JP6090246B2 - 燃料電池システム及び燃料電池システムの制御方法 - Google Patents

燃料電池システム及び燃料電池システムの制御方法 Download PDF

Info

Publication number
JP6090246B2
JP6090246B2 JP2014138729A JP2014138729A JP6090246B2 JP 6090246 B2 JP6090246 B2 JP 6090246B2 JP 2014138729 A JP2014138729 A JP 2014138729A JP 2014138729 A JP2014138729 A JP 2014138729A JP 6090246 B2 JP6090246 B2 JP 6090246B2
Authority
JP
Japan
Prior art keywords
cooling water
heat medium
fuel cell
thermostat valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014138729A
Other languages
English (en)
Other versions
JP2016018607A (ja
JP2016018607A5 (ja
Inventor
香莉 小松原
香莉 小松原
茂樹 長谷川
茂樹 長谷川
佐藤 博道
博道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014138729A priority Critical patent/JP6090246B2/ja
Priority to US15/323,575 priority patent/US10276882B2/en
Priority to CN201580003178.4A priority patent/CN105874635B/zh
Priority to PCT/JP2015/067298 priority patent/WO2016002503A1/ja
Priority to DE112015003129.4T priority patent/DE112015003129B4/de
Publication of JP2016018607A publication Critical patent/JP2016018607A/ja
Publication of JP2016018607A5 publication Critical patent/JP2016018607A5/ja
Application granted granted Critical
Publication of JP6090246B2 publication Critical patent/JP6090246B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04044Purification of heat exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、燃料電池システム及び燃料電池システムの制御方法に関する。
燃料ガスと酸化剤ガスとの電気化学反応により電力を発生する燃料電池スタックと、燃料電池スタック内に形成された冷却水通路の入口と冷却水通路の出口とを燃料電池スタックの外部において互いに連結することにより冷却水の循環路を形成する冷却水供給管と、冷却水供給管内に配置されたラジエータと、燃料電池スタックの冷却水通路の入口とラジエータとの間の冷却水供給管と、燃料電池スタックの冷却水通路の出口とラジエータとの間の冷却水供給管とを互いに連結するラジエータバイパス管と、燃料電池スタックの冷却水通路の入口とラジエータバイパス管との間の冷却水供給管内に配置され、冷却水を送出する冷却水ポンプと、燃料電池スタックの冷却水通路から冷却水供給管内に流入した冷却水のうちラジエータに供給する冷却水量とラジエータバイパス管内に供給する冷却水量とを制御する三方弁と、ラジエータバイパス管内に配置され、冷却水のイオン交換を行うイオン交換器と、を備える燃料電池システムが公知である(例えば特許文献1参照)。
特許文献1には明示されていないが、三方弁としてサーモスタット弁が一般的に用いられる。サーモスタット弁の開度はサーモスタット弁の温度に応じて定まり、サーモスタット弁の温度はサーモスタット弁に供給される冷却水の温度に応じて定まる。すなわち、サーモスタット弁の温度が高いとき、すなわち冷却水の温度が高いときには、サーモスタット弁は冷却水の全量をラジエータに供給する。その結果、冷却水がラジエータにおいて冷却され、したがって冷却水の温度が低下される。これに対し、サーモスタット弁の温度が低いとき、すなわち冷却水の温度が低いときには、サーモスタット弁は冷却水の全量をラジエータバイパス管に供給する。その結果、冷却水がラジエータに供給されないので、冷却水の温度低下が抑制される。
ところで、ラジエータや配管等からイオン性の不純物が少しずつ冷却水へ混入するので、冷却水の導電率が少しずつ高くなる。冷却水の導電性が高くなると、液絡等が生じるおそれがあり、好ましくない。そこで特許文献1では、冷却水からイオン性の不純物を除去可能なイオン交換器がラジエータバイパス管に配置されている。
特開2013−233500号公報
しかしながら、特許文献1では、冷却水の温度が高いときには、冷却水の全量がラジエータに供給され、すなわち冷却水はラジエータバイパス管に供給されない。したがって、冷却水の温度が高いときには、冷却水はイオン交換器を通過しないので、冷却水中のイオン性の不純物はイオン交換器により除去されない。このため、冷却水の温度が高い状態が続くと、冷却水中のイオン性の不純物の量が過度に多くなり、冷却水の導電率が過度に高くなるおそれがある。
本発明の一の観点によれば、燃料ガスと酸化剤ガスとの電気化学反応により電力を発生する燃料電池スタックと、前記燃料電池スタック内に形成された冷却水通路の入口と前記冷却水通路の出口とを前記燃料電池スタックの外部において互いに連結することにより冷却水の循環路を形成する冷却水供給管と、前記冷却水供給管内に配置されたラジエータと、前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータとの間の前記冷却水供給管と、前記燃料電池スタックの前記冷却水通路の出口と前記ラジエータとの間の前記冷却水供給管とを互いに連結するラジエータバイパス管と、前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータバイパス管との間の前記冷却水供給管内、又は、前記冷却水通路の出口と前記ラジエータバイパス管との間の前記冷却水供給管内に配置され、冷却水を送出する冷却水ポンプと、前記燃料電池スタックの前記冷却水通路から前記冷却水供給管内に流入した冷却水のうち前記ラジエータに供給する冷却水量と前記ラジエータバイパス管内に供給する冷却水量とを制御するサーモスタット弁であって、前記サーモスタット弁は、前記サーモスタット弁の温度が予め設定された設定温度よりも高いときには前記冷却水の全量を前記ラジエータに供給し、前記サーモスタット弁の温度が前記設定温度よりも低いときには前記冷却水の少なくとも一部を前記ラジエータバイパス管に供給すると共に残りを前記ラジエータに供給する、サーモスタット弁と、前記ラジエータバイパス管内に配置され、冷却水のイオン交換を行うイオン交換器と、熱媒体を循環させる熱媒体循環管と、前記熱媒体循環管内に配置され、前記熱媒体を送出する熱媒体ポンプと、前記熱媒体循環管内に配置され、空気と前記熱媒体とを互いに熱交換させる熱交換器と、を有する空調装置と、前記熱媒体循環管内に配置されると共に、前記サーモスタット弁を囲むように設けられた筐体と、を備え、前記空調装置により前記筐体内の前記熱媒体の温度を制御することにより前記サーモスタット弁の温度を調節し、それにより前記ラジエータに供給する冷却水量と前記ラジエータバイパス管内に供給する冷却水量とを制御できるようにした、燃料電池システムが提供される。
本発明の他の観点によれば、燃料ガスと酸化剤ガスとの電気化学反応により電力を発生する燃料電池スタックと、前記燃料電池スタック内に形成された冷却水通路の入口と前記冷却水通路の出口とを前記燃料電池スタックの外部において互いに連結することにより冷却水の循環路を形成する冷却水供給管と、前記冷却水供給管内に配置されたラジエータと、前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータとの間の前記冷却水供給管と、前記燃料電池スタックの前記冷却水通路の出口と前記ラジエータとの間の前記冷却水供給管とを互いに連結するラジエータバイパス管と、前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータバイパス管との間の前記冷却水供給管内又は前記冷却水通路の出口と前記ラジエータバイパス管との間の前記冷却水供給管内に配置され、冷却水を送出する冷却水ポンプと、前記燃料電池スタックの前記冷却水通路から前記冷却水供給管内に流入した冷却水のうち前記ラジエータに供給する冷却水量と前記ラジエータバイパス管内に供給する冷却水量とを制御するサーモスタット弁であって、前記サーモスタット弁は、前記サーモスタット弁の温度が予め設定された設定温度よりも高いときには前記冷却水の全量を前記ラジエータに供給し、前記サーモスタット弁の温度が前記設定温度よりも低いときには前記冷却水の少なくとも一部を前記ラジエータバイパス管に供給すると共に残りを前記ラジエータに供給する、サーモスタット弁と、前記ラジエータバイパス管内に配置され、冷却水のイオン交換を行うイオン交換器と、熱媒体を循環させる熱媒体循環管と、前記熱媒体循環管内に配置され、前記熱媒体を送出する熱媒体ポンプと、前記熱媒体循環管内に配置され、空気と前記熱媒体とを互いに熱交換させる熱交換器と、を有する空調装置と、前記熱媒体循環管内に配置されると共に、前記サーモスタット弁を囲むように設けられた筐体と、を備えた燃料電池システムの制御方法であって、前記空調装置により前記筐体内の前記熱媒体の温度を制御することにより前記サーモスタット弁の温度を調節し、それにより前記ラジエータに供給する冷却水量と前記ラジエータバイパス管内に供給する冷却水量とを制御する、燃料電池システムの制御方法が提供される。
冷却水の導電率が過度に高くなるのを阻止することができる。
燃料電池システムの構成図である。 冷却水及び熱媒体の流れを説明するための概略図である。 サーモスタット弁開度とサーモスタット弁温度との関係を示すグラフである。 本発明による第1実施例の冷却水導電率制御を説明するタイミングチャートである。 本発明による第1実施例の冷却水導電率制御のルーチンを示すフローチャートである。 サーモスタット弁開度とサーモスタット弁温度との関係を示すグラフである。 本発明による第2実施例の冷却水導電率制御を説明するタイミングチャートである。 本発明による第2実施例の冷却水導電率制御のルーチンを示すフローチャートである。 サーモスタット弁開度VODの制御ルーチンを示すフローチャートである。 本発明による第3実施例の冷却水導電率制御のルーチンを示すフローチャートである。 本発明による第4実施例の冷却水導電率制御のルーチンを示すフローチャートである。 本発明による第5実施例の冷却水の導電率の低減方法を示すタイミングチャートである。 本発明による第5実施例の冷却水導電率制御のルーチンを示すフローチャートである。 本発明による第6実施例の冷却水導電率制御のルーチンを示すフローチャートである。 本発明による第7実施例の冷却水導電率制御のルーチンを示すフローチャートである。 本発明による第8実施例の冷却水導電率制御のルーチンを示すフローチャートである。 本発明による第9実施例の冷却水導電率制御のルーチンを示すフローチャートである。 冷却水ポンプ制御ルーチンを示すフローチャートである。 本発明による第10実施例の冷却水導電率制御のルーチンを示すフローチャートである。 本発明による第11実施例の冷却水導電率制御のルーチンを示すフローチャートである。 本発明による第12実施例の冷却水導電率制御のルーチンを示すフローチャートである。
図1を参照すると、燃料電池システムAは燃料電池スタック10を備える。燃料電池スタック10は積層方向に互いに積層された複数の燃料電池単セルを備える。各燃料電池単セルは膜電極接合体20を含む。膜電極接合体20は膜状の電解質と、電解質の一側に形成されたアノード極と、電解質の他側に形成されたカソード極とを備える。
燃料電池単セルのアノード極及びカソード極はそれぞれ直列に電気的に接続され、燃料電池スタック10の電極を構成する。燃料電池スタック10の電極はDC/DCコンバータ11を介してインバータ12に電気的に接続され、インバータ12はモータジェネレータ13に電気的に接続される。また、燃料電池システムAは蓄電器14を備えており、この蓄電器14はDC/DCコンバータ15を介して上述のインバータ12に電気的に接続される。DC/DCコンバータ11は燃料電池スタック10からの電圧を高めてインバータ12に送るためのものであり、インバータ12はDC/DCコンバータ11又は蓄電器14からの直流電流を交流電流に変換するためのものである。DC/DCコンバータ15は燃料電池スタック10又はモータジェネレータ13から蓄電器14への電圧を低くし、又は蓄電器14からモータジェネレータ13への電圧を高くするためのものである。なお、図1に示される燃料電池システムAでは蓄電器14はバッテリから構成される。
また、燃料電池単セル内には、アノード極に燃料ガスを供給するための燃料ガス流通路と、カソード極に酸化剤ガスを供給するための酸化剤ガス流通路と、燃料電池単セルに冷却水を供給するための冷却水流通路とがそれぞれ形成される。複数の燃料電池単セルの燃料ガス流通路、酸化剤ガス流通路、及び冷却水流通路をそれぞれ直列に接続することにより、燃料電池スタック10には燃料ガス通路30、酸化剤ガス通路40、及び冷却水通路50がそれぞれ形成される。
燃料ガス通路30の入口には燃料ガス供給管31が連結され、燃料ガス供給管31は燃料ガス源32に連結される。図1に示される実施例では、燃料ガスは水素ガスから形成され、燃料ガス源32は水素タンクから形成される。燃料ガス供給管31内には上流側から順に、遮断弁33と、燃料ガス供給管31内の燃料ガスの圧力を調整するレギュレータ34と、燃料ガス源32からの燃料ガスを燃料電池スタック10に供給するための燃料ガスインジェクタ35と、が配置される。一方、燃料ガス通路30の出口にはアノードオフガス管36が連結される。遮断弁33が開弁されかつ燃料ガスインジェクタ35が開弁されると、燃料ガス源32内の燃料ガスが燃料ガス供給管31を介して燃料電池スタック10内の燃料ガス通路30内に供給される。このとき燃料ガス通路30から流出するガス、すなわちアノードオフガスはアノードオフガス管36内に流入する。アノードオフガス管36内にはアノードオフガス管36内を流れるアノードオフガスの量又は燃料電池スタック10の燃料ガス通路30内の圧力を制御するアノードオフガス制御弁37が配置される。
また、酸化剤ガス通路40の入口には酸化剤ガス供給管41が連結され、酸化剤ガス供給管41は酸化剤ガス源42に連結される。図1に示される実施例では、酸化剤ガスは空気から形成され、酸化剤ガス源42は大気から形成される。酸化剤ガス供給管41内には上流側から順に、ガスクリーナ43と、酸化剤ガスを圧送するコンプレッサ44と、コンプレッサ44から燃料電池スタック10に送られる酸化剤ガスを冷却するためのインタークーラ45と、が配置される。一方、酸化剤ガス通路40の出口にはカソードオフガス管46が連結される。コンプレッサ44が駆動されると、酸化剤ガスが酸化剤ガス供給管41を介して燃料電池スタック10内の酸化剤ガス通路40内に供給される。このとき酸化剤ガス通路40から流出するガス、すなわちカソードオフガスはカソードオフガス管46内に流入する。カソードオフガス管46内にはカソードオフガス管46内を流れるカソードオフガスの量又は燃料電池スタック10の酸化剤ガス通路40内の圧力を制御するカソードオフガス制御弁47が配置される。
また、図1に示される燃料電池システムAでは、コンプレッサ44下流の酸化剤ガス供給管41とカソードオフガス制御弁47下流のカソードオフガス管46とはスタックバイパス管49により互いに連結される。更に、酸化剤ガス供給管41からスタックバイパス管49内へ流れ込む酸化剤ガスの量及び燃料電池スタック10に供給される酸化剤ガスの量を制御するスタックバイパス制御弁48が設けられる。図1に示される燃料電池システムAではスタックバイパス制御弁48は電磁式の三方弁から形成され、スタックバイパス管49の入口に配置される。
また、冷却水通路50の入口には冷却水供給管51の一端が連結され、冷却水通路50の出口には冷却水供給管51の他端が連結される。冷却水供給管51内には冷却水を圧送する冷却水ポンプ52と、ラジエータ53とが配置される。燃料電池スタック10の冷却水通路50の入口とラジエータ53との間の冷却水供給管51と、燃料電池スタック10の冷却水通路50の出口とラジエータ53との間の冷却水供給管51とはラジエータバイパス管54により互いに連結される。また、燃料電池スタック10の冷却水通路50から冷却水供給管51内に流入した冷却水のうちラジエータ53に供給する冷却水量とラジエータバイパス管54内に供給する冷却水量とを制御するサーモスタット弁55が設けられる。サーモスタット弁55は、サーモスタット弁55の温度が予め設定された設定温度よりも高いときには冷却水の全量をラジエータ53に供給し、サーモスタット弁55の温度が設定温度よりも低いときには冷却水の少なくとも一部をラジエータバイパス管54に供給すると共に残りをラジエータ53に供給する。図1に示される燃料電池システムAではサーモスタット弁55は三方弁から形成され、ラジエータバイパス管54の入口に配置される。
図1に示される燃料電池システムAでは、ラジエータバイパス管54は互いに並列に延びるラジエータバイパス管部分54aとラジエータバイパス管部分54bとを有する。ラジエータバイパス管54内に流入した冷却水の一部はラジエータバイパス管部分54a内を流通し、残りはラジエータバイパス管部分54b内を流通する。ラジエータバイパス管部分54b内には冷却水のイオン交換を行うイオン交換器58が配置される。イオン交換器58内を冷却水が流通すると、イオン交換器58ではイオン交換により冷却水からイオン性の不純物が除去され、したがって冷却水の導電率が低下される。なお、図1に示される燃料電池システムAでは、ラジエータバイパス管部分54a内にはイオン交換器は配置されない。すなわち、ラジエータバイパス管54内に流入した冷却水の一部がイオン交換器58内に導かれる。このようにすると、ラジエータバイパス管54の流路抵抗が低く維持される。また、イオン交換器58内を通過する冷却水の量が抑制されるので、イオン交換器58の耐久性が向上される。図示しない別の実施例では、ラジエータバイパス管54はラジエータバイパス管部分54a及びラジエータバイパス管部分54bを備えることなく単一の流路を有し、この単一の流路内にイオン交換器58が配置される。
冷却水ポンプ52が駆動されると、冷却水ポンプ52から吐出された冷却水は冷却水供給管51を介して燃料電池スタック10内の冷却水通路50内に流入し、次いで冷却水通路50を通って冷却水供給管51内に流入し、ラジエータ53又はラジエータバイパス管54を介して冷却水ポンプ52に戻る。このように、冷却水供給管51は、冷却水通路50の入口と冷却水通路50の出口とを燃料電池スタック10の外部において互いに連結することにより冷却水の循環路を形成する。なお、図1に示される実施例では、冷却水ポンプ52は、燃料電池スタック10の冷却水通路50の入口とラジエータバイパス管54の出口との間の冷却水供給管51内に配置される。図示しない別の実施例では、冷却水ポンプ52は、冷却水通路50の出口とラジエータバイパス管54の入口との間の冷却水供給管51内に配置される。
更に、冷却水ポンプ52の出口と冷却水通路50の入口との間の冷却水供給管51と、冷却水通路50の出口とラジエータバイパス管54の入口との間の冷却水供給管51とを連結するインタークーラバイパス管45wが設けられる。上述したインタークーラ45は、冷却されるべき酸化剤ガスが流通する酸化剤ガス流通路と、冷媒が流通する冷媒流通路とを備えている。この酸化剤ガス流通路は上述の酸化剤ガス供給管41に連結される。一方、インタークーラ45の冷媒として燃料電池スタック10の冷却水が用いられ、冷媒流通路はインタークーラバイパス管45wに連結される。
また、図1に示される燃料電池システムAには、電動車両の乗員室内の温度を調節する空調装置60が設けられる。空調装置60には、熱媒体を循環させる熱媒体循環管61が設けられ、熱媒体循環管61内には、熱媒体を送出する熱媒体ポンプ62と、熱媒体を加熱する電気ヒータ63と、空調用の空気と熱媒体とを互いに熱交換させる熱交換器64と、が配置される。熱交換器64は、熱媒体が流通する熱媒体流通路と、空調用の空気が流通する空気流通路64aとを有しており、熱媒体流通路は熱媒体循環管61に連結される。一方、空気流通路64aの入口はブロワ66に連結され、空気流通路64aの出口は乗員室に連結される。更に、図1に示される燃料電池システムAは、サーモスタット弁55を封密に囲むように設けられた筐体56を備える。言い換えると、サーモスタット弁55は筐体56内に収容される。この筐体56は熱媒体循環管61内に配置され、したがって筐体56内は熱媒体で満たされる。図1に示される実施例では、空調装置60の熱媒体は水から構成される。
更に、図1に示される燃料電池システムAでは、冷却水供給管51と空調装置60とが互いに連通可能になっている。すなわち、冷却水供給管51との熱媒体循環管61とが、一方では、連通管61a及び電磁式の三方弁65を介して、他方では連通管61bを介して、互いに連結される。この場合、三方弁65は、例えば筐体56の出口と熱媒体ポンプ62の入口との間の熱媒体循環管61に配置される。三方弁65は熱媒体ポンプ62に到る熱媒体循環管61を、一方では連通管61aを介して、燃料電池スタック10の冷却水通路50の出口とラジエータバイパス管54の入口との間の冷却水供給管51に連結し、他方では熱媒体循環管61を介して筐体56の出口に連結する。また、筐体56の出口と三方弁65との間の熱媒体循環管61と、冷却水通路50の出口とラジエータバイパス管54の入口との間の冷却水供給管51とが連通管61bにより互いに連結される。
図2(A)は冷却水供給管51と空調装置60とが互いに遮断されている場合を示している。この場合、三方弁65は連通管61aと熱媒体循環管61の間の連通を遮断し、筐体56から熱媒体ポンプ62への熱媒体流れを許容する。したがって、この場合に熱媒体ポンプ62が作動されると、熱媒体ポンプ62から吐出された熱媒体は電気ヒータ63内、熱交換器64内、及び筐体56内を順次流通して熱媒体ポンプ62に戻る。一方、冷却水供給管51内の冷却水は熱媒体循環管61内に流入することなく、サーモスタット弁55に向かう。これに対し、図2(B)は冷却水供給管51と空調装置60とが互いに連通されている場合を示している。この場合、三方弁65は筐体56から熱媒体ポンプ62への熱媒体流れを遮断し、連通管61aを介して冷却水供給管51と熱媒体循環管61とを連通する。したがって、この場合には、冷却水供給管51内の冷却水の少なくとも一部が連通管61a及び三方弁65を介して熱媒体循環管61内に流入し、次いで熱媒体ポンプ62内、電気ヒータ63内、熱交換器64内、及び筐体56内を順次流通し、次いで連通管61bを介して冷却水供給管51に戻る。この場合、熱媒体ポンプ62を作動させなくても、熱媒体循環管61内を冷却水が流通しうる。図示しない別の実施例では、ラジエータバイパス管54の出口と冷却水通路50の入口との間の冷却水供給管51と熱媒体循環管61とが、一方では、連通管61a及び三方弁65を介して、他方では連通管61bを介して、互いに連結される。いずれの実施例でも、冷却水供給管51内の冷却水流れに関し、連通管61aの入口は連通管61bの出口よりも上流に設けられる。
乗員室内の温度を高めるべきときに冷却水供給管51内の冷却水の温度が予め定められた設定水温よりも低いときには、冷却水供給管51と熱媒体循環管61とを互いに遮断するように三方弁65が制御されると共に、熱媒体ポンプ62、電気ヒータ63、及びブロワ66が作動される。その結果、熱媒体ポンプ62から吐出された熱媒体が電気ヒータ63により加熱され、加熱された熱媒体によりブロワ66からの空気が熱交換器64において加熱され、加熱された空気が乗員室内に送られる。これに対し、乗員室内の温度を高めるべきときに冷却水供給管51内の冷却水の温度が設定水温よりも高いときには、冷却水供給管51と熱媒体循環管61とを互いに連通するように三方弁65が制御されると共に、熱媒体ポンプ62及び電気ヒータ63が停止され、ブロワ66が作動される。その結果、冷却水供給管51から熱媒体循環管61内に高温の冷却水が流入する。この高温の冷却水によりブロワ66からの空気が熱交換器64において加熱され、加熱された空気が乗員室内に送られる。この場合、冷却水は熱媒体として作用する。このようにすると、熱媒体ポンプ62及び電気ヒータ63を作動させることなく、乗員室内の温度を高めることができ、冷却水のもつ熱エネルギを有効に利用することができる。なお、上述の設定水温は乗員室内に送られる空気の目標温度に応じて設定される。
電子制御ユニット80はデジタルコンピュータからなり、双方向性バス81によって互いに接続されたROM(リードオンリメモリ)82、RAM(ランダムアクセスメモリ)83、CPU(マイクロプロセッサ)84、入力ポート85及び出力ポート86を具備する。燃料電池スタック10の冷却水通路50の入口には冷却水の温度を検出する温度センサ70が取り付けられる。燃料電池スタック10の冷却水通路50の出口には冷却水の温度を検出する温度センサ71が取り付けられる。ラジエータバイパス管54と冷却水ポンプ52との間の冷却水供給管51には冷却水の温度を検出する温度センサ72が取り付けられる。サーモスタット弁55を囲む筐体56又はサーモスタット弁55にはサーモスタット弁55の温度を検出する温度センサ73が取り付けられる。ラジエータ53周り、例えばラジエータ53の出口近傍の冷却水供給管51には冷却水の導電率を測定する導電率センサ74が取り付けられる。ラジエータバイパス管54と燃料電池スタック10との間の冷却水供給管51には冷却水の導電率を測定する導電率センサ75が取り付けられる。また、外気温を検出する温度センサ76が設けられる。温度センサ70,71,72,73,76及び導電率センサ74、75の出力信号は対応するAD変換器67を介して入力ポート85に入力される。一方、出力ポート86は対応する駆動回路88を介して遮断弁33、レギュレータ34、燃料ガスインジェクタ35、アノードオフガス制御弁37、コンプレッサ44、カソードオフガス制御弁47、スタックバイパス制御弁48、冷却水ポンプ52、熱媒体ポンプ62、電気ヒータ63、及び三方弁65に電気的に接続される。
図1に示される燃料電池システムAでは、サーモスタット弁55の開度はサーモスタット弁55の温度に対してヒステリシス特性を有する。図3は、図1に示される実施例のサーモスタット弁55の開度(以下、サーモスタット弁開度という。)VODとサーモスタット弁55の温度(以下、サーモスタット弁温度という。)TVとの関係を示している。サーモスタット弁温度TVが開弁終了温度TVOPEよりも高いときには、サーモスタット弁開度VODは100%であり、すなわちサーモスタット弁55は全開状態にある。なお、サーモスタット弁55が全開状態にあるときには、冷却水の全量がラジエータ53に供給される。一方、サーモスタット弁55が全閉状態にあるときには、冷却水の全量がラジエータバイパス管54に供給される。サーモスタット弁開度VODが全開と全閉との間の中間開度にあるときには、冷却水の一部がラジエータ53に供給され、残りがラジエータバイパス管54に供給される。
サーモスタット弁開度VODが100%の状態からサーモスタット弁温度TVが低下すると、サーモスタット弁温度TVが閉弁開始温度TVCLSよりも高い間は、サーモスタット弁開度VODは100%に保持される。次いで、サーモスタット弁温度TVが閉弁開始温度TVCLSになるとサーモスタット弁55が閉弁し始め、すなわちサーモスタット弁開度VODが減少し始める。次いで、サーモスタット弁温度TVが閉弁終了温度TVCLE(<TVCLS)になると、サーモスタット弁開度VODが0%になり、すなわち全閉状態となる。サーモスタット弁温度TVが閉弁終了温度TVCLEよりも低いときには、サーモスタット弁開度VODは0%に維持される。
一方、サーモスタット弁開度VODが0%の状態からサーモスタット弁温度TVが上昇すると、サーモスタット弁温度TVが開弁開始温度TVOPSよりも低い間は、サーモスタット弁開度VODは0%に保持される。次いで、サーモスタット弁温度TVが開弁開始温度TVOPSになるとサーモスタット弁55が開弁し始め、すなわちサーモスタット弁開度VODが増大し始める。次いで、サーモスタット弁温度TVが開弁終了温度TVOPE(>TVOPS)になると、サーモスタット弁開度VODが100%になり、すなわち全開状態となる。図3に示される例では、サーモスタット弁温度TVが低下する場合にはサーモスタット弁温度TVが閉弁開始温度TVCLSから閉弁終了温度TVCLEまでのときにサーモスタット弁開度VODが中間開度となり、サーモスタット弁温度TVが上昇する場合にはサーモスタット弁温度TVが開弁開始温度TVOPSから開弁終了温度TVOPEまでのときにサーモスタット弁開度VODが中間開度となる。なお、図示しない別の実施例では、閉弁開始温度TVCLSと閉弁終了温度TVCLEとが等しく設定され、開弁開始温度TVOPSと開弁終了温度TVOPEとが等しく設定される。この場合、サーモスタット弁開度VODはステップ状に変化し、中間開度とならない。図示しない更に別の実施例では、サーモスタット弁開度はヒステリシス特性を有さない。すなわち、閉弁終了温度TVCLEと開弁開始温度TVOPSとが等しく設定され、閉弁開始温度TVCLSと開弁終了温度TVOPEとが等しく設定される。
このようにサーモスタット弁開度VODはサーモスタット弁温度TVに応じて定まる。図1に示される燃料電池システムAでは、サーモスタット弁55は筐体56内に収容されており、したがってサーモスタット弁温度TVは、サーモスタット弁55の内部を流れる流体の温度と、筐体56内の熱媒体の温度とに応じて定まる。詳しく説明すると、空調装置60が停止されしたがって筐体56内に熱媒体の流れがないときには、サーモスタット弁温度TVは主として、サーモスタット弁55内部を流れる冷却水の温度に応じて定まる。これに対し、空調装置60が作動されしたがって筐体56内に熱媒体の流れがあるときには、サーモスタット弁温度TVは、サーモスタット弁55内部を流れる冷却水の温度と、筐体56内の熱媒体の温度とに応じて定まる。
筐体56内の熱媒体の温度は空調装置60により制御することができる。具体的には、電気ヒータ63を作動させつつ熱媒体ポンプ62を作動させると、高温の熱媒体が筐体56内に供給され、したがって筐体56内の熱媒体の温度が上昇される。これに対し、電気ヒータ63を停止しつつ熱媒体ポンプ62を作動させると、低温、すなわち外気温程度の熱媒体が筐体56内に供給され、したがって筐体56内の熱媒体の温度が低下される。
空調装置60により筐体56内の熱媒体の温度が上昇され、それによりサーモスタット弁温度TVが例えば開弁終了温度TVOPEよりも高い温度まで上昇されると、サーモスタット弁55内部を流れる冷却水の温度が低くても、サーモスタット弁55が全開にされる(VOD=100%)。あるいは、空調装置60により筐体56内の熱媒体の温度が低下され、それによりサーモスタット弁温度TVが例えば閉弁終了温度TVCLE(例えば50℃)よりも低い温度まで低下されると、サーモスタット弁55内部を流れる冷却水の温度が高くても、サーモスタット弁55が全閉にされる(VOD=0%)。このように、空調装置60により筐体56内の熱媒体の温度を制御することにより、サーモスタット弁開度VODが制御される。
そうすると、図1に示される燃料電池システムAでは、空調装置60により筐体56内の熱媒体の温度を制御することによりサーモスタット弁温度TVを調節し、それによりサーモスタット弁開度VODを調節し、それによりラジエータ53に供給される冷却水量とラジエータバイパス管54ないしイオン交換器58内に供給される冷却水量とを制御できる、ということになる。この点、電動車両が一般的に空調装置を備えていることを考えると、追加の構成を必要とすることなく、サーモスタット弁温度TVないしサーモスタット弁開度VODを制御できる。また、一般に、空調装置60内を循環する熱媒体の量は、冷却水供給管51内を循環する冷却水の量よりも少ない。したがって、空調装置60によりサーモスタット弁温度TVを制御すると、サーモスタット弁開度VODを応答性よく制御できる。
さて、燃料電池スタック10で発電すべきときには遮断弁33及び燃料ガスインジェクタ35が開弁され、水素ガスが燃料電池スタック10に供給される。また、コンプレッサ44が駆動され、空気が燃料電池スタック10に供給される。その結果、燃料電池単セルにおいて電気化学反応(H→2H+2e,(1/2)O+2H+2e→HO)が起こり、電気エネルギが発生される。この発生された電気エネルギはモータジェネレータ13に送られる。その結果、モータジェネレータ13が車両駆動用の電気モータとして作動され、電動車両が駆動される。一方、例えば車両制動時にはモータジェネレータ13が回生装置として作動し、このとき回生された電気エネルギは蓄電器14に蓄えられる。
図1に示される燃料電池システムAでは、燃料電池スタック10の温度を表す冷却水温が予め設定された目標温度範囲内に維持されるように冷却水ポンプ52からの冷却水量が制御される。具体的には、温度センサ71で検出される冷却水温を予め設定された目標温度範囲内に維持するのに必要な冷却水量、すなわち目標冷却水量が算出される。次いで、冷却水ポンプ52から吐出される冷却水量が目標冷却水量になるように、冷却水ポンプ52が制御される。
次に、本発明による第1実施例を説明する。サーモスタット弁開度VODが100%よりも小さいときには、冷却水の少なくとも一部がラジエータバイパス管54内に流入し、ラジエータバイパス管54内に流入した冷却水の一部がイオン交換器58内に流入する。したがって、冷却水の導電率が低下される。ところが、例えば、電動車両が長い上り坂を登っているときには、長時間に亘り冷却水の温度が高く維持される。その結果、長時間に亘り、サーモスタット弁開度VODが100%に維持され、冷却水がラジエータバイパス管54ないしイオン交換器58に導かれないおそれがある。その結果、導電率が過度に高くなるおそれがある。
そこで本発明による第1実施例では、サーモスタット弁開度VODが100%でありかつ冷却水の導電率が閾値を越えたときには、空調装置60によりサーモスタット弁温度TVを一時的に低下させてサーモスタット弁開度VODを一時的に低下させ、それにより冷却水がラジエータバイパス管54ないしイオン交換器58に導かれるようにしている。このことを、図4を参照しながら説明する。
図4においてXは、サーモスタット弁温度TVが開弁終了温度TVOPEよりも高い状態、すなわちサーモスタット弁開度VODが100%の状態を示している。この状態では、冷却水の全量がラジエータ53へ供給され、冷却水はイオン交換器58のあるラジエータバイパス管54へは供給されていない。したがって、導電率センサ75により検出される冷却水の導電率CNは徐々に増加してゆく。時間t1において、導電率CNが予め設定された閾値CNTHよりも高くなると、空調装置60によるサーモスタット弁開度VODの制御が開始される。すなわち、空調装置60の電気ヒータ63が作動状態にあるときには電気ヒータ63が停止状態に切り換えられ、電気ヒータ63が停止状態にあるときには電気ヒータ63が停止状態に維持される。また、空調装置60が冷却水供給管51から遮断された状態に切り換えられ又は維持される。更に、熱媒体ポンプ62が作動状態に切り換えられ又は維持される。その結果、低温の熱媒体が筐体56内を流れ、したがってサーモスタット弁温度TVが低下し始める。その後、時間t2において、サーモスタット弁温度TVが閉弁開始温度TVCLSに達すると、サーモスタット弁開度VODが低下し始める、すなわちサーモスタット弁55が閉弁し始める。それに伴い、冷却水の一部がラジエータバイパス管54ないしイオン交換器58へ流れ始める。それにより、冷却水の導電率CNが低下し始める。その後、時間t3において、サーモスタット弁温度TVが閉弁終了温度TVCLEに達すると、サーモスタット弁開度VODが0%になる、すなわちサーモスタット弁55が全閉状態になる。それに伴い、冷却水の全量がラジエータバイパス管54ないしイオン交換器58へ流れる。それにより、冷却水の導電率CNは更に低下する。その後、時間t4において、冷却水の導電率CNが閾値CNTH以下になると、空調装置60によるサーモスタット弁開度VODの制御が終了され、復帰処理が行われる。すなわち、電気ヒータ63が作動状態に戻され、又は停止状態に維持される。また、空調装置60が冷却水供給管51に接続された状態に戻され、又は冷却水供給管51から遮断された状態に維持される。更に、熱媒体ポンプ62が停止状態に戻され、又は作動状態に維持される。その結果、サーモスタット弁温度TVは、サーモスタット弁55内部を流れる冷却水により徐々に上昇する。その後、時間t5において、サーモスタット弁温度TVが開弁開始温度TVOPSに達すると、サーモスタット弁開度VODが増加し始める、すなわちサーモスタット弁55が開弁し始める。それに伴い、冷却水の一部がラジエータ53へ流れ始める。その結果、冷却水の温度がラジエータ53により低下される。その後、時間t6において、サーモスタット弁温度TVが開弁終了温度TVOPEに達すると、サーモスタット弁開度VODが100%に戻る、すなわちサーモスタット弁55が全開状態に戻る。それに伴い、冷却水の全量がラジエータ53へ流れる。
このように、本発明による第1実施例では、冷却水供給管51を通る冷却水の温度が高いときであっても、空調装置60によりサーモスタット弁温度TVを一時的に低下させ、サーモスタット弁開度VODを一時的に低下させることができる。その結果、ラジエータバイパス管54のイオン交換器58へ冷却水を供給することができ、したがって冷却水の導電率が過度に高くなるのを阻止することができる。
図5は、本発明による第1実施例の冷却水導電率制御のルーチンを示している。このルーチンは一定時間ごとの割り込みによって実行される。
図5を参照すると、ステップ100では冷却水の導電率CNが閾値CNTHよりも高いか否かが判別される。CN>CNTHのときにはプロセスはステップ101へ進み、CN≦CNTHのときにはプロセスは終了する。ステップ101ではサーモスタット弁温度TVが開弁終了温度TVOPE以上か否かが判別される。TV≧TVOPEのときにはプロセスはステップ102へ進み、TV<TVOPEのときにはプロセスは終了する。ステップ102では電気ヒータ63が停止状態に切り換えられ又は維持される。続くステップ103では、空調装置60と冷却水供給管51とが遮断状態に切り換えられ又は維持される。続くステップ104では熱媒体ポンプ62が作動状態に切り換えられ又は維持される。続くステップ105では冷却水の導電率CNが閾値CNTH以下か否かが判別される。CN≦CNTHのときにはプロセスはステップ106へ進み、CN>CNTHのときにはプロセスはステップ105へ戻る。ステップ106では上述した復帰処理が行われる。
次に、本発明による第2実施例を説明する。以下では、本発明による第1実施例との相違点について説明する。
上述した本発明による第1実施例では、空調装置60により、サーモスタット弁開度VODが0%になるように、すなわちサーモスタット弁55が全閉になるように、サーモスタット弁温度TVが制御される。この場合、冷却水がラジエータ53へ一時的に供給されなくなるので、冷却水の温度が過度に高くなるおそれがある。
そこで、本発明による第2実施例では、空調装置60によりサーモスタット弁開度VODを制御すべきときには、サーモスタット弁開度VODが中間開度、すなわち0%よりも大きく100%よりも小さい開度になるように、サーモスタット弁温度TVが制御される。その結果、冷却水の一部が継続してラジエータ53内に流入する。したがって、冷却水の温度が過度に高くなるのが阻止されつつ、冷却水の導電率が過度に高くなるのが阻止される。
ここで、サーモスタット弁開度VODの変化について図6を参照して説明する。サーモスタット弁開度VODがいったん100%になると、サーモスタット弁開度VODが0%になるまでは、サーモスタット弁開度VODは図6の実線Aに沿って変化する。すなわち、サーモスタット弁温度TVが閉弁開始温度TVCLSよりも高いときには、サーモスタット弁温度TVが上昇し又は低下しても、サーモスタット弁開度VODは100%に維持される。サーモスタット弁温度TVが閉弁開始温度TVCLSよりも低く閉弁終了温度TVCLEよりも高いときには、サーモスタット弁温度TVが低下するにつれてサーモスタット弁開度VODは小さくなる。一方、サーモスタット弁開度VODがいったん0%になると、サーモスタット弁開度VODが100%になるまでは、サーモスタット弁開度VODは図6の実線Bに沿って変化する。すなわち、サーモスタット弁温度TVが開弁開始温度TVOPSよりも低いときには、サーモスタット弁温度TVが上昇し又は低下しても、サーモスタット弁開度VODは0%に維持される。サーモスタット弁温度TVが開弁開始温度TVOPSよりも高く開弁終了温度TVOPEよりも低いときには、サーモスタット弁温度TVが上昇するにつれてサーモスタット弁開度VODは大きくなる。
そうすると、サーモスタット弁温度TVの履歴から、サーモスタット弁開度VODが実線Aに沿って変化しているのか、実線Bに沿って変化しているのかがわかり、更に、実線A又は実線Bとサーモスタット弁温度TVとから現在のサーモスタット弁開度VODを推定することができる。図6に示されるサーモスタット弁開度VODとサーモスタット弁温度TVとの関係は、マップの形でROM62内に予め記憶されている。
図7を参照して本発明による第2実施例を更に説明する。図7においてXは、サーモスタット弁温度TVが開弁終了温度TVOPEよりも高い状態、すなわちサーモスタット弁開度VODが100%の状態を示している。この状態では、冷却水の導電率CNは徐々に増加してゆく。時間t11において、導電率CNが予め設定された閾値CNTHよりも高くなると、第1実施例と同様に、空調装置60によるサーモスタット弁開度VODの制御が開始される。ただし、第2実施例では、サーモスタット弁開度VODが図6のマップを用いて推定され、サーモスタット弁開度VODが目標開度VODT(例えば40%から60%の範囲)に維持されるように、サーモスタット弁温度TVが制御され、そのために熱媒体ポンプ62の回転数RP、すなわち熱媒体ポンプ62から吐出される熱媒体量が制御される。その後、時間t12において、サーモスタット弁温度TVが閉弁開始温度TVCLSに達すると、サーモスタット弁開度VODが低下し始める。それに伴い、冷却水の一部がラジエータバイパス管54へ流れ始める。それにより、冷却水の導電率CNが減少し始める。この場合、残りの冷却水がラジエータ53内に流入し続ける。したがって、冷却水の温度が過度に高くなるのが阻止される。その後、時間t13において、冷却水の導電率CNが閾値CNTH以下になると、空調装置60によるサーモスタット弁開度VODの制御が終了され、復帰処理が行われる。その後、時間t14において、サーモスタット弁温度TVが温度TVCLSに達すると、サーモスタット弁開度VODが100%に戻る。
図8は、本発明による第2実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図5に示されるルーチンと相違している。すなわち、ステップ104からステップ110に進み、サーモスタット弁開度VODの制御ルーチンが実行される。このルーチンは図9に示されている。続くステップ105では冷却水の導電率CNが閾値CNTH以下か否かが判別される。CN≦CNTHのときにはプロセスはステップ106へ進み、CN>CNTHのときにはプロセスはステップ110へ戻る。
図9は、サーモスタット弁開度VODの制御ルーチンを示している。
図9を参照すると、ステップ111では、図6のマップを参照し、サーモスタット弁温度TVに基づいて現在のサーモスタット弁開度VODが推定される。続くステップ112では、現在のサーモスタット弁開度VODが目標開度VODTであるか否かが判別される。現在のサーモスタット弁開度VODが目標開度VODTのときにはプロセスは終了する。現在のサーモスタット弁開度VODが目標開度VODTでないときには、プロセスはステップ113へ進む。ステップ113では、サーモスタット弁開度VODが目標開度VODTになるように、熱媒体ポンプ62の回転数PRが制御される。具体的には、現在のサーモスタット弁開度VODが目標開度VODTよりも大きいときには、熱媒体ポンプ62の回転数が増加され、筐体56に送られる熱媒体量が増大される。一方、現在のサーモスタット弁開度VODが目標開度VODTよりも小さいときには、熱媒体ポンプ62の回転数が低下され、筐体56に送られる熱媒体量が減少される。
次に、本発明による第3実施例を説明する。以下では、本発明による第1実施例との相違点について説明する。
上述した本発明による第1実施例では、サーモスタット弁温度TVが開弁終了温度TVOPEよりも高いと、すなわちサーモスタット弁開度VODが100%であると、空調装置60によりサーモスタット弁開度VODが一時的に0%にされ、それにより冷却水がラジエータバイパス管54ないしイオン交換器58に送られる。逆に言うと、サーモスタット弁開度VODが100%よりも小さいとき、すなわち冷却水の一部がラジエータバイパス管54ないしイオン交換器58に送られているときには、空調装置60によるサーモスタット弁開度VODの制御は開始されない。ところが、冷却水の一部がラジエータバイパス管54ないしイオン交換器58に送られているときであっても、冷却水の導電率CNが閾値CNTHを越える場合がある。
そこで、本発明に第3実施例では、現在のサーモスタット弁開度VODを推定し、現在のサーモスタット弁開度VODが、100%よりも小さく設定された開度VODUよりも大きいときに、空調装置60によりサーモスタット弁開度VODを一時的に0%にしている。その結果、冷却水の一部がラジエータバイパス管54ないしイオン交換器58に送られているときであっても、空調装置60によるサーモスタット弁開度VODの制御が行われる。
図10は、本発明による第3実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図5に示されるルーチンと相違している。すなわち、ステップ100においてCN>CNTHのときにはプロセスはステップ101aへ進む。ステップ101aでは、図6の関係を示すマップを用いて現在のサーモスタット弁開度VODが推定される。次いでステップ101bに進み、現在のサーモスタット弁開度VODが、予め設定された開度VODU以上か否かが判別される。VOD≧VODUのときにはステップ102に進み、VOD<VODUのときにはプロセスは終了する。
次に、本発明による第4実施例を説明する。以下では、本発明による第3実施例との相違点について説明する。
本発明による第4実施例では、本発明による第2実施例と同様に、空調装置60によりサーモスタット弁開度VODを制御すべきときには、サーモスタット弁開度VODが中間開度の目標開度VODTになるように、サーモスタット弁温度TVが制御される。その結果、第4実施例でも、冷却水の温度が過度に高くなるのが阻止されつつ、冷却水の導電率が過度に高くなるのが阻止される。
図11は、本発明による第4実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図10に示されるルーチンと相違している。すなわち、ステップ104からステップ110に進み、サーモスタット弁開度VODの制御ルーチンが実行される。このルーチンは図9に示されている。続くステップ105では冷却水の導電率CNが閾値CNTH以下か否かが判別される。CN≦CNTHのときにはプロセスはステップ106へ進み、CN>CNTHのときにはプロセスはステップ110へ戻る。
次に、本発明による第5実施例を説明する。以下では、本発明による第1実施例との相違点について説明する。
例えば燃料電池システムAの停止中には、冷却水ポンプ52は停止され、したがって冷却水供給管51内、ラジエータ53内、ラジエータバイパス管54内の冷却水流れは停止される。このような燃料電池システムAの停止中に、ラジエータ53から冷却水中にイオンが溶出し、それによって冷却水の導電率が高くなる場合がある。ところが、次いで燃料電池システムAが再始動されたときに、サーモスタット弁温度TVが閉弁終了温度TVCLEよりも低く、したがってサーモスタット弁開度VODが0%のときには、冷却水の全量がラジエータバイパス管54内に送られる。すなわち、ラジエータ53に冷却水が流入せず、したがってラジエータ53周りには導電率が高い冷却水が滞留し続けることになる。次いで、冷却水の温度が上昇することによりサーモスタット弁温度TVが開弁開始温度TVOPSになって冷却水の一部がラジエータ53に送られると、導電率が高い冷却水が一気に冷却水供給管51内に流出するおそれがある。
そこで、本発明による第5実施例では、サーモスタット弁開度VODが0%でありかつラジエータ53周りの冷却水の導電率が閾値よりも高いときには、空調装置60によりサーモスタット弁温度TVを一時的に上昇させてサーモスタット弁開度VODを一時的に増大させ、それにより冷却水がラジエータ53内を流通するようにしている。このことを、図12を参照しながら説明する。
図12においてXは、サーモスタット弁温度TVが閉弁開始温度TVCLSよりも低い状態、すなわちサーモスタット弁開度VODが0%の状態であり、かつ、導電率センサ75により検出されるラジエータ53周りの冷却水の導電率CNRが予め設定された閾値CNRTHよりも高い状態を示している。この状態では、冷却水の全量がラジエータバイパス管54へ供給され、冷却水はラジエータ53へ供給されていない。時間t21において、燃料電池システムAの作動が開始され、導電率CNRが閾値CNRTHを越えてえていることが検知されると、空調装置60によるサーモスタット弁開度VODの制御が開始される。すなわち、空調装置60の電気ヒータ63が作動状態に切り換えられ又は維持される。また、空調装置60が冷却水供給管51から遮断された状態に切り換えられ又は維持される。更に、熱媒体ポンプ62が作動状態に切り換えられ又は維持される。その結果、低温の熱媒体が筐体56内を流れ、したがってサーモスタット弁温度TVが上昇し始める。その後、時間t22において、サーモスタット弁温度TVが開弁開始温度TVOPSに達すると、サーモスタット弁開度VODが増大し始める、すなわちサーモスタット弁55が開弁し始める。それに伴い、冷却水の一部がラジエータ53へ供給され始める。それにより、ラジエータ53冷却水が流出する。したがって、ラジエータ53周りの冷却水の導電率CNRが低下し始める。その後、時間t23において、サーモスタット弁温度TVが開弁終了温度TVOPEに達すると、サーモスタット弁開度VODが100%になる。それに伴い、冷却水の全量がラジエータ53へ供給される。それにより、ラジエータ53周りの冷却水の導電率CNRは更に低下する。その後、時間t24において、ラジエータ53周りの冷却水の導電率CNRが閾値CNRTH以下になると、空調装置60によるサーモスタット弁開度VODの制御が終了され、復帰処理が行われる。すなわち、電気ヒータ63が停止状態に戻され、又は作動状態に維持される。また、空調装置60が冷却水供給管51に接続された状態に戻され、又は冷却水供給管51から遮断された状態に維持される。更に、熱媒体ポンプ62が停止状態に戻され、又は作動状態に維持される。その結果、サーモスタット弁温度TVは、サーモスタット弁55内部を流れる冷却水により徐々に低下する。その後、時間t25において、サーモスタット弁温度TVが閉弁開始温度TVCLSに達すると、サーモスタット弁開度VODが低下し始める。それに伴い、冷却水の一部がラジエータバイパス管54ないしイオン交換器58へ流れ始める。その後、時間t26において、サーモスタット弁温度TVが温度TVCLEに達すると、サーモスタット弁開度VODが0%になる。それに伴い、冷却水の全量がラジエータバイパス管54へ流れる。なお、ラジエータ53から流出した、導電率の高い冷却水は次いでイオン交換器58に送られ、したがって冷却水の導電率が低下される。
このように、本発明による第5実施例では、冷却水供給管51を通る冷却水の温度が低いときであっても、空調装置60によりサーモスタット弁温度TVを一時的に上昇させ、サーモスタット弁開度VODを一時的に増大させることができる。その結果、冷却水がラジエータ53へ供給され、したがってラジエータ53周りの冷却水の導電率CNRが高く維持されるのが阻止される。
図13は、本発明による第5実施例の冷却水の導電率の制御ルーチンを示している。このルーチンは一定時間ごとの割り込みによって実行される。
図13を参照すると、ステップ200ではラジエータ53周りの冷却水の導電率CNRが閾値CNRTHよりも高いか否かが判別される。CNR>CNRTHのときにはプロセスはステップ201へ進み、CNR≦CNRTHのときにはプロセスは終了する。ステップ201ではサーモスタット弁温度TVが閉弁終了温度TVCLE以下か否かが判別される。TV≦TVCLEのときにはプロセスはステップ202へ進み、TV>TVCLEのときにはプロセスは終了する。ステップ202では電気ヒータ63が作動状態に切り換えられ又は維持される。続くステップ203では、空調装置60と冷却水供給管51とが遮断状態に切り換えられ又は維持される。続くステップ204では熱媒体ポンプ62が作動状態に切り換えられ又は維持される。続くステップ205ではラジエータ53周りの冷却水の導電率CNRが閾値CNRTH以下か否かが判別される。CNR≦CNRTHのときにはプロセスはステップ206へ進み、CNR>CNRTHのときにはプロセスはステップ205へ戻る。ステップ206では上述した復帰処理が行われる。
次に、本発明による第6実施例を説明する。以下では、本発明による第5実施例との相違点について説明する。
上述した本発明による第5実施例では、空調装置60により、サーモスタット弁開度が100%になるように、すなわちサーモスタット弁55が全開になるように、サーモスタット弁温度TVが制御される。この場合、冷却水がラジエータバイパス管54ないしイオン交換器58へ供給されなくなるので、サーモスタット弁55が全開である間は、冷却水供給管51内を流れる冷却水全体の導電率を低下させることができない。すなわち、冷却水全体の導電率が高く維持されるおそれがある。
そこで、本発明による第6実施例では、空調装置60によりサーモスタット弁開度VODを制御すべきときには、サーモスタット弁開度VODが中間開度になるようにサーモスタット弁温度TVが制御される。その結果、冷却水全体の導電率が速やかに低下される。
図14は、本発明による第6実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図13に示されるルーチンと相違している。すなわち、ステップ204からステップ210に進み、サーモスタット弁開度VODの制御ルーチンが実行される。このルーチンは図9に示されている。続くステップ205ではラジエータ53周りの冷却水の導電率CNRが閾値CNRTH以下か否かが判別される。CNR≦CNRTHのときにはプロセスはステップ206へ進み、CNR>CNRTHのときにはプロセスはステップ210へ戻る。
次に、本発明による第7実施例を説明する。以下では、本発明による第5実施例との相違点について説明する。
上述した本発明による第5実施例では、サーモスタット弁温度TVが閉弁終了温度TVCLEよりも低いと、すなわちサーモスタット弁開度VODが0%であると、空調装置60によりサーモスタット弁開度VODが一時的に100%にされ、それにより冷却水がラジエータ53に送られる。逆に言うと、サーモスタット弁開度VODが100%よりも小さいとき、すなわち冷却水の一部がラジエータ53に送られているときには、空調装置60によるサーモスタット弁開度VODの制御は開始されない。ところが、冷却水の一部がラジエータ53に送られているときであっても、ラジエータ53周りの冷却水の導電率CNRが閾値CNRTHを越える場合がある。
そこで、本発明に第7実施例では、現在のサーモスタット弁開度VODを推定し、現在のサーモスタット弁開度VODが、0%よりも大きく設定された開度VODLよりも小さいときに、空調装置60によりサーモスタット弁開度VODを一時的に100%にしている。その結果、冷却水の一部がラジエータ53に送られているときであっても、空調装置60によるサーモスタット弁開度VODの制御が行われる。
図15は、本発明による第7実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図13に示されるルーチンと相違している。すなわち、ステップ200においてCNR>CNRTHのときにはプロセスはステップ201aへ進む。ステップ201aでは、図6の関係を示すマップを用いて現在のサーモスタット弁開度VODが推定される。次いでステップ201bに進み、現在のサーモスタット弁開度VODが、予め設定された開度VODU以上か否かが判別される。VOD≧VODUのときにはステップ202に進み、VOD<VODUのときにはプロセスは終了する。
次に、本発明による第8実施例を説明する。以下では、本発明による第7実施例との相違点について説明する。
本発明による第8実施例では、本発明による第6実施例と同様に、空調装置60によりサーモスタット弁開度VODを制御すべきときには、サーモスタット弁開度VODが中間開度の目標開度VODTになるように、サーモスタット弁温度TVが制御される。その結果、第8実施例でも、冷却水全体の導電率が速やかに低下される。
図16は、本発明による第8実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図15に示されるルーチンと相違している。すなわち、ステップ204からステップ210に進み、サーモスタット弁開度VODの制御ルーチンが実行される。このルーチンは図9に示されている。続くステップ205ではラジエータ53周りの冷却水の導電率CNRが閾値CNRTH以下か否かが判別される。CNR≦CNRTHのときにはプロセスはステップ206へ進み、CNR>CNRTHのときにはプロセスはステップ210へ戻る。
次に、本発明による第9の実施例を説明する。以下では、本発明による第5実施例との相違点について説明する。
図1に示される燃料電池システムAでは、燃料電池システムAが起動されると冷却水ポンプ52が作動され、燃料電池システムAが作動している間は継続して冷却水ポンプ52が作動される。その結果、燃料電池システムAが作動している間は、継続して、サーモスタット弁55内を冷却水が流通する。
一方、上述した本発明による第5実施例では、空調装置60によりサーモスタット弁温度TVを上昇させ、それによりサーモスタット弁開度VODを増大させるようにしている。ところが、サーモスタット弁55内を流通する冷却水の温度がかなり低いときには、熱媒体によりサーモスタット弁55に与えられたた熱が冷却水により持ち去られるので、サーモスタット弁温度TVを上昇させるのが困難になる。
一方、例えば、外気温が低いときには、燃料電池スタック10が外気によって冷却されうるので、燃料電池スタック10を冷却水により冷却する必要性が低い。また、例えば、燃料電池スタック10の冷却水通路50の出口における冷却水の温度と冷却水通路50の入口における冷却水の温度との差ΔTWDが小さいときには、冷却水による燃料電池スタック10の冷却効果は小さい。すなわち、燃料電池スタック10を冷却水により冷却する必要性が低い。
そこで、本発明による第9実施例では、空調装置60によりサーモスタット弁温度TVを上昇させるべきときに、燃料電池スタック10を冷却水により冷却する必要性が低いと判断されるときには、冷却水ポンプ52から吐出される冷却水量を一時的に減少させ、それによりサーモスタット弁55内を流通する冷却水量を一時的に減少させるようにしている。その結果、サーモスタット弁温度TVを速やかに上昇させることができる。
具体的には、外気温TEXが予め設定された下限外気温TEXL(例えば、0℃)以下であり、かつ、上述の温度差ΔTWDが予め設定された下限温度差ΔTWDL(例えば、7℃)以下のときに、燃料電池スタック10を冷却水により冷却する必要性が低いと判断され、それ以外は燃料電池スタック10を冷却水により冷却する必要性が高いと判断される。
図17は、本発明による第9実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図13に示されるルーチンと相違している。すなわち、ステップ204に続いてステップ220に進み、冷却水ポンプ制御ルーチンが実行される。このルーチンは図18に示されている。次いで、ステップ205に進む。ステップ205ではラジエータ53周りの冷却水の導電率CNRが閾値CNRTH以下か否かが判別される。CNR≦CNRTHのときにはプロセスはステップ206へ進み、CNR>CNRTHのときにはプロセスはステップ220へ戻る。
図18は、冷却水ポンプ制御ルーチンを示している。
図18を参照すると、ステップ221では外気温TEXが予め設定された下限外気温度TEXL以下であるか否かが判別される。TEX≦TEXLのときにはプロセスはステップ222へ進む。TEX>TEXLのときにはプロセスは終了する。ステップ222では温度差ΔTWDが下限温度差ΔTWDL以下であるか否かが判別される。ΔTWD≦ΔTWDLのときにはプロセスはステップ223へ進む。ΔTWD>ΔTWDLのときにはプロセスは終了する。ステップ223では冷却水ポンプ52から吐出される冷却水量が予め設定された低い冷却水量に減少される。図示しない別の実施例では、冷却水量が一定量だけ減少される。
次に、本発明による第10実施例を説明する。以下では、本発明による第6実施例との相違点について説明する。
本発明による第10実施例では、本発明による第6実施例において、本発明による第9実施例と同様に、空調装置60によりサーモスタット弁温度TVを上昇させるべきときに、燃料電池スタック10を冷却水により冷却する必要性が低いと判断されるときには、冷却水ポンプ52から吐出される冷却水量を一時的に減少させ、それによりサーモスタット弁55内を流通する冷却水量を一時的に減少させるようにしている。その結果、サーモスタット弁温度TVを速やかに上昇させることができる。
図19は、本発明による第10実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図14に示されるルーチンと相違している。すなわち、ステップ210に続いてステップ220に進み、図18に示される冷却水ポンプ制御ルーチンが実行される。次いで、ステップ205に進む。ステップ205ではラジエータ53周りの冷却水の導電率CNRが閾値CNRTH以下か否かが判別される。CNR≦CNRTHのときにはプロセスはステップ206へ進み、CNR>CNRTHのときにはプロセスはステップ210へ戻る。
次に、本発明による第11実施例を説明する。以下では、本発明による第7実施例との相違点について説明する。
本発明による第11実施例では、本発明による第7実施例において、本発明による第9実施例と同様に、空調装置60によりサーモスタット弁温度TVを上昇させるべきときに、燃料電池スタック10を冷却水により冷却する必要性が低いと判断されるときには、冷却水ポンプ52から吐出される冷却水量を一時的に減少させ、それによりサーモスタット弁55内を流通する冷却水量を一時的に減少させるようにしている。その結果、サーモスタット弁温度TVを速やかに上昇させることができる。
図20は、本発明による第11実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図15に示されるルーチンと相違している。すなわち、ステップ204に続いてステップ220に進み、図18に示される冷却水ポンプ制御ルーチンが実行される。次いで、ステップ205に進む。ステップ205ではラジエータ53周りの冷却水の導電率CNRが閾値CNRTH以下か否かが判別される。CNR≦CNRTHのときにはプロセスはステップ206へ進み、CNR>CNRTHのときにはプロセスはステップ220へ戻る。
次に、本発明による第12実施例を説明する。以下では、本発明による第8実施例との相違点について説明する。
本発明による第12実施例では、本発明による第8実施例において、本発明による第9実施例と同様に、空調装置60によりサーモスタット弁温度TVを上昇させるべきときに、燃料電池スタック10を冷却水により冷却する必要性が低いと判断されるときには、冷却水ポンプ52から吐出される冷却水量を一時的に減少させ、それによりサーモスタット弁55内を流通する冷却水量を一時的に減少させるようにしている。その結果、サーモスタット弁温度TVを速やかに上昇させることができる。
図21は、本発明による第12実施例の冷却水導電率制御のルーチンを示している。このルーチンは次の点で図16に示されるルーチンと相違している。すなわち、ステップ210に続いてステップ220に進み、図18に示される冷却水ポンプ制御ルーチンが実行される。次いで、ステップ205に進む。ステップ205ではラジエータ53周りの冷却水の導電率CNRが閾値CNRTH以下か否かが判別される。CNR≦CNRTHのときにはプロセスはステップ206へ進み、CNR>CNRTHのときにはプロセスはステップ210へ戻る。
A 燃料電池システム
10 燃料電池スタック
51 冷却水供給管
52 冷却水ポンプ
53 ラジエータ
54 ラジエータバイパス管
55 サーモスタット弁
56 筐体
58 イオン交換器
60 空調装置
61 熱媒体循環管
61a、61b 連通管
62 熱媒体ポンプ
63 電気ヒータ
64 熱交換器
65 三方弁

Claims (8)

  1. 燃料ガスと酸化剤ガスとの電気化学反応により電力を発生する燃料電池スタックと、
    前記燃料電池スタック内に形成された冷却水通路の入口と前記冷却水通路の出口とを前記燃料電池スタックの外部において互いに連結することにより冷却水の循環路を形成する冷却水供給管と、
    前記冷却水供給管内に配置されたラジエータと、
    前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータとの間の前記冷却水供給管と、前記燃料電池スタックの前記冷却水通路の出口と前記ラジエータとの間の前記冷却水供給管とを互いに連結するラジエータバイパス管と、
    前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータバイパス管との間の前記冷却水供給管内、又は、前記冷却水通路の出口と前記ラジエータバイパス管との間の前記冷却水供給管内に配置され、冷却水を送出する冷却水ポンプと、
    前記燃料電池スタックの前記冷却水通路から前記冷却水供給管内に流入した冷却水のうち前記ラジエータに供給する冷却水量と前記ラジエータバイパス管内に供給する冷却水量とを制御するサーモスタット弁であって、前記サーモスタット弁は、前記サーモスタット弁の温度が予め設定された設定温度よりも高いときには前記冷却水の全量を前記ラジエータに供給し、前記サーモスタット弁の温度が前記設定温度よりも低いときには前記冷却水の少なくとも一部を前記ラジエータバイパス管に供給すると共に残りを前記ラジエータに供給する、サーモスタット弁と、
    前記ラジエータバイパス管内に配置され、冷却水のイオン交換を行うイオン交換器と、
    熱媒体を循環させる熱媒体循環管と、前記熱媒体循環管内に配置され、前記熱媒体を送出する熱媒体ポンプと、前記熱媒体循環管内に配置され、空調用の空気と前記熱媒体とを互いに熱交換させる熱交換器と、を有する空調装置と、
    前記熱媒体循環管内に配置されると共に、前記サーモスタット弁を囲むように設けられた筐体と、
    を備え、
    前記空調装置により前記筐体内の前記熱媒体の温度を制御することにより前記サーモスタット弁の温度を調節し、それにより前記ラジエータに供給する冷却水量と前記ラジエータバイパス管内に供給する冷却水量とを制御できるようにした、
    燃料電池システム。
  2. 前記熱媒体循環管内に配置され、前記熱媒体を加熱する電気ヒータを更に備え、
    前記サーモスタット弁の温度を低下させるべきときには前記電気ヒータが停止されつつ、前記熱媒体ポンプが作動される、請求項1に記載の燃料電池システム。
  3. 前記熱媒体循環管内に配置され、前記熱媒体を加熱する電気ヒータを更に備え、
    前記サーモスタット弁の温度を上昇させるべきときには前記電気ヒータが作動されつつ、前記熱媒体ポンプが作動される、請求項1又は2に記載の燃料電池システム。
  4. 前記熱媒体が水から構成されており、
    前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータバイパス管との間の前記冷却水供給管、又は、前記冷却水通路の出口と前記ラジエータバイパス管との間の前記冷却水供給管と、前記熱媒体循環管とを互いに連通する連通管と、前記連通管内を流れる水の量を制御する制御弁と、を更に備え、
    前記冷却水供給管内の水が前記連通管を介し前記熱媒体循環管内に流入し、前記熱媒体循環管内の水が前記連通管を介し前記冷却水供給管内に流入できるようにした、請求項1から3までのいずれか一項に記載の燃料電池システム。
  5. 燃料ガスと酸化剤ガスとの電気化学反応により電力を発生する燃料電池スタックと、
    前記燃料電池スタック内に形成された冷却水通路の入口と前記冷却水通路の出口とを前記燃料電池スタックの外部において互いに連結することにより冷却水の循環路を形成する冷却水供給管と、
    前記冷却水供給管内に配置されたラジエータと、
    前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータとの間の前記冷却水供給管と、前記燃料電池スタックの前記冷却水通路の出口と前記ラジエータとの間の前記冷却水供給管とを互いに連結するラジエータバイパス管と、
    前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータバイパス管との間の前記冷却水供給管内又は前記冷却水通路の出口と前記ラジエータバイパス管との間の前記冷却水供給管内に配置され、冷却水を送出する冷却水ポンプと、
    前記燃料電池スタックの前記冷却水通路から前記冷却水供給管内に流入した冷却水のうち前記ラジエータに供給する冷却水量と前記ラジエータバイパス管内に供給する冷却水量とを制御するサーモスタット弁であって、前記サーモスタット弁は、前記サーモスタット弁の温度が予め設定された設定温度よりも高いときには前記冷却水の全量を前記ラジエータに供給し、前記サーモスタット弁の温度が前記設定温度よりも低いときには前記冷却水の少なくとも一部を前記ラジエータバイパス管に供給すると共に残りを前記ラジエータに供給する、サーモスタット弁と、
    前記ラジエータバイパス管内に配置され、冷却水のイオン交換を行うイオン交換器と、
    熱媒体を循環させる熱媒体循環管と、前記熱媒体循環管内に配置され、前記熱媒体を送出する熱媒体ポンプと、前記熱媒体循環管内に配置され、空調用の空気と前記熱媒体とを互いに熱交換させる熱交換器と、を有する空調装置と、
    前記熱媒体循環管内に配置されると共に、前記サーモスタット弁を囲むように設けられた筐体と、
    を備えた燃料電池システムの制御方法であって、
    前記空調装置により前記筐体内の前記熱媒体の温度を制御することにより前記サーモスタット弁の温度を調節し、それにより前記ラジエータに供給する冷却水量と前記ラジエータバイパス管内に供給する冷却水量とを制御する、
    燃料電池システムの制御方法。
  6. 前記燃料電池システムが、前記熱媒体循環管内に配置され、前記熱媒体を加熱する電気ヒータを更に備えており、
    前記サーモスタット弁の温度を低下させるべきときには前記電気ヒータが停止されつつ、前記熱媒体ポンプが作動される、請求項5に記載の燃料電池システムの制御方法。
  7. 前記燃料電池システムが、前記熱媒体循環管内に配置され、前記熱媒体を加熱する電気ヒータを更に備えており、
    前記サーモスタット弁の温度を上昇させるべきときには前記電気ヒータが作動されつつ、前記熱媒体ポンプが作動される、請求項5又は6に記載の燃料電池システムの制御方法。
  8. 前記熱媒体が水から構成されており、
    前記燃料電池システムが、前記燃料電池スタックの前記冷却水通路の入口と前記ラジエータバイパス管との間の前記冷却水供給管、又は、前記冷却水通路の出口と前記ラジエータバイパス管との間の前記冷却水供給管と、前記熱媒体循環管とを互いに連通する連通管と、前記連通管内を流れる水の量を制御する制御弁と、を更に備えており、
    前記冷却水供給管内の水が前記連通管を介し前記熱媒体循環管内に流入し、前記熱媒体循環管内の水が前記連通管を介し前記冷却水供給管内に流入できるようになっている、請求項5から7までのいずれか一項に記載の燃料電池システムの制御方法。
JP2014138729A 2014-07-04 2014-07-04 燃料電池システム及び燃料電池システムの制御方法 Active JP6090246B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014138729A JP6090246B2 (ja) 2014-07-04 2014-07-04 燃料電池システム及び燃料電池システムの制御方法
US15/323,575 US10276882B2 (en) 2014-07-04 2015-06-16 Fuel cell system and method for controlling fuel cell system
CN201580003178.4A CN105874635B (zh) 2014-07-04 2015-06-16 燃料电池***及燃料电池***的控制方法
PCT/JP2015/067298 WO2016002503A1 (ja) 2014-07-04 2015-06-16 燃料電池システム及び燃料電池システムの制御方法
DE112015003129.4T DE112015003129B4 (de) 2014-07-04 2015-06-16 Brennstoffzellensystem und Verfahren für ein Steuern eines Brennstoffzellensystems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014138729A JP6090246B2 (ja) 2014-07-04 2014-07-04 燃料電池システム及び燃料電池システムの制御方法

Publications (3)

Publication Number Publication Date
JP2016018607A JP2016018607A (ja) 2016-02-01
JP2016018607A5 JP2016018607A5 (ja) 2016-06-16
JP6090246B2 true JP6090246B2 (ja) 2017-03-08

Family

ID=55019050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014138729A Active JP6090246B2 (ja) 2014-07-04 2014-07-04 燃料電池システム及び燃料電池システムの制御方法

Country Status (5)

Country Link
US (1) US10276882B2 (ja)
JP (1) JP6090246B2 (ja)
CN (1) CN105874635B (ja)
DE (1) DE112015003129B4 (ja)
WO (1) WO2016002503A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6759640B2 (ja) * 2016-03-16 2020-09-23 トヨタ自動車株式会社 燃料電池システム
JP6787720B2 (ja) * 2016-08-05 2020-11-18 本田技研工業株式会社 ラジエータ洗浄処理方法
US10347924B2 (en) * 2016-09-13 2019-07-09 General Electric Company Integrated fuel cell systems
CN106374122B (zh) * 2016-10-08 2019-01-08 北京新能源汽车股份有限公司 一种燃料电池余热利用***及控制方法
JP7006506B2 (ja) 2018-05-24 2022-02-10 トヨタ自動車株式会社 燃料電池システム
JP7077814B2 (ja) * 2018-06-21 2022-05-31 トヨタ自動車株式会社 燃料電池システム
JP7103116B2 (ja) 2018-09-25 2022-07-20 トヨタ自動車株式会社 燃料電池システム
JP7047740B2 (ja) * 2018-12-10 2022-04-05 トヨタ自動車株式会社 燃料電池車両の空調装置
CN109742424A (zh) * 2019-01-08 2019-05-10 中氢新能技术有限公司 一种基于大循环和小循环的甲醇重整燃料电池热利用方法
JP7192690B2 (ja) * 2019-07-17 2022-12-20 トヨタ自動車株式会社 燃料電池システム
CN110712496B (zh) * 2019-10-21 2020-12-11 上海捷氢科技有限公司 一种燃料电池车辆的热管理***
JP7264029B2 (ja) * 2019-12-06 2023-04-25 トヨタ自動車株式会社 燃料電池の冷却システム
CN111129541A (zh) * 2019-12-31 2020-05-08 广西玉柴机器股份有限公司 车用燃料电池的热循环管理***
CN111883799B (zh) * 2020-07-06 2021-12-14 无锡沃尔福汽车技术有限公司 一种改善冷启动性燃料电池冷却***
CN114300709A (zh) * 2021-12-28 2022-04-08 上海恒劲动力科技有限公司 一种燃料电池及其热管理控制***
CN114335604A (zh) * 2022-01-20 2022-04-12 上海恒劲动力科技有限公司 一种低温环境的水冷燃料电池***
CN114695916B (zh) * 2022-04-21 2023-06-16 北京亿华通科技股份有限公司 一种氢燃料电池液冷***的节温器控制方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868105A (en) * 1997-06-11 1999-02-09 Evans Cooling Systems, Inc. Engine cooling system with temperature-controlled expansion chamber for maintaining a substantially anhydrous coolant, and related method of cooling
JP2001187313A (ja) * 1999-12-28 2001-07-10 Hisao Kojima 湿式排煙脱硫装置
US6673482B2 (en) * 2000-09-27 2004-01-06 Honda Giken Kogyo Kabushiki Kaisha Cooling system for fuel cell
US7070873B2 (en) 2001-10-16 2006-07-04 Honda Giken Kogyo Kabushiki Kaisha Cooling method for fuel cell
JP3643069B2 (ja) 2001-10-16 2005-04-27 本田技研工業株式会社 燃料電池の冷却方法
DE10222102A1 (de) 2002-05-17 2003-11-27 Basf Ag Verfahren und Vorrichtung zum Kühlen eines Verbrennungsmotors
JP4687115B2 (ja) * 2005-01-17 2011-05-25 トヨタ自動車株式会社 燃料電池の冷却システム
JP2007035512A (ja) * 2005-07-28 2007-02-08 Honda Motor Co Ltd 燃料電池の冷却装置
JP4940877B2 (ja) 2006-10-10 2012-05-30 トヨタ自動車株式会社 空調制御システム
JP5491910B2 (ja) * 2010-03-09 2014-05-14 本田技研工業株式会社 燃料電池システム
JP5463982B2 (ja) 2010-03-16 2014-04-09 トヨタ自動車株式会社 冷媒回路調整装置
JP5754346B2 (ja) * 2011-10-31 2015-07-29 株式会社デンソー 燃料電池システム
JP2013233500A (ja) 2012-05-08 2013-11-21 Toyota Motor Corp イオン交換器およびこれを含む燃料電池システム

Also Published As

Publication number Publication date
DE112015003129B4 (de) 2024-06-13
CN105874635B (zh) 2018-10-16
JP2016018607A (ja) 2016-02-01
US20170133696A1 (en) 2017-05-11
DE112015003129T5 (de) 2017-03-30
WO2016002503A1 (ja) 2016-01-07
CN105874635A (zh) 2016-08-17
US10276882B2 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
JP6090246B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
KR101136897B1 (ko) 공기조절제어시스템
JP4066361B2 (ja) 燃料電池の冷却システム
CN106941183B (zh) 燃料电池***和燃料电池车辆
JP5644746B2 (ja) 燃料電池車両用空調装置
US10283791B2 (en) Fuel cell system
JP6332120B2 (ja) 燃料電池システム及びその制御方法
CN102897019A (zh) 用于管理电动车的废热的***和方法
JP2009158379A (ja) 燃料電池システムおよび燃料電池システムの制御方法
CA2911579C (en) A cooling system for a fuel cell system
US11296334B2 (en) Fuel cell system
JP5742946B2 (ja) 燃料電池システム
WO2016067830A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5799766B2 (ja) 燃料電池システム
JP4984808B2 (ja) 空調制御システム
JP7298544B2 (ja) 燃料電池システム
JP2014127452A (ja) 燃料電池システム
JP7435875B2 (ja) 燃料電池システム
JP6326196B2 (ja) 燃料電池システム
JP2011178365A (ja) 空調装置および空調制御方法
JP5231932B2 (ja) 燃料電池の冷却システム
JP2008226810A (ja) 燃料電池発電システム
KR101848614B1 (ko) 차량용 열관리계 시스템
CN113054218B (zh) 燃料电池的热管理***及控制方法
KR20200053950A (ko) 연료전지를 활용한 독립공간의 공조시스템

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R151 Written notification of patent or utility model registration

Ref document number: 6090246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151