step of immersing a graphite granule having voids in the obtained metal alkoxide solution to form a metal hydrate in the internal voids of the graphite granule,
2) The graphite granule obtained in the metal hydrate forming step is fired to form the metal hydrate as a granular metal oxide, and a granular metal oxide in the internal space of the graphite granule. A metal oxide forming step for obtaining a graphite granule having
3) A carbon precursor adhering step for attaching a carbon precursor to the graphite granule obtained in the metal oxide forming step to obtain a carbon precursor adhering graphite granule;
4) The carbon precursor-attached graphite granule obtained in the carbon precursor attaching step is baked to make the carbon precursor carbonaceous, and granular metal oxidation is performed in the internal space of the carbonaceous-coated graphite granule. The baking process of obtaining the material for lithium ion secondary battery negative electrodes which has a thing.

1 黒鉛造粒物に金属酸化物を導入する方法
従来リチウムイオン二次電池負極材料に用いられる黒鉛質粒子にアルミナやシリカなどの金属酸化物を添加する技術は知られている。それらの金属酸化物には、一次粒径が数10nmと非常に微小なものも存在する。しかし粒状の金属酸化物を黒鉛質粒子の内部空隙中に導入することは困難であり、粒状のアルミナやシリカなどの金属酸化物と黒鉛質粒子とを単に複合化等しただけでは、黒鉛材料の表面に付着するだけで、本発明と同等の効果は得られない。
[黒鉛造粒物]
本発明に用いられる黒鉛造粒物としては、内部に空隙を有する黒鉛を主体とする粒子であれば特に限定されず、例えば、球状化した天然黒鉛;微小な薄片状の天然または人造黒鉛を造粒したもの;等が挙げられる。黒鉛を主体とするとは、50質量%以上が天然または人造黒鉛であるものをいう。内部に適切な大きさの空隙を有するように製造する方法は、特に限定されないが、鱗片状黒鉛をメカノケミカル処理で折り畳み・球状化する方法が例示出来る。
近年、球状化天然黒鉛は、価格的な合理性と実用性能とから、特に利用が広がっている。
1 Method for Introducing Metal Oxide into Graphite Granules Conventionally, a technique for adding a metal oxide such as alumina or silica to graphite particles used in negative electrode materials for lithium ion secondary batteries is known. Some of these metal oxides have a very small primary particle size of several tens of nanometers. However, it is difficult to introduce a granular metal oxide into the internal voids of the graphite particles. Simply by combining a granular metal oxide such as alumina or silica with the graphite particles, the graphite material The effect equivalent to the present invention cannot be obtained only by adhering to the surface.
[Graphite granules]
The graphite granulated material used in the present invention is not particularly limited as long as it is a particle mainly composed of graphite having voids inside, and for example, spheroidized natural graphite; fine flaky natural or artificial graphite is produced. And so on. “Mainly composed of graphite” means that 50% by mass or more is natural or artificial graphite. A method for producing a void having an appropriate size inside is not particularly limited, but a method of folding and spheroidizing scaly graphite by mechanochemical treatment can be exemplified.
In recent years, the use of spheroidized natural graphite has been particularly widespread due to its reasonable price and practical performance.

(黒鉛造粒物の平均粒径)
原料に用いられる黒鉛造粒物の平均粒径は、特に限定されるものではなく、得られるリチウムイオン二次電池負極用材料の粒子径にもよるが、5〜100μmが好ましく、5〜30μmがより好ましく、10〜20μmがさらに好ましい。
なお、黒鉛造粒物の平均粒径は、レーザー回折式粒度分布計の累積度数が体積百分率で50%となる粒子径(D50)です。
(Average particle size of graphite granules)
The average particle diameter of the graphite granule used for the raw material is not particularly limited, and depends on the particle diameter of the obtained negative electrode material for a lithium ion secondary battery, but is preferably 5 to 100 μm, preferably 5 to 30 μm. More preferably, 10-20 micrometers is further more preferable.
The average particle size of the graphite granule is the particle size (D50) at which the cumulative frequency of the laser diffraction particle size distribution meter is 50% by volume.

(黒鉛造粒物の比表面積)
原料に用いられる黒鉛造粒物の比表面積は、特に限定されるものではないが、得られる被覆黒鉛造粒物の比表面積が大きすぎないものとするため、40m/g以下が好ましく、0.6〜10m/gがより好ましく、4.0〜8.0m/gがさらに好ましく、4.0〜5.0m/gが最も好ましい。ここで、黒鉛造粒物の比表面積は、窒素ガス吸着BET比表面積です。なお、炭素質被覆黒鉛造粒物がリチウムイオン電池の電極として使用される際は加圧成型された電極が用いられるが、一般に、加圧成型により炭素質被覆黒鉛造粒物の比表面積は減少する。加圧成型の前後で必要な比表面積が維持されていればよいが、50%以上の比表面積の維持率であることが好ましく、60%以上の維持率であることがより好ましい。
(Specific surface area of graphite granules)
The specific surface area of the graphite granule used for the raw material is not particularly limited, but is preferably 40 m 2 / g or less, so that the specific surface area of the obtained coated graphite granule is not too large. .6~10m more preferably 2 / g, 4.0~8.0m more preferably 2 / g, 4.0~5.0m 2 / g being most preferred. Here, the specific surface area of graphite granules is the nitrogen gas adsorption BET specific surface area. In addition, when the carbonaceous coated graphite granule is used as an electrode of a lithium ion battery, a pressure molded electrode is used. In general, the specific surface area of the carbonaceous coated graphite granule is reduced by the pressure molding. To do. The required specific surface area may be maintained before and after pressure molding, but the maintenance ratio of the specific surface area of 50% or more is preferable, and the maintenance ratio of 60% or more is more preferable.

(黒鉛造粒物の嵩密度)
黒鉛造粒物の炭素質被覆前の嵩密度は、特に限定されないが、低いことが好ましく、具体的には、0.4〜0.7g/cmが好ましい。この範囲内であると、黒鉛造粒物の粒径が小さく、しかもリチウムイオン二次電池の負極電極とした際の充填密度の低下が抑制される。なお、嵩密度は、150cmの容器に試料を充填した後、300回タップした後の体積と質量より求めたものです。
(Bulk density of graphite granules)
Although the bulk density before carbonaceous coating of the graphite granule is not particularly limited, it is preferably low, and specifically, 0.4 to 0.7 g / cm 3 is preferable. Within this range, the particle size of the graphite granulated material is small, and a decrease in packing density when used as a negative electrode of a lithium ion secondary battery is suppressed. The bulk density was calculated from the volume and mass after tapping 300 times after filling a sample in a 150 cm 3 container.

[金属酸化物の導入]
上述の黒鉛造粒物の内部空隙への金属酸化物の導入については、以下ではアルミナの導入の例を記載するが、他の金属酸化物でも同様の方法で金属酸化物の導入をすることが出来る。
[Introduction of metal oxides]
As for the introduction of the metal oxide into the internal voids of the above-mentioned graphite granule, an example of introduction of alumina will be described below, but other metal oxides may introduce metal oxide in the same manner. I can do it.

(微粒アルミナの導入)
ナノサイズのアルミナ粒子は、金属アルミニウムとアルコールとの反応からアルミニウムアルコキシドを合成し、加水分解してアルミナ水和物を得る。最終的には、これを焼成して高純度アルミナが得られ、反応全体は以下の化学式で表せる。
Al + 3ROH → Al (OR)3 + 3/2H2 ・・・ (1)
2Al (OR)3+ 4H2O → Al2O3・ H2O + 6ROH ・・・ (2)
Al2O3 ・ H2O → Al2O3 + H2O ・・・ (3)
(Introduction of fine alumina)
The nano-sized alumina particles synthesize aluminum alkoxide from the reaction between metallic aluminum and alcohol and hydrolyze to obtain alumina hydrate. Finally, this is fired to obtain high-purity alumina, and the entire reaction can be expressed by the following chemical formula.
Al + 3ROH → Al (OR) 3 + 3 / 2H 2 ... (1)
2Al (OR) 3 + 4H 2 O → Al 2 O 3・ H 2 O + 6ROH (2)
Al 2 O 3・ H 2 O → Al 2 O 3 + H 2 O (3)

本発明では、原料の黒鉛造粒物に対して、アルミニウムアルコキシドを加水分解すべく水を加えた状態((2)式左辺)で含浸させ、その後アルミニウムアルコキシドの加水分解でナノサイズの微粒アルミナ水和物が黒鉛造粒物内部で生成する。
一方導入法Bでは前記金属水和物形成工程で得られた前記黒鉛造粒物を焼成して、前記金属水和物を粒状の金属酸化物として、前記黒鉛造粒物の内部空間に粒状の金属酸化物を有する黒鉛造粒物を得て(金属酸化物形成工程)、次工程の炭素前駆体の被覆工程を行う。金属水和物の焼成条件は、窒素等の不活性ガス雰囲気中で60〜150℃で30分から2時間行うのが好ましい。
導入法Aでは金属水和物のママ次工程の炭素前駆体の被覆工程を行う。
In the present invention, the raw graphite agglomerated material is impregnated in a state where water is added to hydrolyze the aluminum alkoxide (the left side of the formula (2)), and then the nano-sized fine alumina water is obtained by hydrolysis of the aluminum alkoxide. A Japanese product is formed inside the graphite granule.
On the other hand, in the introduction method B, the graphite granule obtained in the metal hydrate formation step is fired to form the metal hydrate as a granular metal oxide, and granular particles in the internal space of the graphite granule. A graphite granule having a metal oxide is obtained (metal oxide forming step), and a carbon precursor coating step in the next step is performed. The firing conditions for the metal hydrate are preferably performed in an inert gas atmosphere such as nitrogen at 60 to 150 ° C. for 30 minutes to 2 hours.
In the introduction method A, a carbon precursor coating step is performed as the next step of the metal hydrate mama.

(微粒シリカの導入)
例えば、原料の黒鉛造粒物に対して、1〜2質量%のテトラメトキシシランのアルコール溶液を含浸させ、不活性ガス雰囲気で、800〜1000℃に加熱した連続供給式の反応器中に0.5〜1s通過させることで、以下の反応が進行して黒鉛中にシリカを導入できる。
Si(OCH3)4 + 2H2O → SiO2 + 4CH3OH ・・・ (4)
(Introduction of fine silica)
For example, the raw material graphite granule is impregnated with 1-2% by mass of an alcohol solution of tetramethoxysilane and heated to 800 to 1000 ° C. in an inert gas atmosphere. By passing for 5 to 1 s, the following reaction proceeds and silica can be introduced into the graphite.
Si (OCH 3 ) 4 + 2H 2 O → SiO 2 + 4CH 3 OH (4)

2 炭素前駆体の被覆工程
本発明の負極用材料は、上述の黒鉛造粒物または内部空間に粒状の金属酸化物を有する黒鉛造粒物を基材として炭素前駆体を付着させて焼成してリチウムイオン二次電池負極用材料を製造する。なお、炭素前駆体の被覆工程は、炭素被覆後では黒鉛造粒物内に金属酸化物が導入され難くなるため、炭素被覆は金属水和物または金属酸化物の導入後に行った方が望ましい。
2 Coating process of carbon precursor The negative electrode material of the present invention is prepared by attaching a carbon precursor to the above-described graphite granulated product or a graphite granulated product having a granular metal oxide in the internal space and firing it. A negative electrode material for a lithium ion secondary battery is manufactured. The carbon precursor coating step is preferably performed after the introduction of the metal hydrate or the metal oxide because the metal oxide is difficult to be introduced into the graphite granule after the carbon coating.

(被覆工程)
例えば、被覆方法としては、固体のピッチを塗布する乾式法、ピッチを溶媒に溶かして付着または含浸させる湿式法などのいずれの方法でもよい。以下に、乾式法および湿式法の例を示すが、後に記載する細孔分布を満たすならば、これらの方法に限定されることはない。細孔分布は被覆工程の影響は受けるが、如何なる被覆法でも、本発明における電極プレス成型時の内部空隙保持の効果は得られる。
炭素前駆体は、例えば、石炭系ピッチ、石油系ピッチなどのピッチ;フェノール樹脂、フラン樹脂などの樹脂;ピッチと樹脂との混合物;等が挙げられ、なかでも、経済性等の観点から、石炭系ピッチ、石油系ピッチなどのピッチが好ましい。
(Coating process)
For example, the coating method may be any method such as a dry method in which a solid pitch is applied, or a wet method in which a pitch is dissolved in a solvent and adhered or impregnated. Examples of the dry method and the wet method are shown below, but the method is not limited to these methods as long as the pore distribution described later is satisfied. Although the pore distribution is affected by the coating process, any coating method can obtain the effect of retaining the internal voids during electrode press molding in the present invention.
Examples of the carbon precursor include pitches such as coal-based pitches and petroleum-based pitches; resins such as phenolic resins and furan resins; mixtures of pitches and resins; and the like. Pitch such as system pitch and petroleum pitch is preferred.

(乾式法)高軟化点のピッチ(軟化点120℃以上、150℃未満、残炭率65%以上)を微粉状で黒鉛造粒物の表面に塗布して焼成(700〜1500℃)することで、焼成時に球天の表面はピッチの溶融・炭化により被覆される。一方、内部空隙の黒鉛層はピッチの揮発分が拡散・吸着・炭化することで薄く被覆される。このとき、表面の細孔入口の閉塞は抑えられ、十分なメソ細孔が確保される。   (Dry process) Applying a high softening point pitch (softening point 120 ° C or higher, lower than 150 ° C, residual carbon ratio 65% or higher) to the surface of the graphite granule in a fine powder form and firing (700-1500 ° C) Thus, the surface of the sphere is coated by melting and carbonizing the pitch during firing. On the other hand, the graphite layer in the internal void is thinly coated by diffusion, adsorption, and carbonization of the volatile matter of the pitch. At this time, clogging of the surface pore entrance is suppressed, and sufficient mesopores are secured.

(湿式法)ピッチ(軟化点は問わない)を溶媒に溶かす際、ピッチの濃度を低く(5質量%以下)することで、700〜1500℃での焼成後の黒鉛造粒物の内部空隙の残炭は薄く、かつ表面の細孔入口の閉塞は抑えられ、十分なメソ細孔が確保される。また内部に含浸されなかった大部分のピッチは、黒鉛造粒物の表面で炭化・被覆される。   (Wet method) When dissolving pitch (regardless of softening point) in a solvent, by reducing the pitch concentration (5% by mass or less), the internal voids of the graphite granule after firing at 700 to 1500 ° C. The remaining charcoal is thin, and the clogging of the surface pore entrance is suppressed, and sufficient mesopores are secured. Further, most of the pitch not impregnated inside is carbonized and coated on the surface of the graphite granule.

(負極用材料の炭素質の被覆量)
本発明の負極用材料において、炭素前駆体を付着させて焼成されて得られる炭素質の被覆量は、特に限定されるものではないが、1.0〜7.0質量%であることが好ましく、2.0〜6.0質量%であることがより好ましく、3.0〜4.0質量%であることが最も好ましい。被覆量が1.0質量%よりも少ない場合には、黒鉛造粒物を十分に被覆することが困難となり、被覆不足に起因して初回充放電効率やサイクル特性が低下することがある。また、7.0質量%を超えると、焼成後に粒子間で融着しやすくなり、解砕時に炭素質が剥がれ、初回充放電効率やサイクル特性が低下することがある。
(Carbonaceous coating amount of negative electrode material)
In the negative electrode material of the present invention, the amount of carbonaceous coating obtained by attaching and firing a carbon precursor is not particularly limited, but is preferably 1.0 to 7.0% by mass. 2.0 to 6.0 mass% is more preferable, and 3.0 to 4.0 mass% is most preferable. When the coating amount is less than 1.0% by mass, it is difficult to sufficiently coat the graphite granulated product, and the initial charge / discharge efficiency and cycle characteristics may be deteriorated due to insufficient coating. Moreover, when it exceeds 7.0 mass%, it will become easy to fuse | melt between particle | grains after baking, carbonaceous material will peel at the time of crushing, and initial charge / discharge efficiency and cycling characteristics may fall.

3 焼成工程
上記の導入法Aでの一回の焼成工程と、導入法Bでの二回目の焼成工程とは特に区別する条件はなく同様の条件で行うことが出来る。もちろん導入法Aでの焼成工程は、導入法Bでの焼成工程より時間が長い、または温度が高くなる傾向にある。
炭素前駆体付着黒鉛造粒物を不活性ガス雰囲気下、700〜1500℃、で焼成する。用いる炭素前駆体としては、ピッチ、不活性ガスは、窒素、アルゴンが例示出来る。
焼成温度は、700〜1500℃が好ましく、より好ましくは、900℃〜1500℃以下、さらに好ましくは900℃超〜1300℃以下です。
焼成時間は、30分〜2時間焼成するのが好ましい。
3 Firing Step There is no particular distinction between the one firing step in the introduction method A and the second firing step in the introduction method B, and the same can be performed. Of course, the firing step in the introduction method A tends to have a longer time or a higher temperature than the firing step in the introduction method B.
The carbon precursor-attached graphite granulated product is fired at 700 to 1500 ° C. in an inert gas atmosphere. Examples of the carbon precursor used include nitrogen and argon as the pitch and inert gas.
The firing temperature is preferably 700 to 1500 ° C, more preferably 900 to 1500 ° C, and still more preferably more than 900 to 1300 ° C.
The firing time is preferably 30 minutes to 2 hours.

リチウムイオン二次電池負極用材料
本発明のリチウムイオン二次電池負極用材料(以下、「負極材料」ともいう。)は、上述の黒鉛粒子を基材として、ピッチなどの炭素質で、黒鉛粒子の内部表面および粒子外表面を被覆して得られる被覆黒鉛粒子である。この被覆黒鉛粒子はバインダと共に負極合剤とされて集電材に塗布されてリチウムイオン二次電池負極となる負極用材料です。
(負極用材料の細孔容積)
本発明のリチウムイオン二次電池負極用材料は、上述の例で挙げた窒素による吸着等温線をもとに、HK法により求めたマイクロ孔領域の1nm以下の細孔容積が0.0010〜0.0020cm/gであり、かつBJH法により求めたメソ孔領域の1〜100nmの細孔容積が0.020〜0.040cm/gです。
Lithium ion secondary battery negative electrode material The lithium ion secondary battery negative electrode material of the present invention (hereinafter also referred to as "negative electrode material") is a carbonaceous material such as pitch, using graphite particles described above as a base material. Coated graphite particles obtained by coating the inner surface and the outer surface of the particles. These coated graphite particles are made into a negative electrode mixture together with a binder and applied to a current collector to form a negative electrode material that becomes a negative electrode for a lithium ion secondary battery.
(Pore volume of negative electrode material)
The lithium ion secondary battery negative electrode material of the present invention has a pore volume of 1 nm or less in the micropore region determined by the HK method based on the adsorption isotherm by nitrogen mentioned in the above example. .0020cm a 3 / g, and a pore volume of 1~100nm mesopore region as determined by the BJH method is 0.020~0.040cm 3 / g.

HK法により求めた1nm以下の細孔容積およびBJH法により求めた1〜100nmの細孔容積が、ともにこの範囲内であると、黒鉛粒子の空隙中をリチウムイオンが移動する過程および炭素網面での界面反応の過程の両者が合せて実現され、高いハイレート特性を得ることが出来る。   When the pore volume of 1 nm or less obtained by the HK method and the pore volume of 1 to 100 nm obtained by the BJH method are both within this range, the process of moving lithium ions in the voids of the graphite particles and the carbon network surface Both of the interfacial reaction processes are realized in combination, and high high-rate characteristics can be obtained.

HK法により求めた1nm以下の小さい細孔は、炭素網面の反応界面に由来する微細な表面も含むため、その細孔容積が0.0010cm/gより少ないと、リチウムイオンの黒鉛層の反応に必要な反応界面が確保されないので、本発明の目的である高いハイレート特性を得ることが出来ない。また1nm以下の細孔容積が0.0020cm/gより多い球状天然黒鉛は、炭素被覆がほとんど行われてない黒鉛層の端面に起因したり、逆に炭素被覆で空隙を埋めた後にガス賦活等で微小な細孔を空けることで発現した、反応界面と隔たれた箇所に存在する細孔容積に基づくため、やはりハイレート特性を得ることが出来ない。HK法により求めた1nm以下の細孔容積は、0.0012〜0.0018cm/gの範囲であることが好ましい。 Small pores of 1 nm or less obtained by the HK method include fine surfaces derived from the reaction interface on the carbon network surface. Therefore, if the pore volume is less than 0.0010 cm 3 / g, the lithium ion graphite layer Since the reaction interface necessary for the reaction is not ensured, the high high rate characteristic which is the object of the present invention cannot be obtained. Spherical natural graphite having a pore volume of 1 nm or less larger than 0.0020 cm 3 / g is caused by the end face of the graphite layer where carbon coating is hardly performed, or conversely, gas activation after filling voids with carbon coating Since it is based on the pore volume present at a place separated from the reaction interface, which is expressed by opening fine pores, etc., high rate characteristics cannot be obtained. The pore volume of 1 nm or less determined by the HK method is preferably in the range of 0.0012 to 0.0018 cm 3 / g.

一方、BJH法により求めた1〜100nmの細孔容積については、0.020cm/gより少ないと溶媒和イオンが粒子の表面から内部まで移動するための空隙が十分に確保されず、したがって粒子内部の炭素網面での反応界面が利用され難くなる。また、1〜100nmの細孔容積が0.040cm/gより多い球状天然黒鉛は炭素被覆が空隙の内部、外部ともほとんど行われてないため、リチウムイオン電池の負極電極としてプレス成型した場合に、球状を保てず扁平状となり易く、電極の粒子空隙間でのリチウムイオンの拡散が阻害され、ハイレート特性やサイクル特性が低下する。BJH法により求めた1〜100nmの細孔容積は、0.024〜0.036cm/gの範囲であることが好ましい。 On the other hand, when the pore volume of 1 to 100 nm obtained by the BJH method is less than 0.020 cm 3 / g, a sufficient space for the solvated ions to move from the surface to the inside of the particle is not secured, and thus the particle It becomes difficult to use the reaction interface on the inner carbon network surface. In addition, spherical natural graphite having a pore volume of 1 to 100 nm larger than 0.040 cm 3 / g has almost no carbon coating inside and outside of the gap, so when it is press-molded as a negative electrode of a lithium ion battery In addition, the spherical shape is not maintained easily, and a flat shape is liable to be obtained. The diffusion of lithium ions in the gap between the particles of the electrode is hindered, and the high rate characteristic and the cycle characteristic are deteriorated. The pore volume of 1 to 100 nm determined by the BJH method is preferably in the range of 0.024 to 0.036 cm 3 / g.

ここで、「HK法」は「Horvath−Kawazoeの方法」の略称である。本法は、細孔をスリット状と仮定の上、細孔への吸着エネルギーをスリット壁面と吸着分子の距離で表わすことにより、吸着エネルギーは吸着分子量から熱力学的にも表わせるため、スリット間の距離すなわち細孔径と吸着分子量の関係が求められる。本法は、スリット間の距離すなわち細孔径が十分小さい場合に適用出来るため、数nm以下の比較的小さい径の細孔分布の解析に用いられる。なお、HK法の詳細は、Horvath−Kawazoe ,J. Chem. Eng. Jpn., 16, 470 (1983)にも記載されている。   Here, “HK method” is an abbreviation of “Horvath-Kawazoe method”. In this method, assuming that the pores are slit-like, the adsorption energy to the pores is expressed by the distance between the slit wall surface and the adsorbed molecules, so that the adsorption energy can be expressed thermodynamically from the adsorbed molecular weight. Distance, that is, the relationship between the pore diameter and the adsorbed molecular weight. Since this method can be applied when the distance between the slits, that is, the pore diameter is sufficiently small, it is used for analysis of a pore distribution having a relatively small diameter of several nm or less. The details of the HK method are described in Horvath-Kawazoe, J. et al. Chem. Eng. Jpn. 16, 470 (1983).

また、「BJH法」は「Barrett−Joyner−Halenda の方法」の略称であり、メソ孔の細孔分布を求める方法です。全吸着量は多層吸着量と毛管凝縮量の和で表わせる。このうち毛管凝縮は通常極めて小さい細孔で生じる現象だが、細孔径の大きいメソ孔領域では多層吸着層が完了した後に残された分子間の空隙に対して毛管凝縮が起こると考え、毛管凝縮が生じる時点の多分子吸着層の厚みからメソ孔の細孔分布を解析するものです。なお、BJH法の詳細は、E.P. Barrett,L.G.Joyner and P.P.Halenda, J.Am.chem.Soc., 73, 373(1951)にも記載されている。   “BJH method” is an abbreviation of “Barrett-Joyner-Halenda method”, and is a method for obtaining the pore distribution of mesopores. The total adsorption amount can be expressed as the sum of the multilayer adsorption amount and the capillary condensation amount. Capillary condensation is a phenomenon that usually occurs with very small pores, but in the mesopore region with a large pore diameter, it is thought that capillary condensation occurs in the voids between molecules that are left after the multilayer adsorption layer is completed. Analyzes the pore distribution of mesopores from the thickness of the multimolecular adsorption layer at the time of occurrence The details of the BJH method are described in E.I. P. Barrett, L.M. G. Joyner and P.M. P. Halenda, J .; Am. chem. Soc. 73, 373 (1951).

(負極用材料の平均粒径)
本発明の負極用材料の平均粒径は、特に限定されるものではないが、嵩密度が高く、電極とした際により高い充填密度が得られ、かつ電極の厚みは通常100μm以下で使用されるという理由から、3〜100μmが好ましく、5〜30μmがより好ましい。なお、本発明の負極材料の平均粒径は、レーザー回折式粒度分布計の累積度数が体積百分率で50%となる粒子径(D50)です。
(Average particle size of negative electrode material)
The average particle diameter of the negative electrode material of the present invention is not particularly limited, but the bulk density is high, a higher packing density is obtained when it is used as an electrode, and the electrode thickness is usually 100 μm or less. Therefore, 3 to 100 μm is preferable, and 5 to 30 μm is more preferable. The average particle diameter of the negative electrode material of the present invention is the particle diameter (D50) at which the cumulative frequency of the laser diffraction particle size distribution meter is 50% by volume.

(負極用材料の平均アスペクト比)
本発明の負極材料の平均アスペクト比は、特に限定されるものではないが、ハイレート特性およびサイクル特性がより優れるという理由から、3以下が好ましく、2以下がより好ましい。
本発明の負極材料は、天然黒鉛に代表される高結晶性の黒鉛粒子を含有するにもかかわらず、球状に近い形状です。リチウムイオン二次電池負極材料として、球状または楕円体状の形状は、ハイレート特性およびサイクル特性の向上に寄与する。
(Average aspect ratio of negative electrode material)
The average aspect ratio of the negative electrode material of the present invention is not particularly limited, but is preferably 3 or less, more preferably 2 or less, because the high rate characteristics and cycle characteristics are more excellent.
The negative electrode material of the present invention has a nearly spherical shape despite containing highly crystalline graphite particles typified by natural graphite. As the lithium ion secondary battery negative electrode material, the spherical or ellipsoidal shape contributes to the improvement of the high rate characteristics and the cycle characteristics.

(負極用材料の比表面積:BET法)
本発明の負極材料の比表面積は、特に限定されるものではないが、大きすぎるとリチウムイオン二次電池の安全性の低下を生じることがあるため、20m/g以下が好ましく、0.3〜5.0m/gがより好ましく、より優れたハイレート特性を発揮するため、2.0〜4.8m/gがさらに好ましい。ここで、負極材料の比表面積は、窒素ガス吸着BET比表面積です。
負極電極の比表面積は、上記と同様の理由で、2.0〜4.0m/gが好ましく、2.2〜3.5m/gがより好ましい。
ここで、負極材料、負極電極の比表面積は、窒素ガス吸着BET比表面積です。
(負極電極の比表面積:BJH法)
「BJH法」の比表面積は後に説明するBJH法全細孔容積から平均細孔径を算出してこれに基づいて比表面積を算出したものをいう。後の実施例比較例の結果を示す表2からわかるようにBET法による比表面積の値とは異なる。BET法は窒素が吸着する0.4nm程度以上の全比表面積を示すが、細孔径で区切る比表面積ではない。一方「BJH法」は細孔を考慮した1〜100nmごとの比表面積を表すことが出来る。
負極電極のBJH法による比表面積は、1.5〜3.0m/gが好ましく、2.0〜3.0m/gがより好ましい。
(負極電極の空隙容積)
窒素ガス吸着装置を用いた吸着等温線の測定において、窒素ガスの平衡圧力が大気圧の99%(p/p0=0.99)となるまでの窒素吸着量から、負極電極の空隙容積を求めた。負極電極の空隙容積の値は、10〜30cm/gの範囲が好ましく、15〜25cm/gの範囲がより好ましく、17〜23cm/gの範囲が最も好ましい。
(Specific surface area of negative electrode material: BET method)
The specific surface area of the negative electrode material of the present invention is not particularly limited, but if it is too large, the safety of the lithium ion secondary battery may be lowered, and therefore it is preferably 20 m 2 / g or less, 0.3 -5.0 m < 2 > / g is more preferable, and 2.0-4.8 m < 2 > / g is still more preferable in order to exhibit the outstanding high rate characteristic. Here, the specific surface area of the negative electrode material is the nitrogen gas adsorption BET specific surface area.
The specific surface area of the negative electrode is preferably 2.0 to 4.0 m 2 / g and more preferably 2.2 to 3.5 m 2 / g for the same reason as described above.
Here, the specific surface area of the negative electrode material and the negative electrode is the nitrogen gas adsorption BET specific surface area.
(Specific surface area of negative electrode: BJH method)
The specific surface area of the “BJH method” means a specific surface area calculated based on the average pore diameter calculated from the total pore volume of the BJH method described later. As can be seen from Table 2 showing the results of the following comparative examples, the specific surface area is different from the BET method. The BET method shows a total specific surface area of about 0.4 nm or more on which nitrogen is adsorbed, but is not a specific surface area divided by pore diameters. On the other hand, the “BJH method” can represent a specific surface area every 1 to 100 nm considering pores.
The specific surface area by the BJH method of the negative electrode is preferably 1.5~3.0m 2 / g, 2.0~3.0m 2 / g is more preferable.
(Void volume of negative electrode)
In the measurement of the adsorption isotherm using a nitrogen gas adsorption device, the void volume of the negative electrode was determined from the amount of nitrogen adsorption until the equilibrium pressure of nitrogen gas reached 99% of atmospheric pressure (p / p0 = 0.99). The value of the void volume of the negative electrode is preferably in the range of 10 to 30 cm 3 / g, more preferably in the range of 15~25cm 3 / g, and most preferred range of 17~23cm 3 / g.

(負極用材料のd002およびLc)
負極材料のd002およびLcは、特に限定されるものではないが、高い放電容量を発現させる観点から、d002≦0.3365nm、Lc≧40nmであるのが好ましく、d002≦0.3362nm、Lc≧50nmであるのがより好ましい。d002>0.3365nm、Lc<40nmであると、黒鉛構造の発達の程度が低いため、リチウムイオン二次電池負極用材料として用いたときに、リチウムのドープ量が小さく、高い放電容量を得ることが出来ない場合があるが、d002およびLcが上記範囲であると、高い放電容量が得られる。
なお、負極材料のd002およびLcは、CuKα線をX線源、高純度シリコンを標準物質に使用して、被覆黒鉛粒子に対し(002)面の回折ピークを測定し、そのピーク位置およびその半値幅よりそれぞれ算出した、d002およびLcです。算出方法は学振法に従うものであり、具体的な方法はJIS R 7651:2007 「炭素材料の格子定数および結晶子の大きさ測定方法」に記載されている。
(D002 and Lc of negative electrode material)
The d002 and Lc of the negative electrode material are not particularly limited, but are preferably d002 ≦ 0.3365 nm and Lc ≧ 40 nm from the viewpoint of developing a high discharge capacity, and d002 ≦ 0.3362 nm, Lc ≧ 50 nm. It is more preferable that When d002> 0.3365 nm and Lc <40 nm, the degree of development of the graphite structure is low. Therefore, when used as a negative electrode material for a lithium ion secondary battery, the lithium doping amount is small and a high discharge capacity is obtained. However, if d002 and Lc are in the above ranges, a high discharge capacity can be obtained.
The negative electrode materials d002 and Lc were measured using a CuKα ray as an X-ray source and high-purity silicon as a standard substance, and measuring the diffraction peak of the (002) plane with respect to the coated graphite particles. D002 and Lc calculated from the price range. The calculation method follows the Gakushin method, and a specific method is described in JIS R 7651: 2007 “Method for measuring the lattice constant and crystallite size of carbon materials”.

(負極用材料のID/IG値)
負極材料のID/IG値は、特に限定されるものではないが、不可逆容量を小さくして十分な電池性能を得られ、かつより高い放電容量を得られるという理由から、0.05≦ID/IG<0.40であることが好ましい。ID/IG≧0.05であると、炭素質被覆黒鉛粒子表面の結晶化が進み過ぎることなく、被覆黒鉛粒子表面での電解液の分解反応が抑制されると考えられる。また、ID/IG<0.40であると、被覆黒鉛粒子の炭素質被覆量が過剰ではなく、放電容量の低下が抑制されると考えられる。不可逆容量と放電容量とのバランスがより優れるという理由から、ID/IG値は、0.10≦ID/IG<0.30であることがより好ましい。
なお、本発明において、ID/IG値は、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおいて、1570〜1630cm−1の領域に存在するピークの強度をIGとし、1350〜1370cm−1の領域に存在するピークの強度をIDとするときのID/IG値です。
(ID / IG value of negative electrode material)
The ID / IG value of the negative electrode material is not particularly limited, but 0.05 ≦ ID / from the reason that sufficient battery performance can be obtained by reducing the irreversible capacity and higher discharge capacity can be obtained. It is preferable that IG <0.40. It is considered that when ID / IG ≧ 0.05, the decomposition reaction of the electrolytic solution on the surface of the coated graphite particles is suppressed without excessive crystallization of the surface of the carbonaceous coated graphite particles. Further, when ID / IG <0.40, it is considered that the carbonaceous coating amount of the coated graphite particles is not excessive, and the decrease in the discharge capacity is suppressed. For the reason that the balance between the irreversible capacity and the discharge capacity is more excellent, the ID / IG value is more preferably 0.10 ≦ ID / IG <0.30.
In the present invention, the ID / IG value is the peak intensity existing in the region of 1570 to 1630 cm −1 in the Raman spectrum using an argon laser beam having a wavelength of 514.5 nm, and IG is 1350 to 1370 cm −1 . ID / IG value when the intensity of the peak in the area is taken as ID.

リチウムイオン二次電池の製造方法
本発明の負極用材料を用いたリチウムイオン二次電池(以下、「本発明のリチウムイオン二次電池」ともいう)について説明する。また、本発明の負極用材料を用いたリチウムイオン二次電池負極についても説明する。
リチウムイオン二次電池は、通常、負極、正極および非水電解液を主たる電池構成要素とし、正・負極はそれぞれリチウムイオンを吸蔵可能な層状やクラスター状の物質からなり、充放電過程におけるリチウムイオンの出入は層間で行われる。充電時にはリチウムイオンが負極中にドープされ、放電時には負極から脱ドープする電池機構です。
本発明のリチウムイオン二次電池は、本発明の負極用材料を用いること以外は特に限定されず、他の電池構成要素については一般的なリチウムイオン二次電池の要素に準ずる。
Method for Producing Lithium Ion Secondary Battery A lithium ion secondary battery (hereinafter also referred to as “lithium ion secondary battery of the present invention”) using the negative electrode material of the present invention will be described. A lithium ion secondary battery negative electrode using the negative electrode material of the present invention will also be described.
Lithium ion secondary batteries usually have a negative electrode, a positive electrode, and a non-aqueous electrolyte as the main battery components, and the positive and negative electrodes are each composed of a layered or clustered material capable of occluding lithium ions. The entry and exit are performed between the layers. This is a battery mechanism in which lithium ions are doped into the negative electrode during charging and dedope from the negative electrode during discharging.
The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode material of the present invention is used, and other battery components conform to the elements of a general lithium ion secondary battery.

(負極)
負極を作製する際は、上述した本発明の炭素材料、または、本発明の炭素材料を含む混合負極材料にバインダ(結合剤)を加えた負極合剤を用いる。バインダとしては、水系バインダまたは非水系(有機溶剤系)バインダのいずれも用いることが出来るが、負極製造時の環境負荷が低いことから、水系バインダを用いることが好ましい。水系バインダは水溶性高分子を用いたバインダであり、例えば、スチレン−ブタジエン共重合体(SBR)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)等が挙げられる。これらの水系バインダは1種類を単独で、または2種類以上を組み合わせて用いることが出来る。非水系(有機溶剤系)バインダは水に不溶で有機溶剤(例えば、ジメチルホルムアミド)に溶解する高分子を用いたバインダであり、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)等が挙げられる。これらの非水系バインダは1種類を単独で、または2種類以上を組み合わせて用いることが出来る。バインダは、通常、負極合剤の全量中1〜20質量%程度の量で用いるのが好ましい。また、本発明の黒鉛造粒物以外の黒鉛系、炭素系の活物質や導電材料を添加してもよい。
(Negative electrode)
When producing a negative electrode, the negative electrode mixture which added the binder (binder) to the carbon material of this invention mentioned above or the mixed negative electrode material containing the carbon material of this invention is used. As the binder, either a water-based binder or a non-aqueous (organic solvent-based) binder can be used. However, it is preferable to use a water-based binder because the environmental load during the production of the negative electrode is low. The water-based binder is a binder using a water-soluble polymer, and examples thereof include styrene-butadiene copolymer (SBR), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and polyacrylic acid (PAA). These aqueous binders can be used singly or in combination of two or more. Non-aqueous (organic solvent) binder is a binder using a polymer that is insoluble in water and dissolved in an organic solvent (for example, dimethylformamide). For example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), Examples include polyethylene (PE). These non-aqueous binders can be used alone or in combination of two or more. In general, the binder is preferably used in an amount of about 1 to 20% by mass in the total amount of the negative electrode mixture. Further, a graphite-based or carbon-based active material or conductive material other than the graphite granule of the present invention may be added.

本発明の負極用炭素材料とバインダとを含む本発明の負極は、リチウムイオン二次電池負極用炭素材料密度を加圧成型により密度1.7g/cmとした時に、2.0m/g以上のBJH比表面積、好ましくは密度1.7g/cmとした時に、2.5m/g以上のBJH比表面積を有する特徴を持つ負極です。本発明の負極がこの特徴を有するので負極を備えるリチウムイオン二次電池のハイレート特性が高い。 The negative electrode of the present invention including the carbon material for a negative electrode of the present invention and a binder has a carbon material density for a lithium ion secondary battery negative electrode of 2.0 m 2 / g when the density is 1.7 g / cm 3 by pressure molding. The negative electrode has the characteristic of having a BJH specific surface area of 2.5 m 2 / g or more when the above BJH specific surface area, preferably a density of 1.7 g / cm 3 is used. Since the negative electrode of the present invention has this feature, the high rate characteristics of the lithium ion secondary battery including the negative electrode are high.

負極の作製には、負極作製用の通常の溶媒を用いることが出来る。負極合剤を溶媒中に分散させ、ペースト状にした後、集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着される。より具体的には、例えば、本発明の炭素材料の粒子と、バインダとを、水、アルコールなどの溶媒と混合してスラリーとした後、ニーダーやミキサーなどで混練してペーストを調製する。このペーストを集電材の片面または両面に塗布し、乾燥
後、プレス加圧等の圧着を行うと、密度1.7g/cm3程度の負極を得ることが出来る。負極に用いる集電体の形状としては、特に限定されず、例えば、箔状のもの、または、メッシュ、エキスパンドメタル等の網状のもの等が用いられる。集電体の材質としては、例えば、銅、ステンレス、ニッケル等が挙げられる。集電体の厚さは、例えば、箔状の場合、5〜20μm程度が好適です。
For production of the negative electrode, a normal solvent for producing a negative electrode can be used. When the negative electrode mixture is dispersed in a solvent and made into a paste, and then applied to the current collector and dried, the negative electrode mixture layer is uniformly and firmly adhered to the current collector. More specifically, for example, the particles of the carbon material of the present invention and a binder are mixed with a solvent such as water or alcohol to form a slurry, and then kneaded with a kneader or a mixer to prepare a paste. A negative electrode having a density of about 1.7 g / cm 3 can be obtained by applying this paste to one or both sides of a current collector, drying, and then pressing such as pressing and pressing. The shape of the current collector used for the negative electrode is not particularly limited, and for example, a foil-like one or a net-like one such as a mesh or an expanded metal is used. Examples of the material for the current collector include copper, stainless steel, and nickel. For example, in the case of a foil, the thickness of the current collector is preferably about 5 to 20 μm.

(正極)
正極の材料(正極活物質)はリチウムと遷移金属との複合酸化物であり、こればリチウムと2種類以上の遷移金属を固溶したものであってもよい。リチウム含有遷移金属酸化物は、具体的には、LiM(1)1−pM(2)(式中Pは0≦P≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる)、または、LiM(1)2−qM(2)(式中qは0≦q≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる)で示される。ここでMで示される遷移金属元素としては、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、In、Snなどが挙げられ、Co、Ni、Fe、Mn、Ti、Crが好ましい。
このようなリチウム含有遷移金属酸化物は、例えば、Li、遷移金属の酸化物または塩類を出発原料とし、これら出発原料を組成に応じて混合し、酸素雰囲気下600〜1300℃の温度範囲で焼成することにより得ることが出来る。なお、出発原料は酸化物または塩類に限定されず、水酸化物などからも合成可能です。
(Positive electrode)
The positive electrode material (positive electrode active material) is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. Specifically, the lithium-containing transition metal oxide is LiM (1) 1-p M (2) p O 2 (wherein P is a numerical value in the range of 0 ≦ P ≦ 1, M (1), M (2) is composed of at least one transition metal element), or LiM (1) 2-q M (2) q O 4 (wherein q is a numerical value in the range of 0 ≦ q ≦ 1, M (1 ), M (2) is composed of at least one transition metal element). Examples of the transition metal element represented by M include Co, Ni, Mn, Cr, Ti, V, Fe, Zn, In, and Sn, and Co, Ni, Fe, Mn, Ti, and Cr are preferable.
Such a lithium-containing transition metal oxide includes, for example, Li, a transition metal oxide or salt as a starting material, these starting materials are mixed according to the composition, and fired in an oxygen atmosphere at a temperature range of 600 to 1300 ° C. Can be obtained. The starting materials are not limited to oxides or salts, but can be synthesized from hydroxides.

このような正極材料を用いて正極を形成する方法としては、例えば、正極材料、結合剤および導電剤からなるペースト状の正極合剤塗料を集電体の片面または両面に塗布することで正極合剤層を形成する。結合剤としては、負極で例示したものを使用出来る。導電剤としては、例えば、微粒の炭素材料、繊維状の炭素材料、黒鉛、カーボンブラックを使用出来る。集電体の形状は特に限定されず、負極と同様の形状のものが用いられる。集電体の材質としては、通常、アルミニウム、ニッケル、ステンレスなどを使用することが出来る。
上述した負極および正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜使用することが出来る。
As a method of forming a positive electrode using such a positive electrode material, for example, a paste-like positive electrode mixture paint comprising a positive electrode material, a binder and a conductive agent is applied to one or both sides of a current collector. An agent layer is formed. As the binder, those exemplified for the negative electrode can be used. As the conductive agent, for example, a fine carbon material, a fibrous carbon material, graphite, or carbon black can be used. The shape of the current collector is not particularly limited, and the same shape as the negative electrode is used. As the material for the current collector, aluminum, nickel, stainless steel and the like can be usually used.
In forming the above-described negative electrode and positive electrode, various conventionally known additives such as a conductive agent and a binder can be appropriately used.

(電解質)
電解質としては、LiPF、LiBFなどのリチウム塩を電解質塩として含む通常の非水電解質が用いられる。この非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどの非プロトン性有機溶媒が使用出来る。
(Electrolytes)
As the electrolyte, a normal nonaqueous electrolyte containing a lithium salt such as LiPF 6 or LiBF 4 as the electrolyte salt is used. As this non-aqueous solvent, an aprotic organic solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate can be used.

(セパレータ、セルケース、その他部材)
本発明のリチウムイオン二次電池においては、通常、ポリプロピレン、ポリエチレンの微多孔膜またはそれらを層構造としたもの、或いは不織布などのセパレータを使用する。また本発明のリチウムイオン二次電池のセル構造は任意であり、その形状、形態について特に限定されるものではなく、例えば、円筒型、角型、コイン型から任意に選択することが出来る。
(Separator, cell case, other members)
In the lithium ion secondary battery of the present invention, a polypropylene or polyethylene microporous film or a layered structure thereof, or a separator such as a nonwoven fabric is usually used. Moreover, the cell structure of the lithium ion secondary battery of this invention is arbitrary, and it does not specifically limit about the shape and form, For example, it can select arbitrarily from a cylindrical shape, a square shape, and a coin shape.

(コイン型リチウムイオン二次電池)
本発明の負極用材料を用いたコイン型リチウムイオン電池およびその製造方法について図1に示し、後に実施例で説明する。
(Coin-type lithium ion secondary battery)
A coin-type lithium ion battery using the negative electrode material of the present invention and a method for producing the same are shown in FIG. 1 and will be described later in Examples.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

[実施例1]
〈リチウムイオン二次電池負極用炭素材料の製造〉
平均粒径16μm、比表面積7.0m/g、嵩密度0.6g/cm3の球状化天然黒鉛粒子(黒鉛造粒物としての黒鉛材料)100質量部を、金属アルミニウムとエタノールから合成したアルミニウムエトキシド 3質量部、イオン交換水 400質量部に含浸し、90℃×1時間の条件で加水分解を行った。この時点で、黒鉛粒子内部にナノサイズのアルミナ水和物が導入されている。
ここから濾過によりアルミナ水和物導入黒鉛粒子を回収・乾燥後、軟化点125℃のピッチ粉末と混合し、球状化天然黒鉛粒子にピッチ粉末を付着させて、ピッチ付着黒鉛粒子を得た(乾式法)。次いで、得られたピッチ付着黒鉛粒子を、窒素雰囲気中、1200℃で焼成し、炭素質被覆黒鉛粒子(リチウムイオン二次電池負極用材料)を製造した。実施例1に該当する方法を導入法Aとする。
第1表に、黒鉛粒子の平均粒径、比表面積、およびピッチの軟化点ならびに焼成条件(雰囲気および焼成温度)を示す。得られた負極用材料の平均粒径とBET法による比表面積を示す。
[Example 1]
<Manufacture of carbon material for lithium ion secondary battery negative electrode>
100 parts by mass of spherical natural graphite particles (graphite material as a graphite granule) having an average particle diameter of 16 μm, a specific surface area of 7.0 m 2 / g and a bulk density of 0.6 g / cm 3 were synthesized from metallic aluminum and ethanol. 3 parts by mass of aluminum ethoxide and 400 parts by mass of ion-exchanged water were impregnated and hydrolyzed under the conditions of 90 ° C. × 1 hour. At this point, nano-sized alumina hydrate has been introduced into the graphite particles.
From this, the alumina hydrate-introduced graphite particles were collected by filtration and dried, then mixed with pitch powder having a softening point of 125 ° C., and the pitch powder was adhered to the spheroidized natural graphite particles to obtain pitch-attached graphite particles (dry type Law). Next, the obtained pitch-attached graphite particles were fired at 1200 ° C. in a nitrogen atmosphere to produce carbonaceous coated graphite particles (material for a negative electrode of a lithium ion secondary battery). The method corresponding to Example 1 is referred to as introduction method A.
Table 1 shows the average particle diameter, specific surface area, pitch softening point, and firing conditions (atmosphere and firing temperature) of the graphite particles. The average particle diameter of the obtained negative electrode material and the specific surface area by the BET method are shown.

〈評価電池の作製〉
製造したリチウムイオン二次電池負極用炭素材料98質量部と、カルボキシメチルセルロースアンモニウム1質量部(固形分で)と、カルボキシ変性スチレンブタジエンゴム1質量部とを混合し、水を溶媒として、プラネタリーミキサーを用いて攪拌混合して、負極合剤ペーストを得た。得られた負極合剤ペーストを15μm厚みの銅箔上に塗布し、110℃の温度下にて真空乾燥し、負極合剤層を形成した。形成した負極合剤層をロールプレスによって密度1.7g/cm3に加圧し、さらに直径15.5mmの円形状に打ち抜き、銅箔からなる集電体に密着した合剤層を有する負極を作製した。密度1.7g/cmとした時の負極としてのBET法による比表面積およびBJH法による比表面積、および窒素ガス吸着による空隙容積を表2に示す。
<Production of evaluation battery>
A planetary mixer using 98 parts by mass of the produced carbon material for the negative electrode of a lithium ion secondary battery, 1 part by mass of carboxymethylcellulose ammonium (in solid content) and 1 part by mass of carboxy-modified styrene butadiene rubber, and water as a solvent. The mixture was stirred and mixed to obtain a negative electrode mixture paste. The obtained negative electrode mixture paste was applied on a copper foil having a thickness of 15 μm and vacuum-dried at a temperature of 110 ° C. to form a negative electrode mixture layer. The formed negative electrode mixture layer is pressed to a density of 1.7 g / cm 3 by a roll press, punched into a circular shape having a diameter of 15.5 mm, and a negative electrode having a mixture layer in close contact with a current collector made of copper foil is produced. did. Table 2 shows the specific surface area by the BET method, the specific surface area by the BJH method, and the void volume by nitrogen gas adsorption as the negative electrode when the density was 1.7 g / cm 3 .

次いで、評価電池として図1に示すコイン型リチウムイオン二次電池を作製した。評価電池は、その内部に外装缶3の内面から順に、集電体7a、円筒状の正極4、負極2、電解液が含浸されたセパレータ5および集電体7bが積層された電池系です。前記評価電池は、セパレータ5を集電体7bと、集電体7aに密着した対極(正極)4との間に挟んで積層した後、集電体7bを外装カップ1内に、対極(正極)4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。なお、電解液は、エチレンカーボネート(33体積%)とメチルエチルカーボネート(67体積%)とを混合して得られた混合溶媒に、LiPFを1mol/Lとなる濃度で溶解させた非水電解質です。また、セパレータおよび負極電極は、あらかじめ非水電解液に浸して、非水電解液を含浸させた。 Next, a coin-type lithium ion secondary battery shown in FIG. 1 was prepared as an evaluation battery. The evaluation battery is a battery system in which a current collector 7a, a cylindrical positive electrode 4, a negative electrode 2, a separator 5 impregnated with an electrolyte, and a current collector 7b are laminated in that order from the inner surface of the outer can 3. In the evaluation battery, the separator 5 was sandwiched and stacked between the current collector 7b and the counter electrode (positive electrode) 4 in close contact with the current collector 7a, and then the current collector 7b was placed in the exterior cup 1 with the counter electrode (positive electrode). ) 4 is accommodated in the outer can 3, the outer cup 1 and the outer can 3 are combined, and an insulating gasket 6 is interposed between the outer peripheral portion of the outer cup 1 and the outer can 3, and both peripheral portions are caulked. It was made hermetically sealed. The electrolyte was a nonaqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent obtained by mixing ethylene carbonate (33% by volume) and methyl ethyl carbonate (67% by volume). is. Moreover, the separator and the negative electrode were immersed in a non-aqueous electrolyte in advance and impregnated with the non-aqueous electrolyte.

〈電池特性の評価〉
作製した評価電池について、25℃で以下の充放電試験を行なった。なお、本試験では、リチウムイオンを負極材料中にドープ(吸蔵)する過程を「充電」、負極材料から脱ドープ(離脱)する過程を「放電」としている。
<Evaluation of battery characteristics>
About the produced evaluation battery, the following charging / discharging tests were done at 25 degreeC. In this test, the process of doping (occluding) lithium ions into the negative electrode material is referred to as “charging”, and the process of dedoping (detaching) from the negative electrode material is referred to as “discharge”.

(放電容量)
回路電圧が1mVに達するまで1.2mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から充電容量(単位:mAh/g)を求めた。その後、10分間休止した。
次に、1.2mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量(単位:mAh/g)を求めた。これを第1サイクルとした。
求めた第1サイクルの放電容量を表1に示す。
(Discharge capacity)
After constant current charging of 1.2 mA until the circuit voltage reached 1 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity (unit: mAh / g) was determined from the energization amount during that time. Then, it rested for 10 minutes.
Next, constant current discharge was performed at a current value of 1.2 mA until the circuit voltage reached 1.5 V, and the discharge capacity (unit: mAh / g) was determined from the amount of electricity supplied during this period. This was the first cycle.
Table 1 shows the obtained discharge capacity of the first cycle.

(初回充放電効率)
上記充放電試験の結果から、次式により、初回充放電効率(単位:%)を求めた。
初回充放電効率=(第1サイクルの放電容量/第1サイクルの充電容量)×100、
求めた初回充放電効率を表1に示す。
(First-time charge / discharge efficiency)
From the results of the charge / discharge test, the initial charge / discharge efficiency (unit:%) was determined by the following formula.
Initial charge / discharge efficiency = (discharge capacity of first cycle / charge capacity of first cycle) × 100,
Table 1 shows the obtained initial charge / discharge efficiency.

(サイクル特性)
新しい未使用の評価電池を用意し、サイクル特性を評価した。
回路電圧が0mVに達するまで6.0mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。
次に、6.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。50回充放電を繰返し、得られた放電容量から次の式によってサイクル特性(単位:%)を求めた。
サイクル特性=(第50サイクルの放電容量/第1サイクルの放電容量)×100、
求めたサイクル特性を表1に示す。
(Cycle characteristics)
A new unused evaluation battery was prepared and the cycle characteristics were evaluated.
After 6.0 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes.
Next, constant current discharge was performed at a current value of 6.0 mA until the circuit voltage reached 1.5V. The charge / discharge was repeated 50 times, and the cycle characteristics (unit:%) were determined from the obtained discharge capacity by the following formula.
Cycle characteristics = (discharge capacity of 50th cycle / discharge capacity of 1st cycle) × 100,
Table 1 shows the obtained cycle characteristics.

(ハイレート放電特性[急速放電特性])
新しい未使用の評価電池を用意し、ハイレート放電特性を評価した。
第1サイクルに続いて、回路電圧が1mVに達するまで1.2mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その後、10分間休止した。
次に、18.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量(単位:mAh/g)を求めた。求めた放電容量から、次の式によって、ハイレート放電特性(単位:%)を求めた。
ハイレート放電特性=(18.0mAの放電容量/第1サイクル1.2mAの放電容量)×100、
求めたハイレート放電特性を表1に示す。
なお、本明細書において、このようにして求められた急速(ハイレート)放電特性を「3C/0.2Cの放電率」という場合がある。
(High rate discharge characteristics [rapid discharge characteristics])
A new unused evaluation battery was prepared and the high rate discharge characteristics were evaluated.
Following the first cycle, constant current charging of 1.2 mA was performed until the circuit voltage reached 1 mV, then switching to constant voltage charging was continued until the current value reached 20 μA. Then, it rested for 10 minutes.
Next, constant current discharge was performed at a current value of 18.0 mA until the circuit voltage reached 1.5 V, and the discharge capacity (unit: mAh / g) was determined from the amount of current supplied. From the obtained discharge capacity, the high-rate discharge characteristics (unit:%) were obtained by the following formula.
High-rate discharge characteristics = (18.0 mA discharge capacity / first cycle 1.2 mA discharge capacity) × 100,
Table 1 shows the obtained high rate discharge characteristics.
In the present specification, the rapid (high rate) discharge characteristics thus obtained may be referred to as “a discharge rate of 3C / 0.2C”.

(ハイレート充電特性(急速充電特性))
上述の評価電池を用意し、ハイレート充電特性を評価した。
第1サイクルに続いて、回路電圧が1mVに達するまで6.0mAの定電流充電を行った後、10分間休止した。この間の通電量から充電容量(単位:mAh/g)を求めた。求めた充電容量から、次の式によって、ハイレート充電特性(単位:%)を求めた。
ハイレート充電特性=(6.0mAの充電容量/第1サイクル1.2mAの充電容量)×100、
求めたハイレート充電特性を表1に示す。
なお、本明細書において、このようにして求められた急速(ハイレート)充電特性を「1C/0.2Cの充電率」という場合がある。
(High rate charging characteristics (rapid charging characteristics))
The evaluation battery described above was prepared, and the high rate charging characteristics were evaluated.
Following the first cycle, a constant current charge of 6.0 mA was performed until the circuit voltage reached 1 mV, and then rested for 10 minutes. The charging capacity (unit: mAh / g) was determined from the energization amount during this period. From the obtained charge capacity, the high rate charge characteristic (unit:%) was obtained by the following equation.
High rate charge characteristic = (6.0 mA charge capacity / first cycle 1.2 mA charge capacity) × 100,
Table 1 shows the obtained high-rate charging characteristics.
In the present specification, the rapid (high rate) charging characteristics thus obtained may be referred to as “1C / 0.2C charging rate”.

[実施例2〜6、比較例1]
実施例2〜6、および比較例1について、実施例1と同様にして製造および評価を行った。各実施例、比較例の製造条件や中間工程の物性等、および得られた負極用材料であり微粒金属酸化物導入−表面炭素被覆黒鉛粉を表1に示す。得られた負極用材料を用いて、実施例1と同様にしてコイン型評価電池を製造し、その評価を行った。結果を表2に示す。
[Examples 2 to 6, Comparative Example 1]
Examples 2 to 6 and Comparative Example 1 were produced and evaluated in the same manner as in Example 1. Table 1 shows the production conditions of each example and comparative example, the physical properties of intermediate steps, and the obtained negative electrode material, which is a fine metal oxide-introduced surface carbon-coated graphite powder. Using the obtained negative electrode material, a coin-type evaluation battery was produced in the same manner as in Example 1 and evaluated. The results are shown in Table 2.

[実施例7]
〈リチウムイオン二次電池負極用炭素材料の製造〉
平均粒径16μm、比表面積7.0m2/g、嵩密度0.6g/cm3の球状化天然黒鉛粒子(黒鉛造粒物としての黒鉛材料)100質量部を、金属アルミニウムとエタノールから合成したアルミニウムエトキシド 3質量部、イオン交換水 400質量部に含浸し、90℃×1時間の条件で加水分解を行った。この時点で、黒鉛粒子内部にナノサイズのアルミナ水和物が導入されている。ここから濾過によりアルミナ水和物導入黒鉛粒子を回収・乾燥後、窒素雰囲気中、1200℃で焼成し、アルミナ導入黒鉛粒子を得た。
次いて、得られたアルミナ導入黒鉛粒子に、軟化点125℃のピッチ粉末と混合し、球状化天然黒鉛粒子にピッチ粉末を付着させて得たピッチ付着黒鉛粒子(乾式法)を、さらに窒素雰囲気中、1200℃で焼成し、炭素質被覆黒鉛粒子(リチウムイオン二次電池負極用材料)を製造した。実施例7に該当する方法を導入法Bとする。
表1に、黒鉛粒子の平均粒径、比表面積、およびピッチの軟化点、被覆方法ならびに焼成条件(雰囲気および焼成温度)を示す。得られた負極用材料の平均粒径とBET法による比表面積を示す。また、得られた負極用材料を用いて、実施例1と同様にしてコイン型評価電池を製造し、その評価を行った。結果を表2に示す。
[Example 7]
<Manufacture of carbon material for lithium ion secondary battery negative electrode>
Aluminum obtained by synthesizing 100 parts by mass of spherical natural graphite particles (graphite material as a graphite granule) having an average particle diameter of 16 μm, a specific surface area of 7.0 m 2 / g, and a bulk density of 0.6 g / cm 3 from metallic aluminum and ethanol 3 parts by mass of ethoxide and 400 parts by mass of ion-exchanged water were impregnated and hydrolyzed under the conditions of 90 ° C. × 1 hour. At this point, nano-sized alumina hydrate has been introduced into the graphite particles. From this, the alumina hydrate-introduced graphite particles were collected by filtration and dried, and then fired at 1200 ° C. in a nitrogen atmosphere to obtain alumina-introduced graphite particles.
Next, pitch-attached graphite particles (dry method) obtained by mixing the obtained alumina-introduced graphite particles with pitch powder having a softening point of 125 ° C. and adhering the pitch powder to the spheroidized natural graphite particles are further added to a nitrogen atmosphere. Inside, it baked at 1200 degreeC and the carbonaceous covering graphite particle (material for lithium ion secondary battery negative electrodes) was manufactured. The method corresponding to Example 7 is referred to as introduction method B.
Table 1 shows the average particle size, specific surface area, pitch softening point, coating method, and firing conditions (atmosphere and firing temperature) of the graphite particles. The average particle diameter of the obtained negative electrode material and the specific surface area by the BET method are shown. Moreover, using the obtained negative electrode material, a coin-type evaluation battery was manufactured in the same manner as in Example 1 and evaluated. The results are shown in Table 2.

[実施例8]
〈リチウムイオン二次電池負極用炭素材料の製造〉
平均粒径16μm、比表面積7.0m/g、嵩密度0.6g/cm3の球状化天然黒鉛粒子(黒鉛造粒物としての黒鉛材料)100質量部を、テトラメトキシケイ素 3質量部、イオン交換水 400質量部に含浸し、90℃×1時間の条件で加水分解を行った。この時点で、黒鉛粒子内部にナノサイズのシリカ水和物が導入されている。
ここから濾過によりシリカ水和物導入黒鉛粒子を回収・乾燥後、軟化点125℃のピッチ粉末と混合し、球状化天然黒鉛粒子にピッチ粉末を付着させて、ピッチ付着黒鉛粒子を得た(乾式法)。次いで、得られたピッチ付着黒鉛粒子を、窒素雰囲気中、1200℃で焼成し、炭素質被覆黒鉛粒子(リチウムイオン二次電池負極用材料)を製造した。実施例8に該当する方法を導入法Aとする。
表1に、黒鉛粒子の平均粒径、比表面積、およびピッチの軟化点、被覆方法ならびに焼成条件(雰囲気および焼成温度)を示す。得られた負極用材料の平均粒径とBET法による比表面積を示す。また、得られた負極用材料を用いて、実施例1と同様にしてコイン型評価電池を製造し、その評価を行った。結果を表2に示す。
[Example 8]
<Manufacture of carbon material for lithium ion secondary battery negative electrode>
100 parts by mass of spheroidized natural graphite particles having an average particle diameter of 16 μm, a specific surface area of 7.0 m 2 / g, and a bulk density of 0.6 g / cm 3 (graphite material as a graphite granule), 3 parts by mass of tetramethoxysilicon, 400 parts by mass of ion-exchanged water was impregnated and hydrolyzed under the conditions of 90 ° C. × 1 hour. At this point, nano-sized silica hydrate has been introduced into the graphite particles.
From this, the silica hydrate-introduced graphite particles were collected by filtration and dried, then mixed with pitch powder having a softening point of 125 ° C., and the pitch powder was adhered to the spheroidized natural graphite particles to obtain pitch-attached graphite particles (dry type Law). Next, the obtained pitch-attached graphite particles were fired at 1200 ° C. in a nitrogen atmosphere to produce carbonaceous coated graphite particles (material for a negative electrode of a lithium ion secondary battery). The method corresponding to Example 8 is referred to as introduction method A.
Table 1 shows the average particle size, specific surface area, pitch softening point, coating method, and firing conditions (atmosphere and firing temperature) of the graphite particles. The average particle diameter of the obtained negative electrode material and the specific surface area by the BET method are shown. Moreover, using the obtained negative electrode material, a coin-type evaluation battery was manufactured in the same manner as in Example 1 and evaluated. The results are shown in Table 2.

なお、実施例1〜8で得られた負極用材料の細孔容積は、窒素による吸着等温線をもとに、HK法により求めたマイクロ孔領域の1nm以下の細孔容積が0.0010〜0.0020cm/gであり、かつBJH法により求めたメソ孔領域の1〜100nmの細孔容積が0.020〜0.040cm/gの範囲であった。 In addition, the pore volume of the negative electrode material obtained in Examples 1 to 8 is 0.0010 or less in the micropore region obtained by the HK method based on the adsorption isotherm by nitrogen. 0.0020cm a 3 / g, and a pore volume of 1~100nm mesopore region as determined by BJH method ranged from 0.020~0.040cm 3 / g.

[実施例、比較例の評価]
比較例1は、特開2014−170724号公報の実施例の測定値に該当する。特開2014−170724の実施例は、電極密度が1.5g/cmの例であり、電池性能は良好であったが、密度を1.7g/cmにすると内部空隙が潰れ電池性能が低下したと考えられる。
特定のサイズの金属酸化物粒子が内部の空隙に存在する実施例は、導入法Aおよび導入法Bのいずれの方法でも放電容量、初期充放電効率、サイクル特性、ハイレート放電特性、およびハイレート充電特性のいずれかに優れ、好ましくはこれらの特性のすべてに優れている。
本実施例では、限定されないが例えば次の基準を用いることができる。初期充放電効率90.0%以上を合格とし、サイクル特性90.0%以上を合格とし、ハイレート放電特性89.0%以上を合格とし、ハイレート充電特性50.0%以上を合格とする。
[Evaluation of Examples and Comparative Examples]
Comparative example 1 corresponds to the measured value of the example of JP, 2014-170724, A. The example of JP 2014-170724 A was an example in which the electrode density was 1.5 g / cm 3 and the battery performance was good, but when the density was 1.7 g / cm 3 , the internal voids were crushed and the battery performance was poor. It is thought that it fell.
Examples in which metal oxide particles of a specific size are present in the internal voids include discharge capacity, initial charge / discharge efficiency, cycle characteristics, high-rate discharge characteristics, and high-rate charge characteristics in both introduction methods A and B. And preferably all of these properties.
In the present embodiment, although not limited, for example, the following criteria can be used. Initial charge / discharge efficiency of 90.0% or more is accepted, cycle characteristics of 90.0% or more are accepted, high-rate discharge characteristics of 89.0% or more are accepted, and high-rate charge characteristics of 50.0% or more are accepted.

1 外装カップ 2 負極 3 外装缶 4 対極(正極)
5 セパレータ 6 絶縁ガスケット 7a 集電体 7b 集電体
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Negative electrode 3 Exterior can 4 Counter electrode (positive electrode)
5 Separator 6 Insulating gasket 7a Current collector 7b Current collector

Claims (6)

内部に空隙を有する黒鉛造粒物を金属アルコキシド溶液に浸漬して、前記黒鉛造粒物の内部空隙に金属水和物を形成する金属水和物形成工程と、
前記金属水和物形成工程で得られた前記黒鉛造粒物に炭素前駆体を付着させて、炭素前駆体付着黒鉛造粒物を得る炭素前駆体付着工程と、
前記炭素前駆体付着工程で得られた炭素前駆体付着黒鉛造粒物を焼成して、前記炭素前駆体を炭素質とし、前記金属水和物を粒状の金属酸化物として、炭素質被覆された黒鉛造粒物の内部空間に粒状の金属酸化物を有するリチウムイオン二次電池負極用材料を得る焼成工程を有するリチウムイオン二次電池負極用材料の製造方法。
A metal hydrate forming step of immersing a graphite granule having voids therein in a metal alkoxide solution to form a metal hydrate in the internal voids of the graphite granule,
Attaching a carbon precursor to the graphite granule obtained in the metal hydrate forming step to obtain a carbon precursor-attached graphite granule,
The carbon precursor-attached graphite granule obtained in the carbon precursor attaching step was baked, and the carbon precursor was made carbonaceous, and the metal hydrate was made a granular metal oxide and coated with carbon. The manufacturing method of the material for lithium ion secondary battery negative electrodes which has a baking process which obtains the material for lithium ion secondary battery negative electrodes which has a granular metal oxide in the internal space of a graphite granulated material.
内部に空隙を有する黒鉛造粒物を金属アルコキシド溶液に浸漬して、前記黒鉛造粒物の内部空隙に金属水和物を形成する金属水和物形成工程と、
前記金属水和物形成工程で得られた前記黒鉛造粒物を焼成して、前記金属水和物を粒状の金属酸化物として、前記黒鉛造粒物の内部空間に粒状の金属酸化物を有する黒鉛造粒物を得る金属酸化物形成工程と、
前記金属酸化物形成工程で得られた黒鉛造粒物に炭素前駆体を付着させて、炭素前駆体付着黒鉛造粒物を得る炭素前駆体付着工程と、
炭素前駆体付着工程で得られた炭素前駆体付着黒鉛造粒物を焼成して、前記炭素前駆体を炭素質とし、炭素質被覆された黒鉛造粒物の内部空間に粒状の金属酸化物を有するリチウムイオン二次電池負極用材料を得る焼成工程を有するリチウムイオン二次電池負極用材料の製造方法。
A metal hydrate forming step of immersing a graphite granule having voids therein in a metal alkoxide solution to form a metal hydrate in the internal voids of the graphite granule,
The graphite granule obtained in the metal hydrate formation step is fired, and the metal hydrate is used as a granular metal oxide, and the granular metal oxide is included in the internal space of the graphite granule. A metal oxide forming step for obtaining a graphite granule,
Attaching a carbon precursor to the graphite granule obtained in the metal oxide forming step to obtain a carbon precursor-attached graphite granule,
The carbon precursor-attached graphite granule obtained in the carbon precursor attaching step is fired to make the carbon precursor carbonaceous, and a granular metal oxide is formed in the internal space of the carbon-coated graphite granule. The manufacturing method of the material for lithium ion secondary battery negative electrodes which has a baking process which obtains the material for lithium ion secondary battery negative electrodes which has.
前記金属がアルミニウムおよび/またはケイ素である請求項1または2に記載のリチウムイオン二次電池負極用材料の製造方法。   The method for producing a material for a negative electrode of a lithium ion secondary battery according to claim 1 or 2, wherein the metal is aluminum and / or silicon. 黒鉛造粒物中の内部に空隙を有し、内部の空隙中に金属酸化物粒子が内部の空隙の一部を満たし全部を満たさない状態で存在する、リチウムイオン二次電池用負極用炭素材料。   A carbon material for a negative electrode for a lithium ion secondary battery, having a void inside the graphite granule, wherein the metal oxide particles are present in a state that does not satisfy all of the internal void. . 請求項4に記載のリチウムイオン二次電池負極用炭素材料を用いたリチウムイオン二次電池負極。   The lithium ion secondary battery negative electrode using the carbon material for lithium ion secondary battery negative electrodes of Claim 4. 前記リチウムイオン二次電池負極用炭素材料密度を加圧成型により密度1.7g/cmとした時に、2.0m/g以上のBJH比表面積を有する請求項5に記載のリチウムイオン二次電池負極。 6. The lithium ion secondary according to claim 5, which has a BJH specific surface area of 2.0 m 2 / g or more when the density of the carbon material for the negative electrode of the lithium ion secondary battery is set to a density of 1.7 g / cm 3 by pressure molding. Battery negative electrode.
JP2016176495A 2015-09-11 2016-09-09 Carbon material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery Pending JP2017054815A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015179725 2015-09-11
JP2015179725 2015-09-11

Publications (1)

Publication Number Publication Date
JP2017054815A true JP2017054815A (en) 2017-03-16

Family

ID=58317308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016176495A Pending JP2017054815A (en) 2015-09-11 2016-09-09 Carbon material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2017054815A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921784A (en) * 2021-09-29 2022-01-11 湖北亿纬动力有限公司 Negative electrode material and preparation method and application thereof
CN113972363A (en) * 2021-09-28 2022-01-25 惠州锂威新能源科技有限公司 Negative electrode material and preparation method and application thereof
EP4075544A1 (en) 2021-04-15 2022-10-19 Prime Planet Energy & Solutions, Inc. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
EP4170746A1 (en) 2021-10-21 2023-04-26 Prime Planet Energy & Solutions, Inc. Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4075544A1 (en) 2021-04-15 2022-10-19 Prime Planet Energy & Solutions, Inc. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20220142940A (en) 2021-04-15 2022-10-24 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN113972363A (en) * 2021-09-28 2022-01-25 惠州锂威新能源科技有限公司 Negative electrode material and preparation method and application thereof
CN113921784A (en) * 2021-09-29 2022-01-11 湖北亿纬动力有限公司 Negative electrode material and preparation method and application thereof
EP4170746A1 (en) 2021-10-21 2023-04-26 Prime Planet Energy & Solutions, Inc. Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5986035B2 (en) Lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6765997B2 (en) Negative electrode material, manufacturing method of the negative electrode material, and mixed negative electrode material
JP4613943B2 (en) Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4475326B2 (en) Lithium transition metal-based compound powder, production method thereof, spray-dried body serving as a firing precursor thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
KR100727332B1 (en) Lithium composite oxide particle for lithium secondary battery positive electrode material and containing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP5464653B2 (en) Non-aqueous secondary battery and manufacturing method thereof
TWI470865B (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, lithium-ion secondary battery
TWI447992B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015181116A (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011029408A (en) Electrochemical capacitor and electrode layer used therefor, and method of manufacturing the electrode layer
JP7084849B2 (en) Method for manufacturing negative electrode active material, mixed negative electrode active material, aqueous negative electrode slurry composition, and negative electrode active material
KR20210110606A (en) Negative electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2010150857A1 (en) Composite nano porous electrode material, process for production thereof, and lithium ion secondary battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JPWO2014017617A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same, and method for producing positive electrode active material for lithium secondary battery
JP2017054815A (en) Carbon material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP7029680B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012094407A (en) Active material for nonaqueous electrolyte secondary battery, electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
JP5867475B2 (en) Positive electrode active material for lithium ion battery, electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2016081716A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery