JP6090280B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6090280B2
JP6090280B2 JP2014208244A JP2014208244A JP6090280B2 JP 6090280 B2 JP6090280 B2 JP 6090280B2 JP 2014208244 A JP2014208244 A JP 2014208244A JP 2014208244 A JP2014208244 A JP 2014208244A JP 6090280 B2 JP6090280 B2 JP 6090280B2
Authority
JP
Japan
Prior art keywords
supercharging pressure
combustion
switching
supercharging
reserve control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014208244A
Other languages
English (en)
Other versions
JP2016079808A (ja
Inventor
陽介 松本
陽介 松本
足立 憲保
憲保 足立
佑輔 齋藤
佑輔 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014208244A priority Critical patent/JP6090280B2/ja
Priority to US14/844,649 priority patent/US20160102603A1/en
Priority to EP15188812.0A priority patent/EP3006702A1/en
Priority to CN201510648961.8A priority patent/CN105508064A/zh
Publication of JP2016079808A publication Critical patent/JP2016079808A/ja
Application granted granted Critical
Publication of JP6090280B2 publication Critical patent/JP6090280B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • F02B37/186Arrangements of actuators or linkage for bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

この発明は、内燃機関の制御装置に係り、特に、理論空燃比以下の空燃比での第1燃焼と理論空燃比よりも大きな空燃比でのリーン燃焼との間で燃焼が切り替えられる過給機付き内燃機関を制御する装置として好適な内燃機関の制御装置に関する。
従来、例えば特許文献1には、ディーゼルエンジンの制御装置が開示されている。この制御装置によれば、NOx吸蔵触媒で捕捉したNOxを還元するために、理論空燃比よりも大きな空燃比でのリーン燃焼中に、理論空燃比よりも小さな空燃比でのリッチ燃焼が一時的に実行される。そのうえで、リッチ燃焼からリーン燃焼への切り替え時に過給圧を上昇させる必要がある場合には、吸入空気量を増やす前に過給圧を上昇させる制御が実行される。
特開2006−291897号公報
吸入空気量を調整してエンジントルクを制御するガソリンエンジン等の火花点火式内燃機関においても、特許文献1に記載のように吸入空気量を増やす前にスロットルバルブと過給圧を調整可能なアクチュエータとの協調制御によって過給圧を上昇させる制御(以下、「過給圧リザーブ制御」と称する)を行うことは、燃焼の切り替え時に吸入空気量を迅速に変化させるうえで有効である。しかしながら、過給圧リザーブ制御には、次のような課題がある。
すなわち、過給圧リザーブ制御の実行中には、過給圧の増大に伴ってエンジントルクが要求トルクに対して変化しないようにするために、過給圧リザーブ制御を行わない場合と比べてスロットルバルブを閉じ側に制御して、要求トルクに対応する要求吸入空気量に対して吸入空気量を増加させないことが必要とされる。その結果、内燃機関のポンプロスが増大し、このことは燃費の悪化要因となる。ここで、過給圧リザーブ制御の実行中には、切り替え後のリーン燃焼の下で要求トルクを実現するために必要な要求過給圧にまで過給圧を速やかに高めたい。しかしながら、過給圧リザーブ制御の実行中には上記の理由でスロットルバルブが閉じ側に制御されているため、切り替え対象となる運転領域次第では、現実には要求過給圧にまで過給圧を高めることができない可能性がある。要求過給圧にまで高めることが難しい状況下であるにもかかわらず、要求過給圧を目標値としたまま過給圧を高める動作が長く継続されることは、燃費の良くない運転を長く行ってしまうことになる。
この発明は、上述のような課題を解決するためになされたもので、燃焼の切り替え時に過給圧リザーブ制御が不必要に長く継続されることによる燃費悪化を抑制することのできる内燃機関の制御装置を提供することを目的とする。
本発明に係る内燃機関の制御装置は、過給機とスロットルバルブとアクチュエータとを備える内燃機関を制御するものであって、リザーブ制御実行手段と燃焼切替実行手段とを備えている。
過給機は、内燃機関の吸気通路に配置されて吸入空気を過給するコンプレッサを備える。スロットルバルブは、前記コンプレッサよりも下流側の前記吸気通路に配置され、吸入空気量を調整する。アクチュエータは、前記コンプレッサの駆動力を調整して過給圧を制御する。リザーブ制御実行手段は、理論空燃比以下の空燃比での第1燃焼から理論空燃比よりも大きな空燃比でのリーン燃焼への燃焼の切り替えを行う要求があり、かつ、燃焼の前記切り替えの前の過給圧よりも燃焼の当該切り替えの後の過給圧を高くする要求がある場合に、前記内燃機関の要求トルクを前記第1燃焼の下で実現するために必要な要求吸入空気量を維持しつつ過給圧を高める過給圧リザーブ制御を、前記スロットルバルブと前記アクチュエータとを用いて実行する。燃焼切替実行手段は、前記過給圧リザーブ制御が終了した後に、燃焼の前記切り替えを実行する。前記過給圧リザーブ制御は、実過給圧が要求過給圧または実現可能過給圧の何れか低い方に到達したときに終了される。前記要求過給圧は、前記過給圧リザーブ制御の実行中の前記要求トルクを前記リーン燃焼の下で実現するために必要な過給圧である。前記実現可能過給圧は、前記過給圧リザーブ制御の実行中の実吸入空気量の下で前記アクチュエータの調整によって実現可能な最大の過給圧である。
前記過給機は、前記コンプレッサとともに、排気通路に配置されて前記コンプレッサを駆動するタービンを備えるターボ過給機であってもよい。前記アクチュエータは、前記タービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブであってもよい。
前記過給機は、前記コンプレッサとともに、排気通路に配置されて前記コンプレッサを駆動するタービンと、前記タービンに流入する排気ガスの流量を可変とする可変ノズルとを備えるターボ過給機であってもよい。前記アクチュエータは、前記可変ノズルであってもよい。
前記過給機は、前記コンプレッサを駆動可能な電動機を備える過給機であってもよい。前記アクチュエータは、前記電動機であってもよい。
本発明によれば、第1燃焼からリーン燃焼への燃焼の切り替えを行う要求があり、かつ、燃焼の切り替えの前の過給圧よりも燃焼の切り替えの後の過給圧を高くする要求がある場合には、要求トルクを第1燃焼の下で実現するために必要な要求吸入空気量を維持しつつ過給圧を高める過給圧リザーブ制御が燃焼の切り替えに先立って実行される。そして、過給圧リザーブ制御は、実過給圧が要求過給圧または実現可能過給圧の何れか低い方に到達したときに終了される。これにより、要求過給圧が実現可能過給圧よりも高い状況下において、要求過給圧が不用意に目標過給圧とされ続けることに起因して過給圧リザーブ制御が不必要に長く継続されることを回避することができる。このため、このことに起因する燃費悪化を抑制することができる。
本発明の実施の形態1に係る内燃機関のシステム構成を概略的に説明するための図である。 エンジン運転領域と燃焼方式との関係の一例を表した図である。 NOx排出量と空燃比(A/F)との関係を表した図である。 ストイキ燃焼からリーン燃焼への切り替えに関する課題を説明するための図である。 目標トルクが一定である場合を対象として、ストイキ燃焼から過給を伴うリーン燃焼への切り替え時の動作を過給圧リザーブ制御の有無によって比較して表すタイムチャートである。 目標トルクが増加している場合を対象として、ストイキ燃焼から過給を伴うリーン燃焼への切り替え時の動作を過給圧リザーブ制御の有無によって比較して表すタイムチャートである。 過給圧リザーブ制御利用時の課題を説明するための図である。 過給圧リザーブ制御の終了時期の管理手法を説明するための図である。 実現可能過給圧の算出手法の一例を説明するための図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。
実施の形態1.
まず、図1〜図10を参照して、本発明の実施の形態1について説明する。
[実施の形態1の内燃機関のハードウェア構成]
図1は、本発明の実施の形態1に係る内燃機関10のシステム構成を概略的に説明するための図である。図1に示す内燃機関10は、内燃機関本体12を備えている。内燃機関10は、火花点火式エンジン(一例として、ガソリンエンジン)であり、車両に搭載され、その動力源とされているものとする。内燃機関本体12の各気筒には、吸気通路14および排気通路16が連通している。
吸気通路14の入口付近には、エアクリーナ18が設けられている。エアクリーナ18には、吸気通路14に取り入れられた空気の流量に応じた信号を出力するエアフローメータ20が設けられている。エアクリーナ18よりも下流側の吸気通路14には、吸入空気を過給するために、ターボ過給機22のコンプレッサ22aが配置されている。ターボ過給機22は、排気ガスの排気エネルギによって作動するタービン22bを排気通路16に備えている。コンプレッサ22aは、連結軸22cを介してタービン22bと一体的に連結されており、タービン22bに入力される排気ガスの排気エネルギによって回転駆動される。
コンプレッサ22aよりも下流側の吸気通路14には、吸気通路14を開閉する電子制御式のスロットルバルブ24が配置されている。スロットルバルブ24よりも下流側の吸気通路14は、各気筒に向けて吸入空気を分配する吸気マニホールド26として構成されている。吸気マニホールド26の集合部(サージタンク)には、コンプレッサ22aによって圧縮された吸入空気を冷却するためのインタークーラ28が配置されている。吸気通路14におけるコンプレッサ22aとスロットルバルブ24との間には、スロットル上流圧力、すなわち、過給圧を計測するための第1吸気圧力センサ30が配置されている。また、吸気マニホールド26には、スロットル下流圧力、すなわち、吸気マニホールド圧力を計測するための第2吸気圧力センサ32が配置されている。
各気筒には、燃焼室34内に燃料を直接噴射する燃料噴射弁36と、燃焼室34内の混合気に点火するための点火プラグ38とが備えられている。燃焼室34内に燃料を供給する燃料噴射弁としては、燃料噴射弁36に代え、あるいはそれとともに各吸気ポートに燃料を噴射する燃料噴射弁が用いられていてもよい。
排気通路16には、タービン22bをバイパスする排気バイパス通路40が接続されている。排気バイパス通路40には、排気バイパス通路40を開閉するバイパスバルブとして、ウェイストゲートバルブ(WGV)42が配置されている。WGV42は、一例として電動式であり、所定の開度制御範囲内で任意の開度に調整可能に構成されている。WGV42の開度を変更することにより、タービン22bを通過する排気ガスの流量を調整してコンプレッサ22aの駆動力を調整することができる。
また、タービン22bよりも上流側の排気通路16には、排気ガスの空燃比を検出するための空燃比センサ44が配置されている。空燃比センサ44よりも下流側の排気通路16には、排気ガスを浄化するための各種触媒が配置されている。ここでは、一例として、排気ガスの上流側から順に、三元触媒46およびNSR触媒(吸蔵還元型NOx触媒)48が備えられている。
さらに、本実施形態のシステムは、ECU(Electronic Control Unit)50を備えている。ECU50は、少なくとも入出力インターフェースとメモリと演算処理装置(CPU)とを備えている。入出力インターフェースは、内燃機関10もしくはこれを搭載する車両に取り付けられた各種センサからセンサ信号を取り込むとともに、内燃機関10が備える各種アクチュエータに対して操作信号を出力するために設けられている。ECU50が信号を取り込むセンサには、上述したエアフローメータ20、吸気圧力センサ30および32ならびに空燃比センサ44に加え、クランク軸の回転位置およびエンジン回転速度を取得するためのクランク角センサ52等のエンジン運転状態を取得するための各種センサが含まれる。上記センサには、内燃機関10を搭載する車両のアクセルペダルの踏み込み量(アクセル開度)を検出するためのアクセル開度センサ54も含まれる。ECU50が操作信号を出すアクチュエータには、上述したスロットルバルブ24、燃料噴射弁36、点火プラグ38を利用する点火装置(図示省略)、およびWGV42等のエンジン運転を制御するための各種アクチュエータが含まれる。メモリには、内燃機関10を制御するための各種の制御プログラムおよびマップ等が記憶されている。CPUは、制御プログラム等をメモリから読み出して実行し、取り込んだセンサ信号に基づいて各種アクチュエータの操作信号を生成する。
[前提とするエンジントルク制御]
本実施形態のシステムでのエンジントルク制御では、アクセル開度に応じて要求トルクが算出され、算出された要求トルクを目標トルクとしてエンジントルクが制御される。より具体的には、要求トルクが算出されると、現在の空燃比の下で要求トルクを実現するために必要な要求吸入空気量(筒内に吸入される空気量の要求値)が算出される。内燃機関10の場合には、吸入空気量は、スロットルバルブ24とWGV42とを用いて調整することができる。低負荷側のトルク領域では、WGV42の開度を開度制御範囲内の最大開度にて開いた状態で、スロットルバルブ24の開度調整によって要求吸入空気量が得られるように吸入空気量が調整される。そして、スロットルバルブ24が全開開度に到達するエンジントルクよりも高負荷側のトルク領域(すなわち、過給領域)では、スロットルバルブ24を全開開度にて開いた状態で、要求吸入空気量を満足する要求過給圧が得られるようにWGV42の開度調整によって過給圧が調整され、これにより、過給領域での吸入空気量が要求吸入空気量となるように調整される。なお、以下の説明においては、吸入空気量および過給圧の要求値(目標値)の表記について、ストイキ燃焼の下での値の場合には末尾に「S」を付し、リーン燃焼を想定した値もしくはリーン燃焼の下での値の場合には末尾に「L」を付している。また、点火時期は、基本的に、空燃比に応じたMBT点火時期に制御されているものとする。
[燃焼の切り替え]
図2は、エンジン運転領域と燃焼方式との関係の一例を表した図である。図2に示すエンジン運転領域は、エンジントルク(エンジン負荷)とエンジン回転速度とによって規定されている。エンジン運転領域には、理論空燃比よりも大きな(リーンな)空燃比を用いるリーン燃焼領域が含まれている。リーン燃焼領域は、おおよそ、低中負荷かつ低中回転の領域に該当する。リーン燃焼領域よりも高負荷高回転側には、理論空燃比を用いる第1ストイキ燃焼領域が設けられている。また、リーン燃焼領域よりも低負荷低回転側にも、理論空燃比を用いる第2ストイキ燃焼領域が設けられている。第2ストイキ燃焼領域は、この領域においてリーン燃焼を行うと燃焼が不安定となるため、それを避けるために理論空燃比を用いる領域である。
リーン燃焼領域内の高負荷側の領域は、過給リーン燃焼領域として設定されている。過給リーン燃焼領域は、この領域内のエンジントルクをリーン燃焼で実現するために過給を必要とする領域である。なお、第2ストイキ燃焼領域は、過給を必要としない領域であり、一方、第1ストイキ燃焼領域内には、図示は省略するが、過給を必要とする領域と過給を必要としない領域とが含まれている。
図3は、NOx排出量と空燃比(A/F)との関係を表した図である。燃焼室34からのNOxの排出量は、図3に示すように、理論空燃比よりも少し大きな空燃比(16程度)にてピークがあり、これを超えて空燃比が大きくなるにつれて減少していく特性を有している。本実施形態のシステムでは、リーン燃焼領域にて用いる目標空燃比として、図4中に示すようにNOx排出量が十分に少なくなるレベルの値(すなわち、NOx排出量が相対的に多くなる空燃比範囲(16〜20付近)内の値よりも大きな値)が使用されるようになっている。
図4は、ストイキ燃焼からリーン燃焼への切り替えに関する課題を説明するための図である。図4は、内燃機関の目標トルクが一定であるときの制御例である。時点t1は、ストイキ燃焼からリーン燃焼への切り替えの要求を受けて、当該切り替えを開始する時点である。時点t2は、リーン燃焼への切り替えが完了した時点である。図4に示す例のように、リーン燃焼中にストイキ燃焼時と同じエンジントルクを実現するためには、筒内に吸入される空気量を高める必要がある。このため、時点t1が到来すると、スロットルバルブ24およびWGV42の一方もしくは双方を用いて、リーン燃焼時に目標トルクを実現するために必要な空気量に向けて吸入空気量が高められる。そして、この吸入空気量の変化に合わせて、理論空燃比からリーン燃焼時の所定の目標リーン空燃比に向けて空燃比が変更されていく。
ここで、吸入空気量の増加を必要としつつストイキ燃焼からリーン燃焼に切り替える場合には、切り替え後のリーン燃焼領域が過給を必要としない領域であれば、スロットルバルブ24にて吸入空気量を調整することができる。この場合には、比較的高い応答性で吸入空気量を調整することができるといえる。一方、リーン燃焼への切り替え時に過給圧を高める必要がある場合には、吸入空気量を要求吸入空気量LとするためにWGV42を利用した過給圧調整が必要とされる。この場合には、WGV42を閉じ側に制御してタービン22bの回転速度を高めることによって過給圧を高めることになるため、スロットルバルブ24での調整と比べて相対的に吸入空気量の応答性が低くなる。ここで、ストイキ燃焼からリーン燃焼への切り替えに要する時間(図4中のt1からt2までの時間)が長くなると、燃焼の切り替えの過程においてNOx排出量が多くなる空燃比(16〜20付近の空燃比)にて燃焼が行われる時間が長くなってしまう。そうすると、NOx排出量が増加してしまう。
リーン燃焼への切り替え時に過給圧を高める必要がある場合としては、図2を参照しながら以下のような場合を挙げることができる。すなわち、例えば、第1ストイキ燃焼領域内の点S1から過給リーン燃焼領域内の点L1に移行するケースが上記の場合に該当する。すなわち、このケースでは、点S1での値と同じエンジントルクをリーン燃焼の下で点L1にて実現する必要があるため、過給圧を高める必要が生じる。また、第2ストイキ燃焼領域内の点S2から点L1に移行するケースも上記の場合に該当する。このケースは、実際のエンジン運転中に多く行われるものである。このケースでは、過給を伴っていないストイキ燃焼から過給リーン燃焼への切り替えとなるため、過給が必要となる。なお、リーン燃焼への切り替え時に過給圧を高める必要がある場合としては、上記ケースのようにエンジントルクを高める要求があるときに限らない。すなわち、例えば、点S3から点L1に移行するケースのようにエンジントルクを下げる要求が出された場合であっても、切り替え前の点S3でのエンジントルクをストイキ燃焼の下で実現するために必要な吸入空気量よりも、切り替え後の点L1でのエンジントルクをリーン燃焼の下で実現するために必要な吸入空気量の方が多くなる場合がある。そのような場合には、エンジントルクを下げる要求時であっても、リーン燃焼への切り替え時に過給圧を高める必要がある場合に該当する。
(過給圧リザーブ制御)
上述したように、ストイキ燃焼からリーン燃焼への切り替えに要する時間が長くなると、NOx排出量が増加するという問題がある。そこで、本実施形態では、ストイキ燃焼からリーン燃焼への燃焼の切り替えを行う要求があり、かつ、燃焼の切り替えの前の過給圧よりも燃焼の切り替えの後の過給圧を高くする要求がある場合に、切り替え時間の短縮のために、空燃比の切り替えに先立ち、過給圧リザーブ制御を行うこととした。ここでいう過給圧リザーブ制御とは、スロットルバルブ24とWGV42との協調制御によって、燃焼切り替え前の理論空燃比の下で要求トルクを実現するために必要な要求吸入空気量Sを維持しつつ、リーン燃焼の下で要求トルクを実現するために必要な要求過給圧Lに向けて過給圧を高める制御である。
図5は、目標トルクが一定である場合を対象として、ストイキ燃焼から過給を伴うリーン燃焼への切り替え時の動作を過給圧リザーブ制御の有無によって比較して表すタイムチャートである。図5に示す例には、例えば、図2における点S1が自然吸気領域の動作点であるとした前提の下で点S1から点L1に移行する状況が該当する。なお、図5(後述の図6、7および8も同様)においては、各パラメータの目標値(要求値)を太線で示し、目標値と乖離している場合の実際値を細線で示している。
過給圧リザーブ制御を伴わない場合には、図5(A)に示すように、燃焼の切り替え要求が出された時点で、燃焼の切り替え、すなわち、空燃比の切り替えが直ちに開始される。具体的には、切り替え後のリーン燃焼の下でアクセル開度に基づく要求トルクに相当する目標トルクを実現するために必要な要求吸入空気量Lが目標吸入空気量Lとして算出される。この場合の切り替え後のリーン燃焼は過給を伴うものであるため、スロットルバルブ24を全開とした状態で目標吸入空気量Lを実現するために必要な要求過給圧Lが目標過給圧Lとして算出される。そして、切り替え開始時点において、スロットル開度が全開開度に制御される。WGV開度は、目標過給圧Lに対応する開度に制御される。これに伴い、吸入空気量が目標吸入空気量Lに向けて上昇していく。切り替え中の空燃比は、変化していく実吸入空気量の下で目標トルクを維持するための値となるように燃料噴射量が調整されることで変更される。以上説明したように、過給圧リザーブ制御を伴わない場合には、過給圧を高めて吸入空気量を増やしながら空燃比を変化させていくため、実過給圧の上昇に時間を要することに起因して空燃比の切り替えにも時間を要する。その結果、切り替え中のNOx排出量が多くなる。
一方、図5(B)に示すように、過給圧リザーブ制御は、切り替え要求が出された時点において、空燃比の切り替えに先立って実行される。具体的には、図5(B)の例は目標トルクが一定の場合であるため、目標吸入空気量がストイキ燃焼の下での値Sにて一定とされた状態で目標過給圧(要求過給圧)Lとなるように過給圧が高められる。図5(B)に示す目標過給圧Lの設定自体は、図5(A)に示す過給圧リザーブ制御を伴わない場合と同様である。
過給圧リザーブ制御を伴う場合には、過給圧リザーブ制御を伴わない場合の制御に対し、WGV開度の制御は同様であるがスロットル開度の制御は相違している。すなわち、過給圧の上昇に伴ってスロットル通過空気量(さらには筒内吸入空気量)が変化しないように、スロットル開度は過給圧の上昇に伴って小さくされていく。スロットル通過空気量、スロットル上流圧力(過給圧)およびスロットル下流圧力と、スロットル開度との間には、既知の関係がある。この関係を利用して、吸気圧力センサ30、32を用いてスロットル前後圧力を計測しながら、実過給圧が上昇していく状況において切り替え開始時のスロットル通過空気量を維持できるようにスロットル開度が制御される。
図5(B)に示す例では、過給圧リザーブ制御によって実過給圧が目標過給圧Lとなった時点で過給圧リザーブ制御を完了して、空燃比の切り替え動作が開始される。具体的には、実過給圧が目標過給圧Lに高まっている状態でスロットルバルブ24が全開とされるとともに、実空燃比がリーン燃焼での目標空燃比に向けて切り替えられていく。切り替え中の空燃比は、変化していく実吸入空気量の下で目標トルクを維持するための値となるように燃料噴射量が調整されることで変更される。これにより、過給圧リザーブ制御を伴わない場合と比べて、速やかに吸入空気量を高めることができるので、それに伴い空燃比を速やかに切り替えることが可能となる。その結果、NOx排出量の多い空燃比(16〜20付近の空燃比)が使用される時間が短縮されるため、燃焼の切り替えに伴うNOx排出量の増加を抑制することができる。なお、ここでは、過給圧リザーブ制御の実行中のWGV開度は、目標過給圧Lに対応する開度に制御されるものとしている。しかしながら、過給圧リザーブ制御の実行中のWGV開度は、上記に代え、速やかに実過給圧を高めるために制御開始時に最小開度に制御されたうえで、その後の実過給圧の上昇を受けて目標過給圧Lに対応する開度に変更されるものであってもよい。
図6は、目標トルクが増加している場合を対象として、ストイキ燃焼から過給を伴うリーン燃焼への切り替え時の動作を過給圧リザーブ制御の有無によって比較して表すタイムチャートである。図6に示す例は、アクセル開度が緩やかに踏み込まれていくことで目標トルクが緩やかに増加していく過程において、ストイキ燃焼領域から過給リーン燃焼領域に切り替わるケースに相当している。
図6(A)に示すように、過給圧リザーブ制御を伴わない場合の制御の基本の思想は、図5(A)に示す目標トルクが一定の場合と同様である。しかしながら、切り替え開始後においても目標トルクが増加することに対応して目標吸入空気量Lが増やされていき、スロットル開度が全開開度である状態で目標吸入空気量Lを実現するために必要な値となるように目標過給圧Lも増やされていく。このように、目標トルクが増加していく場合においても、過給圧リザーブ制御を伴わないのであれば過給圧を高めつつ吸入空気量を増やしながら空燃比を変化させていくことになる。このため、目標トルクが一定の場合と同様に、切り替え中のNOx排出量が多くなる。
図6(B)に示すように、過給圧リザーブ制御を伴う場合の制御の基本の思想は、図5(B)に示す目標トルクが一定の場合と同様である。しかしながら、過給圧リザーブ制御の実行中の目標吸入空気量Sは、目標トルクの増加に追従して、増加していく目標トルクをストイキ燃焼の下で実現するために必要な値であり続けるために増やされていく。目標過給圧(要求過給圧)Lの設定手法自体は、図6(A)に示す過給圧リザーブ制御を伴わない場合と同様である。過給圧リザーブ制御の実行中のスロットル開度は、上記の既知の関係を利用して、実過給圧および実吸入空気量が上昇していく状況において目標吸入空気量Sに対応するスロットル通過空気量を維持するために必要な値に制御される。また、図6に示すように、実過給圧が目標過給圧Lに向けて上昇していく過程でのスロットル開度は、過給圧リザーブ制御を行う場合には、過給圧リザーブ制御を行わない場合と比べて閉じ側に制御される。以上説明した図6(B)に示す例においても、ストイキ燃焼の下で過給圧リザーブ制御によって実過給圧が目標過給圧Lに到達した時点で、スロットルバルブ24が全開とされる。これにより、空燃比を速やかに切り替えることが可能となるため、燃焼の切り替えに伴うNOx排出量の増加を抑制することができる。
(過給圧リザーブ制御利用時の課題)
図7は、過給圧リザーブ制御利用時の課題を説明するための図である。過給圧リザーブ制御の実行中には、図5(B)および図6(B)に示す例のように、要求トルクから定まる要求過給圧Lに相当する目標過給圧Lにまで実過給圧を高めたい。しかしながら、切り替えの対象となる運転領域次第では、図7に示す例のように、現実には過給圧リザーブ制御を利用して要求過給圧Lにまで高めることができない可能性がある。その理由は、次の通りである。すなわち、過給圧リザーブ制御の実行中には、実過給圧の増加に伴ってエンジントルクが要求トルク(目標トルク)に対して変化しないようにするために、過給圧リザーブ制御を行わない場合と比べてスロットルバルブ24を閉じ側に制御して、要求トルクに対応する要求吸入空気量Sに合致するように実吸入空気量を調整することが必要とされる。このため、過給圧リザーブ制御の実行中は、過給圧リザーブ制御を行わない場合と比べて、タービン22bを通過する排気ガス流量が少なくなるために実過給圧を高めにくくなる。
要求過給圧Lにまで高めることが難しい状況下であるにもかかわらず、要求過給圧Lを目標過給圧Lとしたまま実過給圧を高める動作が長く継続されることは、燃費の良くない運転を長く行ってしまうことになる。その理由としては、過給圧リザーブ制御によってポンプロスが増大することと、ストイキ燃焼からリーン燃焼への切り替えが要求されているにもかかわらずストイキ燃焼が長く行われてしまうことが挙げられる。
(実施の形態1における特徴的な過給圧リザーブ制御の終了時期の管理手法)
図8は、過給圧リザーブ制御の終了時期の管理手法を説明するための図である。上記の課題を解決するために、本実施形態では、過給圧リザーブ制御の終了時期を判定するための過給圧の閾値として、要求過給圧と実現可能過給圧とが用意される。そして、過給圧リザーブ制御の実行中に実過給圧が要求過給圧または実現可能過給圧の何れか低い方に到達したときに過給圧リザーブ制御が終了され、次いで、空燃比の切り替えが実行される。ここでいう「要求過給圧」は、既述したものを指しており、すなわち、過給圧リザーブ制御の実行中の要求トルクを、過給を伴うリーン燃焼の下で実現するために必要な要求過給圧Lである。「実現可能過給圧」は、過給圧リザーブ制御の実行中(すなわち、ストイキ燃焼の実行中)の現在の実吸入空気量の下でWGV42の開度調整によって実現可能な最大の過給圧のことである。
図8(A)は、実現可能過給圧が要求過給圧Lよりも高い状況での制御例を示しており、上記図5(B)に示す制御例はこれに該当する。この場合には、過給圧リザーブ制御は、実過給圧が要求過給圧Lに到達した時点で終了される。一方、図8(B)は、要求過給圧Lが実現可能過給圧よりも高い状況での制御例を示している。この場合には、過給圧リザーブ制御は、実過給圧が実現可能過給圧に到達した時点で終了される。図8(A)および図8(B)に示す制御例の場合には、過給圧リザーブ制御は、実過給圧が要求過給圧Lおよび実現可能過給圧のうちの何れか低い方に到達した場合に終了されるといえる。ただし、要求過給圧Lと実現可能過給圧とが同じ値として算出されることもあり得る。本明細書中においては、「実過給圧が要求過給圧Lまたは実現可能過給圧の何れか低い方に到達したとき」という表現を、要求過給圧Lと実現可能過給圧とが同じ値となる状況下において実過給圧が要求過給圧Lおよび実現可能過給圧と等しい過給圧値に到達するときを含むものとして扱っている。
以上説明したように、本実施形態では、実現可能過給圧が要求過給圧Lよりも高いケース(図8(A))だけでなく、要求過給圧Lが実現可能過給圧よりも高いケース(図8(B))をも想定して、過給圧リザーブ制御の終了時期が制御される。これにより、実現可能過給圧よりも高い要求過給圧Lが不用意に目標過給圧Lとされ続けることに起因して過給圧リザーブ制御が不必要に長く実行されてしまうことを回避することができる。また、過給圧リザーブ制御の終了時期の判定のために実現可能過給圧のみを使用することとすると、図8(A)に示すケースでは要求過給圧Lよりも高い実現可能過給圧にまで実過給圧を不必要に高めてしまうことになってしまう。これに対し、本実施形態の終了時期の判定手法によれば、個々の状況に応じて過給圧リザーブ制御を適正に実行できるようになる。その結果、ストイキ燃焼から過給を伴うリーン燃焼への切り替え時に、過給圧リザーブ制御の利用によって、燃費悪化を抑制しつつNOxの排出を抑制できるようになる。また、要求過給圧Lが実現可能過給圧よりも高い場合においても、実現可能過給圧に到達するまでは過給圧リザーブ制御が行われるようになる。これにより、この場合においても、過給圧リザーブ制御を行わないとした場合と比べて、空燃比の切り替えに要する時間の短縮を図ることができる。
上記の図8に示す例は、過給圧リザーブ制御の実行中の目標トルクが一定であることを受けて要求過給圧Lおよび実吸入空気量が一定となるときのものである。また、実吸入空気量が一定であると、図9を参照した後述の説明からも分かるように、実現可能過給圧も一定となる。一方、過給圧リザーブ制御の実行中に目標トルクが変化する場合には、目標トルクが変化している期間中の各時点での目標トルクを基礎として、要求過給圧Lと実現可能過給圧とが更新されることになる。なお、過給圧リザーブ制御の実行中に目標トルクが変化する場合には、図6に示す制御例のように過給リーン燃焼領域内で目標トルクが増加する場合だけでなく、過給リーン燃焼領域内で目標トルクが減少する場合も該当し得る。
(実現可能過給圧の算出手法)
図9は、実現可能過給圧の算出手法の一例を説明するための図である。図9は、過給圧と吸入空気量との関係を利用して、実現可能過給圧を示すものである。また、図9は、過給圧リザーブ制御の実行中の燃焼(すなわち、ストイキ燃焼)での関係を示している。なお、縦軸の過給圧は標準状態相当の値である。
所定の開度制御範囲内の最大開度から最小開度までの間でWGV開度を制御することで、図9中のWGV全開ラインからWGV全閉ラインの範囲内で過給圧を調整することができる。また、内燃機関10が仕様上出し得る最大トルクのラインは、図9中に示すようにこの図の関係の中に表すことができる。WGV全閉ラインと最大トルクラインとの交点よりも高空気流量側では、内燃機関10の排気温度などの制約によって全閉開度(最小開度)よりもWGV42を開いているときに最大トルク(トルク限界)が定まる。したがって、上記交点以下の空気流量領域では、WGV全閉ライン上の値が実現可能過給圧となり、上記交点よりも高空気流量側では、最大トルクライン上の値が実現可能過給圧となる。したがって、図9に示す関係を用いることで、図9中に太線で表したラインの中から現在の実吸入空気量(ストイキ燃焼の下での値)に対応した点の過給圧の値を利用して実現可能過給圧を算出できるようになる。なお、既述したように、過給圧リザーブ制御の実行中には、燃焼切り替え後のリーン燃焼の下で目標トルクを実現するために必要な要求過給圧Lが算出されたうえで、この要求過給圧Lをストイキ燃焼の下で実現することが要求される。したがって、リーン燃焼を想定して算出される要求過給圧Lの値は、ストイキ燃焼での関係を定めた図9のグラフ上においては、例えば点P1のように、同一条件での実現可能過給圧(点P2)よりも高い値として算出されることがある。
(実施の形態1における具体的処理)
図10は、本発明の実施の形態1における特徴的な制御を実現するためにECU50が実行する制御ルーチンを示すフローチャートである。
図10に示すルーチンでは、ECU50は、まず、ステップ100において、燃焼の切り替え要求があるか否かを判定する。より具体的には、ECU50は、各運転領域で用いる燃焼方式を規定した関係(図2参照)をマップとして記憶している。そして、現在の運転領域で使用している燃焼方式と、アクセル開度に基づいて算出される現在の要求トルク(目標トルク)に対応する要求運転領域での燃焼方式とを比較して、燃焼の切り替えが要求されているか否かが判定される。また、運転領域上の動作点に変更はない場合であっても、例えば、リーン燃焼が禁止されてストイキ燃焼を用いている際に、その禁止が解かれてストイキ燃焼からリーン燃焼への切り替えが可能となったときにも、燃焼の切り替え要求があると判定される。
ステップ100の判定が成立する場合には、ECU50は、ステップ102に進み、今回の切り替え要求がストイキ燃焼からリーン燃焼への切り替えを要求するものであるか否かを判定する。すなわち、現在の運転領域で使用している燃焼方式がストイキ燃焼であり、要求されている燃焼方式がリーン燃焼である場合には、ステップ102の判定が成立する。本ステップ102の判定が不成立となる場合、すなわち、リーン燃焼からストイキ燃焼への切り替え要求である場合、もしくは、ストイキ燃焼から自然吸気でのリーン燃焼への切り替え要求である場合には、ECU50は、ステップ112に進み、直ちに所定の切り替え動作を実行する。
ステップ102の判定が成立する場合には、ECU50は、ステップ104に進み、燃焼の切り替えの前の過給圧よりも燃焼の切り替えの後の過給圧を高くする要求があるか否かを判定する。より具体的には、要求されているリーン燃焼での目標空燃比の下で現在の要求トルクを満足するために必要な要求吸入空気量Lが算出される。そして、算出された要求吸入空気量Lが、現在の実吸入空気量よりも多く、かつ、所定の閾値よりも多いか否かが判断される。その判断が成り立つ場合にステップ104の判定が成立する。なお、上記の閾値は、要求吸入空気量Lが過給を必要とする値であるか否かを判断するための閾値として予め設定された値である。
ステップ104の判定が不成立となる場合、すなわち、ストイキ燃焼からリーン燃焼への切り替えが要求されているが過給圧を高める必要はない場合には、ECU50は、ステップ112に進み、直ちに所定の切り替え動作を実行する。
一方、ステップ104の判定が成立する場合、すなわち、過給圧を高めつつストイキ燃焼からリーン燃焼に切り替える要求がある場合には、ECU50は、ステップ106に進み、要求過給圧Lと実現可能過給圧とを算出する。要求過給圧Lは、ステップ104にて算出された要求吸入空気量Lをスロットルバルブ24が全開開度となる状態で実現するために必要な値として算出される。より具体的には、ECU50は、リーン燃焼の下での要求吸入空気量Lと要求過給圧Lとの関係を定めたマップ(図示省略)を記憶しており、そのようなマップを参照して要求過給圧Lを算出する。実現可能過給圧は、図9に示す関係(ストイキ燃焼を対象とした関係)をECU50にマップとして記憶させておき、当該マップを参照して現在の実吸入空気量に基づいて算出することができる。図5に示す制御例のように燃焼の切り替えの前後で目標トルクが一定となる場合であれば、過給圧リザーブ制御の実行中の要求過給圧Lおよび実現可能過給圧として、過給圧リザーブ制御の開始時(ステップ104からステップ106に進んだ時)に算出した値を継続して用いることができる。一方、図6に示す制御例のように過給圧リザーブ制御の実行中に目標トルクが変化する場合には、要求過給圧Lおよび実現可能過給圧は、変化している目標トルクに対応する最新の要求吸入空気量Lおよび実吸入空気量を基礎とした値に本ステップ106の処理によってそれぞれ更新されることになる。
次に、ECU50は、ステップ108に進み、過給圧リザーブ制御を実行する。より具体的には、過給圧リザーブ制御の実行中の目標吸入空気量Sおよび目標過給圧Lとして、最新の要求吸入空気量Sおよび要求過給圧Lがそれぞれ用いられる。そのうえで、目標吸入空気量Sおよび目標過給圧Lを実現するための開度となるようにスロットルバルブ24およびWGV42が制御される。この場合のスロットルバルブ24およびWGV42の制御手法は、図5(B)および図6(B)を参照して説明した通りである。
次に、ECU50は、ステップ110に進み、実過給圧が要求過給圧Lまたは実現可能過給圧の何れか低い方に到達したか否かを判定する。その結果、この判定が不成立となる場合には、ステップ106に戻り、目標トルクが変化する場合であれば要求過給圧Lおよび実現可能過給圧が更新されつつ、ステップ108にて過給圧リザーブ制御が継続される。一方、本ステップ110の判定が成立した場合には、ECU50は、ステップ112に進む。
ステップ112では、燃焼の切り替え動作が実行される。より具体的には、ステップ110を経由してステップ112に進んだ場合には、過給圧リザーブ制御の終了動作を伴う燃焼の切り替え動作が実行される。過給圧リザーブ制御を終了する処理には、目標吸入空気量をストイキ燃焼のための目標吸入空気量Sからリーン燃焼のための目標吸入空気量Lに切り替える処理と、この切り替えに伴ってスロットルバルブ24を全開とする処理とが該当する。この目標吸入空気量Lは、目標トルクが一定である場合であればステップ104にて算出した値でよいが、目標トルクが変化する場合には現時点での目標トルクをリーン燃焼の下で実現するために必要な値となる。
また、ステップ112では、スロットルバルブ24の操作に伴って変化していく実吸入空気量に応じて燃料噴射量が変更されることによって、空燃比がリーン燃焼での目標空燃比に向けて切り替えられていく。
ところで、上述した実施の形態1においては、過給圧リザーブ制御の実行中の目標過給圧Lとして要求過給圧Lを用いて実過給圧を高めるようにし、実過給圧が要求過給圧Lまたは実現可能過給圧の何れか低い方に到達した場合に過給圧リザーブ制御を終了することとしている。しかしながら、本発明における過給圧リザーブ制御は、以下の手順で実行されるものであってもよい。すなわち、ECU50は、ステップ106において要求過給圧Lと実現可能過給圧とを算出した後に、算出した要求過給圧Lおよび実現可能過給圧のうちのどちらが低いかを判断してもよい。そして、ECU50は、過給圧リザーブ制御の実行中の目標過給圧として、要求過給圧Lの方が低い場合には要求過給圧Lを用いるようにし、一方、実現可能過給圧の方が低い場合には実現可能過給圧を用いるようにしてもよい。そのうえで、ECU50は、要求過給圧Lまたは実現可能過給圧である目標過給圧に実過給圧が到達したときに過給圧リザーブ制御を終了してもよい。
また、上述した実施の形態1においては、ストイキ燃焼から過給を伴うリーン燃焼への切り替えに先立って過給圧リザーブ制御を実行する制御を例に挙げて説明を行った。しかしながら、本発明における第1燃焼からリーン燃焼への切り替えの対象となる「第1燃焼」は、ストイキ燃焼に限られるものではなく、理論空燃比よりも小さな空燃比でのリッチ燃焼であってもよい。このようなリッチ燃焼からリーン燃焼への切り替えの具体例としては、NSR触媒48で捕捉したNOxを還元するためにリーン燃焼中にリッチ燃焼を一時的に実行した後に、リッチ燃焼からリーン燃焼に戻す際に過給圧を高める要求がある場合が該当する。
また、上述した実施の形態1においては、スロットルバルブ24とWGV42との協調制御によって過給圧リザーブ制御を行う例について説明を行った。しかしながら、本発明において過給圧リザーブ制御の実行のためにスロットルバルブとともに使用されるアクチュエータは、コンプレッサの駆動力を調整して過給圧を制御可能なものであれば、WGV42に限られない。すなわち、上記アクチュエータは、例えば、タービンに流入する排気ガスの流量を可変とする可変ノズルを有するターボ過給機を備える内燃機関であれば可変ノズルであってもよい。また、上記アクチュエータは、例えば、コンプレッサを駆動可能な電動機を有する過給機を備える内燃機関であれば当該電動機であってもよい。
より具体的には、スロットルバルブ24とWGV42との協調制御による過給圧リザーブ制御を行う場合には、実過給圧が目標過給圧Lに向けて上昇していく過程でのスロットル開度は、過給圧リザーブ制御を行わない場合と比べて閉じ側に制御される(図5および図6参照)。そして、過給圧リザーブ制御の実行中のWGV42は、実過給圧を目標過給圧Lに高めるために閉じ側に制御される(図5および図6参照)。WGV42に代えて可変ノズルもしくは電動機を利用する場合についても、過給圧リザーブ制御を行う際のスロットル開度の制御については、WGV42を利用する場合と同様である。そのうえで、過給圧リザーブ制御の実行中の可変ノズルの開度は、実過給圧を目標過給圧Lに高めるために閉じ側に制御される。また、過給圧リザーブ制御の実行中の電動機への供給電力は、実過給圧を目標過給圧Lに高めるために増やされる。また、WGV42に代えて可変ノズルを使用する場合には、図9中に示すWGV42に関するラインを可変ノズルに関するラインに置き換えた関係をECU50がマップとして備えるようにすればよい。また、WGV42に代えて電動機を使用する場合にも、コンプレッササージ等を考慮して吸入空気量との関係で実現可能過給圧を定めたマップをECU50に備えるようにすればよい。
なお、上述した実施の形態1においては、ECU50がステップ110の判定が成立するまでステップ108の処理を実行することにより本発明における「リザーブ制御実行手段」が実現されており、ECU50がステップ110の判定が成立した場合にステップ112の処理を実行することにより本発明における「燃焼切替実行手段」が実現されている。
10 内燃機関
12 内燃機関本体
14 吸気通路
16 排気通路
18 エアクリーナ
20 エアフローメータ
22 ターボ過給機
22a コンプレッサ
22b タービン
22c 連結軸
24 スロットルバルブ
26 吸気マニホールド
28 インタークーラ
30 第1吸気圧力センサ
32 第2吸気圧力センサ
34 燃焼室
36 燃料噴射弁
38 点火プラグ
40 排気バイパス通路
42 ウェイストゲートバルブ(WGV)
44 空燃比センサ
46 三元触媒
48 NSR触媒(吸蔵還元型NOx触媒)
50 ECU(Electronic Control Unit)
52 クランク角センサ
54 アクセル開度センサ

Claims (4)

  1. 内燃機関の吸気通路に配置されて吸入空気を過給するコンプレッサを備える過給機と、
    前記コンプレッサよりも下流側の前記吸気通路に配置され、吸入空気量を調整するスロットルバルブと、
    前記コンプレッサの駆動力を調整して過給圧を制御するアクチュエータと、
    を備える内燃機関を制御する内燃機関の制御装置であって、
    理論空燃比以下の空燃比での第1燃焼から理論空燃比よりも大きな空燃比でのリーン燃焼への燃焼の切り替えを行う要求があり、かつ、燃焼の前記切り替えの前の過給圧よりも燃焼の当該切り替えの後の過給圧を高くする要求がある場合に、前記内燃機関の要求トルクを前記第1燃焼の下で実現するために必要な要求吸入空気量を維持しつつ過給圧を高める過給圧リザーブ制御を、前記スロットルバルブと前記アクチュエータとを用いて実行するリザーブ制御実行手段と、
    前記過給圧リザーブ制御が終了した後に、燃焼の前記切り替えを実行する燃焼切替実行手段と、
    を備え、
    前記過給圧リザーブ制御は、実過給圧が要求過給圧または実現可能過給圧の何れか低い方に到達したときに終了され、
    前記要求過給圧は、前記過給圧リザーブ制御の実行中の前記要求トルクを前記リーン燃焼の下で実現するために必要な過給圧であり、
    前記実現可能過給圧は、前記過給圧リザーブ制御の実行中の実吸入空気量の下で前記アクチュエータの調整によって実現可能な最大の過給圧であることを特徴とする内燃機関の制御装置。
  2. 前記過給機は、前記コンプレッサとともに、排気通路に配置されて前記コンプレッサを駆動するタービンを備えるターボ過給機であって、
    前記アクチュエータは、前記タービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブであることを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記過給機は、前記コンプレッサとともに、排気通路に配置されて前記コンプレッサを駆動するタービンと、前記タービンに流入する排気ガスの流量を可変とする可変ノズルとを備えるターボ過給機であって、
    前記アクチュエータは、前記可変ノズルであることを特徴とする請求項1に記載の内燃機関の制御装置。
  4. 前記過給機は、前記コンプレッサを駆動可能な電動機を備える過給機であって、
    前記アクチュエータは、前記電動機であることを特徴とする請求項1に記載の内燃機関の制御装置。
JP2014208244A 2014-10-09 2014-10-09 内燃機関の制御装置 Active JP6090280B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014208244A JP6090280B2 (ja) 2014-10-09 2014-10-09 内燃機関の制御装置
US14/844,649 US20160102603A1 (en) 2014-10-09 2015-09-03 Internal combustion engine and control device thereof
EP15188812.0A EP3006702A1 (en) 2014-10-09 2015-10-07 Internal combustion engine and control device thereof
CN201510648961.8A CN105508064A (zh) 2014-10-09 2015-10-09 内燃机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208244A JP6090280B2 (ja) 2014-10-09 2014-10-09 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2016079808A JP2016079808A (ja) 2016-05-16
JP6090280B2 true JP6090280B2 (ja) 2017-03-08

Family

ID=54291126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208244A Active JP6090280B2 (ja) 2014-10-09 2014-10-09 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US20160102603A1 (ja)
EP (1) EP3006702A1 (ja)
JP (1) JP6090280B2 (ja)
CN (1) CN105508064A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028925B2 (ja) * 2013-03-01 2016-11-24 三菱自動車工業株式会社 内燃機関の制御装置
JP6287802B2 (ja) * 2014-12-12 2018-03-07 トヨタ自動車株式会社 内燃機関の制御装置
JP6550110B2 (ja) * 2017-09-28 2019-07-24 株式会社Subaru エンジン制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155788A (ja) * 2000-11-16 2002-05-31 Mitsubishi Motors Corp エンジンの制御装置
JP2005069029A (ja) * 2003-08-27 2005-03-17 Toyota Motor Corp 内燃機関の制御装置
JP4505370B2 (ja) 2005-04-13 2010-07-21 本田技研工業株式会社 内燃機関の制御装置
JP4577656B2 (ja) * 2006-02-15 2010-11-10 株式会社デンソー 過給機付き内燃機関の制御装置
JP2008095542A (ja) * 2006-10-06 2008-04-24 Toyota Motor Corp 内燃機関の制御装置
JP4375387B2 (ja) * 2006-11-10 2009-12-02 トヨタ自動車株式会社 内燃機関
DE102010033005A1 (de) * 2010-07-31 2012-02-02 Daimler Ag Brennkraftmaschine und zugehöriges Betriebsverfahren
JP2012036851A (ja) * 2010-08-09 2012-02-23 Toyota Motor Corp 内燃機関の制御装置
JP5344101B2 (ja) * 2010-12-28 2013-11-20 トヨタ自動車株式会社 筒内噴射式内燃機関
ITBO20110400A1 (it) * 2011-07-05 2013-01-06 Magneti Marelli Spa Metodo di controllo della velocita' di un motore a combustione interna sovralimentato

Also Published As

Publication number Publication date
CN105508064A (zh) 2016-04-20
JP2016079808A (ja) 2016-05-16
US20160102603A1 (en) 2016-04-14
EP3006702A1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
US10006350B2 (en) Control apparatus for internal combustion engine
JP2006274831A (ja) ターボチャージャ付き内燃機関の制御装置
JP2017002788A (ja) 内燃機関の制御装置
US8463531B2 (en) System and method for controlling exhaust gas recirculation systems
JP6269330B2 (ja) 内燃機関の制御装置
JP2004060479A (ja) エンジンの燃料制御装置,エンジンの燃料制御方法
JP2008169717A (ja) エンジン制御装置
JP4816811B2 (ja) 内燃機関の制御装置
JP4631598B2 (ja) 過給圧制御装置
JP4941534B2 (ja) 内燃機関のウエストゲートバルブ制御装置
JP2016011641A (ja) 過給システム
JP5786970B2 (ja) 内燃機関の制御装置
JP6111899B2 (ja) エンジンの制御装置
JP4419894B2 (ja) 内燃機関のウエストゲートバルブ制御装置
JP5649343B2 (ja) 内燃機関の吸気絞り弁制御方法
JP5177321B2 (ja) 内燃機関の制御装置
JP6090280B2 (ja) 内燃機関の制御装置
JP2017002789A (ja) 内燃機関の制御装置
JP5991405B2 (ja) 内燃機関の制御装置
CN109555616B (zh) 发动机的控制设备
JP2016130489A (ja) 内燃機関の制御装置
JP2007263127A (ja) エンジンの燃料制御装置,エンジンの燃料制御方法
JP2007278066A (ja) 内燃機関の制御装置
JP2007132298A (ja) 内燃機関の制御装置
JP6540659B2 (ja) 内燃機関の制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R151 Written notification of patent or utility model registration

Ref document number: 6090280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151