JP2011054508A - White conductive powder - Google Patents

White conductive powder Download PDF

Info

Publication number
JP2011054508A
JP2011054508A JP2009204328A JP2009204328A JP2011054508A JP 2011054508 A JP2011054508 A JP 2011054508A JP 2009204328 A JP2009204328 A JP 2009204328A JP 2009204328 A JP2009204328 A JP 2009204328A JP 2011054508 A JP2011054508 A JP 2011054508A
Authority
JP
Japan
Prior art keywords
powder
white
conductive
conductive powder
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009204328A
Other languages
Japanese (ja)
Inventor
Hirotoshi Umeda
洋利 梅田
Suzuo Sasaki
鈴夫 佐々木
Masamichi Murota
正道 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2009204328A priority Critical patent/JP2011054508A/en
Publication of JP2011054508A publication Critical patent/JP2011054508A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide white conductive powder which has specific conductivity and an excellent degree of white without containing harmful components such as antimony and has no risk of generating environmental pollution and has diminished burden to an environment and also lessens progress change of powder volume resistivity values. <P>SOLUTION: In the white conductive powder having a conductive layer of tin oxide on the surface of white inorganic powder, a ratio of a specific surface area of the white conductive powder and a specific surface area of the white inorganic powder is 2.0-5.0, and the powder volume resistivity value is 100-100,000 &Omega;cm. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、アンチモン等を含有せずに導電性を有し、優れた白色度を有する白色粉末に関する。より詳しくは、本発明は、白色無機粉末表面に導電層を有する白色導電性粉末であって、アンチモン等の有害成分を含有せずに導電性及び優れた白色度を有し、環境汚染等を生じる虞のない白色導電性粉末に関する。本発明の白色導電性粉末は、帯電防止、帯電制御、静電防止、防塵等の機能が必要な分野に用いられ、さらに詳しくは、帯電防止フィルムや繊維の分野、ICパッケージやテープの分野、インキ、帯電防止塗料や静電塗装材料の分野等に応用される。   The present invention relates to a white powder having conductivity and excellent whiteness without containing antimony or the like. More specifically, the present invention is a white conductive powder having a conductive layer on the surface of the white inorganic powder, having no conductivity and no harmful components such as antimony, having excellent whiteness, environmental pollution, etc. The present invention relates to a white conductive powder that is not likely to occur. The white conductive powder of the present invention is used in fields that require functions such as antistatic, charge control, antistatic, and dustproof. More specifically, the field of antistatic films and fibers, the field of IC packages and tapes, Applied to the fields of ink, antistatic paint and electrostatic coating materials.

導電粉末は帯電防止・帯電制御・静電防止・防塵等の用途に現在広く用いられている。従来、導電性を高めるために、アンチモン等をドープした導電粉末が使用されているが、近時、環境汚染防止等の観点から、アンチモンフリーの導電材料が求められている。   Conductive powders are currently widely used in applications such as antistatic, charge control, antistatic, and dustproof. Conventionally, conductive powder doped with antimony or the like has been used in order to enhance conductivity, but recently, an antimony-free conductive material is required from the viewpoint of preventing environmental pollution.

具体的には、白色度の損なわれない改良された白色導電性粉末として、酸化アンチモンをドープした酸化錫導電層を有する白色顔料において、被覆層にさらに、リン、アルミニウム、モリブデンの少なくとも1種を酸化物として少量含有させたものが開示されている(特許文献1、2)。   Specifically, in the white pigment having a tin oxide conductive layer doped with antimony oxide as an improved white conductive powder that does not impair the whiteness, the coating layer further includes at least one of phosphorus, aluminum, and molybdenum. An oxide containing a small amount is disclosed (Patent Documents 1 and 2).

また、二酸化チタン粒子表面に、リンを0.1〜10重量%含む酸化スズの被覆層を有するアンチモンを含有しない白色導電性二酸化チタン粉末(特許文献3)や、タングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか1種の元素を含む二酸化スズの被覆層を有する白色導電粉、ならびにこの白色導電粉の電子写真用トナー外添剤への応用(特許文献4)が開示されている。   Further, white conductive titanium dioxide powder not containing antimony having a tin oxide coating layer containing 0.1 to 10% by weight of phosphorus on the surface of titanium dioxide particles (Patent Document 3), tungsten, niobium, tantalum, antimony, A white conductive powder having a tin dioxide coating layer containing any one element of fluorine and phosphorus, and application of this white conductive powder to an external toner additive for electrophotography (Patent Document 4) are disclosed.

しかしながら、酸化アンチモンをドープした酸化錫導電層を有する白色顔料は、アンチモンの含有により、導電性は安定しているものの、顔料が、黒みまたは青みを帯びており、白色度が十分ではない。また、リンを0.1〜10重量%含む酸化スズの被覆層を有する白色導電性二酸化チタン粉末は、導電性が高過ぎることにより、例えば、静電気的な用途に用いると、いわゆるESD障害(静電気放電障害)が発生し、さらに安定性、特に、粉体体積抵抗値の経時変化にも問題があった。タングステン等を含む二酸化スズの被覆層を有する白色導電粉も、導電性が高過ぎることによる上記の不具合、安定性が十分でないという問題がある。   However, the white pigment having a tin oxide conductive layer doped with antimony oxide is stable in conductivity due to the inclusion of antimony, but the pigment is blackish or bluish, and the whiteness is not sufficient. Further, white conductive titanium dioxide powder having a tin oxide coating layer containing 0.1 to 10% by weight of phosphorus is so conductive that, for example, when used for electrostatic applications, so-called ESD failure (electrostatic discharge) Discharge failure) occurred, and there was also a problem in stability, in particular, change in powder volume resistance value with time. The white conductive powder having a tin dioxide coating layer containing tungsten or the like also has a problem that the above-described problems and stability due to too high conductivity are not sufficient.

特開平6−183708号公報JP-A-6-183708 特開平6−183733号公報JP-A-6-183733 特開平6−207118号公報JP-A-6-207118 特開2004−349167号公報JP 2004-349167 A

本発明者らは、白色無機粉末表面に導電層を有する白色導電性粉末であって、特定の〔(白色導電性粉末の比表面積)/(白色無機粉末の比表面積)〕の値を有する白色導電粉末を開発し、この白色導電粉末が、従来の導電粉末における上記問題を解決できることを見出した。本発明は、アンチモン等の有害成分を含有せずに、特定の導電性、および優れた白色度を有し、かつ環境汚染等を生じる虞がなく、環境への負担が少ない白色導電性粉末を提供する。さらに本発明は、粉体体積抵抗値の経時変化が少ない白色導電性粉末も提供する。   The present inventors provide a white conductive powder having a conductive layer on the surface of the white inorganic powder, and having a specific value of [(specific surface area of white conductive powder) / (specific surface area of white inorganic powder)] Conductive powder was developed, and it was found that this white conductive powder can solve the above-mentioned problems in conventional conductive powder. The present invention provides a white conductive powder that does not contain harmful components such as antimony, has a specific conductivity and excellent whiteness, does not cause environmental pollution, and has a low environmental burden. provide. Furthermore, the present invention also provides a white conductive powder with little change in powder volume resistance with time.

本発明は、以下に示す構成によって上記課題を解決した白色導電性粉末に関する。
(1)白色無機粉末表面に、酸化錫の導電層を有する白色導電性粉末であって、〔(白色導電性粉末の比表面積)/(白色無機粉末の比表面積)〕が2.0〜5.0であり、かつ粉体体積抵抗値が100〜100000Ω・cmであることを特徴とする、白色導電性粉末。
(2)白色導電性粉末のLab表色系におけるb値が、−5.0〜+2.0である、上記(1)記載の白色導電性粉末。
(3)白色無機粉末100質量部に対して、導電層が10〜50質量部である、上記(1)または(2)記載の白色導電性粉末。
(4)初期の粉体体積抵抗値を(Y)とし、100℃、相対湿度:50%で10時間保持後の粉体体積抵抗値を(Z)としたとき、〔(Y)/(Z)〕が、0.1〜1.0である、上記(1)〜(3)のいずれか記載の白色導電性粉末。
(5)酸化錫中のAl、Si、MgおよびZnが、それぞれ1質量%未満である、上記(1)〜(4)のいずれか記載の白色導電性粉末。
(6)白色無機粉末が、酸化チタンおよびチタン酸塩からなる群より選択される少なくとも一種である、上記(1)〜(5)のいずれか記載の白色導電性粉末。
(7)上記(1)〜(6)のいずれか記載の白色導電性粉末を分散してなる、分散液。
(8)上記(1)〜(6)のいずれか記載の白色導電性粉末を含有する、膜組成物。
This invention relates to the white electroconductive powder which solved the said subject with the structure shown below.
(1) White conductive powder having a tin oxide conductive layer on the surface of white inorganic powder, wherein [(specific surface area of white conductive powder) / (specific surface area of white inorganic powder)] is 2.0 to 5 A white conductive powder having a powder volume resistivity of 100 to 100,000 Ω · cm.
(2) The white conductive powder according to the above (1), wherein the b value in the Lab color system of the white conductive powder is −5.0 to +2.0.
(3) The white conductive powder according to (1) or (2), wherein the conductive layer is 10 to 50 parts by mass with respect to 100 parts by mass of the white inorganic powder.
(4) When the initial powder volume resistance value is (Y) and the powder volume resistance value after holding at 100 ° C. and relative humidity: 50% for 10 hours is (Z), [(Y) / (Z )] Is 0.1 to 1.0, the white conductive powder according to any one of (1) to (3) above.
(5) The white conductive powder according to any one of (1) to (4), wherein Al, Si, Mg and Zn in the tin oxide are each less than 1% by mass.
(6) The white conductive powder according to any one of (1) to (5), wherein the white inorganic powder is at least one selected from the group consisting of titanium oxide and titanate.
(7) A dispersion obtained by dispersing the white conductive powder according to any one of (1) to (6) above.
(8) A film composition containing the white conductive powder according to any one of (1) to (6) above.

本発明(1)の白色導電性粉末は、上記アンチモン等のドープ成分を含まずに特定の導電性、および優れた白色度を有し、アンチモン、インジウムを何れも含まないので、製造が容易であり、環境汚染を生じる懸念がなく、かつ低コストである。また、この白色導電性粉末は、水や有機溶剤等の溶媒に分散可能であるので、分散液、さらには塗料等の導電材料として用いることができ、表面抵抗が低い樹脂被膜が、容易に得られる。さらに、帯電防止、帯電制御、静電防止、防塵等の機能が必要な分野に用いられ、詳しくは、帯電防止フィルムや繊維の分野、ICパッケージやテープの分野、インキ、帯電防止塗料や静電塗装材料の分野等における導電材料として好適に使用される。また、本発明(4)の白色導電性粉末は、粉体体積抵抗値の経時変化が少なく、導電材料としてより好適である。   The white conductive powder of the present invention (1) has a specific conductivity and an excellent whiteness without containing a doping component such as antimony, and is easy to manufacture because it does not contain antimony or indium. Yes, there is no concern about environmental pollution, and the cost is low. In addition, since the white conductive powder can be dispersed in a solvent such as water or an organic solvent, it can be used as a conductive material such as a dispersion or a paint, and a resin film having a low surface resistance can be easily obtained. It is done. Furthermore, it is used in fields that require functions such as antistatic, charge control, antistatic, and dustproof, and more specifically, in the fields of antistatic films and fibers, IC packages and tapes, inks, antistatic paints and electrostatics. It is suitably used as a conductive material in the field of coating materials. In addition, the white conductive powder of the present invention (4) is more suitable as a conductive material because the powder volume resistance value hardly changes with time.

以下、本発明を実施形態に基づいて具体的に説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.

〔白色導電性粉末〕
本発明の白色導電性粉末は、白色無機粉末表面に、酸化錫の導電層を有する白色導電性粉末であって、〔(白色導電性粉末の比表面積)/(白色無機粉末の比表面積)〕が2.0〜5.0であり、かつ粉体体積抵抗値が100〜100000Ω・cmであることを特徴とする。
[White conductive powder]
The white conductive powder of the present invention is a white conductive powder having a tin oxide conductive layer on the surface of a white inorganic powder, [(specific surface area of white conductive powder) / (specific surface area of white inorganic powder)] Is 2.0 to 5.0, and the volume resistivity of the powder is 100 to 100,000 Ω · cm.

白色無機粉末は、酸化チタン、またはチタン酸カリウム、チタン酸バリウム等のチタン酸塩であると、白色度、隠蔽性の観点から好ましい。白色無機粉末は、メジアン径が0.01〜0.5μmのものが好ましい。メジアン径が0.01μm以下であると、白色無機粉末および/または白色導電性粉末の凝集の問題が生じる、白色度を損なう、多量の導電層用材料(すなわち、酸化錫)を必要とするため、コスト高になる、等の問題がある。メジアン径が0.5μm以上であると、分散時沈降等の問題が生じ易くなる。なお、白色無機粉末が、チタン酸カリウムのときは、線維径0.01〜1.0μm、繊維長さ5〜25μmのものが好ましい。ここで、メジアン径は、レーザー回折/散乱法で測定する。また、白色無機粉末の形状としては、球状、針状等が挙げられる。なお、上記メジアン径は、いわゆる一次粒子径であるが、いわゆる二次粒子径は、1〜30μmであると、導電層被覆状態の観点から好ましい。ここで、二次粒子径は、電子顕微鏡(SEM)観察により行う。   The white inorganic powder is preferably titanium oxide or a titanate such as potassium titanate or barium titanate from the viewpoints of whiteness and hiding properties. The white inorganic powder preferably has a median diameter of 0.01 to 0.5 μm. When the median diameter is 0.01 μm or less, a problem of aggregation of white inorganic powder and / or white conductive powder occurs, and a large amount of material for the conductive layer (that is, tin oxide) that impairs whiteness is required. There are problems such as high costs. When the median diameter is 0.5 μm or more, problems such as sedimentation during dispersion tend to occur. When the white inorganic powder is potassium titanate, those having a fiber diameter of 0.01 to 1.0 μm and a fiber length of 5 to 25 μm are preferable. Here, the median diameter is measured by a laser diffraction / scattering method. Examples of the shape of the white inorganic powder include a spherical shape and a needle shape. In addition, although the said median diameter is what is called a primary particle diameter, it is preferable from a viewpoint of a conductive layer coating state that what is called a secondary particle diameter is 1-30 micrometers. Here, the secondary particle diameter is determined by observation with an electron microscope (SEM).

白色無機粉末が、酸化チタンであるときには、酸化チタンの結晶形は、特に限定するわけではないがルチル型が好ましい。アナターゼ型やブルッカイト型では表面に導電層を、共沈法等により析出、または形成し難いので工夫が必要である。   When the white inorganic powder is titanium oxide, the crystal form of titanium oxide is not particularly limited, but is preferably a rutile type. The anatase type or brookite type requires a contrivance because it is difficult to deposit or form a conductive layer on the surface by a coprecipitation method or the like.

酸化錫の導電層は、白色導電性粉末に導電性を付与する。酸化錫は、その一部がSnO1.2〜2.0の構造に還元されていると、導電性、白色度の点から、好ましい。また、酸化錫は、P、F、Cl等でドープされていると、還元されている酸化錫の導電性等を安定化させることができ、より好ましい。 The conductive layer of tin oxide imparts conductivity to the white conductive powder. It is preferable from the point of electroconductivity and whiteness that a part of tin oxide is reduced to a structure of SnO 1.2 to 2.0 . Further, it is more preferable that tin oxide is doped with P, F, Cl or the like because the conductivity of the reduced tin oxide can be stabilized.

酸化錫中のAl、Si、MgおよびZnは、それぞれ1質量%未満であると好ましく、1質量%以上であると、白色無機粉末上への導電層の均一なコーティングができず、白色導電性粉末に良好な導電性が得られなくなる。ここで、酸化錫は、SnOとして換算し、Sn、Al、Si、MgおよびZnの定量は、ICP分析法により行う。 Al, Si, Mg and Zn in the tin oxide are each preferably less than 1% by mass, and if it is 1% by mass or more, the white inorganic powder cannot be uniformly coated with the conductive layer, and the white conductive Good conductivity cannot be obtained in the powder. Here, tin oxide is converted as SnO 2 , and Sn, Al, Si, Mg, and Zn are quantified by ICP analysis.

また、〔(白色導電性粉末の比表面積)/(白色無機粉末の比表面積)〕は、2.0〜5.0である。〔(白色導電性粉末の比表面積)/(白色無機粉末の比表面積)〕が、2.0未満であると白色無機粉末表面への酸化錫のコーティングが十分でなくなり、粉末体積抵抗値の経時変化等の不具合が生じ易くなる。他方、〔(白色導電性粉末の比表面積)/(白色無機粉末の比表面積)〕が、5.0より大きいと、白色導電性粉末を溶媒等に分散するときに、過剰な酸化錫が、溶媒等の中に遊離し易くなる。本発明の白色導電性粉末は、後述する白色無機粉末に均一処理を施した後、導電層をコーティングすることにより、〔(白色導電性粉末の比表面積)/(白色無機粉末の比表面積)〕を、2.0〜5.0にすることができる。ここで、比表面積は、BET法で測定する。   [(Specific surface area of white conductive powder) / (Specific surface area of white inorganic powder)] is 2.0 to 5.0. When [(specific surface area of white conductive powder) / (specific surface area of white inorganic powder)] is less than 2.0, the coating of tin oxide on the surface of the white inorganic powder is not sufficient, and the time course of the powder volume resistance value Problems such as changes are likely to occur. On the other hand, when [(specific surface area of white conductive powder) / (specific surface area of white inorganic powder)] is greater than 5.0, when the white conductive powder is dispersed in a solvent or the like, excess tin oxide is It becomes easy to be released in a solvent or the like. The white conductive powder of the present invention is subjected to uniform treatment on a white inorganic powder to be described later, and then coated with a conductive layer, [(specific surface area of white conductive powder) / (specific surface area of white inorganic powder)] Can be set to 2.0 to 5.0. Here, the specific surface area is measured by the BET method.

白色無機粉末100質量部に対して、導電層が10〜50質量部であると好ましい。導電層が、1質量部未満であると、均一にコーティングされない。一方、導電層が50質量部より多いと、白色無機粉末にコーティングされない遊離した酸化錫が生じやすくなる。なお、白色無機粉末が、酸化チタンであるとき、酸化チタンは光触媒活性を有するので、酸化チタン表面のOH基を導電層でコーティングしてOH基を覆い、白色導電性粉末とともに使用される樹脂の分解を抑制する観点から、導電層が20〜50質量部であると、より好ましく、25〜50質量部であると、さらに好ましい。   The conductive layer is preferably 10 to 50 parts by mass with respect to 100 parts by mass of the white inorganic powder. When the conductive layer is less than 1 part by mass, it is not uniformly coated. On the other hand, when there are more conductive layers than 50 mass parts, the free tin oxide which is not coated with white inorganic powder will become easy to produce. When the white inorganic powder is titanium oxide, since titanium oxide has photocatalytic activity, the OH group on the titanium oxide surface is coated with a conductive layer to cover the OH group, and the resin used together with the white conductive powder is used. From the viewpoint of suppressing decomposition, the conductive layer is more preferably 20 to 50 parts by mass, and even more preferably 25 to 50 parts by mass.

本発明の白色導電性粉末は、粉体体積抵抗値が100〜100000Ω・cmであり、好ましくは500〜50000Ω・cm、より好ましくは500〜10000Ω・cmである。粉体体積抵抗値が、100Ω・cm未満であると、例えば、静電気的に用いる場合、ESD障害が起こる不具合が生じる。粉体体積抵抗値が、100Ω・cm以上であると、ESD障害を起こさず、帯電の抑制(すなわち、帯電防止)をすることができ、帯電を速やかに拡散することができる(すなわち、静電気拡散性がよい)という良好かつ安定な特性が得られる。一方、粉体体積抵抗値が、100000Ω・cmより高いであると、導電性が不十分である。ここで、粉体体積抵抗値は、試料粉末を圧力容器に入れて100MPaで圧縮し、この圧粉をデジタルマルチメーターによって測定する。   The white conductive powder of the present invention has a powder volume resistance of 100 to 100,000 Ω · cm, preferably 500 to 50,000 Ω · cm, more preferably 500 to 10,000 Ω · cm. When the powder volume resistance value is less than 100 Ω · cm, for example, when it is used electrostatically, a problem of causing an ESD failure occurs. When the powder volume resistance value is 100 Ω · cm or more, it is possible to suppress charging (that is, to prevent charging) without causing an ESD failure and to quickly diffuse the charging (that is, electrostatic diffusion). Good and stable characteristics can be obtained. On the other hand, if the powder volume resistance value is higher than 100,000 Ω · cm, the conductivity is insufficient. Here, the powder volume resistance value is obtained by putting the sample powder in a pressure vessel and compressing the sample powder at 100 MPa, and measuring the compressed powder with a digital multimeter.

また、白色導電性粉末の初期の粉体体積抵抗値を(Y)とし、100℃、相対湿度:50%で10時間保持後の粉体体積抵抗値を(Z)としたとき、〔(Y)/(Z)〕が、0.1〜1.0であると、好ましい。この範囲内であると、導電性の経時安定性が良好であり、使用環境や季節による導電性の変化が少ない材料として使用することができる。ここで、「相対湿度」とは、所定の温度で大気中に含まれる水蒸気の量(質量絶対湿度)を、その温度の飽和水蒸気量(質量絶対湿度)で割ったもの(単位:%)をいう。   Further, when the initial powder volume resistance value of the white conductive powder is (Y), and the powder volume resistance value after holding at 100 ° C. and relative humidity: 50% for 10 hours is (Z), [(Y ) / (Z)] is preferably 0.1 to 1.0. Within this range, the stability of the conductivity over time is good, and the material can be used as a material with little change in conductivity depending on the use environment and season. Here, the “relative humidity” is the amount (unit:%) of the amount of water vapor (mass absolute humidity) contained in the atmosphere at a predetermined temperature divided by the amount of saturated water vapor (mass absolute humidity) at that temperature. Say.

また、本発明の白色導電性粉末は、粉末の色調が、白色度の観点から、Lab表色系におけるb値が、−5.0〜+2.0であるものが好ましく、−2.0〜+1.5であると、より好ましい。b値が、−5.0より小さいと、粉末の青味が強くなり、b値が、+2.0より大きいと、黄味が強くなり、優れた白色導電性粉末とはいえなくなる。また、本発明の白色導電性粉末は、粉末の色調が、Lab表色系におけるL値が、L値が70以上であると好ましく、80以上であると、より好ましい。ここで、白色導電性粉末のb値、およびL値は、例えば、スガ試験機社製装置(型番:SM−7-IS−2B)を用いて測定する。   In addition, the white conductive powder of the present invention is preferably such that the color tone of the powder has a b value in the Lab color system of −5.0 to +2.0 from the viewpoint of whiteness, and −2.0 to It is more preferable that it is +1.5. When the b value is less than −5.0, the bluishness of the powder becomes strong. When the b value is greater than +2.0, the yellowishness becomes strong and it cannot be said to be an excellent white conductive powder. In the white conductive powder of the present invention, the color tone of the powder is such that the L value in the Lab color system is preferably 70 or more, and more preferably 80 or more. Here, the b value and L value of the white conductive powder are measured using, for example, an apparatus (model number: SM-7-IS-2B) manufactured by Suga Test Instruments.

本発明の白色導電性粉末の粒径は、特に限定されないが、0.01〜1μmが好ましい。ここで、粒径は、レーザー回折/散乱法で測定するメジアン径をいう。白色導電性粉末の形状は、粒状、薄片状、繊維状が好ましい。   Although the particle size of the white electroconductive powder of this invention is not specifically limited, 0.01-1 micrometer is preferable. Here, the particle diameter refers to a median diameter measured by a laser diffraction / scattering method. The shape of the white conductive powder is preferably granular, flaky or fibrous.

本発明の白色導電性粉末は、酸化錫層にアンチモン、インジウムを何れも含まないので環境汚染を生じる懸念がない。また、アンチモン、インジウムを含まないので低コストである。なお、本発明において、アンチモン、およびインジウムを含まないとは、原料および工程中でアンチモン、およびインジウム源を使用せず、従って検出限界500ppmの標準的な測定装置によってこれらの元素が検出されないことをいう。   Since the white conductive powder of the present invention contains neither antimony nor indium in the tin oxide layer, there is no concern of causing environmental pollution. Moreover, since it does not contain antimony and indium, it is low cost. In the present invention, “antimony and indium are not included” means that antimony and indium sources are not used in the raw materials and processes, and therefore these elements are not detected by a standard measuring apparatus having a detection limit of 500 ppm. Say.

本発明の白色導電性粉末は、上記アンチモン等のドープ成分を含まずに高い導電性を有しており、適度な導電性と、良好な白色度を有するので、安全な導電材料として広く用いることができる。具体的には、例えば、帯電防止、帯電制御、静電防止、防塵等の機能が必要な分野に用いられ、詳しくは、帯電防止フィルムや繊維の分野、ICパッケージやテープの分野、インキ、帯電防止塗料や静電塗装材料の分野等における導電材料として好適に使用される。   The white conductive powder of the present invention has high conductivity without containing a doping component such as antimony, and has appropriate conductivity and good whiteness. Therefore, it is widely used as a safe conductive material. Can do. Specifically, for example, it is used in fields requiring functions such as antistatic, charge control, antistatic, and dustproof, and more specifically, in the fields of antistatic films and fibers, IC packages and tapes, ink, It is suitably used as a conductive material in the field of prevention paints and electrostatic coating materials.

〔製造方法〕
以下に、本発明の白色導電性粉末の製造方法の一例を説明する。本発明の白色導電性粉末は、例えば、白色無機粉末の表面上に、共沈法により水酸化錫化合物を析出させ、この水酸化錫化合物を乾燥し、不活性ガス雰囲気下で焼成して、製造することができる。
〔Production method〕
Below, an example of the manufacturing method of the white electroconductive powder of this invention is demonstrated. The white conductive powder of the present invention, for example, by depositing a tin hydroxide compound by a coprecipitation method on the surface of the white inorganic powder, drying the tin hydroxide compound, firing in an inert gas atmosphere, Can be manufactured.

白色無機粉末については、上記のとおりである。この白色無機粉末を、溶液中に添加し、スラリーとした後、均一処理を行う。均一処理は、白色無機粉末の単分散を目的として行い、具体的には、均一処理は、白色無機粉末の微細化、または分散剤による均一分散により行う。白色無機粉末の微細化のときには、導電層被覆後の白色導電性粉末も微細化され、単位体積当たりの白色導電性粉末同士の接触面(もしくは接触点)が多くなるため、抵抗が大きくなる。また、分散剤を使用するときには、分散剤により、白色無機粉末表面への導電層の被覆性が極端に低下し、もしくは導電層の被覆が偏在し、良好な導電性が得られない。このように、一般に、白色無機粉末に、均一処理を施した後、導電層をコーティングすると、白色導電性粉末の導電性が高くならないため、高導電性の白色導電性粉末の作製方法として均一処理は適切でない、と考えられている。しかし、本発明の特定の導電性、および優れた白色度、さらには優れた経時変化を有する白色導電性粉末を製造するためには、均一処理が白色導電性粉末に顕著な効果を与える。白色無機粉末が酸化チタンである場合の例を示すと、均一処理は、所定濃度(例えば、スラリーに対して、10〜30質量%の酸化チタンを含む)の酸化チタンスラリーに、酸化チタン質量に対し、0.01〜0.1質量%の無機分散剤、もしくは0.2〜2.0質量%の有機分散剤、またはそれらの混合物を投入し、ビーズミル等を用いてスラリーを分散し、酸化チタンを単分散する。ここで、無機分散剤としては、ヘキサメタリン酸、ピロリン酸等が、有機分散剤としては、ルーブリゾール社のソルスパースシリーズ、ビックケミー社のBYKシリーズ等が挙げられる。分散度は、レーザー回折/散乱法によるメジアン径の測定と、SEM観察にて確認する。なお、予め、白色無機粉末を湿式処理する前に、乾式法で解砕や粉砕しておいてもよい。   The white inorganic powder is as described above. This white inorganic powder is added to the solution to form a slurry, and then uniform processing is performed. The uniform treatment is performed for the purpose of monodispersing the white inorganic powder. Specifically, the uniform treatment is performed by refining the white inorganic powder or by uniform dispersion using a dispersant. When the white inorganic powder is made finer, the white conductive powder after the conductive layer is coated is also made finer, and the contact surface (or contact point) between the white conductive powders per unit volume increases, so that the resistance increases. In addition, when a dispersant is used, the coating property of the conductive layer on the surface of the white inorganic powder is extremely reduced by the dispersant, or the coating of the conductive layer is unevenly distributed, and good conductivity cannot be obtained. Thus, in general, when a white inorganic powder is subjected to a uniform treatment and then coated with a conductive layer, the conductivity of the white conductive powder does not increase. Therefore, a uniform treatment is performed as a method for producing a highly conductive white conductive powder. Is considered inappropriate. However, in order to produce a white conductive powder having the specific conductivity of the present invention, excellent whiteness, and excellent aging, uniform treatment has a significant effect on the white conductive powder. When an example in which the white inorganic powder is titanium oxide is shown, the uniform treatment is performed on a titanium oxide slurry having a predetermined concentration (for example, containing 10 to 30% by mass of titanium oxide based on the slurry). On the other hand, 0.01 to 0.1% by mass of an inorganic dispersant, or 0.2 to 2.0% by mass of an organic dispersant, or a mixture thereof is added, and the slurry is dispersed using a bead mill or the like, and then oxidized. Titanium is monodispersed. Here, examples of the inorganic dispersant include hexametaphosphoric acid, pyrophosphoric acid, and the like, and examples of the organic dispersant include Lubrizol Solsperse series and BYK Chemy BYK series. The degree of dispersion is confirmed by measuring the median diameter by laser diffraction / scattering method and SEM observation. In addition, before wet-processing white inorganic powder, you may pulverize and grind | pulverize with a dry method previously.

水酸化錫化合物の原料としては、塩化錫などのハロゲン化錫、酸化錫、水酸化錫或いは、錫の硫酸塩、硝酸錫などの錫の無機酸塩(第一錫塩、第二錫塩)などが挙げられ、これらを単独で或いは2種以上混合して用いてもよい。第一錫塩としては、フッ化第一錫、塩化第一錫、ホウフッ化第一錫、硫酸第一錫、酸化第一錫、硝酸第一錫、ピロリン酸錫、スルファミン酸錫、亜錫酸塩などの無機系の塩、アルカノールスルホン酸第一錫、スルホコハク酸第一錫、脂肪族カルボン酸第一錫などの有機系の塩などが挙げられ、第二錫塩としては、上記第一錫塩のそれぞれの第二錫塩が挙げられるが、気体であるもの、難溶性のものなどがあるので、水酸化錫化合物の原料としては、液体である塩化第二錫または塩化第一錫を用いるのが一般的であり、中でも塩化第二錫または塩化第一錫の塩酸水溶液を用いるのが、工業的にも望ましい。水酸化錫化合物は、原料を共沈させることにより得ることができ、この共沈の方法は、加水分解等の当業者に公知の方法でよい。具体的には、塩化錫の塩酸水溶液をアルカリ中に滴下することによる共沈により得られる。   Examples of the raw material for the tin hydroxide compound include tin halides such as tin chloride, tin oxide, tin hydroxide, or tin inorganic acid salts such as tin sulfate and tin nitrate (stannous and stannic salts). These may be used, and these may be used alone or in admixture of two or more. Examples of stannous salts include stannous fluoride, stannous chloride, stannous borofluoride, stannous sulfate, stannous oxide, stannous nitrate, tin pyrophosphate, tin sulfamate, and stannic acid. Inorganic salts such as salts, organic salts such as stannous alkanol sulfonate, stannous sulfosuccinate, stannous aliphatic carboxylic acid, etc., and the stannous salt includes Each stannic salt of the salt is exemplified, but since there are gas-like ones and poorly soluble ones, a liquid stannic chloride or stannous chloride is used as a raw material for the tin hydroxide compound. In general, it is industrially desirable to use stannic chloride or an aqueous hydrochloric acid solution of stannous chloride. The tin hydroxide compound can be obtained by coprecipitation of the raw material, and this coprecipitation method may be a method known to those skilled in the art such as hydrolysis. Specifically, it is obtained by coprecipitation by dropping an aqueous hydrochloric acid solution of tin chloride into an alkali.

溶液としては、上記第二錫塩や第一錫塩を溶解可能なものであればよく、水、アルコール等が挙げられる。アルコールとしては、メタノール、エタノール等が挙げられる。なお、溶液に水を用いる場合には、第二錫塩や第一錫塩を溶解した後、第二錫塩や第一錫塩が自発的に加水分解を始める前に、共沈させることが好ましい。   Any solution may be used as long as it can dissolve the stannic salt or stannous salt, and examples thereof include water and alcohol. Examples of the alcohol include methanol and ethanol. In addition, when water is used for the solution, after the stannic salt or stannous salt is dissolved, it may be coprecipitated before the stannic salt or stannous salt starts to spontaneously hydrolyze. preferable.

次に、得られた水酸化錫化合物に、通常の洗浄、乾燥、粉砕等の処理を行う。   Next, the obtained tin hydroxide compound is subjected to usual treatments such as washing, drying, and pulverization.

焼成の温度は、アルゴンガス、窒素ガス等の不活性ガス雰囲気下で、300℃以上800℃以下が好ましく、400℃以上700℃以下が特に好ましい。300℃以上であると、酸化第二錫の生成、酸化第二錫への酸素欠損の形成ができ、800℃以下であると目的の導電性が得られる。また、熱処理時間は、10分以上150分以下が好ましく、20分以上120分以下が特に好ましい。10分以上150分以下であると導電性が良好である。   The firing temperature is preferably 300 ° C. or higher and 800 ° C. or lower, and particularly preferably 400 ° C. or higher and 700 ° C. or lower in an inert gas atmosphere such as argon gas or nitrogen gas. When the temperature is 300 ° C. or higher, stannic oxide can be generated and oxygen vacancies can be formed in the stannic oxide. When the temperature is 800 ° C. or lower, desired conductivity can be obtained. The heat treatment time is preferably 10 minutes or longer and 150 minutes or shorter, and particularly preferably 20 minutes or longer and 120 minutes or shorter. The conductivity is good when it is 10 minutes or longer and 150 minutes or shorter.

この熱処理の温度は、100℃以上300℃以下が好ましく、150℃以上250℃以下が特に好ましい。100℃以上であると、酸化第二錫の生成、酸化第二錫への酸素欠損の形成ができ、300℃以下であると導電性が良好となる。また、熱処理時間は、10分以上150分以下が好ましく、20分以上120分以下が特に好ましい。10分以上150分以下であると、導電性が高くなる。なお、熱処理は、焼成と同時に行うこともできる。   The temperature of this heat treatment is preferably 100 ° C. or higher and 300 ° C. or lower, and particularly preferably 150 ° C. or higher and 250 ° C. or lower. When it is 100 ° C. or higher, stannic oxide can be generated and oxygen vacancies can be formed in the stannic oxide, and when it is 300 ° C. or lower, the conductivity is improved. The heat treatment time is preferably 10 minutes or longer and 150 minutes or shorter, and particularly preferably 20 minutes or longer and 120 minutes or shorter. When it is 10 minutes or longer and 150 minutes or shorter, the conductivity is increased. Note that the heat treatment can be performed simultaneously with the baking.

また、酸化錫の導電層は、フッ素を含むと導電性、及び導電性の安定性の観点から好ましい。この場合には、焼成前の水酸化錫化合物が、フッ素処理されていることが好ましく、湿式により、水酸化錫化合物にフッ素源を含有させることもできる。   In addition, the conductive layer of tin oxide preferably contains fluorine from the viewpoints of conductivity and conductivity stability. In this case, the tin hydroxide compound before firing is preferably treated with fluorine, and the fluorine source can be contained in the tin hydroxide compound by wet treatment.

フッ素源としては、フッ化アンモニウム、ケイフッ化アンモニウム、フッ化水素酸アンモニウム、フッ化スズ、フッ化スズ酸、フッ化水素、フッ化水素酸、フッ化ホウ素、フッ化臭素等を用いることができる。   As the fluorine source, ammonium fluoride, ammonium silicofluoride, ammonium hydrofluoride, tin fluoride, fluorostannic acid, hydrogen fluoride, hydrofluoric acid, boron fluoride, bromine fluoride, or the like can be used. .

具体的には、水酸化錫化合物の原料の一部に、錫を含有するフッ素源を用いる方法、水酸化錫化合物を生成するとき、フッ素源を含有させておく方法等が挙げられる。   Specifically, a method of using a fluorine source containing tin as a part of the raw material of the tin hydroxide compound, a method of containing a fluorine source when producing a tin hydroxide compound, and the like can be mentioned.

また、水酸化錫化合物を、フッ素処理することもできる。このフッ素処理は、湿式で行うことが、より好ましい。   Further, the tin hydroxide compound can be treated with fluorine. This fluorine treatment is more preferably performed in a wet manner.

具体的には、例えば、水酸化錫化合物にフッ素源を添加し、水酸化錫化合物中のスズ成分とフッ素源を水溶液中で混合し、接触させることによって、スズ成分の表面に、フッ素を均一に付着させることができる。   Specifically, for example, by adding a fluorine source to the tin hydroxide compound, mixing the tin component in the tin hydroxide compound and the fluorine source in an aqueous solution, and bringing them into contact with each other, the fluorine is uniformly formed on the surface of the tin component. Can be attached to.

また、水酸化錫化合物を焼成した後、更にフッ素処理することもできる。このフッ素処理は、焼成前の水酸化錫化合物のフッ素処理と同様に行うことができる。   Moreover, after baking a tin hydroxide compound, it can also carry out a fluorine treatment. This fluorine treatment can be performed in the same manner as the fluorine treatment of the tin hydroxide compound before firing.

ここで、フッ素処理としては、これらの湿式処理の後、熱処理する方法が、好ましい。この熱処理の温度は、300〜550℃であると、フッ素を十分に拡散することができる点から好ましい。さらに、熱処理の際に、窒素ガスや、水素もしくは水蒸気を含んだ不活性ガス(窒素ガス、アルゴンガス等)を流すことで、更にフッ素処理の反応が進行し、好ましい。   Here, as the fluorine treatment, a method of performing a heat treatment after these wet treatments is preferable. The temperature of this heat treatment is preferably 300 to 550 ° C. from the viewpoint that fluorine can be sufficiently diffused. Further, it is preferable that a fluorine treatment reaction further proceeds by flowing an inert gas (nitrogen gas, argon gas, or the like) containing nitrogen gas or hydrogen or water vapor during the heat treatment.

フッ素のドープ量は、フッ素源の添加量、熱処理温度および熱処理時間等を調整して制御することができるので、粉体体積抵抗値を特定の範囲にした白色導電性粉末を製造することができる。一例としては、フッ素の添加量は、SnOに対して、Fとして0.01〜5質量%、好ましくは0.1〜3質量%、より好ましくは、0.1〜0.2質量%であり、少な過ぎると所望の導電性が得られず、多過ぎると酸化錫の結晶性が悪くなり、所望の導電性が得られない。 Since the amount of fluorine doped can be controlled by adjusting the amount of fluorine source added, the heat treatment temperature, the heat treatment time, etc., white conductive powder having a powder volume resistance value in a specific range can be produced. . As an example, the addition amount of fluorine, relative to the SnO 2, 0.01 to 5 wt% as F, preferably 0.1 to 3 wt%, more preferably at 0.1 to 0.2 mass% If the amount is too small, the desired conductivity cannot be obtained. If the amount is too large, the crystallinity of tin oxide deteriorates, and the desired conductivity cannot be obtained.

他方、酸化錫の導電層は、リンを含むと導電性、及び導電性の安定性の観点から好ましい。水酸化錫化合物にリンを含有させる方法としては、例えば、水酸化錫化合物の原料として、リンを含む化合物を用いる方法、あるいは、予め、リンの原料を、水酸化錫の原料を含有する溶液に溶解しておき、水酸化錫の形成と同時に導電層を形成する方法、水酸化錫の被膜を形成した後に、リンの原料を添加する方法等がある。水酸化錫の被覆をより均一に形成するには、後者の方がより好ましい。   On the other hand, when the conductive layer of tin oxide contains phosphorus, it is preferable from the viewpoints of conductivity and conductivity stability. Examples of the method of containing phosphorus in the tin hydroxide compound include a method using a compound containing phosphorus as a raw material of the tin hydroxide compound, or a method in which a raw material of phosphorus is previously added to a solution containing a raw material of tin hydroxide. There are a method of dissolving and forming a conductive layer simultaneously with the formation of tin hydroxide, a method of adding a phosphorus raw material after forming a tin hydroxide film, and the like. The latter is more preferable for more uniformly forming the tin hydroxide coating.

リンの原料としては、例えば、オルトリン酸、メタリン酸、ピロリン酸、トリポリリン酸、亜リン酸、次亜リン酸およびこれらのアンモニウム塩、ナトリウム塩、カリウム塩等を使用することができる。   As a raw material of phosphorus, for example, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, phosphorous acid, hypophosphorous acid and their ammonium salts, sodium salts, potassium salts and the like can be used.

リンの添加量は、SnOに対して、Pとして0.1〜20質量%、好ましくは1〜5質量%であり、少な過ぎると所望の導電性が得られず、多過ぎると酸化錫の結晶性が悪くなり、所望の導電性が得られない。かかる量のリンを添加することにより、無添加のものに比べ、粉体体積抵抗を1/10〜1/20程度低くすることができる場合がある。 The addition amount of phosphorus is 0.1 to 20% by mass, preferably 1 to 5% by mass as P with respect to SnO 2. If the amount is too small, desired conductivity cannot be obtained, and if too much, tin oxide Crystallinity deteriorates and desired conductivity cannot be obtained. By adding such an amount of phosphorus, the powder volume resistance may be reduced by about 1/10 to 1/20 compared to the case of no addition.

〔用途〕 [Use]

本発明の白色導電性粉末は、溶媒に分散させて、分散液として使用することができる。ここで、溶媒としては、水、エタノール、メタノール、イソプロピルアルコール、トルエン、メチルエチルケトン、プロピレングリコールモノメチルエーテルなどが挙げられる。   The white conductive powder of the present invention can be dispersed in a solvent and used as a dispersion. Here, examples of the solvent include water, ethanol, methanol, isopropyl alcohol, toluene, methyl ethyl ketone, and propylene glycol monomethyl ether.

上記分散液の固形分濃度は、質量基準で1〜70%、好ましくは10〜50%で、分散液のpHは4〜12、好ましくは5〜10である。ここで、固形分には、白色導電性粉末、無機及び有機分散剤が含まれる。   The solid content concentration of the dispersion is 1 to 70%, preferably 10 to 50% on a mass basis, and the pH of the dispersion is 4 to 12, preferably 5 to 10. Here, the solid content includes white conductive powder, inorganic and organic dispersants.

上記分散液に、樹脂を添加し、塗料として利用することができる。分散液を塗料化に供すると、塗料化時の分散エネルギーや、白色導電性粉末製造工程における脱水、乾燥エネルギーの軽減を図る上で、好ましい。ここで、樹脂としては、例えば、ポリビニルアルコール樹脂、塩ビ−酢ビ樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、ポリエステル樹脂、エチレン酢酸ビニル共重合体、アクリル−スチレン共重合体、繊維素樹脂、フェノール樹脂、アミノ樹脂、フッ素樹脂、シリコーン樹脂、石油樹脂、セラック、ロジン誘導体、ゴム誘導体などの天然系樹脂などが挙げられる。   A resin can be added to the dispersion and used as a paint. When the dispersion is used for coating, it is preferable to reduce dispersion energy at the time of coating, dehydration and drying energy in the white conductive powder manufacturing process. Here, examples of the resin include polyvinyl alcohol resin, vinyl chloride-vinyl acetate resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, polyester resin, ethylene-vinyl acetate copolymer, acrylic-styrene copolymer, and fiber base. Examples thereof include natural resins such as resins, phenol resins, amino resins, fluororesins, silicone resins, petroleum resins, shellac, rosin derivatives, and rubber derivatives.

白色導電性粉末の樹脂への配合量は、樹脂100質量部に対して20〜400質量部、好ましくは100〜300質量部である。   The compounding amount of the white conductive powder in the resin is 20 to 400 parts by mass, preferably 100 to 300 parts by mass with respect to 100 parts by mass of the resin.

塗料を導電性用途に使用する場合には、塗料をプラスチック成形体、紙や高分子フィルムなどの絶縁性基体に塗布することにより、基体上に表面平滑性や密着性に優れた導電性の膜組成物を形成させる。   When the paint is used for conductive applications, the conductive film is excellent in surface smoothness and adhesiveness on the base by applying the paint to an insulating base such as a plastic molded body, paper or polymer film. A composition is formed.

本発明の白色導電性粉末は、帯電防止、帯電制御、静電防止、防塵等の機能が必要な分野に用いられ、詳しくは、帯電防止フィルムや繊維の分野、ICパッケージやテープの分野、インキ、帯電防止塗料や静電塗装材料の分野等における導電材料として好適に使用される。   The white conductive powder of the present invention is used in fields requiring functions such as antistatic, charge control, antistatic, and dustproof, and more specifically, in the fields of antistatic films and fibers, IC packages and tapes, inks It is preferably used as a conductive material in the field of antistatic paints and electrostatic coating materials.

以下に、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。各例において、粉体体積抵抗値は、横河電機製測定装置(DM−7561)を用い、試料5gを10MPaに加圧し、加圧時の抵抗値(R)と試料の厚み(H)を測定し、式:R(Ω)×S(電極面積:cm)/H(試料厚み:cm)に基づいて求めた。粉体のb値、L値は、スガ試験機社製装置(SM−7−IS−2B)を用いて測定した。実施例および比較例において、粉体体積抵抗値は、試料粉末を圧力容器に入れて10MPaで圧縮し、この圧粉をデジタルマルチメーター(横河電機製品:型式7561−02)によって測定した。粉末のb値、L値は、スガ試験機社製装置(型番:SM−7-IS−2B)を用いて測定した。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto. In each example, the powder volume resistance value is measured by using a measuring device (DM-7561) manufactured by Yokogawa Electric Corporation, pressurizing 5 g of the sample to 10 MPa, and applying the resistance value (R) and the thickness (H) of the sample at the time of pressurization. Measured and determined based on the formula: R (Ω) × S (electrode area: cm 2 ) / H (sample thickness: cm). The b value and L value of the powder were measured using an apparatus (SM-7-IS-2B) manufactured by Suga Test Instruments Co., Ltd. In Examples and Comparative Examples, the powder volume resistance value was measured with a digital multimeter (Yokogawa Electric Corporation: Model 7561-02) after putting the sample powder in a pressure vessel and compressing the sample powder at 10 MPa. The b value and L value of the powder were measured using a device manufactured by Suga Test Instruments Co., Ltd. (model number: SM-7-IS-2B).

〔実施例1〕
水:500cmに、市販の平均1次粒子径約0.21μmの二酸化チタン粉末:100gとヘキサメタリン酸1gを加え、ビーズミルで分散した。分散中は使用する酸化チタンの等電点を避けたpH(pH=9〜11)を保持した。分散後のスラリーをSEMで観察したところ、およそ単分散していることが確認できた。また、分散後のスラリーをレーザー回折/散乱式粒度分布測定装置(堀場製作所製、型番:LA−950)でメジアン径を測定したところ、0.21μmであった。このスラリーを95℃に加温した。この分散液に、酸化錫換算で25gとなるように塩化錫水溶液を加え、加水分解反応により二酸化チタン表面に錫の水酸化物の結晶を析出させた。この湿式処理した粉末を取り出して、洗浄し、乾燥した。上記湿式処理で加えた塩化錫は、実質的に全量が加水分解され、粉末表面に水酸化第二錫化合物(X線回折ではSnOパターンを示す水酸化第二錫)が析出していた。この乾燥粉末:20gを、石英管状炉に入れ、昇温速度10℃/分で昇温し、温度を700±50℃の範囲で制御しながら2時間、窒素雰囲気中にて焼成した。冷却後の白色導電性粉末の〔(白色導電性粉末の比表面積)/(白色無機粉末の比表面積)〕(以下、「〔X/B〕」という)は3.1、粉体体積抵抗値は3.1E+04Ω・cmであった。ここで、3.1E+04は、3.1×10+04を示す。以下、同様である。この白色導電粉についての〔(Y)/(Z)〕は0.7、b値は0.2であった。表1に、結果を示す。なお、表1の「Al、Si、Mg、Zn」は、塩化錫水溶液中で添加され、酸化錫換算したときの、酸化錫中での含有量を示す。
[Example 1]
To 500 cm 3 of water, 100 g of commercially available titanium dioxide powder having an average primary particle size of about 0.21 μm and 1 g of hexametaphosphoric acid were added and dispersed with a bead mill. During dispersion, the pH (pH = 9 to 11) avoiding the isoelectric point of the titanium oxide used was maintained. When the slurry after dispersion was observed by SEM, it was confirmed that the slurry was approximately monodispersed. Moreover, when the median diameter of the slurry after dispersion was measured with a laser diffraction / scattering type particle size distribution measuring device (model number: LA-950, manufactured by Horiba, Ltd.), it was 0.21 μm. The slurry was warmed to 95 ° C. To this dispersion, an aqueous tin chloride solution was added so as to be 25 g in terms of tin oxide, and crystals of tin hydroxide were precipitated on the titanium dioxide surface by a hydrolysis reaction. The wet-processed powder was taken out, washed and dried. The entire amount of tin chloride added by the wet treatment was hydrolyzed, and a stannic hydroxide compound (stannic hydroxide showing a SnO 2 pattern in X-ray diffraction) was precipitated on the powder surface. 20 g of this dry powder was placed in a quartz tube furnace, heated at a temperature rising rate of 10 ° C./min, and baked in a nitrogen atmosphere for 2 hours while controlling the temperature within a range of 700 ± 50 ° C. [(Specific surface area of white conductive powder) / (Specific surface area of white inorganic powder)] (hereinafter referred to as “[X / B]”) of the white conductive powder after cooling was 3.1, powder volume resistance value Was 3.1E + 04 Ω · cm. Here, 3.1E + 04 indicates 3.1 × 10 +04 . The same applies hereinafter. [(Y) / (Z)] of this white electroconductive powder was 0.7, and b value was 0.2. Table 1 shows the results. “Al, Si, Mg, Zn” in Table 1 indicates the content in tin oxide when added in an aqueous tin chloride solution and converted to tin oxide.

〔実施例2〕
二酸化チタン粉末:100質量部に対して、酸化錫:50質量部として湿式処理した粉末を作製し、焼成温度を800±50℃の範囲で制御しながら1時間焼成したこと以外は、実施例1と同条件にして、白色導電性粉末を作製した。冷却後の白色導電性粉末の〔X/B〕は3.5、粉体体積抵抗値は2.5E+03Ω・cmであった。この白色導電性粉末についての〔(Y)/(Z)〕は0.5、b値は0.1であった。表1に、結果を示す。
[Example 2]
Except that titanium powder: 100 parts by mass, wet-treated powder of tin oxide: 50 parts by mass was prepared, and calcined for 1 hour while controlling the calcining temperature in the range of 800 ± 50 ° C. Example 1 A white conductive powder was produced under the same conditions as those described above. [X / B] of the white conductive powder after cooling was 3.5, and the powder volume resistance value was 2.5E + 03 Ω · cm. [(Y) / (Z)] of this white conductive powder was 0.5, and b value was 0.1. Table 1 shows the results.

〔実施例3〕
水500cmに、市販の平均1次粒子径約0.07μmの二酸化チタン粉末100gとヘキサメタリン酸1.8gを加え、ビーズミルで分散した。分散中は使用する酸化チタンの等電点を避けたpH(pH=9〜10)を保持した。分散後のスラリーをSEMで観察したところ、およそ単分散していることが確認できた。また、分散後のスラリーをレーザー回折/散乱式粒度分布測定装置(堀場製作所製、型番:LA−950)でメジアン径を測定したところ、0.07μmであった。このスラリーを95℃に加温した。この分散液に、酸化錫換算で25gとなるように塩化錫水溶液を加え、加水分解反応により二酸化チタン表面に水酸化物の結晶を析出させた。この湿式処理した粉末を取り出して洗浄し、乾燥した。上記湿式処理で加えた塩化錫は、実質的に全量が加水分解され、粉末表面に水酸化第二錫化合物(X線回折ではSnO2パターンを示す水酸化第二錫)が析出していた。この乾燥粉末20gを石英管状炉に入れ、昇温速度10℃/分で昇温し、温度を600±50℃の範囲で制御しながら3時間、窒素雰囲気中にて焼成した。冷却後の白色導電粉の〔X/B〕は2.8、粉体体積抵抗値は、9.4E+04Ω・cmであった。この白色導電粉についての〔(Y)/(Z)〕は0.6、b値は0であった。表1に、結果を示す。
Example 3
To 500 cm 3 of water, 100 g of commercially available titanium dioxide powder having an average primary particle size of about 0.07 μm and 1.8 g of hexametaphosphoric acid were added and dispersed with a bead mill. During dispersion, the pH (pH = 9 to 10) was avoided while avoiding the isoelectric point of the titanium oxide used. When the slurry after dispersion was observed by SEM, it was confirmed that the slurry was approximately monodispersed. Moreover, when the median diameter of the slurry after dispersion was measured with a laser diffraction / scattering type particle size distribution measuring device (model number: LA-950, manufactured by Horiba, Ltd.), it was 0.07 μm. The slurry was warmed to 95 ° C. To this dispersion, an aqueous tin chloride solution was added so as to give 25 g in terms of tin oxide, and hydroxide crystals were precipitated on the titanium dioxide surface by a hydrolysis reaction. The wet-processed powder was taken out, washed and dried. The tin chloride added by the wet treatment was substantially entirely hydrolyzed, and a stannic hydroxide compound (stannic hydroxide exhibiting a SnO2 pattern in X-ray diffraction) was precipitated on the powder surface. 20 g of this dry powder was placed in a quartz tube furnace, heated at a temperature rising rate of 10 ° C./min, and fired in a nitrogen atmosphere for 3 hours while controlling the temperature within a range of 600 ± 50 ° C. [X / B] of the white conductive powder after cooling was 2.8, and the powder volume resistance value was 9.4E + 04 Ω · cm. [(Y) / (Z)] of this white conductive powder was 0.6, and b value was 0. Table 1 shows the results.

〔実施例4〕
水500ccに、市販の平均1次粒子径約0.15μmのチタン酸バリウム粉末100gとヘキサメタリン酸1.4gを加え、ビーズミルで分散した。分散中は使用する酸化チタンの等電点を避けたpH(pH=9〜10)を保持した。分散後のスラリーをSEMで観察したところ、およそ単分散していることが確認できた。また、分散後のスラリーをレーザー回折/散乱式粒度分布測定装置(堀場製作所製、型番:LA−950)でメジアン径を測定したところ、0.15μmであった。このスラリーを95℃に加温した。この分散液に、酸化錫換算で25gとなるように塩化錫水溶液を加え、加水分解反応により二酸化チタン表面に水酸化物の結晶を析出させた。この湿式処理した粉末を取り出して洗浄し、乾燥した。上記湿式処理で加えた塩化錫は、実質的に全量が加水分解され、粉末表面に水酸化第二錫化合物(X線回折ではSnOパターンを示す水酸化第二錫)が析出していた。この乾燥粉末20gを石英管状炉に入れ、昇温速度10℃/分で昇温し、温度を850±50℃の範囲で制御しながら1時間、窒素雰囲気中にて焼成した。冷却後の白色導電粉の〔X/B〕は2.3、粉体体積抵抗値は5.0E+02Ω・cmであった。この白色導電粉についての〔(Y)/(Z)〕は1.0、b値は−1.3、であった。表1に、結果を示す。
Example 4
To 500 cc of water, 100 g of commercially available barium titanate powder having an average primary particle size of about 0.15 μm and 1.4 g of hexametaphosphoric acid were added and dispersed with a bead mill. During dispersion, the pH (pH = 9 to 10) was avoided while avoiding the isoelectric point of the titanium oxide used. When the slurry after dispersion was observed by SEM, it was confirmed that the slurry was approximately monodispersed. Moreover, when the median diameter of the slurry after dispersion was measured with a laser diffraction / scattering type particle size distribution measuring apparatus (model number: LA-950, manufactured by Horiba, Ltd.), it was 0.15 μm. The slurry was warmed to 95 ° C. To this dispersion, an aqueous tin chloride solution was added so as to give 25 g in terms of tin oxide, and hydroxide crystals were precipitated on the titanium dioxide surface by a hydrolysis reaction. The wet-processed powder was taken out, washed and dried. The entire amount of tin chloride added by the wet treatment was hydrolyzed, and a stannic hydroxide compound (stannic hydroxide showing a SnO 2 pattern in X-ray diffraction) was precipitated on the powder surface. 20 g of this dry powder was placed in a quartz tube furnace, heated at a temperature rising rate of 10 ° C./min, and fired in a nitrogen atmosphere for 1 hour while controlling the temperature within a range of 850 ± 50 ° C. [X / B] of the white conductive powder after cooling was 2.3, and the powder volume resistance value was 5.0E + 02 Ω · cm. [(Y) / (Z)] of this white electroconductive powder was 1.0, and b value was -1.3. Table 1 shows the results.

〔実施例5〕
加水分解反応による酸化チタン表面へ析出する酸化錫重量に対し、Pが1質量%となるように塩化錫水溶液にリン酸を加えたこと以外は、実施例1と同条件にして、白色導電性粉末を作製した。冷却後の白色導電性粉末の〔X/B〕は3.8、粉体体積抵抗値は8.8E+02Ω・cmであった。この白色導電性粉末についての〔(Y)/(Z)〕は0.9、b値は0.1であった。表1に、結果を示す。
Example 5
The white electroconductivity was the same as in Example 1 except that phosphoric acid was added to the tin chloride aqueous solution so that P was 1% by mass with respect to the weight of tin oxide precipitated on the titanium oxide surface by the hydrolysis reaction. A powder was prepared. [X / B] of the white conductive powder after cooling was 3.8, and the powder volume resistance value was 8.8E + 02 Ω · cm. [(Y) / (Z)] of this white conductive powder was 0.9, and b value was 0.1. Table 1 shows the results.

〔実施例6〕
加水分解反応による酸化チタン表面へ析出する酸化錫重量に対し、Fが0.1質量%となるように塩化錫水溶液にフッ化第一錫を加えたこと以外は、実施例1と同条件にして、白色導電性粉末を作製した。冷却後の白色導電性粉末の〔X/B〕は3.7、粉体体積抵抗値は1.2E+02Ω・cmであった。この白色導電性粉末についての〔(Y)/(Z)〕は0.9、b値は1.1であった。表1に、結果を示す。
Example 6
The same conditions as in Example 1 except that stannous fluoride was added to the tin chloride aqueous solution so that F was 0.1% by mass with respect to the weight of tin oxide deposited on the titanium oxide surface by the hydrolysis reaction. A white conductive powder was prepared. [X / B] of the white conductive powder after cooling was 3.7, and the volume resistance of the powder was 1.2E + 02 Ω · cm. [(Y) / (Z)] of this white conductive powder was 0.9, and b value was 1.1. Table 1 shows the results.

〔比較例1〕
実施例1の二酸化チタン100質量部に対して、導電層を100質量部にした以外は、同条件にして、行った。冷却後の白色導電粉の〔X/B〕は5.5、粉体体積抵抗値は5.0E+01Ω・cmであった。この白色導電粉について〔(Y)/(Z)〕は0.08、b値は2.0であった。表1に、結果を示す。
Comparative Example 1
It carried out on the same conditions except having set the conductive layer to 100 mass parts with respect to 100 mass parts of titanium dioxide of Example 1. [X / B] of the white conductive powder after cooling was 5.5, and the powder volume resistance value was 5.0E + 01 Ω · cm. With respect to this white conductive powder, [(Y) / (Z)] was 0.08, and b value was 2.0. Table 1 shows the results.

〔比較例2〕
実施例3の導電層中にAl(塩化アルミニウムで添加)を1.2質量%含有させた以外は、同条件にして、行った。冷却後の白色導電粉の〔X/B〕は1.5、粉体体積抵抗値は4.1E+07Ω・cmであった。この白色導電粉についての〔(Y)/(Z)〕は0.5、b値は−0.7であった。表1に、結果を示す。
[Comparative Example 2]
The test was performed under the same conditions except that 1.2% by mass of Al (added with aluminum chloride) was contained in the conductive layer of Example 3. [X / B] of the white conductive powder after cooling was 1.5, and the powder volume resistance value was 4.1E + 07 Ω · cm. [(Y) / (Z)] of this white electroconductive powder was 0.5, and b value was -0.7. Table 1 shows the results.

〔比較例3〕
実施例3の均一化処理を行わない以外は、同条件にして、行った。冷却後の白色導電粉の〔X/B〕は1.7、粉体体積抵抗値は6.0E+02Ω・cmであった。この白色導電粉についての〔(Y)/(Z)〕は0.02、b値は−0.3であった。表1に、結果を示す。
[Comparative Example 3]
The test was performed under the same conditions except that the homogenization treatment of Example 3 was not performed. [X / B] of the white electroconductive powder after cooling was 1.7, and the powder volume resistance value was 6.0E + 02 Ω · cm. [(Y) / (Z)] of this white electroconductive powder was 0.02, and b value was -0.3. Table 1 shows the results.

〔比較例4〕
加水分解反応による酸化チタン表面へ析出する酸化錫重量に対し、Fが0.5質量%となるように塩化錫水溶液にフッ化第一錫を加えたこと以外は、実施例1と同条件にして、白色導電性粉末を作製した。冷却後の白色導電性粉末の〔X/B〕は4.2、粉体体積抵抗値は2.0E+01Ω・cmであった。この白色導電性粉末についての〔(Y)/(Z)〕は1.0、b値は0.0であった。表1に、結果を示す。
[Comparative Example 4]
The same conditions as in Example 1 except that stannous fluoride was added to the tin chloride aqueous solution so that F was 0.5% by mass with respect to the weight of tin oxide precipitated on the titanium oxide surface by the hydrolysis reaction. A white conductive powder was prepared. [X / B] of the white conductive powder after cooling was 4.2, and the powder volume resistance value was 2.0E + 01 Ω · cm. [(Y) / (Z)] of this white conductive powder was 1.0, and b value was 0.0. Table 1 shows the results.

Figure 2011054508
Figure 2011054508

表1から明らかなように、実施例1〜6は、X/Bが2.3〜3.8であり、粉体体積抵抗値も120〜94000Ω・cmと所望の範囲であった。b値も−1.3〜0.2と白色度も良好で、〔(Y)/(Z)〕も0.5〜1.0と経時変化も少なく、全てにおいて良好な結果であった。これに対して、導電層の量が100質量部であり、X/Bが5.5と高い比較例1は、粉体体積抵抗が低く、〔(Y)/(Z)〕も0.08と低く、経時変化も悪い結果であった。また、X/Bが低い比較例2は、粉体体積抵抗値が高かった。均一処理をせず、X/Bが低い比較例3は、〔(Y)/(Z)〕が0.02と大変低かった。導電層にFを0.5質量%含有する比較例4は、粉体体積抵抗値が低かった。   As is clear from Table 1, in Examples 1 to 6, X / B was 2.3 to 3.8, and the powder volume resistance value was 120 to 94000 Ω · cm, which was a desired range. The b value was also -1.3 to 0.2, the whiteness was good, and [(Y) / (Z)] was also 0.5 to 1.0, with little change over time. On the other hand, in Comparative Example 1 in which the amount of the conductive layer is 100 parts by mass and X / B is as high as 5.5, the powder volume resistance is low, and [(Y) / (Z)] is also 0.08. The change with time was also poor. Moreover, the comparative example 2 with low X / B had a high powder volume resistance value. In Comparative Example 3 where uniform processing was not performed and X / B was low, [(Y) / (Z)] was very low at 0.02. In Comparative Example 4 in which 0.5% by mass of F was contained in the conductive layer, the powder volume resistance value was low.

本発明は、実施例1〜6に示したように、アンチモン等の有害成分を含有せずに、特定の導電性、優れた白色度を有し、環境汚染等を生じる虞がなく、環境への負担が少ない上に、粉体体積抵抗値の経時変化に優れた導電性酸化錫粉末を提供するものである。   As shown in Examples 1 to 6, the present invention does not contain harmful components such as antimony, has specific conductivity, excellent whiteness, has no risk of causing environmental pollution, and the like. In addition, the present invention provides a conductive tin oxide powder that is less burdensome and has an excellent change in powder volume resistance over time.

Claims (8)

白色無機粉末表面に、酸化錫の導電層を有する白色導電性粉末であって、〔(白色導電性粉末の比表面積)/(白色無機粉末の比表面積)〕が2.0〜5.0であり、かつ粉体体積抵抗値が100〜100000Ω・cmであることを特徴とする、白色導電性粉末。   White conductive powder having a conductive layer of tin oxide on the surface of white inorganic powder, wherein [(specific surface area of white conductive powder) / (specific surface area of white inorganic powder)] is 2.0 to 5.0 A white conductive powder having a powder volume resistance of 100 to 100,000 Ω · cm. 白色導電性粉末のLab表色系におけるb値が、−5.0〜+2.0である、請求項1記載の白色導電性粉末。   The white electroconductive powder of Claim 1 whose b value in the Lab color system of white electroconductive powder is -5.0- + 2.0. 白色無機粉末100質量部に対して、導電層が10〜50質量部である、請求項1または2記載の白色導電性粉末。   The white electroconductive powder of Claim 1 or 2 whose conductive layer is 10-50 mass parts with respect to 100 mass parts of white inorganic powder. 初期の粉体体積抵抗値を(Y)とし、100℃、相対湿度:50%で10時間保持後の粉体体積抵抗値を(Z)としたとき、〔(Y)/(Z)〕が、0.1〜1.0である、請求項1〜3のいずれか1項記載の白色導電性粉末。   When (Y) is the initial powder volume resistance value and (Z) is the powder volume resistance value after 10 hours of holding at 100 ° C. and relative humidity: 50%, [(Y) / (Z)] is The white conductive powder according to claim 1, which is 0.1 to 1.0. 酸化錫中のAl、Si、MgおよびZnが、それぞれ1質量%未満である、請求項1〜4のいずれか1項記載の白色導電性粉末。   The white electroconductive powder of any one of Claims 1-4 whose Al, Si, Mg, and Zn in a tin oxide are each less than 1 mass%. 白色無機粉末が、酸化チタンおよびチタン酸塩からなる群より選択される少なくとも一種である、請求項1〜5のいずれか1項記載の白色導電性粉末。   The white conductive powder according to any one of claims 1 to 5, wherein the white inorganic powder is at least one selected from the group consisting of titanium oxide and titanate. 請求項1〜6のいずれか1項記載の白色導電性粉末を分散してなる、分散液。   The dispersion liquid which disperses | distributes the white electroconductive powder of any one of Claims 1-6. 請求項1〜6のいずれか1項記載の白色導電性粉末を含有する、膜組成物。   The film | membrane composition containing the white electroconductive powder of any one of Claims 1-6.
JP2009204328A 2009-09-04 2009-09-04 White conductive powder Pending JP2011054508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204328A JP2011054508A (en) 2009-09-04 2009-09-04 White conductive powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204328A JP2011054508A (en) 2009-09-04 2009-09-04 White conductive powder

Publications (1)

Publication Number Publication Date
JP2011054508A true JP2011054508A (en) 2011-03-17

Family

ID=43943288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204328A Pending JP2011054508A (en) 2009-09-04 2009-09-04 White conductive powder

Country Status (1)

Country Link
JP (1) JP2011054508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003179A1 (en) * 2012-06-29 2014-01-03 三菱マテリアル株式会社 White conductive powder, dispersion liquid thereof, coating material, film composition, and production method of white conductive powder
JP2014148431A (en) * 2013-01-31 2014-08-21 Mitsubishi Materials Corp Electroconductive composite particles and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008685A1 (en) * 2003-07-23 2005-01-27 Ishihara Sangyo Kaisha, Ltd. Electroconductive powder and method for production thereof
JP2008166177A (en) * 2006-12-28 2008-07-17 Mitsubishi Materials Corp Transparent conductive powder
JP2008251210A (en) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp White conductive powder, its manufacturing method, and its use
JP2009199776A (en) * 2008-02-19 2009-09-03 Mitsubishi Materials Corp White conductive powder, its manufacturing method, and usage
JP2010157448A (en) * 2008-12-27 2010-07-15 Mitsubishi Materials Corp White conductive powder with tin oxide layer, and manufacturing method thereof
JP2010157447A (en) * 2008-12-27 2010-07-15 Mitsubishi Materials Corp White conductive inorganic powder with tin oxide layer, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008685A1 (en) * 2003-07-23 2005-01-27 Ishihara Sangyo Kaisha, Ltd. Electroconductive powder and method for production thereof
JP2008166177A (en) * 2006-12-28 2008-07-17 Mitsubishi Materials Corp Transparent conductive powder
JP2008251210A (en) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp White conductive powder, its manufacturing method, and its use
JP2009199776A (en) * 2008-02-19 2009-09-03 Mitsubishi Materials Corp White conductive powder, its manufacturing method, and usage
JP2010157448A (en) * 2008-12-27 2010-07-15 Mitsubishi Materials Corp White conductive powder with tin oxide layer, and manufacturing method thereof
JP2010157447A (en) * 2008-12-27 2010-07-15 Mitsubishi Materials Corp White conductive inorganic powder with tin oxide layer, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003179A1 (en) * 2012-06-29 2014-01-03 三菱マテリアル株式会社 White conductive powder, dispersion liquid thereof, coating material, film composition, and production method of white conductive powder
JP2014009303A (en) * 2012-06-29 2014-01-20 Mitsubishi Materials Corp White conductive powder, fluid dispersion of the same, coating material, film composition, and production method of white conductive powder
JP2014148431A (en) * 2013-01-31 2014-08-21 Mitsubishi Materials Corp Electroconductive composite particles and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5618229B2 (en) ITO powder, method for producing ITO particles, coating for transparent conductive material and transparent conductive film
JP2010030886A (en) Tin oxide particle and its manufacture method
JP5809966B2 (en) White conductive powder, conductive mixed powder, dispersion, paint, and film composition
WO2010004912A1 (en) Process for producing ito particles, ito powder, coating material for transparent electroconductive material, and transparent electroconductive film
JP5400307B2 (en) White conductive powder and its use
JP6013049B2 (en) White conductive powder, dispersion thereof, paint, film, and method for producing white conductive powder
JP5400306B2 (en) White conductive powder and its use
JP5977603B2 (en) White conductive powder, dispersion thereof, paint, and film
JP2011054508A (en) White conductive powder
JP2015160759A (en) Transparent electroconductive compound oxide fine powder, production method thereof, and transparent electroconductive film
JP2008162863A (en) White electroconductive powder
JP5289077B2 (en) Acicular tin oxide fine powder and method for producing the same
JP5552371B2 (en) White conductive powder and method for producing the same
JP6952051B2 (en) Method for manufacturing infrared shielding material and tin oxide particles
JP5562174B2 (en) Transparent conductive tin oxide powder, method for producing the same, and film composition using the same
JP2010123302A (en) Surface-modified white conductive powder, and method of manufacturing the same
JP5977602B2 (en) White conductive powder, dispersion thereof, paint, and film
JPH08217445A (en) Acicular conductive tin oxide fine powder and its production
JP3515625B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP6557556B2 (en) Conductive particles and conductive composition containing the same
WO2014003066A1 (en) White conductive powder, dispersion liquid thereof, coating material, and film composition
JP2018140895A (en) Bluish white titanium oxynitride powder and method for producing the same
JP6936588B2 (en) Gray-white oxynitride niobium powder and its manufacturing method
JP5416532B2 (en) Acicular tin oxide fine powder and method for producing the same
JP6652908B2 (en) Conductive particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120629

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A02 Decision of refusal

Effective date: 20140310

Free format text: JAPANESE INTERMEDIATE CODE: A02