JP6084050B2 - Conductive composite particles and method for producing the same - Google Patents

Conductive composite particles and method for producing the same Download PDF

Info

Publication number
JP6084050B2
JP6084050B2 JP2013017275A JP2013017275A JP6084050B2 JP 6084050 B2 JP6084050 B2 JP 6084050B2 JP 2013017275 A JP2013017275 A JP 2013017275A JP 2013017275 A JP2013017275 A JP 2013017275A JP 6084050 B2 JP6084050 B2 JP 6084050B2
Authority
JP
Japan
Prior art keywords
titanium oxide
particles
conductive composite
particle
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013017275A
Other languages
Japanese (ja)
Other versions
JP2014148431A (en
Inventor
岳洋 米澤
岳洋 米澤
山崎 和彦
和彦 山崎
真也 白石
真也 白石
洋利 梅田
洋利 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2013017275A priority Critical patent/JP6084050B2/en
Publication of JP2014148431A publication Critical patent/JP2014148431A/en
Application granted granted Critical
Publication of JP6084050B2 publication Critical patent/JP6084050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、酸化チタン粒子の表面に、酸化錫微粒子が形成された導電性複合粒子に関する。この導電性複合粒子は、高比表面積であり、燃料電池の電極触媒層の白金ナノ粒子触媒の担体として適している。   The present invention relates to conductive composite particles in which tin oxide fine particles are formed on the surface of titanium oxide particles. This conductive composite particle has a high specific surface area and is suitable as a support for the platinum nanoparticle catalyst of the electrode catalyst layer of the fuel cell.

現在、環境問題を考慮し、NOxまたはSOx等の排出量が少なく、エネルギー変換効率が高いエネルギー源として、燃料電池の実用化が検討されている。特に、固体高分子型燃料電池は、低温で動作し、高出力密度であり、発電反応で水のみが生成される、という特徴を有しており、実用化の検討が盛んに行われている。また、燃料として可搬性に優れるメタノールを直接用いる直接型メタノール燃料電池も、実用化の検討が行われている。   Currently, in consideration of environmental problems, the practical application of fuel cells is being studied as an energy source with low NOx or SOx emissions and high energy conversion efficiency. In particular, the polymer electrolyte fuel cell has the characteristics that it operates at a low temperature, has a high output density, and only water is generated by a power generation reaction, and is being actively studied for practical use. . A direct methanol fuel cell that directly uses methanol, which is excellent in portability as a fuel, is also being studied for practical use.

燃料電池は、一般に、電解質を、燃料極(アノード)および空気極(カソード)の各電極でサンドイッチして構成されており、各電極は、発電反応を行うための電極触媒層を有している。図1に、燃料電池の断面構造の模式図の一例を示す。燃料電池1は、電解質膜20を、燃料極10と空気極30でサンドイッチして構成されている。燃料極10は、燃料極触媒層11と、集電体である多孔質支持層12とを有しており、空気極30は、空気極触媒層31と、集電体である多孔質支持層32とを有している。燃料極触媒層11や空気極触媒層31で使用される電極触媒には、通常、白金ナノ粒子が担持されたカーボンブラックやアセチレンブラックなどの炭素材料が使用されている。   A fuel cell is generally configured by sandwiching an electrolyte between electrodes of a fuel electrode (anode) and an air electrode (cathode), and each electrode has an electrode catalyst layer for performing a power generation reaction. . FIG. 1 shows an example of a schematic diagram of a cross-sectional structure of a fuel cell. The fuel cell 1 is configured by sandwiching an electrolyte membrane 20 between a fuel electrode 10 and an air electrode 30. The fuel electrode 10 includes a fuel electrode catalyst layer 11 and a porous support layer 12 that is a current collector. The air electrode 30 includes an air electrode catalyst layer 31 and a porous support layer that is a current collector. 32. For the electrode catalyst used in the fuel electrode catalyst layer 11 and the air electrode catalyst layer 31, a carbon material such as carbon black or acetylene black carrying platinum nanoparticles is usually used.

ここで、空気極触媒層で使用される触媒担体は、酸化に対する耐性が高くなければならず、炭素材料では不十分である。炭素材料が酸化されると、触媒の剥離が発生してしまうためである。この酸化に対する耐性の要求を満たす材料として、金属酸化物が挙げられるが、固体高分子型燃料電池の触媒層は、強酸性の環境で使用されるため,触媒担体には強酸に対する耐性も求められる。したがって、空気極触媒層の触媒担体には、酸化に対する耐性と、強酸に対する耐性とが要求される。   Here, the catalyst carrier used in the air electrode catalyst layer must be highly resistant to oxidation, and a carbon material is insufficient. This is because when the carbon material is oxidized, the catalyst is peeled off. Metal oxides are examples of materials that satisfy this demand for resistance to oxidation. However, since the catalyst layer of a polymer electrolyte fuel cell is used in a strongly acidic environment, the catalyst carrier is also required to have resistance to strong acids. . Therefore, the catalyst carrier of the air electrode catalyst layer is required to have resistance to oxidation and resistance to strong acid.

また、固体高分子形燃料電池の燃料極触媒層の触媒の問題点のひとつに、白金の一酸化炭素被毒がある。この一酸化炭素被毒に対しては、カーボンブラック・白金複合電極触媒に、金属酸化物である酸化錫(SnO)を添加することが有効であることが、報告されている(非特許文献1)。なお、酸化錫は、高導電性であることも、触媒担体として適している。 One of the problems of the catalyst of the fuel electrode catalyst layer of the polymer electrolyte fuel cell is platinum carbon monoxide poisoning. For this carbon monoxide poisoning, it has been reported that it is effective to add tin oxide (SnO 2 ), which is a metal oxide, to the carbon black / platinum composite electrode catalyst (non-patent document). 1). Note that tin oxide is also suitable as a catalyst carrier because of its high conductivity.

本発明者らは、白金ナノ粒子触媒の担体として、酸化錫微粒子を検討したが、白金ナノ粒子触媒を担持させるために高比表面積にした酸化錫微粒子は、ハンドリング性が悪く、高コストである、という欠点がある。この欠点を改良するために、公知技術(特許文献1)に基づき、酸化に対する耐性と、強酸に対する耐性を有し、かつ安価な酸化チタン粒子の表面上に酸化錫層を形成したが、酸化チタン粒子表面に形成される酸化錫が一体に連なった平滑な膜状の構造であり、比表面積が小さいため、白金ナノ粒子触媒を担持させるとき、白金ナノ粒子触媒同士が凝集してしまうことがわかった。しかし、酸化錫層の比表面積を大きくするだけでは、酸化錫層が、酸化チタン粒子から剥離してしまう、という問題があった。また、酸化錫被覆酸化チタン粒子を、燃料電池が作動する高温で長時間保持すると、酸化チタン中のチタンが、酸化錫に拡散し、酸化錫の導電性が低下してしまう、という問題があった。   The inventors of the present invention have examined tin oxide fine particles as a support for the platinum nanoparticle catalyst. However, the tin oxide fine particles having a high specific surface area for supporting the platinum nanoparticle catalyst have poor handling properties and high cost. , There is a drawback. In order to improve this defect, a tin oxide layer was formed on the surface of titanium oxide particles having a resistance to oxidation, a strong acid, and a low cost based on a known technique (Patent Document 1). It is a smooth film-like structure in which tin oxide formed on the particle surface is integrated, and the specific surface area is small, so it is understood that platinum nanoparticle catalysts aggregate when they are supported. It was. However, simply increasing the specific surface area of the tin oxide layer has a problem that the tin oxide layer peels off from the titanium oxide particles. In addition, if the tin oxide-coated titanium oxide particles are held for a long time at a high temperature at which the fuel cell operates, titanium in the titanium oxide diffuses into the tin oxide and the conductivity of the tin oxide decreases. It was.

特開昭61−236612号公報JP-A 61-236612

「ナノの世界を操作する 脇慶子研究室〜創造エネルギー専攻」、LANDFALL(ランドフォール)、東京工業大学生協LANDFALL編集委員会、2007年1月、第59巻、p.1〜3"Manipulating the world of nano, Keiko Waki Laboratory-Department of Creative Energy", LANDFALL, Tokyo Institute of Technology Co-op LANDFALL Editorial Committee, January 2007, Vol. 59, p. 1-3

上述のように、空気極触媒層の触媒担体には、酸化に対する耐性と、強酸に対する耐性が求められ、燃料極触媒層の触媒担体には、白金ナノ粒子触媒の一酸化炭素被毒の抑制が求められる。また、燃料電池の電極触媒層で使用される触媒担体には、一般的に、高比表面積で、高導電性であり、長時間の燃料電池運転後にも、構成されている材料間での剥離や、構成されている材料に含有される元素による拡散が発生せず、導電性が低下しないことが要求される。本発明は、酸化に対する耐性と強酸に対する耐性とを有する、酸化錫と酸化チタンで構成され;高導電性であり、白金ナノ粒子触媒の一酸化炭素被毒対策に有効な酸化錫層を、安価な酸化チタン粉末の表面上に被覆する、高導電性の導電性複合粒子であって、白金ナノ粒子触媒を担持させるために比表面積が大きく、かつ酸化チタン粒子からの酸化錫層の剥離が抑制され、さらに、酸化錫へのチタンの拡散を抑えることにより、長時間の燃料電池運転後の導電性低下が抑制される導電性複合粒子を提供することを課題とする。   As described above, the catalyst support of the air electrode catalyst layer is required to have resistance to oxidation and resistance to strong acid, and the catalyst support of the fuel electrode catalyst layer has suppression of carbon monoxide poisoning of the platinum nanoparticle catalyst. Desired. In addition, the catalyst carrier used in the electrode catalyst layer of a fuel cell generally has a high specific surface area, high conductivity, and peeling between constituent materials even after long-time fuel cell operation. In addition, it is required that diffusion due to elements contained in the constituent material does not occur and the conductivity is not lowered. The present invention is composed of tin oxide and titanium oxide having resistance to oxidation and resistance to strong acid; a tin oxide layer that is highly conductive and effective for poisoning of carbon monoxide by a platinum nanoparticle catalyst is inexpensive. High conductivity conductive composite particles coated on the surface of the titanium oxide powder, which has a large specific surface area to support the platinum nanoparticle catalyst and suppresses the peeling of the tin oxide layer from the titanium oxide particles Furthermore, it is an object of the present invention to provide conductive composite particles in which the decrease in conductivity after long-time fuel cell operation is suppressed by suppressing diffusion of titanium into tin oxide.

本発明者らは、酸化錫と酸化チタンで構成される、高導電性の導電性複合粒子について、鋭意研究を行い、酸化チタン粒子の比表面積と、酸化錫微粒子層を形成した導電性複合粒子の比表面積を、特定の割合にすることにより、白金ナノ粒子触媒の担持に適した高比表面積でありながら、酸化錫微粒子層の剥離を防止することができ、さらに、酸化チタン粒子表面と酸化錫微粒子層との界面に、Pが存在すると、酸化錫へのチタンの拡散を抑制し、長時間の燃料電池運転後の導電性低下が抑制される導電性複合粒子が得られることを見出した。本発明は、以下に示す構成によって上記課題を解決した導電性複合粒子、導電性複合粒子の製造方法、燃料電池の電極触媒層用組成物、燃料電池の電極触媒層、および燃料電池に関する。
〔1〕酸化チタン粒子の表面が、酸化錫微粒子層で被覆された導電性複合粒子であって、導電性複合粒子の比表面積が、酸化チタン粒子の比表面積の2〜20倍であり、透過電子顕微鏡に付属のエネルギー分散型X線分光分析で、酸化チタン粒子表面と酸化錫微粒子層との界面にPが存在することを特徴とする、導電性複合粒子。ここで、酸化錫微粒子とは、平均粒径が30nm以下のものをいい、酸化錫微粒子層とは、酸化チタン粒子の表面を、酸化錫微粒子が0.1μm以下の厚さで被覆しているものをいう。
〔2〕(A)酸化チタン粒子と、Pを含む分散剤と、水とを含む、酸化チタン粒子含有分散液に、SnClを溶解した水溶液を滴下し、酸化チタン粒子表面に、水酸化錫からなる被覆層を析出させる工程、
(B)水酸化錫からなる被覆層を析出させた酸化チタン粒子を、300〜1000℃で加熱する工程、
を、この順に含むことを特徴とする、上記〔1〕記載の導電性複合粒子の製造方法。
〔3〕上記〔1〕記載の導電性複合粒子と、分散媒とを含有する、燃料電池の電極触媒層用組成物。
〔4〕上記〔1〕記載の導電性複合粒子を含有する、燃料電池の電極触媒層。
〔5〕上記〔4〕記載の燃料電池の電極触媒層を備える、燃料電池。
The present inventors have conducted intensive research on highly conductive conductive composite particles composed of tin oxide and titanium oxide, and formed conductive composite particles having a specific surface area of titanium oxide particles and a tin oxide fine particle layer. By setting the specific surface area to a specific ratio, it is possible to prevent peeling of the tin oxide fine particle layer while maintaining a high specific surface area suitable for supporting the platinum nanoparticle catalyst. It has been found that when P is present at the interface with the tin fine particle layer, conductive composite particles can be obtained in which the diffusion of titanium into tin oxide is suppressed and the decrease in conductivity after long-time fuel cell operation is suppressed. . The present invention relates to conductive composite particles, a method for producing conductive composite particles, a composition for an electrode catalyst layer of a fuel cell, an electrode catalyst layer of a fuel cell, and a fuel cell, which have solved the above problems with the following configuration.
[1] The surface of the titanium oxide particle is a conductive composite particle coated with a tin oxide fine particle layer, the specific surface area of the conductive composite particle is 2 to 20 times the specific surface area of the titanium oxide particle, and transmission Conductive composite particles characterized in that P is present at the interface between the titanium oxide particle surface and the tin oxide fine particle layer in energy dispersive X-ray spectroscopic analysis attached to an electron microscope. Here, the tin oxide fine particles mean those having an average particle size of 30 nm or less, and the tin oxide fine particle layer means that the surface of the titanium oxide particles is covered with a thickness of 0.1 μm or less. Say things.
[2] (A) An aqueous solution in which SnCl 4 is dissolved is added dropwise to a titanium oxide particle-containing dispersion liquid containing titanium oxide particles, a dispersant containing P, and water. Depositing a coating layer comprising:
(B) a step of heating the titanium oxide particles on which the coating layer made of tin hydroxide is deposited at 300 to 1000 ° C .;
In this order, the method for producing conductive composite particles according to [1] above.
[3] A composition for an electrode catalyst layer of a fuel cell, comprising the conductive composite particles according to [1] above and a dispersion medium.
[4] An electrode catalyst layer for a fuel cell, containing the conductive composite particles according to [1].
[5] A fuel cell comprising the electrode catalyst layer of the fuel cell according to [4].

本発明〔1〕によれば、導電性複合粒子は、酸化に対する耐性と、強酸に対する耐性を有する、酸化チタン粒子と酸化錫微粒子層で構成され;高導電性であり、白金ナノ粒子触媒の一酸化炭素被毒対策に有効な酸化錫が、安価な酸化チタン上に形成され、酸化チタン粒子の比表面積と、酸化錫微粒子層を形成した導電性複合粒子の比表面積を、特定の割合にすることにより、白金ナノ粒子触媒の担持に適した高比表面積であり、かつ酸化チタン粒子からの酸化錫層の剥離が抑制されるため、導電性複合粒子は、白金ナノ粒子触媒の担体として適している。さらに、酸化チタン粒子表面と酸化錫微粒子層との界面に、Pが存在するため、酸化チタン粒子中のチタンの、酸化錫微粒子層への拡散を抑制し、燃料電池が作動する高温での保持後にも高導電性である、すなわち経時変化の少ない燃料電池の電極を提供することができる。酸化チタン粒子表面と酸化錫微粒子層との界面に存在するPは、酸化チタン粒子中のチタンと、リン酸塩を形成することにより、酸化チタン粒子中のチタンの、酸化錫微粒子層への拡散を抑制する、と考えられる。この導電性複合粒子は、空気極触媒層の白金ナノ粒子触媒担体としても、燃料極触媒層の白金ナノ粒子触媒担体としても適している。本発明〔2〕によれば、本発明〔1〕の導電性複合粒子を製造することができる。本発明〔3〕によれば、白金ナノ粒子触媒の担体として適している本発明〔1〕の導電性複合粒子を含有する燃料電池の電極触媒層を、容易に形成可能な組成物を提供することができる。本発明〔4〕の燃料電池の電極触媒層に含有される本発明〔1〕の導電性複合粒子は、酸化に対する耐性と、強酸に対する耐性を有する、酸化チタン粒子と酸化錫微粒子層で構成され;導電性複合粒子は、導電性が高く、白金ナノ粒子触媒の担持に適した高比表面積であり、かつ酸化チタン粒子からの酸化錫層の剥離が抑制され、さらに、長時間の燃料電池運転後にも高導電性であるので、経時変化の少ない燃料電池の電極触媒層を提供することができる。本発明〔5〕によれば、本発明〔4〕の経時変化の少ない燃料電池の電極触媒層を備える、高信頼性の燃料電池を提供することが可能である。   According to the present invention [1], the conductive composite particle is composed of a titanium oxide particle and a tin oxide fine particle layer having resistance to oxidation and resistance to strong acid; Tin oxide effective as a countermeasure against carbon oxide poisoning is formed on inexpensive titanium oxide, and the specific surface area of the titanium oxide particles and the specific surface area of the conductive composite particles formed with the tin oxide fine particle layer are set to a specific ratio. Therefore, the conductive composite particles are suitable as a support for the platinum nanoparticle catalyst because it has a high specific surface area suitable for supporting the platinum nanoparticle catalyst and the peeling of the tin oxide layer from the titanium oxide particles is suppressed. Yes. Furthermore, since P exists at the interface between the titanium oxide particle surface and the tin oxide fine particle layer, the diffusion of titanium in the titanium oxide particles to the tin oxide fine particle layer is suppressed, and the fuel cell is held at a high temperature. It is possible to provide a fuel cell electrode that is highly conductive, that is, has little change over time. P present at the interface between the titanium oxide particle surface and the tin oxide fine particle layer forms a phosphate with titanium in the titanium oxide particles, thereby diffusing titanium in the titanium oxide particles into the tin oxide fine particle layer. It is thought that it suppresses. The conductive composite particles are suitable as a platinum nanoparticle catalyst support for the air electrode catalyst layer and a platinum nanoparticle catalyst support for the fuel electrode catalyst layer. According to this invention [2], the electroconductive composite particle of this invention [1] can be manufactured. According to the present invention [3], there is provided a composition capable of easily forming an electrode catalyst layer of a fuel cell containing the conductive composite particles of the present invention [1] suitable as a carrier for a platinum nanoparticle catalyst. be able to. The conductive composite particles of the present invention [1] contained in the electrode catalyst layer of the fuel cell of the present invention [4] are composed of titanium oxide particles and tin oxide fine particle layers having resistance to oxidation and resistance to strong acids. The conductive composite particles are highly conductive, have a high specific surface area suitable for supporting platinum nanoparticle catalysts, suppress the peeling of the tin oxide layer from the titanium oxide particles, and operate for a long time. Since it is highly conductive later, it is possible to provide an electrode catalyst layer for a fuel cell with little change over time. According to the present invention [5], it is possible to provide a highly reliable fuel cell comprising the fuel cell electrode catalyst layer of the present invention [4] with little change over time.

燃料電池の断面構造の模式図の一例である。It is an example of the schematic diagram of the cross-section of a fuel cell. 実施例1で作製した導電性複合粒子の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of conductive composite particles produced in Example 1. FIG. 実施例1で作製した導電性複合粒子の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of conductive composite particles produced in Example 1. FIG. 実施例1で作製した導電性複合粒子の透過電子顕微鏡付属のエネルギー分散型X線分光分析装置によるTiマッピングである。It is Ti mapping by the energy dispersive X-ray-spectral-analysis apparatus attached to the transmission electron microscope of the electroconductive composite particle produced in Example 1. FIG. 実施例1で作製した導電性複合粒子の透過電子顕微鏡付属のエネルギー分散型X線分光分析装置によるSnマッピングである。It is Sn mapping by the energy dispersive X-ray-spectral-analysis apparatus attached to the transmission electron microscope of the electroconductive composite particle produced in Example 1. FIG. 実施例1で作製した導電性複合粒子の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of conductive composite particles produced in Example 1. FIG. 実施例1で作製した導電性複合粒子を、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置で定量分析したポイントを示す透過型電子顕微鏡写真である。It is a transmission electron microscope photograph which shows the point which carried out the quantitative analysis of the electroconductive composite particle produced in Example 1 with the energy dispersive X-ray-spectral-analysis apparatus attached to the transmission electron microscope. 実施例5で作製した導電性複合粒子を、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置で定量分析したポイントを示す透過型電子顕微鏡写真である。It is a transmission electron microscope photograph which shows the point which quantitatively analyzed the electroconductive composite particle produced in Example 5 with the energy dispersive X-ray-spectral-analysis apparatus attached to the transmission electron microscope.

以下、本発明を実施形態に基づいて具体的に説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.

〔導電性複合粒子〕
本発明の導電性複合粒子は、酸化チタン粒子の表面が、酸化錫微粒子層で被覆された導電性複合粒子であって、導電性複合粒子の比表面積が、酸化チタン粒子の比表面積の2〜20倍であり、透過電子顕微鏡に付属のエネルギー分散型X線分光分析で、酸化チタン粒子表面と酸化錫微粒子層との界面にPが存在することを特徴とする。このPは、酸化チタン粒子表面に、酸化錫微粒子層の前駆体である水酸化錫からなる被覆層を析出させる時に、Pを含む分散剤を添加しておき、この後、水酸化錫層が表面に析出した酸化チタン粒子を加熱することにより、酸化チタン粒子表面と酸化錫微粒子層との界面に存在させることができる。このPは、酸化チタン粒子中のチタンと、リン酸塩を形成することにより、酸化チタン粒子中のチタンの、酸化錫微粒子層への拡散を抑制する、と考えられる。ここで、酸化錫微粒子とは、平均粒径が30nm以下のものをいい、酸化錫微粒子層とは、酸化チタン粒子の表面を、酸化錫微粒子が0.1μm以下の厚さで被覆しているものをいう。酸化錫微粒子の平均粒径が30nmを超えると、白金ナノ粒子触媒の担持量が不足してしまい、酸化錫微粒子層の厚さが、0.1μmを超えると、酸化錫微粒子層が酸化チタン粒子から剥離してしまう。ここで、酸化錫微粒子の平均粒径と、酸化錫微粒子層の厚さは、透過型電子顕微鏡(TEM)写真による観察結果から算出する(n=20)。
[Conductive composite particles]
The conductive composite particles of the present invention are conductive composite particles in which the surface of the titanium oxide particles is coated with a tin oxide fine particle layer, and the specific surface area of the conductive composite particles is 2 to 2 of the specific surface area of the titanium oxide particles. It is 20 times, and is characterized in that P is present at the interface between the titanium oxide particle surface and the tin oxide fine particle layer in the energy dispersive X-ray spectroscopic analysis attached to the transmission electron microscope. This P is prepared by adding a dispersant containing P when depositing a coating layer made of tin hydroxide, which is a precursor of the tin oxide fine particle layer, on the surface of the titanium oxide particles. By heating the titanium oxide particles deposited on the surface, they can be present at the interface between the titanium oxide particle surface and the tin oxide fine particle layer. This P is considered to suppress diffusion of titanium in the titanium oxide particles into the tin oxide fine particle layer by forming a phosphate with titanium in the titanium oxide particles. Here, the tin oxide fine particles mean those having an average particle size of 30 nm or less, and the tin oxide fine particle layer means that the surface of the titanium oxide particles is covered with a thickness of 0.1 μm or less. Say things. When the average particle diameter of the tin oxide fine particles exceeds 30 nm, the supported amount of the platinum nanoparticle catalyst is insufficient, and when the thickness of the tin oxide fine particle layer exceeds 0.1 μm, the tin oxide fine particle layer becomes the titanium oxide particles. Will peel off. Here, the average particle diameter of the tin oxide fine particles and the thickness of the tin oxide fine particle layer are calculated from the observation result by a transmission electron microscope (TEM) photograph (n = 20).

図2に、後述する実施例1で作製した導電性複合粒子の走査型電子顕微鏡写真を示す。また、実施例1で作製した導電性複合粒子について、図3に透過型電子顕微鏡写真を、図4に透過電子顕微鏡付属のエネルギー分散型X線分光分析装置(EDS)によるTiマッピングを、図5に同装置によるSnマッピングを示す。図2から、導電性複合粒子は、表面に微細粒子が存在することがわかる。図3から、微細粒子が、層状で、導電性複合粒子の表面に存在することがわかる。さらに、図4および図5から、酸化チタン粒子の表面に、酸化錫微粒子層が存在することが確認できる。   In FIG. 2, the scanning electron micrograph of the electroconductive composite particle produced in Example 1 mentioned later is shown. Moreover, about the electroconductive composite particle produced in Example 1, FIG. 3 shows a transmission electron micrograph, FIG. 4 shows Ti mapping by an energy dispersive X-ray spectrometer (EDS) attached to the transmission electron microscope, and FIG. Shows Sn mapping by the same device. From FIG. 2, it can be seen that the conductive composite particles have fine particles on the surface. FIG. 3 shows that the fine particles are layered and exist on the surface of the conductive composite particles. Furthermore, it can be confirmed from FIGS. 4 and 5 that a tin oxide fine particle layer is present on the surface of the titanium oxide particles.

次に、図6に、実施例1で作製した導電性複合粒子の透過型電子顕微鏡写真を、図7に、実施例1で作製した導電性複合粒子を、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置(EDS)で定量分析したポイントを示す透過型電子顕微鏡写真を示す。また、図8に、実施例5で作製した導電性複合粒子を、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置で定量分析したポイントを示す透過型電子顕微鏡写真を示す。図7で、酸化チタン粒子表面と酸化錫微粒子層との界面であるポイント4〜6では、Pが0.71〜1.88原子%であり、Pが存在する。一方、酸化チタン粒子内部のポイント7〜9では、Pは、0〜0.24原子%である。酸化錫微粒子層であるポイント1〜3では、Pが1.74〜2.59原子%である。酸化錫微粒子層中でPが存在する場所は、明確ではないが、酸化錫微粒子表面であると推測され、酸化錫微粒子表面のPが、酸化錫微粒子中の錫の拡散を抑制すると考えられる。また、図8で、酸化チタン粒子表面と酸化錫微粒子層との界面であるポイント2では、Pが5.03原子%であり、Pが存在する。ここで、O、P、TiおよびSnの定量分析は、日本電子(株)製電界放射型透過電子顕微鏡(型番:JEM−2010F)に付属のエネルギー分散型X線分光分析装置(EDS)により、加速電圧:200kV、プローブ径:1nmの測定条件で行い、5回測定での平均値とする。   Next, FIG. 6 shows a transmission electron micrograph of the conductive composite particles produced in Example 1, and FIG. 7 shows the conductive composite particles produced in Example 1 as an energy dispersive X attached to the transmission electron microscope. The transmission electron micrograph which shows the point quantitatively analyzed with the line | wire spectroscopy analyzer (EDS) is shown. FIG. 8 shows a transmission electron micrograph showing points obtained by quantitatively analyzing the conductive composite particles produced in Example 5 using an energy dispersive X-ray spectroscopic analyzer attached to the transmission electron microscope. In FIG. 7, at points 4 to 6, which are the interface between the titanium oxide particle surface and the tin oxide fine particle layer, P is 0.71 to 1.88 atomic%, and P is present. On the other hand, at points 7 to 9 inside the titanium oxide particles, P is 0 to 0.24 atomic%. At points 1 to 3 which are tin oxide fine particle layers, P is 1.74 to 2.59 atomic%. The location where P is present in the tin oxide fine particle layer is not clear, but is presumed to be on the surface of the tin oxide fine particle, and P on the surface of the tin oxide fine particle is considered to suppress the diffusion of tin in the tin oxide fine particle. Moreover, in FIG. 8, P is 5.03 atomic% and P exists in the point 2 which is an interface of a titanium oxide particle surface and a tin oxide fine particle layer. Here, the quantitative analysis of O, P, Ti and Sn is performed by an energy dispersive X-ray spectrometer (EDS) attached to a field emission transmission electron microscope (model number: JEM-2010F) manufactured by JEOL Ltd. The measurement is carried out under the measurement conditions of acceleration voltage: 200 kV and probe diameter: 1 nm, and the average value is obtained in five measurements.

酸化チタン粒子表面と酸化錫微粒子層との界面に存在するPの含有量が0.71原子%未満であると、酸化錫へのチタンの拡散抑制が不十分になり易く、長時間の燃料電池運転後の導電性が低下してしまい易い。また、酸化チタン粒子表面と酸化錫微粒子層との界面に存在するPを、上述のエネルギー分散型X線分光分析装置を用い、スポット系:1nmで分析した結果では、Pの含有量の最大値は、5.03原子%であった。   When the content of P present at the interface between the surface of the titanium oxide particles and the tin oxide fine particle layer is less than 0.71 atomic%, the diffusion of titanium into the tin oxide is likely to be insufficiently suppressed, and the fuel cell is prolonged. The conductivity after operation tends to decrease. In addition, as a result of analyzing P present at the interface between the titanium oxide particle surface and the tin oxide fine particle layer with the above-described energy dispersive X-ray spectrometer at 1 nm, the maximum value of the P content Was 5.03 atomic%.

導電性複合粒子のBET比表面積は、酸化チタン粒子のBET比表面積の2〜20倍であるため、白金ナノ粒子触媒の担持に適しており、5〜15倍であると好ましい。導電性複合粒子のBET比表面積が、酸化チタン粒子のBET比表面積の2倍未満であると、白金ナノ粒子触媒の担持量が不足し、20倍を超えると、酸化錫微粒子層が酸化チタン粒子から剥離してしまう。ここで、比表面積は、QUANTACHROME社製窒素吸着測定装置(型番:AUTOSORB−1)を用いた窒素吸着によるBET法で、測定する。   Since the BET specific surface area of the conductive composite particles is 2 to 20 times the BET specific surface area of the titanium oxide particles, it is suitable for supporting a platinum nanoparticle catalyst, and preferably 5 to 15 times. When the BET specific surface area of the conductive composite particles is less than twice the BET specific surface area of the titanium oxide particles, the supported amount of the platinum nanoparticle catalyst is insufficient, and when the BET specific surface area exceeds 20 times, the tin oxide fine particle layer becomes the titanium oxide particles. Will peel off. Here, the specific surface area is measured by a BET method by nitrogen adsorption using a nitrogen adsorption measuring device (model number: AUTOSORB-1) manufactured by QUANTACHROME.

酸化チタン粒子の比表面積は、1〜10m/gであると、好ましい。1m/g未満では、導電性複合粒子の比表面積を高くしにくく、10m/gを超えると、酸化チタン粒子の凝集力が強くなり、均一に分散させにくくなる。 The specific surface area of the titanium oxide particles is preferably 1 to 10 m 2 / g. If it is less than 1 m 2 / g, it is difficult to increase the specific surface area of the conductive composite particles, and if it exceeds 10 m 2 / g, the cohesive force of the titanium oxide particles becomes strong and difficult to disperse uniformly.

酸化チタンの結晶形は、特に限定されるわけではないが、ルチル型が好ましい。アナターゼ型やブルッカイト型では、熱安定性、結晶安定性が、ルチル型よりも劣る為、触媒用途に適していないと思われる。かつ、表面に酸化錫微粒子の前駆体を、共沈法等により析出、または形成し難いので工夫が必要である。   The crystal form of titanium oxide is not particularly limited, but the rutile type is preferable. The anatase type and brookite type are inferior to the rutile type in terms of thermal stability and crystal stability, and thus are not suitable for catalyst applications. In addition, it is difficult to deposit or form a precursor of tin oxide fine particles on the surface by a coprecipitation method or the like.

酸化錫微粒子層は、酸化チタン粒子に導電性を付与し、さらに、白金ナノ粒子触媒を担持するために、多孔質であると好ましい。ここで、酸化錫は、その一部がSnO2−δ(式中、δは0〜0.5である)の構造に還元されていると、導電性の点から、好ましい。また、酸化錫は、Sb、P、F、Cl等でドープされていると、還元されている酸化錫の導電性等を安定化させることができ、より好ましい。 The tin oxide fine particle layer is preferably porous in order to impart conductivity to the titanium oxide particles and further support the platinum nanoparticle catalyst. Here, it is preferable from the viewpoint of conductivity that a part of the tin oxide is reduced to a structure of SnO 2−δ (where δ is 0 to 0.5). Further, it is more preferable that tin oxide is doped with Sb, P, F, Cl or the like because the conductivity of the reduced tin oxide can be stabilized.

酸化錫が、Sbでドープされる場合には、SnOとSbの合計:100質量部に対して、Sbを、0質量部より多く、25質量部以下で含むことが好ましい。25重量部より多いと、不純物が析出することにより剥離しやすくなる、白金触媒が担持しにくくなるという問題がある。ここで、SnとSbの分析は、ICP法で行い、SnはすべてSnOであり、SbはすべてSbであるものとして、計算する。 When tin oxide is doped with Sb, the total amount of SnO 2 and Sb 2 O 5 : 100 parts by mass of Sb 2 O 5 may be contained in an amount of more than 0 parts by mass and 25 parts by mass or less. preferable. When the amount is more than 25 parts by weight, there is a problem that it becomes difficult to carry the platinum catalyst because the impurities are easily deposited due to precipitation. Here, the analysis of Sn and Sb is performed by the ICP method, and calculation is performed assuming that Sn is all SnO 2 and Sb is all Sb 2 O 5 .

酸化錫微粒子層を構成する酸化錫微粒子の平均粒径は、1〜20nmであると、高比表面積化による白金ナノ粒子触媒の担持量増加の観点から好ましい。   The average particle diameter of the tin oxide fine particles constituting the tin oxide fine particle layer is preferably 1 to 20 nm from the viewpoint of increasing the supported amount of the platinum nanoparticle catalyst by increasing the specific surface area.

酸化錫微粒子層は、0.005〜0.07μmの厚さであると、高比表面積化による白金ナノ粒子触媒の担持量増加、酸化チタン粒子への導電性付与の観点から好ましい。   The tin oxide fine particle layer having a thickness of 0.005 to 0.07 μm is preferable from the viewpoint of increasing the supported amount of the platinum nanoparticle catalyst by increasing the specific surface area and imparting conductivity to the titanium oxide particles.

酸化錫微粒子層は、導電性複合粒子:100質量部に対して、20〜70質量部であると、比表面積、導電性の観点から好ましい。   The tin oxide fine particle layer is preferably 20 to 70 parts by mass with respect to 100 parts by mass of the conductive composite particles from the viewpoint of specific surface area and conductivity.

導電性複合粒子の圧粉体抵抗率は、10000Ω・cm未満であると好ましい。ここで、導電性複合粒子の圧粉体抵抗率は、三菱化学アナリテック製粉体抵抗測定システム(型番:MCP−PD51)型を用い、試料質量を5.0gとし、9.8MPaの圧力下で測定する。   The green compact resistivity of the conductive composite particles is preferably less than 10,000 Ω · cm. Here, the green compact resistivity of the conductive composite particles is a powder resistance measurement system (model number: MCP-PD51) manufactured by Mitsubishi Chemical Analytech, the sample mass is 5.0 g, and the pressure is 9.8 MPa. taking measurement.

このように、導電性複合粒子は、酸化チタン粒子表面と接触する酸化錫微粒子層との界面にPが存在し、このPが、長時間の燃料電池運転中に、酸化チタン粒子中のチタンが、酸化錫微粒子層に拡散することを抑制するため、燃料電池の長時間運転での劣化の加速試験である高温保持試験後の圧粉体抵抗率の増加が3%未満以下であり、経時変化が少ない高信頼性の燃料電池の電極触媒層を提供することができる。   Thus, in the conductive composite particles, P exists at the interface with the tin oxide fine particle layer in contact with the surface of the titanium oxide particles, and this P is the titanium in the titanium oxide particles during long-time fuel cell operation. In order to suppress diffusion into the tin oxide fine particle layer, the increase in the green compact resistivity after the high temperature holding test, which is an accelerated test of deterioration of the fuel cell for a long time, is less than 3%, and changes with time Therefore, it is possible to provide a highly reliable electrode catalyst layer for a fuel cell.

〔導電性複合粒子の製造方法〕
本発明の導電性複合粒子の製造方法は、
(A)酸化チタン粒子と、Pを含む分散剤と、水とを含む、酸化チタン粒子含有分散液に、SnClを溶解した水溶液を滴下し、酸化チタン粒子表面に、水酸化錫からなる被覆層を析出させる工程、
(B)水酸化錫からなる被覆層を析出させた酸化チタン粒子を、300〜1000℃で加熱する工程、
を、この順に含むことを特徴とする。
[Method for producing conductive composite particles]
The method for producing the conductive composite particles of the present invention includes:
(A) An aqueous solution in which SnCl 4 is dissolved is added dropwise to a titanium oxide particle-containing dispersion containing titanium oxide particles, a dispersant containing P, and water, and the titanium oxide particles are coated with tin hydroxide. Depositing the layer,
(B) a step of heating the titanium oxide particles on which the coating layer made of tin hydroxide is deposited at 300 to 1000 ° C .;
Are included in this order.

(A)工程で、酸化チタン粒子表面に、水酸化錫からなる被覆層を析出させるための、酸化チタン粒子含有分散液への、SnClを溶解した水溶液の滴下は、10〜90℃、pH3〜9で、10分〜6時間かけて行うと、被覆後の導電性複合粒子の比表面積の観点から好ましい。ここで、酸化チタン粒子については、上述のとおりである。 In step (A), dropwise addition of an aqueous solution in which SnCl 4 is dissolved into the titanium oxide particle-containing dispersion for depositing a coating layer made of tin hydroxide on the surface of the titanium oxide particles is 10 to 90 ° C., pH 3 When it is carried out over 10 minutes to 6 hours, it is preferable from the viewpoint of the specific surface area of the conductive composite particles after coating. Here, the titanium oxide particles are as described above.

酸化チタン粒子含有分散液に含有されるPを含む分散剤としては、無機リン酸塩、リン酸エステルとその塩が挙げられる。無機リン酸塩は、化学的に安定であることから、表面処理業界において広く用いられており、特に、リン酸亜鉛皮膜は,防錆・潤滑・塗装下地用途などに幅広く採用されている。リン酸鉄以外のリン酸塩であれば、得られる被膜が、結晶性であり、皮膜結晶自体にイオン透過性がないことが知られており、酸化チタン粒子表面と酸化錫微粒子層との界面に存在するPを含有する皮膜として適している。   Examples of the dispersant containing P contained in the titanium oxide particle-containing dispersion include inorganic phosphates, phosphate esters and salts thereof. Inorganic phosphates are widely used in the surface treatment industry because they are chemically stable. In particular, zinc phosphate coatings are widely used for rust prevention, lubrication, paint base applications, and the like. If it is a phosphate other than iron phosphate, it is known that the resulting film is crystalline, and the film crystal itself is not ion permeable, and the interface between the titanium oxide particle surface and the tin oxide fine particle layer. It is suitable as a film containing P present in

無機リン酸塩としては、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸四ナトリウム、トリポリリン酸ナトリウム、テトラリン酸ナトリウム、ヘキサメタリン酸ナトリウム等が挙げられ、リン酸二水素ナトリウムが好ましい。   Examples of inorganic phosphates include sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, tetrasodium pyrophosphate, sodium tripolyphosphate, sodium tetraphosphate, sodium hexametaphosphate, and sodium dihydrogen phosphate. Is preferred.

リン酸エステルとその塩としては、ADEKA製モノアルキルリン酸塩(品名:アデカコール);
東邦化学工業製ラウリルリン酸アルキルエーテルリン酸エステル(品名:フオスフアノール ED−200、LB−400、LS−500、ML−240、RB−410、RD−720、RL−210、RP−710、RS−610、GB−520、LP−700、ML−220、RA−600、RD−510Y、RD−720N、RL−310、RS−410、RS−710);
第一工業製薬製ポリオキシエチレントリデシルエーテルリン酸エステル(品名:プライサーフ A212C、A215C)、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル(品名:プライサーフ AL、AL12H)、ポリオキシエチレンアルキルエーテルリン酸エステル(品名:プライサーフ A208F)、ポリオキシエチレンアルキルエーテルリン酸エステルモノエタノールアミン塩(品名:プライサーフ M208F)、ポリオキシエチレンアルキルエーテルリン酸エステル(品名:プライサーフ A208N、A210D)、ポリオキシエチレンラウリルエーテルリン酸エステル(品名:プライサーフ A208B、A219B)、ポリオキシエチレンラウリルエーテルリン酸エステルモノエタノールアミン塩(品名:プライサーフ DB−01、DB−02)、アルキルリン酸エステルナトリウム(品名:プライサーフ DBS)、アルキルリン酸エステルモノエタノールアミン塩(品名:プライサーフ DOM);
日光ケミカルズ製ポリオキシエチレンラウリルエーテルリン酸(品名:NIKKOL DLP−10)、ポリオキシエチレンオレイルエーテルリン酸ナトリウム(品名:NIKKOL DOP−8NV)、ポリオキシエチレンアルキル(C12〜15)エーテルリン酸(品名:NIKKOL DDP−2)、ポリオキシエチレンアルキル(C12〜15)エーテルリン酸 (品名:NIKKOL DDP−4)、ポリオキシエチレンアルキル(C12〜15)エーテルリン酸(品名:NIKKOL DDP−6)、酸化エチレンを平均8モル付加したポリオキシエチレンアルキル(C12〜15)エーテルリン酸(品名:NIKKOL DDP−8)、酸化エチレンを平均10モル付加したポリオキシエチレンアルキル(C12〜15)エーテルリン酸(品名:NIKKOL DDP−10)、ポリオキシエチレンラウリルエーテルリン酸ナトリウム(品名:NIKKOL TLP−4)、ポリオキシエチレンセチルエーテルリン酸ナトリウム(品名:NIKKOL TCP−5)、リン酸トリオレイル(品名:NIKKOL TOP−0V)、ポリオキシエチレンアルキル(C12〜15)エーテルリン酸(品名:NIKKOL TDP−2)、ポリオキシエチレンアルキル(C12〜15)エーテルリン酸(品名:NIKKOL TDP−6)、ポリオキシエチレンアルキル(C12〜15)エーテルリン酸(品名:NIKKOL TDP−8)、ポリオキシエチレンアルキル(C12〜15)エーテルリン酸(品名:NIKKOL TDP−10);
日光ケミカルズ製水添レシチン(品名:NIKKOL レシノールシリーズ)等が挙げられ、炭素数が2〜5のカルボン酸エステル基を持つものが好ましい。
As phosphate ester and its salt, ADEKA monoalkyl phosphate (product name: Adekacol);
Lauryl phosphate alkyl ether phosphate ester manufactured by Toho Chemical Industries (Product names: Fusphenol ED-200, LB-400, LS-500, ML-240, RB-410, RD-720, RL-210, RP-710, RS- 610, GB-520, LP-700, ML-220, RA-600, RD-510Y, RD-720N, RL-310, RS-410, RS-710);
Daiichi Kogyo Seiyaku Co., Ltd. polyoxyethylene tridecyl ether phosphate ester (Product name: Prisurf A212C, A215C), polyoxyethylene styrenated phenyl ether phosphate ester (Product name: Prisurf AL, AL12H), polyoxyethylene alkyl ether phosphorus Acid ester (Product name: Plysurf A208F), Polyoxyethylene alkyl ether phosphate monoethanolamine salt (Product name: Plysurf M208F), Polyoxyethylene alkyl ether phosphate ester (Product name: Plysurf A208N, A210D), Polyoxy Ethylene lauryl ether phosphate (Product name: Prisurf A208B, A219B), Polyoxyethylene lauryl ether phosphate monoethanolamine salt (Product name: Plastic Isafu DB-01, DB-02), alkyl phosphate ester Sodium (product name: Plysurf DBS), alkyl phosphoric acid ester monoethanolamine salt (product name: Plysurf DOM);
Polyoxyethylene lauryl ether phosphate (product name: NIKKOL DLP-10), sodium polyoxyethylene oleyl ether phosphate (product name: NIKKOL DOP-8NV), polyoxyethylene alkyl (C 12-15 ) ether phosphate (manufactured by Nikko Chemicals) Product name: NIKKOL DDP-2), polyoxyethylene alkyl ( C12-15 ) ether phosphate (product name: NIKKOL DDP-4), polyoxyethylene alkyl ( C12-15 ) ether phosphate (product name: NIKKOL DDP-6) ), Polyoxyethylene alkyl (C 12-15 ) ether phosphoric acid added with an average of 8 mol of ethylene oxide (product name: NIKKOL DDP-8), polyoxyethylene alkyl added with an average of 10 mol of ethylene oxide (C 12-15 ) Ete Phosphoric acid (product name: NIKKOL DDP-10), polyoxyethylene lauryl ether sodium phosphate (product name: NIKKOL TLP-4), polyoxyethylene cetyl ether sodium phosphate (product name: NIKKOL TCP-5), trioleyl phosphate ( Product name: NIKKOL TOP-0V), polyoxyethylene alkyl ( C12-15 ) ether phosphate (product name: NIKKOL TDP-2), polyoxyethylene alkyl ( C12-15 ) ether phosphate (product name: NIKKOL TDP-6) ), Polyoxyethylene alkyl (C 12-15 ) ether phosphate (product name: NIKKOL TDP-8), polyoxyethylene alkyl (C 12-15 ) ether phosphate (product name: NIKKOL TDP-10);
Examples thereof include hydrogenated lecithin (product name: NIKKOL lecinol series) manufactured by Nikko Chemicals, and those having a carboxylic acid ester group having 2 to 5 carbon atoms are preferred.

(A)工程で用いる酸化チタン粒子含有分散液:100質量部に対して、酸化チタン粒子は、被覆後の導電性複合粒子の比表面積と導電性の観点から0.5〜5質量部であると好ましく、Pを含む分散剤は、酸化錫へのチタン拡散抑制の観点から0.1〜1.0質量部であると好ましい。   (A) Titanium oxide particle-containing dispersion used in the step: 100 parts by mass of titanium oxide particles is 0.5 to 5 parts by mass from the viewpoint of specific surface area and conductivity of the conductive composite particles after coating. Preferably, the dispersant containing P is preferably 0.1 to 1.0 part by mass from the viewpoint of suppressing titanium diffusion into tin oxide.

(B)工程で、水酸化錫からなる被覆層を析出させた酸化チタン粒子を加熱する工程は、300〜1000℃で行う。300℃未満では、水酸化錫が酸化錫に分解しきらず、1000℃を超えると、酸化錫が粗大になり、比表面積が小さくなってしまう。また、水酸化錫からなる被覆層を析出させた酸化チタン粒子を加熱する工程は、空気中、窒素等の不活性ガス雰囲気、またはアルゴン+水素等の還元ガス雰囲気中で、水酸化錫を酸化錫に分解すればよく、10分〜6時間行うと、作業工程時間の観点から好ましい。   In the step (B), the step of heating the titanium oxide particles on which the coating layer made of tin hydroxide is deposited is performed at 300 to 1000 ° C. If it is less than 300 degreeC, a tin hydroxide will not fully decompose into tin oxide, and if it exceeds 1000 degreeC, a tin oxide will become coarse and a specific surface area will become small. In addition, the step of heating the titanium oxide particles on which the coating layer made of tin hydroxide is deposited includes oxidizing the tin hydroxide in air, an inert gas atmosphere such as nitrogen, or a reducing gas atmosphere such as argon + hydrogen. What is necessary is just to decompose | disassemble into tin, and it is preferable from a viewpoint of work process time to carry out for 10 minutes-6 hours.

以下、酸化錫として、Sbドープ酸化錫を使用する導電性複合粒子の製造方法の一例を、説明する。まず、(A)酸化チタン粒子と、Pを含む分散剤を、水に加え、温度:10〜90℃で撹拌しながら加熱保持し、酸化チタン粒子を均一に分散させ、酸化チタン粒子含有分散液を調製する。この酸化チタン粒子含有分散液に、SnClとSbClを溶解した水溶液を、10〜90℃、pH3〜9で、10分〜6時間かけて滴下し、酸化チタン粒子表面に、Sb含有水酸化錫からなる被覆層を析出させる。次に、表面に、Sb含有水酸化錫からなる被覆層を析出させた酸化チタン粒子を濾別し、洗浄する。この後、(B)空気中、窒素等の不活性ガス雰囲気、またはアルゴン+水素等の還元ガス雰囲気中、300〜1000℃で10分〜6時間加熱することにより、導電性複合粒子を得ることができる。 Hereinafter, an example of the manufacturing method of the electroconductive composite particle which uses Sb dope tin oxide as a tin oxide is demonstrated. First, (A) a titanium oxide particle and a dispersant containing P are added to water, and heated and held with stirring at a temperature of 10 to 90 ° C. to uniformly disperse the titanium oxide particles. To prepare. An aqueous solution in which SnCl 4 and SbCl 3 are dissolved is dropped into this titanium oxide particle-containing dispersion at 10 to 90 ° C. and pH 3 to 9 for 10 minutes to 6 hours, and Sb-containing hydroxide is added to the surface of the titanium oxide particles. A coating layer made of tin is deposited. Next, the titanium oxide particles on which the coating layer made of Sb-containing tin hydroxide is deposited are separated by filtration and washed. Thereafter, (B) conductive composite particles are obtained by heating at 300 to 1000 ° C. for 10 minutes to 6 hours in air, an inert gas atmosphere such as nitrogen, or a reducing gas atmosphere such as argon + hydrogen. Can do.

〔燃料電池の電極触媒層用組成物〕
本発明の燃料電池の電極触媒層用組成物(以下、電極触媒層用組成物という)は、上記導電性複合粒子と、分散媒とを含有する。電極触媒層は、燃料極触媒層および空気極触媒層からなる群より選択される少なくとも1種の触媒層である。導電性複合粒子に、白金ナノ粒子を担持させる方法としては、電極触媒層用組成物中の導電性複合粒子に、白金ナノ粒子触媒を担持させても良いが、作業性の観点から、予め導電性複合粒子に白金ナノ粒子触媒を担持させた後、電極触媒層用組成物とする方が好ましい。ここで、白金ナノ粒子触媒を担持させる方法は、導電性複合粒子を分散させた溶液中に、白金ナノ粒子分散液を撹拌しながら添加した後、乾燥する等の公知の方法でよい。
[Composition for electrode catalyst layer of fuel cell]
The composition for an electrode catalyst layer of a fuel cell according to the present invention (hereinafter referred to as an electrode catalyst layer composition) contains the conductive composite particles and a dispersion medium. The electrode catalyst layer is at least one catalyst layer selected from the group consisting of a fuel electrode catalyst layer and an air electrode catalyst layer. As a method of supporting the platinum nanoparticles on the conductive composite particles, the platinum nanoparticle catalyst may be supported on the conductive composite particles in the composition for the electrode catalyst layer. After the platinum nanoparticle catalyst is supported on the conductive composite particles, the electrode catalyst layer composition is preferred. Here, the method for supporting the platinum nanoparticle catalyst may be a known method such as adding the platinum nanoparticle dispersion liquid to the solution in which the conductive composite particles are dispersed while stirring and then drying.

分散媒は、導電性複合粒子を分散し、かつ電極触媒層用組成物の成膜性を向上させる。分散媒としては、水が好ましい。分散媒は、電極触媒層用組成物:100質量部に対して、50〜99質量部が好ましい。   The dispersion medium disperses the conductive composite particles and improves the film formability of the electrode catalyst layer composition. As the dispersion medium, water is preferable. The dispersion medium is preferably 50 to 99 parts by mass with respect to 100 parts by mass of the electrode catalyst layer composition.

電極触媒層用組成物は、バインダーを含むと、電極触媒層用組成物の密着強度を高くするため、好ましい。バインダーとしては、アクリル樹脂、ポリカーボネート、ポリエステル等のポリマー型バインダーや、金属石鹸、金属錯体、金属アルコキシド、金属アルコキシドの加水分解物等のノンポリマー型バインダーが挙げられる。   When the composition for electrode catalyst layers contains a binder, since the adhesive strength of the composition for electrode catalyst layers is made high, it is preferable. Examples of the binder include polymer type binders such as acrylic resin, polycarbonate, and polyester, and non-polymer type binders such as metal soaps, metal complexes, metal alkoxides, and hydrolysates of metal alkoxides.

電極触媒層用組成物は、本発明の本発明の目的を損なわない範囲で、さらに必要に応じ、酸化防止剤、レベリング剤、揺変剤、フィラー、応力緩和剤、導電性ポリマー、その他の添加剤等を配合することができる。   The composition for the electrode catalyst layer is within a range that does not impair the object of the present invention, and, if necessary, an antioxidant, a leveling agent, a thixotropic agent, a filler, a stress relaxation agent, a conductive polymer, and other additives. An agent or the like can be blended.

電極触媒層用組成物は、導電性複合粒子を含む所望の成分を、常法により、ペイントシェーカー、ボールミル、サンドミル、セントリミル、三本ロール等によって混合し、導電性複合粒子等を分散させ、作製することができる。無論、通常の攪拌操作によって製造することもできる。   The composition for the electrode catalyst layer is prepared by mixing the desired components including the conductive composite particles by a paint shaker, ball mill, sand mill, centrimill, three rolls, etc., and dispersing the conductive composite particles, etc. by a conventional method. can do. Of course, it can also be produced by a normal stirring operation.

〔電極触媒層〕
上述のようにして得られた電極触媒層用組成物を、キャリアテープ等の上に、所望の厚さになるように湿式塗工した後、乾燥、場合により焼成することにより、燃料電池の電極触媒層を製造することができる。また、電極極触媒層は、キャリアテープの代わりに、電解質膜上、または集電体である多孔質支持層上に、電極触媒層用組成物を、所望の厚さになるように湿式塗工した後、乾燥、場合により焼成して形成することができる。
(Electrocatalyst layer)
The electrode catalyst layer composition obtained as described above is wet-coated on a carrier tape or the like so as to have a desired thickness, and then dried and optionally fired. A catalyst layer can be produced. In addition, the electrode electrode catalyst layer may be applied by wet coating the electrode catalyst layer composition to a desired thickness on the electrolyte membrane or on the porous support layer as a current collector instead of the carrier tape. And then dried and optionally fired.

湿式塗工法は、スプレーコーティング法、ディスペンサーコーティング法、ナイフコーティング法、スリットコーティング法、ドクターブレード法、スクリーン印刷法、オフセット印刷法またはダイコーティング法のいずれかであることが好ましいが、これに限られるものではなく、あらゆる方法を利用できる。   The wet coating method is preferably, but not limited to, a spray coating method, a dispenser coating method, a knife coating method, a slit coating method, a doctor blade method, a screen printing method, an offset printing method, or a die coating method. Any method can be used.

上述のように、燃料電池の電極触媒層に含有される導電性複合粒子は、酸化に対する耐性と、強酸に対する耐性を有する、酸化チタン粒子と酸化錫微粒子層で構成され;導電性複合粒子は、導電性が高く、長時間の燃料電池運転後にも高導電性である。したがって、得られる燃料電池の電極触媒層は、長時間の燃料電池運転での経時変化が少ないので、高信頼性の燃料電池を製造することができる。   As described above, the conductive composite particles contained in the electrode catalyst layer of the fuel cell are composed of titanium oxide particles and tin oxide fine particle layers having resistance to oxidation and resistance to strong acids; High conductivity and high conductivity even after prolonged fuel cell operation. Therefore, since the electrode catalyst layer of the obtained fuel cell is less likely to change with time during long-time fuel cell operation, a highly reliable fuel cell can be manufactured.

〔燃料電池〕
本発明の燃料電池は、上述の燃料電池の電極触媒層を備える。図1に、燃料電池の断面構造の模式図の一例を示す。燃料電池1は、電解質膜20を、燃料極10と空気極30でサンドイッチして構成されている。燃料極10は、燃料極触媒層11と、集電体である多孔質支持層12とを有しており、空気極30は、空気極触媒層31と、集電体である多孔質支持層32を有している。本発明の燃料電池の電極触媒層に含まれる導電性複合粒子は、酸化に対する耐性と、強酸に対する耐性を有する、酸化錫微粒子層と安価な酸化チタン粒子とで構成されている観点から、空気極触媒層31での使用に適しており、白金ナノ粒子触媒の一酸化炭素被毒対策に有効な酸化錫微粒子を有する観点から、燃料極触媒層11での使用に適している。燃料電池1としては、固体高分子型燃料電池、直接型メタノール燃料電池、リン酸型燃料電池等が挙げられ、白金ナノ粒子触媒の一酸化炭素被毒の問題が顕著な固体高分子型燃料電池であると好ましい。燃料電池1が、固体高分子型燃料電池である場合には、電解質膜20には、フッ素系イオン交換膜等が用いられ、多孔質支持層12、32には、多孔質のカーボンペーパー等が用いられる。
〔Fuel cell〕
The fuel cell of the present invention includes the above-described fuel cell electrode catalyst layer. FIG. 1 shows an example of a schematic diagram of a cross-sectional structure of a fuel cell. The fuel cell 1 is configured by sandwiching an electrolyte membrane 20 between a fuel electrode 10 and an air electrode 30. The fuel electrode 10 includes a fuel electrode catalyst layer 11 and a porous support layer 12 that is a current collector. The air electrode 30 includes an air electrode catalyst layer 31 and a porous support layer that is a current collector. 32. From the viewpoint that the conductive composite particles contained in the electrode catalyst layer of the fuel cell of the present invention are composed of a tin oxide fine particle layer and inexpensive titanium oxide particles that have resistance to oxidation and resistance to strong acids. It is suitable for use in the catalyst layer 31 and is suitable for use in the fuel electrode catalyst layer 11 from the viewpoint of having fine tin oxide particles effective for carbon monoxide poisoning countermeasures for the platinum nanoparticle catalyst. Examples of the fuel cell 1 include a polymer electrolyte fuel cell, a direct methanol fuel cell, a phosphoric acid fuel cell, and the like, and a polymer electrolyte fuel cell in which the problem of carbon monoxide poisoning of the platinum nanoparticle catalyst is remarkable. Is preferable. When the fuel cell 1 is a polymer electrolyte fuel cell, a fluorine-based ion exchange membrane or the like is used for the electrolyte membrane 20, and porous carbon paper or the like is used for the porous support layers 12 and 32. Used.

燃料電池1は、多孔質支持層12、燃料極触媒層11、電解質膜20、空気極触媒層31、多孔質支持層32の順になるように積層して製造することができる。   The fuel cell 1 can be manufactured by stacking the porous support layer 12, the fuel electrode catalyst layer 11, the electrolyte membrane 20, the air electrode catalyst layer 31, and the porous support layer 32 in this order.

得られた燃料電池の電極触媒層は、導電性複合粒子を含有する。この導電性複合粒子は、酸化に対する耐性と、強酸に対する耐性を有する酸化錫微粒子層と酸化チタン粒子で構成され;白金ナノ粒子触媒を担持させる酸化錫微粒子層は、白金の一酸化炭素被毒への耐性が高く;導電性複合粒子は、高導電性であり、長時間の燃料電池運転後にも導電性の低下が抑制されるので、この燃料電池の電極触媒層を備える燃料電池は、高信頼性である。   The electrode catalyst layer of the obtained fuel cell contains conductive composite particles. This conductive composite particle is composed of a tin oxide fine particle layer and a titanium oxide particle having resistance to oxidation and resistance to strong acid; the tin oxide fine particle layer supporting the platinum nanoparticle catalyst is subjected to platinum monoxide poisoning. Since the conductive composite particles are highly conductive and the decrease in conductivity is suppressed even after long-time operation of the fuel cell, the fuel cell including the fuel cell electrode catalyst layer is highly reliable. It is sex.

以下に、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.

〔実施例1〕
水:800cmに、5m/gの比表面積を有する市販の酸化チタン粒子:30gと燐化学工業製リン酸二水素ナトリウム:1.5gを加え、温度:90℃で撹拌しながら加熱保持し、酸化チタン粒子を均一に分散させ、酸化チタン粒子含有分散液を調製した。撹拌を続けながら、この酸化チタン粒子含有分散液に、水:200cmにSnCl:40gとSbCl:2.1gを溶解した塩化錫水溶液、および水酸化ナトリウム水溶液を、25℃、pH3〜9の範囲で0.5時間かけて滴下し、加水分解させて、酸化チタン粒子表面に、Sb含有水酸化錫からなる被覆層を析出させた白色のスラリーを得た。次に、表面に、Sb含有水酸化錫からなる被覆層を析出させた酸化チタン粒子を濾別し、洗浄した後、空気中、500℃で2時間加熱することにより、実施例1の導電性複合粒子を得た。
[Example 1]
Water: 800 cm 3 of commercial titanium oxide particles having a specific surface area of 5 m 2 / g: 30 g and phosphoric acid industry sodium dihydrogen phosphate: 1.5 g were added, and the temperature was maintained at 90 ° C. with stirring. The titanium oxide particles were uniformly dispersed to prepare a dispersion containing titanium oxide particles. While continuing stirring, to this titanium oxide particle-containing dispersion, an aqueous solution of tin chloride in which SnCl 4 : 40 g and SbCl 3 : 2.1 g were dissolved in water: 200 cm 3 and an aqueous sodium hydroxide solution were added at 25 ° C., pH 3-9. Was added dropwise over a period of 0.5 hours and hydrolyzed to obtain a white slurry in which a coating layer made of Sb-containing tin hydroxide was deposited on the surface of the titanium oxide particles. Next, the titanium oxide particles having a coating layer made of Sb-containing tin hydroxide deposited on the surface were filtered off, washed, and then heated in air at 500 ° C. for 2 hours, whereby the conductivity of Example 1 was obtained. Composite particles were obtained.

〔実施例2〕
リン酸二水素ナトリウムの代わりに、第一工業製薬製ポリオキシエチレントリデシルエーテルリン酸エステル(品名:プライサーフ A212C):5gを加え、温度:50℃で撹拌しながら、酸化チタン粒子含有分散液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および水酸化ナトリウム水溶液を、1時間かけて滴下したこと、Sb含有水酸化錫からなる被覆層を析出させた酸化チタン粒子を、窒素中、600℃で2時間加熱したこと以外は、実施例1と同様にして、実施例2の導電性複合粒子を得た。
[Example 2]
In place of sodium dihydrogen phosphate, 5 g of polyoxyethylene tridecyl ether phosphate ester (product name: Prisurf A212C) manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. is added, and the dispersion containing titanium oxide particles is stirred at a temperature of 50 ° C. Prepared by adding a tin chloride aqueous solution and a sodium hydroxide aqueous solution to the titanium oxide particle-containing dispersion over 1 hour, and depositing a coating layer made of Sb-containing tin hydroxide with nitrogen oxide particles. Medium conductive composite particles of Example 2 were obtained in the same manner as in Example 1 except that heating was performed at 600 ° C. for 2 hours.

〔実施例3〕
水:800cmに、1m/gの比表面積を有する市販の酸化チタン粒子:30gと第一工業製薬製ポリオキシエチレントリデシルエーテルリン酸エステル(品名:プライサーフ A212C):3gを加え、温度:20℃で撹拌しながら、酸化チタン粒子含有分散液を調製したこと、水:200cmにSnCl:20gとSbCl:1.0gを溶解して塩化錫水溶液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および水酸化ナトリウム水溶液を、1時間かけて滴下したこと以外は、実施例1と同様にして、実施例3の導電性複合粒子を得た。
Example 3
Water: 800 cm 3 of commercial titanium oxide particles having a specific surface area of 1 m 2 / g: 30 g and Daiichi Kogyo Seiyaku Co., Ltd. polyoxyethylene tridecyl ether phosphate ester (product name: Plysurf A212C): 3 g : Titanium oxide particle-containing dispersion was prepared while stirring at 20 ° C., water: SnCl 4 : 20 g and SbCl 3 : 1.0 g were dissolved in 200 cm 3 to prepare a tin chloride aqueous solution, titanium oxide particles Conductive composite particles of Example 3 were obtained in the same manner as in Example 1 except that a tin chloride aqueous solution and a sodium hydroxide aqueous solution were dropped into the containing dispersion over 1 hour.

参考例1
水:800cmに、10m/gの比表面積を有する市販の酸化チタン粒子:30gと東邦化学工業製ラウリルリン酸アルキルエーテルリン酸エステル(品名:フオスフアノール ED−200):5gを加え、温度:50℃で撹拌しながら、酸化チタン粒子含有分散液を調製したこと、水:200cmにSnCl:30gとSbCl:1.6gを溶解して塩化錫水溶液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および水酸化ナトリウム水溶液を、1時間かけて滴下したこと以外は、実施例1と同様にして、参考例1の導電性複合粒子を得た。
[ Reference Example 1 ]
Water: Commercially available titanium oxide particles having a specific surface area of 10 m 2 / g: 30 g and 800 g 3 of water: 5 g of lauryl phosphate alkyl ether phosphate ester (product name: Fusphanol ED-200) manufactured by Toho Chemical Industry, temperature: Preparation of a dispersion containing titanium oxide particles while stirring at 50 ° C., preparation of an aqueous tin chloride solution by dissolving SnCl 4 : 30 g and SbCl 3 : 1.6 g in water: 200 cm 3 , containing titanium oxide particles The conductive composite particles of Reference Example 1 were obtained in the same manner as in Example 1 except that an aqueous tin chloride solution and an aqueous sodium hydroxide solution were added dropwise to the dispersion over 1 hour.

〔実施例5〕
リン酸二水素ナトリウムの添加量を5.0gにして酸化チタン粒子含有分散液を調製したこと以外は、実施例1と同様にして、実施例5の導電性複合粒子を得た。
Example 5
Conductive composite particles of Example 5 were obtained in the same manner as Example 1 except that the amount of sodium dihydrogen phosphate added was 5.0 g to prepare a dispersion containing titanium oxide particles.

参考例2
リン酸二水素ナトリウムの添加量を5.0gにして、酸化チタン粒子含有分散液を調製したこと、水:200cmにSnCl:40gを溶解して、SbClを添加しないで塩化錫水溶液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および水酸化ナトリウム水溶液を、1時間かけて滴下したこと、水酸化錫からなる被覆層を析出させた酸化チタン粒子を1000℃で加熱したこと以外は、実施例1と同様にして、参考例2の導電性複合粒子を得た。
[ Reference Example 2 ]
The amount of sodium dihydrogen phosphate added was 5.0 g to prepare a dispersion containing titanium oxide particles, SnCl 4 : 40 g was dissolved in water: 200 cm 3, and an aqueous tin chloride solution was added without adding SbCl 3. Preparation, that a titanium chloride aqueous solution and a sodium hydroxide aqueous solution were dropped into the titanium oxide particle-containing dispersion over 1 hour, and titanium oxide particles on which a coating layer made of tin hydroxide was deposited were heated at 1000 ° C. Except that, the conductive composite particles of Reference Example 2 were obtained in the same manner as Example 1.

〔実施例7〕
リン酸二水素ナトリウムの添加量を5.0gにして、酸化チタン粒子含有分散液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および塩化錫水溶液水酸化ナトリウム水溶液を、1時間かけて滴下したこと、水酸化錫からなる被覆層を析出させた酸化チタン粒子を300℃で加熱したこと以外は、実施例1と同様にして、実施例7の導電性複合粒子を得た。
Example 7
The amount of sodium dihydrogen phosphate added was 5.0 g to prepare a titanium oxide particle-containing dispersion, and an aqueous tin chloride solution and an aqueous tin chloride solution of sodium hydroxide were added to the titanium oxide particle-containing dispersion over 1 hour. The conductive composite particles of Example 7 were obtained in the same manner as in Example 1, except that the titanium oxide particles on which the coating layer made of tin hydroxide was deposited were heated at 300 ° C.

〔比較例1〕
水:800cmに、1m/gの比表面積を有する市販の酸化チタン粒子:30gと第一工業製薬製ポリオキシエチレントリデシルエーテルリン酸エステル(品名:プライサーフ A212C):5gを加え、温度:50℃で撹拌しながら、酸化チタン粒子含有分散液を調製したこと、水:200cmにSnCl:7.5gとSbCl:0.124gを溶解して塩化錫水溶液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および水酸化ナトリウム水溶液を、3分かけて滴下したこと、Sb含有水酸化錫からなる被覆層を析出させた酸化チタン粒子を窒素中、1050℃で10時間加熱したこと以外は、実施例1と同様にして、比較例1の導電性複合粒子を得た。
[Comparative Example 1]
Water: to 800 cm 3, a commercially available titanium oxide particles having a specific surface area of 1 m 2 / g: 30 g and manufactured by Dai-ichi Kogyo Seiyaku Co. polyoxyethylene tridecyl ether phosphate (product name: Plysurf A212C): 5g was added, the temperature : A titanium oxide particle-containing dispersion was prepared with stirring at 50 ° C, water: SnCl 4 : 7.5 g and SbCl 3 : 0.124 g were dissolved in 200 cm 3 to prepare a tin chloride aqueous solution, oxidation A titanium chloride aqueous solution and a sodium hydroxide aqueous solution were dropped into the titanium particle-containing dispersion over 3 minutes, and the titanium oxide particles on which the coating layer made of Sb-containing tin hydroxide was deposited were in nitrogen at 1050 ° C. for 10 hours. Except having been heated, the conductive composite particles of Comparative Example 1 were obtained in the same manner as in Example 1.

〔比較例2〕
水:800cmに、5m/gの比表面積を有する市販の酸化チタン粒子:30gを加え、リン酸二水素ナトリウムを添加しないで酸化チタン粒子含有分散液を調製したこと、塩化錫水溶液を使用しないで、酸化チタン粒子含有分散液に、エタノール:200cmにSnCl:75gを溶解した溶液を、2時間かけて滴下したこと以外は、実施例1と同様にして、比較例2の導電性複合粒子を得た。
[Comparative Example 2]
Water: Commercially available titanium oxide particles having a specific surface area of 5 m 2 / g in 800 cm 3 : 30 g was added, and a dispersion containing titanium oxide particles was prepared without adding sodium dihydrogen phosphate, using an aqueous tin chloride solution In the same manner as in Example 1, except that a solution of SnCl 4 : 75 g dissolved in ethanol: 200 cm 3 was added dropwise to the titanium oxide particle-containing dispersion over 2 hours, the conductivity of Comparative Example 2 Composite particles were obtained.

〔比較例3〕
水:800cmに、5m/gの比表面積を有する市販の酸化チタン粒子:30gを加え、リン酸二水素ナトリウムを添加しないで酸化チタン粒子含有分散液を調製したこと、水:200cmにSnCl:75gを溶解して、SbClを添加しないで塩化錫水溶液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および水酸化ナトリウム水溶液を、3分かけて滴下したこと、水酸化錫からなる被覆層を析出させた酸化チタン粒子を800℃で加熱したこと以外は、実施例1と同様にして、比較例3の導電性複合粒子を得た。
[Comparative Example 3]
Water: to 800 cm 3, a commercially available titanium oxide particles having a specific surface area of 5 m 2 / g: adding 30g, that was prepared containing titanium oxide particles dispersion without addition of sodium dihydrogen phosphate, water: to 200 cm 3 SnCl 4 : 75 g was dissolved, and an aqueous tin chloride solution was prepared without adding SbCl 3. An aqueous tin chloride solution and an aqueous sodium hydroxide solution were added dropwise to the titanium oxide particle-containing dispersion over 3 minutes. Conductive composite particles of Comparative Example 3 were obtained in the same manner as in Example 1 except that the titanium oxide particles on which the coating layer made of tin oxide was deposited were heated at 800 ° C.

〔比較例4〕
4.5m/gの比表面積を有する市販の酸化チタン粒子を使用した。
[Comparative Example 4]
Commercially available titanium oxide particles having a specific surface area of 4.5 m 2 / g were used.

〔比較例5〕
67m/gの比表面積を有する三菱マテリアル製アンチモンドープ酸化錫粒子を使用した。
[Comparative Example 5]
Mitsubishi Materials antimony-doped tin oxide particles having a specific surface area of 67 m 2 / g were used.

〔比較例6〕
リン酸二水素ナトリウムの添加量を0.5gにして、酸化チタン粒子含有分散液を調製したこと、水:200cmにSnCl:20gとSbCl:1gを溶解して塩化錫水溶液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および水酸化ナトリウム水溶液を、1時間かけて滴下したこと、Sb含有水酸化錫からなる被覆層を析出させた酸化チタン粒子を1200℃で加熱したこと以外は、実施例1と同様にして、比較例6の導電性複合粒子を得た。
[Comparative Example 6]
The amount of sodium dihydrogen phosphate added was 0.5 g to prepare a titanium oxide particle-containing dispersion, and SnCl 4 : 20 g and SbCl 3 : 1 g were dissolved in water: 200 cm 3 to prepare an aqueous tin chloride solution. In addition, a titanium chloride aqueous solution and a sodium hydroxide aqueous solution were added dropwise to the titanium oxide particle-containing dispersion over 1 hour, and the titanium oxide particles on which the coating layer made of Sb-containing tin hydroxide was deposited were heated at 1200 ° C. Except for this, the conductive composite particles of Comparative Example 6 were obtained in the same manner as in Example 1.

〔比較例7〕
水:800cmに、1m/gの比表面積を有する市販の酸化チタン粒子:30gとリン酸二水素ナトリウム:3.0gを加えて、酸化チタン粒子含有分散液を調製したこと、水:200cmにSnCl:100gとSbCl:5.3gを溶解して塩化錫水溶液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および水酸化ナトリウム水溶液を、3時間かけて滴下したこと、Sb含有水酸化錫からなる被覆層を析出させた酸化チタン粒子を1200℃で加熱したこと以外は、実施例1と同様にして、比較例7の導電性複合粒子を得た。
[Comparative Example 7]
Water: 800 cm 3 and commercially available titanium oxide particles having a specific surface area of 1 m 2 / g: 30 g and sodium dihydrogen phosphate: 3.0 g were added to prepare a dispersion containing titanium oxide particles, water: 200 cm A tin chloride aqueous solution was prepared by dissolving SnCl 4 : 100 g and SbCl 3 : 5.3 g in No. 3 , and a tin chloride aqueous solution and a sodium hydroxide aqueous solution were dropped into the titanium oxide particle-containing dispersion over 3 hours. The conductive composite particles of Comparative Example 7 were obtained in the same manner as in Example 1 except that the titanium oxide particles on which the coating layer made of Sb-containing tin hydroxide was deposited were heated at 1200 ° C.

〔比較例8〕
水:800cmに、1m/gの比表面積を有する市販の酸化チタン粒子:30gとリン酸二水素ナトリウム:3.0gを加えて、酸化チタン粒子含有分散液を調製したこと、水:200cmにSnCl:20gとSbCl:1.0gを溶解して塩化錫水溶液を調製したこと、酸化チタン粒子含有分散液に、塩化錫水溶液および水酸化ナトリウム水溶液を、1時間かけて滴下したこと、Sb含有水酸化錫からなる被覆層を析出させた酸化チタン粒子を250℃で30分加熱したこと以外は、実施例1と同様にして、比較例8の導電性複合粒子を得た。
[Comparative Example 8]
Water: 800 cm 3 and commercially available titanium oxide particles having a specific surface area of 1 m 2 / g: 30 g and sodium dihydrogen phosphate: 3.0 g were added to prepare a dispersion containing titanium oxide particles, water: 200 cm 3. SnCl 4 : 20 g and SbCl 3 : 1.0 g were dissolved in 3 to prepare a tin chloride aqueous solution, and a tin chloride aqueous solution and a sodium hydroxide aqueous solution were added dropwise to the titanium oxide particle-containing dispersion over 1 hour. The conductive composite particles of Comparative Example 8 were obtained in the same manner as in Example 1 except that the titanium oxide particles on which the coating layer made of Sb-containing tin hydroxide was deposited were heated at 250 ° C. for 30 minutes.

〔走査型電子顕微鏡、および透過型電子顕微鏡による観察〕
実施例1で作製した導電性複合粒子を、日立ハイテクノロジー製走査型電子顕微鏡で観察した。図2に、走査型電子顕微鏡写真を示す。また、実施例1で作製した導電性複合粒子を、日本電子製過型電子顕微鏡(型番:JEM−2010F)、および透過電子顕微鏡付属のEDSで観察した。図3に透過型電子顕微鏡写真を、図4に透過電子顕微鏡付属のEDSによるTiマッピングを、図5に同装置によるSnマッピングを示す。図2〜5から、導電性複合粒子は、酸化チタン粒子の表面が、多孔質の酸化錫微粒子層で被覆されていることがわかった。次に、図6に、実施例1で作製した導電性複合粒子の透過型電子顕微鏡写真を、図7に、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置で定量分析したポイントを示す透過型電子顕微鏡写真を示し、表1に、各ポイントでの定量分析結果を示す。また、図8に、実施例5で作製した導電性複合粒子の透過電子顕微鏡写真と、透過電子顕微鏡付属のエネルギー分散型X線分光分析装置で定量分析したポイントを示す透過型電子顕微鏡写真を示し、表2に、各ポイントでの定量分析結果を示す。次に、表3に、実施例1〜7、比較例1〜8の酸化錫微粒子の状態の観察結果、酸化チタン粒子表面と酸化錫微粒子層との界面に存在するPの含有量(表3には、P含有量と記載した)を示す。ここで、O、P、TiおよびSnの定量分析は、日本電子(株)製電界放射型透過電子顕微鏡(型番:JEM−2010F)に付属のエネルギー分散型X線分光分析装置(EDS)により、加速電圧:200kV、プローブ径:1nmの測定条件で行い、5回測定での平均値とした。
[Observation with scanning electron microscope and transmission electron microscope]
The conductive composite particles prepared in Example 1 were observed with a scanning electron microscope manufactured by Hitachi High Technology. FIG. 2 shows a scanning electron micrograph. In addition, the conductive composite particles produced in Example 1 were observed with a JEOL over-type electron microscope (model number: JEM-2010F) and an EDS attached to a transmission electron microscope. FIG. 3 shows a transmission electron micrograph, FIG. 4 shows Ti mapping by EDS attached to the transmission electron microscope, and FIG. 5 shows Sn mapping by the same apparatus. 2-5, it turned out that the electroconductive composite particle has the surface of the titanium oxide particle coat | covered with the porous tin oxide fine particle layer. Next, FIG. 6 is a transmission electron micrograph of the conductive composite particles produced in Example 1, and FIG. 7 is a transmission showing the points quantitatively analyzed with an energy dispersive X-ray spectrometer attached to the transmission electron microscope. A type electron micrograph is shown, and Table 1 shows the results of quantitative analysis at each point. FIG. 8 shows a transmission electron micrograph of the conductive composite particles produced in Example 5 and a transmission electron micrograph showing the points quantitatively analyzed by the energy dispersive X-ray spectrometer attached to the transmission electron microscope. Table 2 shows the results of quantitative analysis at each point. Next, Table 3 shows the observation results of the state of the tin oxide fine particles of Examples 1 to 7 and Comparative Examples 1 to 8, the content of P existing at the interface between the titanium oxide particle surface and the tin oxide fine particle layer (Table 3). Is described as P content). Here, the quantitative analysis of O, P, Ti and Sn is performed by an energy dispersive X-ray spectrometer (EDS) attached to a field emission transmission electron microscope (model number: JEM-2010F) manufactured by JEOL Ltd. The measurement was carried out under the measurement conditions of acceleration voltage: 200 kV and probe diameter: 1 nm, and the average value was obtained from five measurements.

〔BET比表面積の測定〕
実施例1〜5、7参考例1、2、比較例1〜8のBET比表面積を、QUANTACHROME社製窒素吸着測定装置(型番:AUTOSORB−1)を用いた窒素吸着によるBET法で、測定した。次に、実施例1〜5、7、比較例1〜3、6〜8のBET比表面積と、原料である酸化チタン粒子のBET比表面積の比を求めた。表3に、これらの結果を示す。
[Measurement of BET specific surface area]
The BET specific surface areas of Examples 1 to 5 , 7 and Reference Examples 1 and 2 and Comparative Examples 1 to 8 were measured by the BET method by nitrogen adsorption using a nitrogen adsorption measuring device (model number: AUTOSORB-1) manufactured by QUANTACHROME. did. Next, the ratio of the BET specific surface area of Examples 1 to 5 , 7 and Comparative Examples 1 to 3 and 6 to 8 and the BET specific surface area of the titanium oxide particles as the raw material was determined. Table 3 shows these results.

〔圧粉体抵抗率〕
実施例1〜5、7参考例1、2、比較例1〜8の圧粉体抵抗率を、三菱化学アナリテック製粉体抵抗測定システム(型番:MCP−PD51)型を用い、試料質量を5.0gとし、9.8MPaの圧力下で測定した。表3に、結果を示す。なお、比較例4と比較例8の圧粉体抵抗率は、粉体抵抗測定システムの測定範囲外であった。
[Green compact resistivity]
Using the powder resistance measurement system (model number: MCP-PD51) manufactured by Mitsubishi Chemical Analytech, the powder mass resistivity of Examples 1 to 5 , 7 and Reference Examples 1 and 2 and Comparative Examples 1 to 8 was used. The pressure was 5.0 g and the measurement was performed under a pressure of 9.8 MPa. Table 3 shows the results. In addition, the green compact resistivity of the comparative example 4 and the comparative example 8 was out of the measurement range of the powder resistance measurement system.

〔高温保持試験〕
燃料電池の長時間運転での劣化の加速試験として、実施例1〜5、7参考例1、2、比較例1〜3、6、7の粉末を、窒素雰囲気中で500℃、100時間保持する高温保持試験を行った。その後に、圧粉体抵抗率を測定し、高温保持試験前と比較し、圧粉体抵抗率が3%以上増加した試料を不合格(×)、圧粉体抵抗率の増加が3%未満、変化なし及び低下したものを合格(○)として、表3に示す。
[High temperature holding test]
As an accelerated test for deterioration of a fuel cell over a long period of time, the powders of Examples 1 to 5 and 7 , Reference Examples 1 and 2, and Comparative Examples 1 to 3, 6, and 7 were mixed at 500 ° C. for 100 hours in a nitrogen atmosphere. A high temperature holding test was performed. After that, the green compact resistivity was measured, and compared with the sample before the high temperature holding test, the sample with the green compact resistivity increased by 3% or more was rejected (x), and the increase in the green compact resistivity was less than 3%. The results are shown in Table 3, with no change and those with a decrease (passed).

表1からわかるように、酸化チタン粒子表面と酸化錫微粒子層との界面である表1のポイント4〜6では、Pが0.71〜1.88原子%と、Pが存在した。一方、酸化チタン粒子内部のポイント7〜9では、Pは、0〜0.24原子%であった。酸化錫微粒子層であるポイント1〜3では、Pが1.74〜2.59原子%であった。また、酸化チタン粒子表面と酸化錫微粒子層との界面である表2のポイント2では、Pが5.03原子%と、Pが存在した。   As can be seen from Table 1, at points 4 to 6 in Table 1 which is the interface between the titanium oxide particle surface and the tin oxide fine particle layer, P was 0.71 to 1.88 atomic% and P was present. On the other hand, at points 7 to 9 inside the titanium oxide particles, P was 0 to 0.24 atomic%. At points 1 to 3 which are tin oxide fine particle layers, P was 1.74 to 2.59 atomic%. Further, at point 2 in Table 2 which is the interface between the titanium oxide particle surface and the tin oxide fine particle layer, P was 5.03 atomic% and P was present.

表3から明らかなように、実施例1〜5、7は、BET比表面積が所望の範囲内であり、圧粉体抵抗率が低く、また、透過電子顕微鏡に付属のエネルギー分散型X線分光分析で、酸化チタン粒子表面と酸化錫微粒子層との界面にPが存在するため、高温保持試験での結果も良好であった。したがって、白金ナノ粒子触媒を担持するための担体として適していることがわかった。これに対して、比較例1では、酸化チタン粒子の表面を被覆する酸化錫粒子の平均粒径が0.04〜0.05μmと粗大になり、酸化錫微粒子ではなく、導電性複合粒子の比表面積が、酸化チタン粒子の比表面積の1.9倍と低いため、白金ナノ粒子触媒の担持量が不足し、白金ナノ粒子触媒の担持に適さなかった。また、比較例2では、酸化錫微粒子からなる層ではなく、酸化錫が一体に連なった0.03〜0.04μm厚の膜状で酸化チタン粒子の表面を被覆し、酸化チタン粒子の比表面積に対する導電性複合粒子の比表面積の割合が非常に小さく、高温保持試験後に圧粉体抵抗率が3%以上増加した。酸化チタン粒子表面と酸化錫微粒子層との界面にPが存在しなかった比較例3では、高温保持試験後に圧粉体抵抗率が3%以上増加した。酸化チタン粒子表面と酸化錫微粒子層との界面にPが存在しなかったため、チタンの酸化錫への拡散が抑制されなかった、と考えられる。酸化チタン粒子を用いた比較例4は、導電性がなく、酸化錫微粒子を用いた比較例5では、凝集が激しく、ハンドリング性が悪かったため、高温保持試験後の圧粉体抵抗率の測定ができなかった。比較例6は、酸化チタン粒子の比表面積に対する導電性複合粒子の比表面積の割合が小さいため、白金ナノ粒子触媒の担持に適さず、酸化チタン粒子表面と酸化錫微粒子層との界面にPが存在したが、高温保持試験後に圧粉体抵抗率が3%以上増加した。酸化チタン粒子の比表面積に対する導電性複合粒子の比表面積の割合が大きい比較例7は、酸化錫微粒子層が厚く、酸化錫微粒子層が酸化チタン粒子から剥離し、白金ナノ粒子触媒の担持性が低下してしまった。比較例8は、酸化チタン粒子の表面に析出させた水酸化錫が加熱時に分解しきらなかったため、導電性が得られなかった。 As apparent from Table 3, Examples 1 to 5 and 7 have a BET specific surface area within a desired range, a low powder resistivity, and energy dispersive X-ray spectroscopy attached to the transmission electron microscope. In the analysis, P was present at the interface between the titanium oxide particle surface and the tin oxide fine particle layer, and the result in the high temperature holding test was also good. Therefore, it turned out that it is suitable as a support | carrier for carry | supporting a platinum nanoparticle catalyst. On the other hand, in Comparative Example 1, the average particle diameter of the tin oxide particles covering the surface of the titanium oxide particles becomes as coarse as 0.04 to 0.05 μm, and the ratio of the conductive composite particles, not the tin oxide fine particles. Since the surface area was as low as 1.9 times the specific surface area of the titanium oxide particles, the supported amount of the platinum nanoparticle catalyst was insufficient, and it was not suitable for supporting the platinum nanoparticle catalyst. In Comparative Example 2, the surface of the titanium oxide particles was coated with a film having a thickness of 0.03 to 0.04 μm in which tin oxide was integrally formed, not a layer composed of tin oxide fine particles, and the specific surface area of the titanium oxide particles was The ratio of the specific surface area of the conductive composite particles to the particle size was very small, and the compact resistivity increased by 3% or more after the high temperature holding test. In Comparative Example 3 in which P was not present at the interface between the titanium oxide particle surface and the tin oxide fine particle layer, the green compact resistivity increased by 3% or more after the high temperature holding test. It is considered that diffusion of titanium into tin oxide was not suppressed because P did not exist at the interface between the titanium oxide particle surface and the tin oxide fine particle layer. In Comparative Example 4 using titanium oxide particles, there was no conductivity, and in Comparative Example 5 using tin oxide fine particles, agglomeration was severe and handling properties were poor. could not. In Comparative Example 6, since the ratio of the specific surface area of the conductive composite particles to the specific surface area of the titanium oxide particles is small, it is not suitable for supporting the platinum nanoparticle catalyst, and P is present at the interface between the titanium oxide particle surface and the tin oxide fine particle layer. Although present, the green compact resistivity increased by 3% or more after the high temperature holding test. In Comparative Example 7, in which the ratio of the specific surface area of the conductive composite particles to the specific surface area of the titanium oxide particles is large, the tin oxide fine particle layer is thick, the tin oxide fine particle layer is peeled off from the titanium oxide particles, and the platinum nanoparticle catalyst is supported. It has fallen. In Comparative Example 8, the conductivity was not obtained because tin hydroxide deposited on the surface of the titanium oxide particles could not be decomposed during heating.

1 燃料電池
10 燃料極
11 燃料極触媒層
12 多孔質支持層
20 電解質膜
30 空気極
31 空気極触媒層
32 多孔質支持層
DESCRIPTION OF SYMBOLS 1 Fuel cell 10 Fuel electrode 11 Fuel electrode catalyst layer 12 Porous support layer 20 Electrolyte membrane 30 Air electrode 31 Air electrode catalyst layer 32 Porous support layer

Claims (5)

酸化チタン粒子の表面が、酸化錫微粒子層で被覆された導電性複合粒子であって、導電性複合粒子の比表面積が、酸化チタン粒子の比表面積の〜20倍であり、透過電子顕微鏡に付属のエネルギー分散型X線分光分析で、酸化チタン粒子表面と酸化錫微粒子層との界面にPが0.71〜5.03原子%存在することを特徴とする、導電性複合粒子。 The surface of the titanium oxide particle is a conductive composite particle coated with a tin oxide fine particle layer, and the specific surface area of the conductive composite particle is 5 to 20 times the specific surface area of the titanium oxide particle. Conductive composite particles characterized in that 0.7 to 5.03 atomic% of P is present at the interface between the titanium oxide particle surface and the tin oxide fine particle layer in the attached energy dispersive X-ray spectroscopic analysis. (A)酸化チタン粒子と、Pを含む分散剤と、水とを含む、酸化チタン粒子含有分散液に、SnClを溶解した水溶液を10〜90℃で滴下し、酸化チタン粒子表面に、水酸化錫からなる被覆層を析出させる工程、
(B)水酸化錫からなる被覆層を析出させた酸化チタン粒子を、300〜1000℃で加熱する工程、
を、この順に含むことを特徴とする、請求項1記載の導電性複合粒子の製造方法。
(A) An aqueous solution of SnCl 4 dissolved in a titanium oxide particle-containing dispersion containing titanium oxide particles, a dispersant containing P, and water is dropped at 10 to 90 ° C., and water is added to the surface of the titanium oxide particles. Depositing a coating layer of tin oxide;
(B) a step of heating the titanium oxide particles on which the coating layer made of tin hydroxide is deposited at 300 to 1000 ° C .;
In this order, the manufacturing method of the electroconductive composite particle of Claim 1 characterized by the above-mentioned.
請求項1記載の導電性複合粒子と、分散媒とを含有する、燃料電池の電極触媒層用組成物。   A composition for an electrode catalyst layer of a fuel cell, comprising the conductive composite particles according to claim 1 and a dispersion medium. 請求項1記載の導電性複合粒子を含有する、燃料電池の電極触媒層。   An electrode catalyst layer for a fuel cell, comprising the conductive composite particles according to claim 1. 請求項4記載の燃料電池の電極触媒層を備える、燃料電池。   A fuel cell comprising the electrode catalyst layer of the fuel cell according to claim 4.
JP2013017275A 2013-01-31 2013-01-31 Conductive composite particles and method for producing the same Active JP6084050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013017275A JP6084050B2 (en) 2013-01-31 2013-01-31 Conductive composite particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013017275A JP6084050B2 (en) 2013-01-31 2013-01-31 Conductive composite particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014148431A JP2014148431A (en) 2014-08-21
JP6084050B2 true JP6084050B2 (en) 2017-02-22

Family

ID=51571747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013017275A Active JP6084050B2 (en) 2013-01-31 2013-01-31 Conductive composite particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP6084050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885198B (en) * 2023-09-08 2023-12-08 浙江帕瓦新能源股份有限公司 Precursor, preparation method, positive electrode material and sodium ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141616A (en) * 1984-12-11 1986-06-28 Ishihara Sangyo Kaisha Ltd Electrically conductive titanium dioxide fine powder, and production thereof
EP1647997B1 (en) * 2003-07-23 2012-04-11 Ishihara Sangyo Kaisha, Ltd. Electroconductive powder and method for production thereof
JP4999418B2 (en) * 2006-10-06 2012-08-15 シャープ株式会社 ELECTRODE CATALYST FOR DIRECT FUEL CELL, FUEL DIRECT FUEL CELL USING THE SAME, AND ELECTRONIC DEVICE
JP2011054508A (en) * 2009-09-04 2011-03-17 Mitsubishi Materials Corp White conductive powder

Also Published As

Publication number Publication date
JP2014148431A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
Ji et al. Efficient and clean synthesis of graphene supported platinum nanoclusters and its application in direct methanol fuel cell
Wang et al. Three-dimensionally porous graphene–carbon nanotube composite-supported PtRu catalysts with an ultrahigh electrocatalytic activity for methanol oxidation
Avasarala et al. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions
Puthiyapura et al. Investigation of supported IrO2 as electrocatalyst for the oxygen evolution reaction in proton exchange membrane water electrolyser
DE112006000396B4 (en) Oxidation-resistant electrode for fuel cell
Wang et al. Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells
Kim et al. Highly active and thermally stable core-shell catalysts for solid oxide fuel cells
Odetola et al. Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier
WO2012011200A1 (en) Titanium fuel cell separator
Jukk et al. Electrochemical reduction of oxygen on heat-treated Pd nanoparticle/multi-walled carbon nanotube composites in alkaline solution
JP6196579B2 (en) Platinum hollow nanoparticles, particle-supported catalyst body, and method for producing the catalyst body
Guo et al. Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application
Oh et al. Effects of tungsten oxide addition on the electrochemical performance of nanoscale tantalum oxide-based electrocatalysts for proton exchange membrane (PEM) fuel cells
Qu et al. ZrC–C and ZrO2–C as novel supports of Pd catalysts for formic acid electrooxidation
Cui et al. Synthesis and characterization of H5PMo10V2O40 deposited Pt/C nanocatalysts for methanol electrooxidation
JP2010272248A (en) High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst
US20230121007A1 (en) Catalyst, catalyst for water electrolysis cell, water electrolysis cell, water electrolysis device, and method for producing catalyst
US20230227989A1 (en) Electrode catalyst ink, electrode catalyst, water electrolysis cell, and water electrolyzer
Hsieh et al. Microwave-assisted synthesis and pulse electrodeposition of palladium nanocatalysts on carbon nanotube-based electrodes
Hameed et al. Ni–P–SnO2/C composite: synthesis, characterization and electrocatalytic activity for methanol oxidation in KOH solution
Chen et al. Effects of the PdO nanoflake support on electrocatalytic activity of Pt nanoparticles toward methanol oxidation in acidic solutions
Fu et al. Facile morphology controllable synthesis of PtPd nanorods on graphene-multiwalled carbon nanotube hybrid support as efficient electrocatalysts for oxygen reduction reaction
Scibioh et al. Investigation of various ionomer-coated carbon supports for direct methanol fuel cell applications
JP6084050B2 (en) Conductive composite particles and method for producing the same
Wang et al. A facile preparation of novel Pt-decorated Ti electrode for methanol electro-oxidation by high-energy micro-arc cladding technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170124

R150 Certificate of patent or registration of utility model

Ref document number: 6084050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250