JP6072771B2 - Antibodies and other molecules that bind to B7-H1 and PD-1 - Google Patents

Antibodies and other molecules that bind to B7-H1 and PD-1 Download PDF

Info

Publication number
JP6072771B2
JP6072771B2 JP2014506544A JP2014506544A JP6072771B2 JP 6072771 B2 JP6072771 B2 JP 6072771B2 JP 2014506544 A JP2014506544 A JP 2014506544A JP 2014506544 A JP2014506544 A JP 2014506544A JP 6072771 B2 JP6072771 B2 JP 6072771B2
Authority
JP
Japan
Prior art keywords
antibody
antigen
human
antibodies
binding fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014506544A
Other languages
Japanese (ja)
Other versions
JP2014523401A5 (en
JP2014523401A (en
Inventor
ランガーマン,ソロモン
リウ,リンダ
マーシャル,シャノン
ヤオ,シェング
Original Assignee
メディミューン,エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メディミューン,エルエルシー filed Critical メディミューン,エルエルシー
Publication of JP2014523401A publication Critical patent/JP2014523401A/en
Publication of JP2014523401A5 publication Critical patent/JP2014523401A5/ja
Application granted granted Critical
Publication of JP6072771B2 publication Critical patent/JP6072771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Description

発明の詳細な説明Detailed Description of the Invention

〔関連出願の相互参照〕
本出願は、米国特許出願第61/477,414号(2011年4月20日出願;係属中)に基づいて優先権を主張するものであり、この米国特許出願の開示内容全体を参照によって本出願に援用する。
[Cross-reference of related applications]
This application claims priority based on US patent application Ser. No. 61 / 477,414 (filed Apr. 20, 2011; pending), the entire disclosure of which is hereby incorporated by reference. This is incorporated into the application.

〔配列表の参照〕
本出願は、37CFR1.821に従い、1つ以上の配列表(以下を参照)を含んでいる。この配列表は、紙媒体とコンピュータ読み取り可能な媒体との両方で開示され、この紙による開示とコンピュータ読み取り可能な開示との全体を参照によって本出願に援用する。
[Reference to Sequence Listing]
This application contains one or more sequence listings (see below) in accordance with 37 CFR 1.821. This sequence listing is disclosed on both paper and computer readable media, the entire disclosure of this paper and the computer readable disclosure being incorporated herein by reference.

〔発明の背景〕
〔発明の技術分野〕
本発明は、B7−H1またはPD−1に対して免疫特異的に結合することが可能な抗体と、その抗原結合性フラグメントと、その他の分子とに関連する。一部の実施形態において、上記分子は、B7−H1またはB7−DCの有する、PD−1に対して結合する能力を調節することがさらに可能であるか、または、B7−H1またはPD−1のシグナル伝達活性に対して影響を与えることが可能である。本発明はさらに、癌およびその他の疾病の診断および治療における上記分子の使用に関連する。
BACKGROUND OF THE INVENTION
[Technical Field of the Invention]
The present invention relates to antibodies capable of immunospecifically binding to B7-H1 or PD-1, antigen-binding fragments thereof, and other molecules. In some embodiments, the molecule is further capable of modulating the ability of B7-H1 or B7-DC to bind to PD-1, or B7-H1 or PD-1 It is possible to influence the signal transduction activity. The present invention further relates to the use of the above molecules in the diagnosis and treatment of cancer and other diseases.

〔先行技術の記載〕
(A.細胞性免疫応答)
ヒトおよびその他の哺乳類における免疫系は、感染症および疾病に対する防御の提供を担っている。そのような防御は、体液性免疫応答と細胞性免疫応答との両方によってもたらされている。体液性免疫応答の結果、外来性の標的(抗原)を認識し中和することが可能な抗体およびその他の生体分子が産生される。これに対して、細胞性免疫応答では、マクロファージと、ナチュラルキラー細胞(NK)と、抗原特異性の細胞傷害性Tリンパ球とがT細胞によって活性化され、抗原の認識に反応して種々のサイトカインが放出される(Dong, C. et al. (2003) "Immune Regulation by Novel Costimulatory Molecules," Immunolog. Res. 28(1):39-48)。
[Description of prior art]
(A. Cellular immune response)
The immune system in humans and other mammals is responsible for providing protection against infections and diseases. Such protection is provided by both humoral and cellular immune responses. The humoral immune response results in the production of antibodies and other biomolecules that can recognize and neutralize foreign targets (antigens). In contrast, in the cellular immune response, macrophages, natural killer cells (NK), and antigen-specific cytotoxic T lymphocytes are activated by T cells and react in response to antigen recognition in various ways. Cytokines are released (Dong, C. et al. (2003) "Immune Regulation by Novel Costimulatory Molecules," Immunolog. Res. 28 (1): 39-48).

T細胞が有する、抗原に対する免疫応答を最適に媒介する能力には、2つの異なるシグナル伝達相互作用が必要である(Viglietta, V. et al. (2007) "Modulating Co-Stimulation," Neurotherapeutics 4:666-675; Korman, A.J. et al. (2007) "Checkpoint Blockade in Cancer Immunotherapy," Adv. Immunol. 90:297-339)。まず、抗原提示細胞(APC)の表面に配列された抗原が、抗原特異性のナイーブCD4+T細胞に対して提示されていなければならない。そのような提示の結果、提示された上記抗原に特異的となる免疫応答を上記T細胞に開始させるように指示するシグナルがT細胞受容体(TCR)を介して伝達される。次に、APCと異なるT細胞の表面分子との間の相互作用によって媒介された一連の共刺激抑制シグナルによって、最初にT細胞の活性化および増殖を引き起こし、最終的にはT細胞の阻害を引き起こす。よって、第1のシグナルは免疫応答に対して特異性を与える一方、第2のシグナルはその応答の性質と、規模と、持続時間とを決定する働きをする。 The ability of T cells to optimally mediate an immune response to an antigen requires two different signaling interactions (Viglietta, V. et al. (2007) "Modulating Co-Stimulation," Neurotherapeutics 4: 666-675; Korman, AJ et al. (2007) "Checkpoint Blockade in Cancer Immunotherapy," Adv. Immunol. 90: 297-339). First, antigens arranged on the surface of antigen-presenting cells (APC) must be presented to antigen-specific naive CD4 + T cells. As a result of such presentation, a signal is transmitted through the T cell receptor (TCR) that instructs the T cell to initiate an immune response specific to the presented antigen. Second, a series of costimulatory suppressive signals mediated by interactions between APCs and different T cell surface molecules initially cause T cell activation and proliferation, ultimately leading to T cell inhibition. cause. Thus, the first signal provides specificity for the immune response while the second signal serves to determine the nature, magnitude, and duration of the response.

免疫系は、共刺激かつ共抑制的なリガンドおよび受容体によって厳密に制御されている。これらの分子は、上記第2のシグナルを供給してT細胞を活性化させ、正負シグナルのバランスがとれたネットワークを提供して、自己に対する免疫を制限しつつ感染症に対する免疫応答を最大化する(Wang, L. et al. (March 7, 2011) "VISTA, A Novel Mouse Ig Superfamily Ligand That Negatively Regulates T Cell Responses," J. Exp. Med. 10.1084/jem.20100619:1-16; Lepenies, B. et al. (2008) "The Role Of Negative Costimulators During Parasitic Infections," Endocrine, Metabolic & Immune Disorders - Drug Targets 8:279-288)。特に重要なのは、抗原提示細胞のB7.1(CD80)リガンドおよびB7.2(CD86)リガンドとCD4+Tリンパ球のCD28受容体およびCTLA−4受容体との間の結合である(Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2:116-126; Dong, C. et al. (2003) "Immune Regulation by Novel Costimulatory Molecules," Immunolog. Res. 28(1):39-48; Lindley, P.S. et al. (2009) "The Clinical Utility Of Inhibiting CD28-Mediated Costimulation," Immunol. Rev. 229:307-321)。CD28に対するB7.1またはB7.2の結合によってT細胞の活性化が刺激され、CTLA−4に対するB7.1またはB7.2の結合によって前記活性化が抑制される(Dong, C. et al. (2003) "Immune Regulation by Novel Costimulatory Molecules," Immunolog. Res. 28(1):39-48; Lindley, P.S. et al. (2009) "The Clinical Utility Of Inhibiting CD28-Mediated Costimulation," Immunol. Rev. 229:307-321; Greenwald, R.J. et al. (2005) "The B7 Family Revisited," Ann. Rev. Immunol. 23:515-548)。CD28は、T細胞の表面において構成的に発現される(Gross, J., et al. (1992) "Identification And Distribution Of The Costimulatory Receptor CD28 In The Mouse," J. Immunol. 149:380-388)。これに対して、CTLA4の発現は、T細胞の活性化に続いて急速に上方制御される(Linsley, P. et al. (1996) "Intracellular Trafficking Of CTLA4 And Focal Localization Towards Sites Of TCR Engagement," Immunity 4:535-543)。CTLA4は親和性のより高い受容体なので(Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2:116-126)、結合によって最初にT細胞の増殖が(CD28を介して)開始され、次にその増殖が(CTLA4の初期の発現を介して)抑制され、これにより、増殖が必要なくなった時に効果を減衰させる。 The immune system is tightly controlled by costimulatory and co-inhibitory ligands and receptors. These molecules provide the second signal to activate T cells, providing a balanced network of positive and negative signals, maximizing the immune response to infection while limiting immunity to self (Wang, L. et al. (March 7, 2011) "VISTA, A Novel Mouse Ig Superfamily Ligand That Negatively Regulates T Cell Responses," J. Exp. Med. 10.1084 / jem.20100619: 1-16; Lepenies, B et al. (2008) "The Role Of Negative Costimulators During Parasitic Infections," Endocrine, Metabolic & Immune Disorders-Drug Targets 8: 279-288). Of particular importance is the binding between the B7.1 (CD80) and B7.2 (CD86) ligands of antigen presenting cells and the CD28 and CTLA-4 receptors of CD4 + T lymphocytes (Sharpe, AH et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2: 116-126; Dong, C. et al. (2003) "Immune Regulation by Novel Costimulatory Molecules," Immunolog. Res. 28 ( 1): 39-48; Lindley, PS et al. (2009) "The Clinical Utility Of Inhibiting CD28-Mediated Costimulation," Immunol. Rev. 229: 307-321). Binding of B7.1 or B7.2 to CD28 stimulates T cell activation, and binding of B7.1 or B7.2 to CTLA-4 suppresses the activation (Dong, C. et al. (2003) "Immune Regulation by Novel Costimulatory Molecules," Immunolog. Res. 28 (1): 39-48; Lindley, PS et al. (2009) "The Clinical Utility Of Inhibiting CD28-Mediated Costimulation," Immunol. Rev. 229: 307-321; Greenwald, RJ et al. (2005) "The B7 Family Revisited," Ann. Rev. Immunol. 23: 515-548). CD28 is constitutively expressed on the surface of T cells (Gross, J., et al. (1992) "Identification And Distribution Of The Costimulatory Receptor CD28 In The Mouse," J. Immunol. 149: 380-388). . In contrast, CTLA4 expression is rapidly upregulated following T cell activation (Linsley, P. et al. (1996) "Intracellular Trafficking Of CTLA4 And Focal Localization Towards Sites Of TCR Engagement," Immunity 4: 535-543). Since CTLA4 is a higher affinity receptor (Sharpe, AH et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2: 116-126), binding initially causes T cell proliferation ( Is initiated (via CD28) and then its proliferation is suppressed (via early expression of CTLA4), thereby diminishing the effect when proliferation is no longer needed.

CD28受容体のリガンドをさらに研究することによって、関連するB7分子一式(「B7スーパーファミリー」)の同定および特性決定を行なった(Coyle, A.J. et al. (2001) "The Expanding B7 Superfamily: Increasing Complexity In Costimulatory Signals Regulating T Cell Function," Nature Immunol. 2(3):203-209; Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2:116-126; Greenwald, R.J. et al. (2005) "The B7 Family Revisited," Ann. Rev. Immunol. 23:515-548; Collins, M. et al. (2005) "The B7 Family Of Immune-Regulatory Ligands," Genome Biol. 6:223.1-223.7; Loke, P. et al. (2004) "Emerging Mechanisms Of Immune Regulation: The Extended B7 Family And Regulatory T Cells." Arthritis Res. Ther. 6:208-214; Korman, A.J. et al. (2007) "Checkpoint Blockade in Cancer Immunotherapy," Adv. Immunol. 90:297-339; Flies, D.B. et al. (2007) "The New B7s: Playing a Pivotal Role in Tumor Immunity," J. Immunother. 30(3):251-260; Agarwal, A. et al. (2008) "The Role Of Positive Costimulatory Molecules In Transplantation And Tolerance," Curr. Opin. Organ Transplant. 13:366-372; Lenschow, D.J. et al. (1996) "CD28/B7 System of T Cell Costimulation," Ann. Rev. Immunol. 14:233-258; Wang, S. et al. (2004) "Co-Signaling Molecules Of The B7-CD28 Family In Positive And Negative Regulation Of T Lymphocyte Responses," Microbes Infect. 6:759-766)。現在、上記ファミリーのいくつかのメンバーが既知である。すなわち、B7.1(CD80)、B7.2(CD86)、誘導性共刺激リガンド(ICOS−L)、プログラム死−1リガンド(PD−L1;B7−H1)、プログラム死−2リガンド(PD−L2;B7−DC)、B7−H3、B7−H4、およびB7−H6が既知である(Collins, M. et al. (2005) "The B7 Family Of Immune-Regulatory Ligands," Genome Biol. 6:223.1-223.7; Flajnik, M.F. et al. (2012) "Evolution Of The B7 Family: Co-Evolution Of B7H6 And Nkp30, Identification Of A New B7 Family Member, B7H7, And Of B7's Historical Relationship With The MHC," Immunogenetics epub doi.org/10.1007/s00251-012-0616-2)。   By further studying the ligands for the CD28 receptor, the relevant B7 molecule suite ("B7 superfamily") was identified and characterized (Coyle, AJ et al. (2001) "The Expanding B7 Superfamily: Increasing Complexity In Costimulatory Signals Regulating T Cell Function, "Nature Immunol. 2 (3): 203-209; Sharpe, AH et al. (2002)" The B7-CD28 Superfamily, "Nature Rev. Immunol. 2: 116-126; Greenwald , RJ et al. (2005) "The B7 Family Revisited," Ann. Rev. Immunol. 23: 515-548; Collins, M. et al. (2005) "The B7 Family Of Immune-Regulatory Ligands," Genome Biol 6: 223.1-223.7; Loke, P. et al. (2004) "Emerging Mechanisms Of Immune Regulation: The Extended B7 Family And Regulatory T Cells." Arthritis Res. Ther. 6: 208-214; Korman, AJ et al. (2007) "Checkpoint Blockade in Cancer Immunotherapy," Adv. Immunol. 90: 297-339; Flies, DB et al. (2007) "The New B7s: Playing a Pivotal Role in Tumor Immunity," J. Immunother. 30 (3): 251-260; Agarwal, A. et al. (2008) "The Role Of Positive Costimulatory Molecules In Transplantation And Tolerance," Curr. Opin. Organ Transplant. 13: 366-372; Lenschow, DJ et al. (1996) "CD28 / B7 System of T Cell Costimulation, "Ann. Rev. Immunol. 14: 233-258; Wang, S. et al. (2004)" Co-Signaling Molecules Of The B7-CD28 Family In Positive And Negative Regulation Of T Lymphocyte Responses, " Microbes Infect. 6: 759-766). Currently, several members of the above family are known. That is, B7.1 (CD80), B7.2 (CD86), inducible costimulatory ligand (ICOS-L), programmed death-1 ligand (PD-L1; B7-H1), programmed death-2 ligand (PD- L2; B7-DC), B7-H3, B7-H4, and B7-H6 are known (Collins, M. et al. (2005) "The B7 Family Of Immune-Regulatory Ligands," Genome Biol. 6: 223.1-223.7; Flajnik, MF et al. (2012) "Evolution Of The B7 Family: Co-Evolution Of B7H6 And Nkp30, Identification Of A New B7 Family Member, B7H7, And Of B7's Historical Relationship With The MHC," Immunogenetics epub doi.org/10.1007/s00251-012-0616-2).

(B.B7−H1/PD1相互作用)
(1.B7−H1)
B7−H1(PD−L1、CD274)は、腫瘍に対する免疫応答を形づくることに中枢的に関与しているため、B7スーパーファミリーでは特に重要なメンバーである(Flies, D.B. et al. (2007) "The New B7s: Playing a Pivotal Role in Tumor Immunity," J. Immunother. 30(3):251-260、米国特許第6,803,192号および第7,794,710号;米国特許出願公開第2005/0059051号、第2009/0055944号、第2009/0274666号、および第2009/0313687号;および、PCT公開公報第WO01/39722号および第WO02/086083号)。B7−H1は、およそ33kDaの1型膜貫通タンパク質である。B7−H1は、妊娠、組織同種移植、自己免疫疾患、および肝炎などのその他の疾患などの特定の事象の間、免疫系を抑止するのに重要な役割を果たしていると推測されてきた。
(B. B7-H1 / PD1 interaction)
(1. B7-H1)
B7-H1 (PD-L1, CD274) is a particularly important member in the B7 superfamily because it is centrally involved in shaping the immune response against tumors (Flies, DB et al. (2007) " The New B7s: Playing a Pivotal Role in Tumor Immunity, "J. Immunother. 30 (3): 251-260, US Patent Nos. 6,803,192 and 7,794,710; US Patent Application Publication No. 2005. / 0059051, 2009/0055944, 2009/0274666, and 2009/0313687; and PCT publications WO01 / 39722 and WO02 / 086083). B7-H1 is a type 1 transmembrane protein of approximately 33 kDa. B7-H1 has been speculated to play an important role in depressing the immune system during certain events such as pregnancy, tissue allograft, autoimmune diseases, and other diseases such as hepatitis.

B7−H1は、ヒトおよびマウスの異なる組織(心臓、胎盤、筋肉、胎児肝臓、脾臓、リンパ節、および胸腺;また、肝臓、肺、および腎臓についてはマウスのみ)に広範囲に発現する(Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298)。ヒトにおいて、B7−H1タンパク質の発現は、ヒト内皮細胞(Chen, Y. et al. (2005) "Expression of B7-H1 in Inflammatory Renal Tubular Epithelial Cells," Nephron. Exp. Nephrol. 102:e81-e92; de Haij, S. et al. (2005) "Renal Tubular Epithelial Cells Modulate T-Cell Responses Via ICOS-L And B7-H1" Kidney Int. 68:2091-2102; Mazanet, M.M. et al. (2002) "B7-H1 Is Expressed By Human Endothelial Cells And Suppresses T Cell Cytokine Synthesis," J. Immunol. 169:3581-3588)、心筋(Brown, J.A. et al. (2003) "Blockade Of Programmed Death-1 Ligands On Dendritic Cells Enhances T Cell Activation And Cytokine Production," J. Immunol. 170:1257-1266))、合胞体栄養細胞(Petroff, M.G. et al. (2002) "B7 Family Molecules: Novel Immunomodulators At The Maternal-Fetal Interface," Placenta 23:S95-S101)、一部組織の在住マクロファージ、または、インターフェロン(IFN)−γまたは腫瘍壊死因子(TNF)−αで活性化されたマクロファージ(Latchman, Y. et al. (2001) "PD-L2 Is A Second Ligand For PD-1 And Inhibits T Cell Activation," Nat. Immunol 2:261-268)、および、腫瘍(Dong, H. (2003) "B7-H1 Pathway And Its Role In The Evasion Of Tumor Immunity," J. Mol. Med. 81:281-287)においてみられる。マウスにおいては、B7−H1タンパク質の発現は、心臓内皮、膵臓の島細胞、小腸、および、胎盤において確認される(Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298)。   B7-H1 is widely expressed in different human and mouse tissues (heart, placenta, muscle, fetal liver, spleen, lymph nodes, and thymus; and for mice only for liver, lung, and kidney) (Martin- Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17 (4): 288-298). In humans, the expression of B7-H1 protein is expressed in human endothelial cells (Chen, Y. et al. (2005) "Expression of B7-H1 in Inflammatory Renal Tubular Epithelial Cells," Nephron. Exp. Nephrol. 102: e81-e92. de Haij, S. et al. (2005) "Renal Tubular Epithelial Cells Modulate T-Cell Responses Via ICOS-L And B7-H1" Kidney Int. 68: 2091-2102; Mazanet, MM et al. (2002) " B7-H1 Is Expressed By Human Endothelial Cells And Suppresses T Cell Cytokine Synthesis, "J. Immunol. 169: 3581-3588), Myocardium (Brown, JA et al. (2003)" Blockade Of Programmed Death-1 Ligands On Dendritic Cells Enhances T Cell Activation And Cytokine Production, "J. Immunol. 170: 1257-1266)), syncytiotrophoblast (Petroff, MG et al. (2002)" B7 Family Molecules: Novel Immunomodulators At The Maternal-Fetal Interface, " Placenta 23: S95-S101), activated in some tissue resident macrophages, or interferon (IFN) -γ or tumor necrosis factor (TNF) -α Macrophages (Latchman, Y. et al. (2001) "PD-L2 Is A Second Ligand For PD-1 And Inhibits T Cell Activation," Nat. Immunol 2: 261-268) and tumors (Dong, H. ( 2003) "B7-H1 Pathway And Its Role In The Evasion Of Tumor Immunity," J. Mol. Med. 81: 281-287). In mice, B7-H1 protein expression is confirmed in cardiac endothelium, pancreatic islet cells, small intestine, and placenta (Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity , "Semin. Cancer Biol. 17 (4): 288-298).

(2.PD−1)
プログラム死−1(「PD−1」)は、B7−H1およびB7−DCの受容体である。PD−1は、T細胞調節因子の拡張CD28/CTLA4ファミリーのおよそ31kDのI型膜タンパク質メンバーである(Ishida, Y. et al. (1992) "Induced Expression Of PD-1, A Novel Member Of The Immunoglobulin Gene Superfamily, Upon Programmed Cell Death," EMBO J. 11:3887-3895、米国特許出願公開第2007/0202100号、第2008/0311117号、および第2009/00110667号;米国特許第6,808,710号、第7,101,550号、第7,488,802号、第7,635,757号および第7,722,868号;および、PCT公開公報第WO01/14557号)。CTLA4と比べ、PD−1は免疫応答をより広範囲で負に調節する。
(2.PD-1)
Programmed death-1 (“PD-1”) is a receptor for B7-H1 and B7-DC. PD-1 is an approximately 31 kD type I membrane protein member of the extended CD28 / CTLA4 family of T cell regulators (Ishida, Y. et al. (1992) "Induced Expression Of PD-1, A Novel Member Of The Immunoglobulin Gene Superfamily, Upon Programmed Cell Death, "EMBO J. 11: 3887-3895, U.S. Patent Application Publication Nos. 2007/0202100, 2008/0311117, and 2009/01010667; U.S. Patent No. 6,808,710. No. 7,101,550, 7,488,802, 7,635,757 and 7,722,868; and PCT Publication No. WO01 / 14557). Compared to CTLA4, PD-1 regulates the immune response more negatively.

PD−1は、活性T細胞、B細胞、および、単球上に発現し(Agata, Y. et al. (1996) "Expression Of The PD-1 Antigen On The Surface Of Stimulated Mouse T And B Lymphocytes," Int. Immunol. 8(5):765-772; Yamazaki, T. et al. (2002) "Expression Of Programmed Death 1 Ligands By Murine T Cells And APC," J. Immunol. 169:5538-5545)、かつナチュラルキラー(NK)T細胞において低レベルに発現する(Nishimura, H. et al. (2000) "Facilitation Of Beta Selection And Modification Of Positive Selection In The Thymus Of PD-1-Deficient Mice," J. Exp. Med. 191:891-898; Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298)。   PD-1 is expressed on activated T cells, B cells, and monocytes (Agata, Y. et al. (1996) "Expression Of The PD-1 Antigen On The Surface Of Stimulated Mouse T And B Lymphocytes, Int. Immunol. 8 (5): 765-772; Yamazaki, T. et al. (2002) "Expression Of Programmed Death 1 Ligands By Murine T Cells And APC," J. Immunol. 169: 5538-5545), And expressed at low levels in natural killer (NK) T cells (Nishimura, H. et al. (2000) "Facilitation Of Beta Selection And Modification Of Positive Selection In The Thymus Of PD-1-Deficient Mice," J. Exp. Med. 191: 891-898; Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17 (4): 288-298).

PD−1の細胞外領域は、CTLA4における等価ドメインに対して23%の同一性を有する単一の免疫グロブリン(Ig)Vドメインからなる(Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298)。上記細胞外IgVドメインには、膜貫通領域および細胞内尾部が続く。細胞内尾部は、免疫受容体チロシンベース抑制モチーフおよび免疫受容体チロシンベーススィッチモチーフの中に位置する2つのリン酸化部位を含有し、これは、PD−1が、TCRシグナルを負に調節することを示唆する(Ishida, Y. et al. (1992) "Induced Expression Of PD-1, A Novel Member Of The Immunoglobulin Gene Superfamily, Upon Programmed Cell Death," EMBO J. 11:3887-3895; Blank, C. et al. (Epub 2006 Dec 29) "Contribution Of The PD-L1/PD-1 Pathway To T-Cell Exhaustion: An Update On Implications For Chronic Infections And Tumor Evasion Cancer," Immunol. Immunother. 56(5):739-745)。   The extracellular region of PD-1 consists of a single immunoglobulin (Ig) V domain with 23% identity to the equivalent domain in CTLA4 (Martin-Orozco, N. et al. (2007) “Inhibitory Costimulation And Anti-Tumor Immunity, "Semin. Cancer Biol. 17 (4): 288-298). The extracellular IgV domain is followed by a transmembrane region and an intracellular tail. The intracellular tail contains two phosphorylation sites located within the immunoreceptor tyrosine-based inhibitory motif and the immunoreceptor tyrosine-based switch motif, which indicates that PD-1 negatively regulates the TCR signal. (Ishida, Y. et al. (1992) "Induced Expression Of PD-1, A Novel Member Of The Immunoglobulin Gene Superfamily, Upon Programmed Cell Death," EMBO J. 11: 3887-3895; Blank, C. et al. (Epub 2006 Dec 29) "Contribution Of The PD-L1 / PD-1 Pathway To T-Cell Exhaustion: An Update On Implications For Chronic Infections And Tumor Evasion Cancer," Immunol. Immunother. 56 (5): 739 -745).

マウスPD−1に対して免疫特異的に結合することが可能な抗体が報告されてきた(たとえば、Agata, T. et al. (1996) "Expression Of The PD-1 Antigen On The Surface Of Stimulated Mouse T And B Lymphocytes," Int. Immunol. 8(5):765-772、参照)。   Antibodies capable of immunospecific binding to mouse PD-1 have been reported (eg, Agata, T. et al. (1996) "Expression Of The PD-1 Antigen On The Surface Of Stimulated Mouse T And B Lymphocytes, "Int. Immunol. 8 (5): 765-772, see).

(C.B7−H1とPD−1との相互作用)
B7−H1とPD−1との相互作用は、重要な負の共刺激のシグナルをT細胞およびB細胞に供給することが確認されており(Martin-Orozco, N. et al. (2007) "Inhibitory Costimulation And Anti-Tumor Immunity," Semin. Cancer Biol. 17(4):288-298)、細胞死誘導因子として機能する(Ishida, Y. et al. (1992) "Induced Expression Of PD-1, A Novel Member Of The Immunoglobulin Gene Superfamily, Upon Programmed Cell Death," EMBO J. 11:3887-3895; Subudhi, S.K. et al. (2005) "The Balance Of Immune Responses: Costimulation Verse Coinhibition," J. Molec. Med. 83:193-202)。
(C. Interaction between B7-H1 and PD-1)
The interaction between B7-H1 and PD-1 has been shown to supply important negative costimulatory signals to T and B cells (Martin-Orozco, N. et al. (2007) " Inhibitory Costimulation And Anti-Tumor Immunity, "Semin. Cancer Biol. 17 (4): 288-298), functioning as a cell death inducer (Ishida, Y. et al. (1992)" Induced Expression Of PD-1, A Novel Member Of The Immunoglobulin Gene Superfamily, Upon Programmed Cell Death, "EMBO J. 11: 3887-3895; Subudhi, SK et al. (2005)" The Balance Of Immune Responses: Costimulation Verse Coinhibition, "J. Molec. Med 83: 193-202).

低濃度のPD−1受容体とB7−H1リガンドとの間の相互作用により、結果として、抗原特異性CD8+T細胞の増殖を強く抑制する抑制シグナルが伝達される。より高濃度では、PD−1との相互作用は、T細胞の増殖を抑制しないが、複数のサイトカインの産生を明らかに抑制する(Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2:116-126)。以前に活性化されて、現在は休止期にあるCD4およびCD8T細胞の両方、さらには臍帯血からのナイーブT細胞によるT細胞増殖およびサイトカイン産生が、可溶性B7−H1−Fc融合タンパク質により抑制されることがわかっている(Freeman, G.J. et al. (2000) "Engagement Of The PD-1 Immunoinhibitory Receptor By A Novel B7 Family Member Leads To Negative Regulation Of Lymphocyte Activation," J. Exp. Med. 192:1-9; Latchman, Y. et al. (2001) "PD-L2 Is A Second Ligand For PD-1 And Inhibits T Cell Activation," Nature Immunol. 2:261-268; Carter, L. et al. (2002) "PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2," Eur. J. Immunol. 32(3):634-643; Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2:116-126)。 The interaction between the low concentration of PD-1 receptor and the B7-H1 ligand results in the transmission of an inhibitory signal that strongly suppresses the proliferation of antigen-specific CD8 + T cells. At higher concentrations, interaction with PD-1 does not inhibit T cell proliferation but clearly inhibits the production of multiple cytokines (Sharpe, AH et al. (2002) "The B7-CD28 Superfamily, "Nature Rev. Immunol. 2: 116-126). T cell proliferation and cytokine production by both previously activated and now resting CD4 and CD8 T cells, as well as naive T cells from umbilical cord blood, is suppressed by soluble B7-H1-Fc fusion protein (Freeman, GJ et al. (2000) "Engagement Of The PD-1 Immunoinhibitory Receptor By A Novel B7 Family Member Leads To Negative Regulation Of Lymphocyte Activation," J. Exp. Med. 192: 1-9 Latchman, Y. et al. (2001) "PD-L2 Is A Second Ligand For PD-1 And Inhibits T Cell Activation," Nature Immunol. 2: 261-268; Carter, L. et al. (2002) " PD-1: PD-L inhibitory pathway affects both CD4 (+) and CD8 (+) T cells and is overcome by IL-2, "Eur. J. Immunol. 32 (3): 634-643; Sharpe, AH et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2: 116-126).

B7−H1とPD−1との相互作用は、G0−G1における細胞周期停止を引き起こすが、細胞死を増加させることはない(Latchman, Y. et al. (2001) "PD-L2 Is A Second Ligand For PD-1 And Inhibits T Cell Activation," Nature Immunol. 2:261-268; Carter, L. et al. (2002) "PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2," Eur. J. Immunol. 32(3):634-643)。よって、抗原性刺激が弱い、あるいは、制限されている場合、B7−H1-PD−1錯化剤は、B7-CD28シグナルに拮抗する能力を有しており、T細胞応答を下方制御する際に重要な役割を果たす。   Interaction between B7-H1 and PD-1 causes cell cycle arrest in G0-G1, but does not increase cell death (Latchman, Y. et al. (2001) "PD-L2 Is A Second Ligand For PD-1 And Inhibits T Cell Activation, "Nature Immunol. 2: 261-268; Carter, L. et al. (2002)" PD-1: PD-L inhibitory pathway affects both CD4 (+) and CD8 ( +) T cells and is overcome by IL-2, "Eur. J. Immunol. 32 (3): 634-643). Thus, when antigenic stimulation is weak or restricted, the B7-H1-PD-1 complexing agent has the ability to antagonize the B7-CD28 signal and down-regulate the T cell response Plays an important role.

B7−H1とPD−1とによって媒介されるシグナル伝達は、複雑である。両方の分子は、他のタンパク質にさらに結合する。B7−H1は、B7−1(CD80)に対して結合することが可能である(Butte, M.J. et al. (2008) "Interaction of PD-L1 and B7-1," Molecular Immunol. 45:3567-3572)。また、PD−1は、B7−DC(PD−L2)に結合することが可能である(Lazar-Molnar, E. et al. (2008) "Crystal Structure Of The Complex Between Programmed Death-1 (PD-1) And Its Ligand PD-L2," Proc. Natl. Acad. Sci. (USA) 105(30):10483-10488)。B7−1は、CD28と相互作用し、免疫応答の初期段階で重要なT細胞活性化のための共刺激シグナルを発する(Elloso, M.M. et al. (1999) "Expression and Contribution of B7-1 (CD80) and B7-2 (CD86) in the Early Immune Response to Leishmania major Infection," J. Immunol. 162:6708-6715)。B7−DCは、T細胞の強力な刺激因子であり、T細胞増殖およびIFN−γ産生を向上させる。しかしまた、B7−DCは、PD−1との相互作用を介して免疫応答に対する抑制効果も示す(Ishiwata, K. et al. (epub January 10, 2010) "Costimulator Responses Induced by Nippostrongylus brasiliensis," J. Immunol. 184:2086-2094)。細菌および腫瘍は、免疫系による根絶を回避するのにPD−1およびB7−H1を利用したようにみられる。PD−1およびB7−H1と相互作用する種々の受容体およびリガンドに対する結合親和性の違いが、疾病モデルにおけるPD−1およびB7−H1の遮断の明らかな機能的結果を提供するという説が出されている(Butte, M.J. et al. (2008) "Interaction of PD-L1 and B7-1," Molecular Immunol. 45:3567-3572)。また、PD−1経路は、慢性感染の間の免疫機能の障害(「T細胞疲弊」)において重要な役割を果たすものとして関与している。そして、PD−1機能を遮断することによって、多くのT細胞機能を回復させることができる(Rodriquez-Garcia, M. et al. (November 19, 2010) "Expression Of PD-L1 And PD-L2 On Human Macrophages Is Up-Regulated By HIV-1 And Differentially Modulated By IL-10," J. Leukocyte Biol. 89: doi:10.1189/jlb.0610327:1-9)。   Signal transduction mediated by B7-H1 and PD-1 is complex. Both molecules bind further to other proteins. B7-H1 can bind to B7-1 (CD80) (Butte, MJ et al. (2008) "Interaction of PD-L1 and B7-1," Molecular Immunol. 45: 3567- 3572). PD-1 can bind to B7-DC (PD-L2) (Lazar-Molnar, E. et al. (2008) "Crystal Structure Of The Complex Between Programmed Death-1 (PD- 1) And Its Ligand PD-L2, "Proc. Natl. Acad. Sci. (USA) 105 (30): 10483-10488). B7-1 interacts with CD28 and emits a costimulatory signal for T cell activation that is important in the early stages of the immune response (Elloso, MM et al. (1999) "Expression and Contribution of B7-1 ( CD80) and B7-2 (CD86) in the Early Immune Response to Leishmania major Infection, "J. Immunol. 162: 6708-6715). B7-DC is a potent stimulator of T cells and improves T cell proliferation and IFN-γ production. However, B7-DC also shows an inhibitory effect on the immune response through interaction with PD-1 (Ishiwata, K. et al. (Epub January 10, 2010) "Costimulator Responses Induced by Nippostrongylus brasiliensis," J Immunol. 184: 2086-2094). Bacteria and tumors appear to have utilized PD-1 and B7-H1 to avoid eradication by the immune system. The theory emerges that differences in binding affinity for various receptors and ligands that interact with PD-1 and B7-H1 provide clear functional consequences of PD-1 and B7-H1 blockade in disease models. (Butte, MJ et al. (2008) "Interaction of PD-L1 and B7-1," Molecular Immunol. 45: 3567-3572). The PD-1 pathway is also implicated as playing an important role in impaired immune function ("T cell exhaustion") during chronic infection. By blocking PD-1 function, many T cell functions can be restored (Rodriquez-Garcia, M. et al. (November 19, 2010) "Expression Of PD-L1 And PD-L2 On Human Macrophages Is Up-Regulated By HIV-1 And Differentially Modulated By IL-10, "J. Leukocyte Biol. 89: doi: 10.1189 / jlb.0610327: 1-9).

T細胞活性化および増殖の抑制におけるB7−H1およびPD−1の役割は、これらの生体分子が、炎症および癌の治療のための治療標的として役立つであろうということを示唆した。感染および腫瘍を治療し、適応的免疫応答を上方調節するための抗-PD1抗体の使用が提案されている(米国特許出願公開第2010/0040614号、第2010/0028330号、第2004/0241745号、第2008/0311117号、および第2009/0217401号;米国特許第7,521,051号、第7,563,869号および第7,595,048号;および、PCT公開公報第WO2004/056875号および第WO2008/083174号、参照)。逆に、B7−H1とPD−1との相互作用を調節する薬剤が、免疫応答の上方または下方調節において有効性があることが示唆されている(米国特許第7,029,674号および第7,488,802号;米国特許出願公開第2007/0122378号、第2009/0076250号、第2009/0110667号、第2009/0263865号、および、第2009/0297518号;および、PCT公開公報第WO2006/133396号)。同様に、感染および腫瘍を治療し、適応的免疫応答を上方調節するための抗B7−H1抗体の使用が提案されている(米国特許出願公開第2009/0055944号、第2009/0274666号および第2009/0317368号;米国特許第6,803,192号、および第7,794,710号;および、PCT公開公報第WO01/39722号および第WO02/086083号)。   The role of B7-H1 and PD-1 in suppressing T cell activation and proliferation suggested that these biomolecules would serve as therapeutic targets for the treatment of inflammation and cancer. The use of anti-PD1 antibodies to treat infections and tumors and up-regulate adaptive immune responses has been proposed (US Patent Publication Nos. 2010/0040614, 2010/0028330, 2004/0241745). 2008/0311117, and 2009/0217401; U.S. Patents 7,521,051, 7,563,869 and 7,595,048; and PCT Publication No. WO 2004/056875. And WO 2008/083174). Conversely, agents that modulate the interaction between B7-H1 and PD-1 have been suggested to be effective in up- or down-regulating the immune response (US Pat. Nos. 7,029,674 and US Patent Application Publication Nos. 2007/0122378, 2009/0076250, 2009/0110667, 2009/0263865, and 2009/0297518; and PCT Publication No. WO2006 / 133396). Similarly, the use of anti-B7-H1 antibodies to treat infections and tumors and up-regulate adaptive immune responses has been proposed (US Patent Publication Nos. 2009/0055944, 2009/0274666 and 2009/0317368; U.S. Patent Nos. 6,803,192 and 7,794,710; and PCT Publication Nos. WO01 / 39722 and WO02 / 086083).

しかしながら、上記のすべての進歩に関わらず、B7−H1とPD−1との間の相互作用を調節できる組成物の必要性が残っている。本発明は、癌および他の疾病や状態を治療するための上記組成物およびその使用を対象としている。   However, despite all the advances described above, there remains a need for compositions that can modulate the interaction between B7-H1 and PD-1. The present invention is directed to the above compositions and uses thereof for treating cancer and other diseases and conditions.

〔発明の概要〕
本発明は、B7−H1またはPD−1に対して免疫特異的に結合することが可能な抗体と、その抗原結合フラグメントと、その他の分子とに関連する。いくつかの実施形態において、上記分子は、B7−H1の有する、PD−1に対して結合する能力を調節することがさらに可能であるか、または、上記B7−H1またはPD−1のシグナル伝達活性に対して影響を与えることが可能である。本発明はさらに、癌およびその他の疾病の診断および治療における上記分子の使用に関連する。
[Summary of the Invention]
The present invention relates to antibodies capable of immunospecifically binding to B7-H1 or PD-1, antigen binding fragments thereof, and other molecules. In some embodiments, the molecule is further capable of modulating the ability of B7-H1 to bind to PD-1, or signaling of B7-H1 or PD-1 It is possible to influence the activity. The present invention further relates to the use of the above molecules in the diagnosis and treatment of cancer and other diseases.

詳細には、本発明は、内因性濃度または形質移入濃度で生細胞の表面に発現されることが好ましい、B7−H1またはPD−1、特にヒトB7−H1またはヒトPD−1に対して免疫特異的に結合する抗体の抗原結合フラグメントを有する分子を実現する。本発明は、上記抗原結合フラグメントが、B7−H1に結合し、かつ、上記生細胞が腫瘍細胞、病原体感染細胞、または、抗原提示細胞である分子の実施形態、および、上記抗原結合フラグメントが、PD−1に結合し、かつ、上記生細胞がT細胞である上記分子の実施形態に関わる。   Specifically, the present invention immunizes against B7-H1 or PD-1, particularly human B7-H1 or human PD-1, preferably expressed on the surface of living cells at endogenous or transfection concentrations. A molecule having an antigen-binding fragment of an antibody that specifically binds is realized. The present invention relates to molecular embodiments in which the antigen-binding fragment binds to B7-H1 and the living cells are tumor cells, pathogen-infected cells, or antigen-presenting cells, and the antigen-binding fragments include: Involved in embodiments of the molecule that bind to PD-1 and wherein the living cells are T cells.

本発明は、B7−H1またはPD−1に対して免疫特異的に結合することが可能な抗体と、その抗原結合フラグメントと、その他の分子とに関連する。いくつかの実施形態において、上記分子は、B7−H1の有する、PD−1に対して結合する能力を調節することがさらに可能であるか、または、上記B7−H1またはPD−1のシグナル伝達活性に対して影響を与えることが可能である。本発明はさらに、癌およびその他の疾病の診断および治療における上記分子の使用に関連する。   The present invention relates to antibodies capable of immunospecifically binding to B7-H1 or PD-1, antigen binding fragments thereof, and other molecules. In some embodiments, the molecule is further capable of modulating the ability of B7-H1 to bind to PD-1, or signaling of B7-H1 or PD-1 It is possible to influence the activity. The invention further relates to the use of the above molecules in the diagnosis and treatment of cancer and other diseases.

詳細には、本発明は、内因性濃度または形質移入濃度で生細胞の表面に発現されることが好ましい、B7−H1またはPD−1、特にヒトB7−H1またはヒトPD−1に対して免疫特異的に結合する抗体の抗原結合フラグメントを有する分子を実現する。本発明は、上記抗原結合フラグメントが、B7−H1に結合し、かつ、上記生細胞が腫瘍細胞、病原体感染細胞、または、抗原提示細胞である分子の実施形態、および、上記抗原結合フラグメントが、PD−1に結合し、かつ、上記生細胞がT細胞である上記分子の実施形態に関わる。   Specifically, the present invention immunizes against B7-H1 or PD-1, particularly human B7-H1 or human PD-1, preferably expressed on the surface of living cells at endogenous or transfection concentrations. A molecule having an antigen-binding fragment of an antibody that specifically binds is realized. The present invention relates to molecular embodiments in which the antigen-binding fragment binds to B7-H1 and the living cells are tumor cells, pathogen-infected cells, or antigen-presenting cells, and the antigen-binding fragments include: Involved in embodiments of the molecule that bind to PD-1 and wherein the living cells are T cells.

本発明は、さらに、上記分子が、モノクローナル抗体、ヒト抗体、キメラ抗体、または、ヒト化抗体である、上記分子の実施形態に関連する。本発明は、上記抗体が、単一特異性、二重特異性、三重特異性、または、多重特異性のものである上記実施形態を含む。   The invention further relates to embodiments of the molecule wherein the molecule is a monoclonal antibody, a human antibody, a chimeric antibody, or a humanized antibody. The present invention includes the above embodiments wherein the antibody is monospecific, bispecific, trispecific, or multispecific.

本発明は、さらに、B7−H1に結合する上記分子または抗体の実施形態であって、その上記抗原結合フラグメントが、抗B7−H1抗体1E12、1F4、2G11、3B6、および3D10のCDRのうちの少なくとも1つのコンセンサスCDRと、以下の(A)から(E):
(A)抗B7−H1抗体1E12の3つの軽鎖CDRおよび3つの重鎖CDR;
(B)抗B7−H1抗体1F4の3つの軽鎖CDRおよび3つの重鎖CDR;
(C)抗B7−H1抗体2G11の3つの軽鎖CDRおよび3つの重鎖CDR;
(D)抗B7−H1抗体3B6の3つの軽鎖CDRおよび3つの重鎖CDR;または、
(E)抗B7−H1抗体3D10の3つの軽鎖CDRおよび3つの重鎖CDR、から選択される全ての残りのCDRとを有する6つのCDRを有する実施形態に関する。
The invention further provides an embodiment of the molecule or antibody that binds to B7-H1, wherein the antigen-binding fragment is one of the CDRs of anti-B7-H1 antibodies 1E12, 1F4, 2G11, 3B6, and 3D10. At least one consensus CDR and the following (A) to (E):
(A) Three light chain CDRs and three heavy chain CDRs of anti-B7-H1 antibody 1E12;
(B) three light chain CDRs and three heavy chain CDRs of anti-B7-H1 antibody 1F4;
(C) three light chain CDRs and three heavy chain CDRs of anti-B7-H1 antibody 2G11;
(D) three light chain CDRs and three heavy chain CDRs of anti-B7-H1 antibody 3B6; or
(E) relates to an embodiment having six CDRs with all remaining CDRs selected from three light chain CDRs and three heavy chain CDRs of anti-B7-H1 antibody 3D10.

本発明は、さらに、上記分子または抗体の実施形態であって、その上記抗原結合フラグメントが、以下の(A)から(E):
(A)抗B7−H1抗体1E12の3つの軽鎖CDRおよび3つの重鎖CDR;
(B)抗B7−H1抗体1F4の3つの軽鎖CDRおよび3つの重鎖CDR;
(C)抗B7−H1抗体2G11の3つの軽鎖CDRおよび3つの重鎖CDR;
(D)抗B7−H1抗体3B6の3つの軽鎖CDRおよび3つの重鎖CDR;または、
(E)抗B7−H1抗体3D10の3つの軽鎖CDRおよび3つの重鎖CDR、である6つのCDRを有する実施形態に関連する。
The present invention further relates to an embodiment of the molecule or antibody, wherein the antigen-binding fragment thereof comprises the following (A) to (E):
(A) Three light chain CDRs and three heavy chain CDRs of anti-B7-H1 antibody 1E12;
(B) three light chain CDRs and three heavy chain CDRs of anti-B7-H1 antibody 1F4;
(C) three light chain CDRs and three heavy chain CDRs of anti-B7-H1 antibody 2G11;
(D) three light chain CDRs and three heavy chain CDRs of anti-B7-H1 antibody 3B6; or
(E) Related to an embodiment having six CDRs, three light chain CDRs and three heavy chain CDRs, of anti-B7-H1 antibody 3D10.

本発明は、さらに、上記抗体の実施形態であって、上記抗体がB7−H1に結合し、かつ、抗体可変領域h3D10 Var1、h3D10 Var2、h3D10 Var3、h3D10 Var4、h3D10 Var5、h3D10 Var6、h3D10 Var7、h3D10 Var8、h3D10 Var9、h3D10 Var10、h3D10 Var11、h3D10 Var12、h3D10 Var13、またはh3D10 Var14を有する実施形態に関連する。   The present invention further relates to an embodiment of the above antibody, wherein the antibody binds to B7-H1, and the antibody variable regions h3D10 Var1, h3D10 Var2, h3D10 Var3, h3D10 Var4, h3D10 Var5, h3D10 Var6, h3D10 Var7 , H3D10 Var8, h3D10 Var9, h3D10 Var10, h3D10 Var11, h3D10 Var12, h3D10 Var13, or h3D10 Var14.

本発明は、さらに、上記分子または抗体の実施形態であって、上記分子または抗体がPD−1に結合し、かつ、上記抗原結合フラグメントが、抗PD−1抗体1E3、1E8および1H3のうちの少なくとも1つのコンセンサスCDRと、以下の(A)から(C):
(A)抗PD−1抗体1E3の3つの軽鎖CDRおよび3つの重鎖CDR;
(B)抗PD−1抗体1E8の3つの軽鎖CDRおよび3つの重鎖CDR;または、
(C)抗PD−1抗体1H3の3つの軽鎖CDRおよび3つの重鎖CDR、から選択される全ての残りのCDRとを有する6つのCDRを有する実施形態に関連する。
The present invention further relates to an embodiment of the molecule or antibody, wherein the molecule or antibody binds to PD-1, and the antigen-binding fragment is selected from the anti-PD-1 antibodies 1E3, 1E8 and 1H3. At least one consensus CDR and the following (A) to (C):
(A) Three light chain CDRs and three heavy chain CDRs of anti-PD-1 antibody 1E3;
(B) three light chain CDRs and three heavy chain CDRs of anti-PD-1 antibody 1E8; or
(C) relates to an embodiment having six CDRs with all remaining CDRs selected from three light chain CDRs and three heavy chain CDRs of anti-PD-1 antibody 1H3.

本発明は、さらに、上記6つのCDRが以下の(A)から(C):
(A)抗PD−1抗体1E3の3つの軽鎖CDRおよび3つの重鎖CDR;
(B)抗PD−1抗体1E8の3つの軽鎖CDRおよび3つの重鎖CDR;または、
(C)抗PD−1抗体1H3の3つの軽鎖CDRおよび3つの重鎖CDR、のいずれかである、上記抗体の実施形態に関連する。
In the present invention, the above six CDRs are the following (A) to (C):
(A) Three light chain CDRs and three heavy chain CDRs of anti-PD-1 antibody 1E3;
(B) three light chain CDRs and three heavy chain CDRs of anti-PD-1 antibody 1E8; or
(C) Related to the above antibody embodiment, which is any of the three light chain CDRs and the three heavy chain CDRs of anti-PD-1 antibody 1H3.

本発明は、さらに、上記抗体の実施形態であって、上記抗体がPD−1に結合し、かつ、抗体可変領域h1H3 Var1、h1H3 Var2、h1H3 Var3、h1H3 Var4、h1H3 Var5、h1H3 Var6、h1H3 Var7、h1H3 Var8、h1H3 Var9、h1H3 Var10、h1H3 Var11、h1H3 Var12、h1H3 Var13、またはh1H3 Var14を有する実施形態に関連する。   The present invention further relates to an embodiment of the above antibody, wherein the antibody binds to PD-1, and the antibody variable regions h1H3 Var1, h1H3 Var2, h1H3 Var3, h1H3 Var4, h1H3 Var5, h1H3 Var6, h1H3 Var7 , H1H3 Var8, h1H3 Var9, h1H3 Var10, h1H3 Var11, h1H3 Var12, h1H3 Var13, or h1H3 Var14.

本発明は、さらに、上記分子または抗体の実施形態であって、上記分子または抗体が検出可能に標識化されているか、または、共役毒素、薬剤、受容体、酵素、受容体リガンドを有する実施形態に関連する。   The present invention further includes embodiments of the molecule or antibody, wherein the molecule or antibody is detectably labeled or has a conjugate toxin, drug, receptor, enzyme, receptor ligand. is connected with.

本発明は、さらに、上記分子の実施形態であって、上記分子または抗体が、
(A)B7−H1またはPD−1に仲介されたシグナル伝達を調節する;
(B)B7−H1のB7−H1受容体に対する結合能力、または、PD−1のPD−1リガンドに対する結合能力を弱める;
(C)B7−H1またはPD−1仲介シグナル伝達を刺激する;
(D)T細胞の増殖を仲介する;または、
(E)IFN−γの産生を高める実施形態に関連する。
The present invention is further an embodiment of the molecule, wherein the molecule or antibody is
(A) modulates B7-H1 or PD-1 mediated signaling;
(B) Attenuates the ability of B7-H1 to bind to the B7-H1 receptor or PD-1 to the PD-1 ligand;
(C) stimulates B7-H1 or PD-1 mediated signaling;
(D) mediates T cell proliferation; or
(E) relates to embodiments that enhance production of IFN-γ.

本発明は、さらに、治療効果ある量の上記分子または抗体のいずれか、および、生理学的に許容できる担体または添加剤を有する医薬組成物に関連する。本発明は、さらに、癌、自己免疫疾患、感染症、または、T細胞の数または健康に影響する疾病の治療における上記医薬組成物の使用に関連する。本発明は、さらに、上記医薬組成物の使用であって、上記治療は予防的なものであり、上記癌、上記自己免疫疾患、上記感染症、または、上記T細胞の数または健康に影響する疾病の症状がでる前に施される、または、移植から起こる状態の治療のためのものである上記医薬組成物の使用に関連する。   The invention further relates to pharmaceutical compositions having a therapeutically effective amount of any of the above molecules or antibodies and a physiologically acceptable carrier or additive. The invention further relates to the use of the above pharmaceutical composition in the treatment of cancer, autoimmune diseases, infectious diseases or diseases affecting T cell count or health. The present invention is further the use of the pharmaceutical composition, wherein the treatment is prophylactic and affects the cancer, the autoimmune disease, the infection, or the number or health of the T cells. It relates to the use of the above pharmaceutical composition which is given before the onset of the disease or is for the treatment of a condition resulting from transplantation.

本発明は、さらに、B7−H1またはPD−1に対する対象の細胞の結合能力に関して上記対象の細胞を分析することにより、上記対象における癌、自己免疫疾患(特に、移植片対宿主病)、感染症(特に、慢性ウィルス病)、またはT細胞の数または健康に影響する疾病を診断するための上記分子または抗体のいずれかの使用に関連する。   The invention further analyzes cancer, autoimmune disease (especially graft-versus-host disease), infection in the subject by analyzing the subject cell for the ability of the subject cell to bind to B7-H1 or PD-1. Associated with the use of any of the above molecules or antibodies to diagnose diseases (especially chronic viral diseases) or diseases affecting T cell number or health.

上記発明は、上記分子、抗体、および、組成物の実施形態であって、上記B7−H1がヒトB7−H1であり、上記PD−1がヒトPD−1である実施形態に関連する。   The invention relates to embodiments of the molecule, antibody and composition, wherein the B7-H1 is human B7-H1 and the PD-1 is human PD-1.

上記発明は、特に、対象における疾病(特に、癌)を診断する方法であって、上記B7−H1結合分子のいずれかに対する結合能力に関して上記対象の細胞を分析する工程を含み、上記対象における疾病の存在を診断する細胞学的分析を実現する方法に関連する。   The invention is particularly a method of diagnosing a disease (especially cancer) in a subject, comprising the step of analyzing the cells of the subject for binding ability to any of the B7-H1 binding molecules, wherein the disease in the subject Relevant to a method to achieve cytological analysis to diagnose the presence of.

さらに、本発明は、対象における疾病(特に、T細胞の数および/または健康に影響する疾病)を診断する方法であって、PD−1結合分子に対する上記対象の細胞の結合能力に関して上記対象の細胞を分析する工程を含み、上記対象における疾病の存在および/または進行を診断するため、または、治療に対する対象の反応を評価するための細胞学的分析を実現する方法に関連する。   Furthermore, the present invention provides a method for diagnosing a disease in a subject (particularly a disease that affects the number and / or health of T cells), wherein the subject's cells are capable of binding to a PD-1 binding molecule. Analyzing the cells and relates to a method for realizing cytological analysis for diagnosing the presence and / or progression of a disease in the subject or for assessing a subject's response to treatment.

〔図面の簡単な説明〕
図1は、B7−H1に結合する抗体に関してテストされたハイブリドーマ上清の結合を示す図である。陽性対照(PC):ハイブリドーマ生成に用いられたマウス由来の1:1000希釈血清;陰性対照(NC):5%ミルク/PBS。B7−H1−Fcに対する結合および抗マウスIgGを用いた検出に関してデータが示される。
[Brief description of the drawings]
FIG. 1 shows the binding of hybridoma supernatants tested for antibodies that bind to B7-H1. Positive control (PC): 1: 1000 diluted serum from mice used for hybridoma generation; Negative control (NC): 5% milk / PBS. Data are shown for binding to B7-H1-Fc and detection with anti-mouse IgG.

図2は、単離抗B7−H1抗体がPD−1に対するB7−H1の結合を調節することができるかどうかを判定するための実験結果を示す図である。陽性対照:クローンMIH−1および29E.2A3(両者は抗ヒトCD274(B7−H1);2つの陰性対照:無関係ハイブリドーマ(ランダムAb)およびベクター対照(VC)由来の馴化培地。   FIG. 2 shows the results of an experiment for determining whether an isolated anti-B7-H1 antibody can regulate the binding of B7-H1 to PD-1. Positive controls: clones MIH-1 and 29E. 2A3 (both anti-human CD274 (B7-H1); two negative controls: conditioned medium from irrelevant hybridoma (random Ab) and vector control (VC).

図3は、CHO−HB7−HLに対するに関してテストされた抗B7−HL抗体の中央値蛍光強度(MFI)を示す図である。テストされたクローンのいずれも、親CHOラインとの交差反応は認められず、発現した抗体がヒトB7−H1に対して免疫特異性があることを示した。   FIG. 3 shows the median fluorescence intensity (MFI) of anti-B7-HL antibodies tested for CHO-HB7-HL. None of the tested clones were cross-reactive with the parental CHO line, indicating that the expressed antibody was immunospecific for human B7-H1.

図4は、選択された抗ヒトB7−H1抗体のヒトB7−H1発現CHO細胞結合アッセイの中央値蛍光強度(MFI)の結果を示す図である。   FIG. 4 is a diagram showing the median fluorescence intensity (MFI) results of human B7-H1-expressing CHO cell binding assays for selected anti-human B7-H1 antibodies.

図5は、抗ヒトB7−H1抗体5H1および1E12のヒトB7−HL発現CHO細胞結合アッセイの中央値蛍光強度(MFI)の結果を比較する図である。   FIG. 5 is a diagram comparing the median fluorescence intensity (MFI) results of human B7-HL expressing CHO cell binding assays of anti-human B7-H1 antibodies 5H1 and 1E12.

図6は、単離された抗ヒトPD−1抗体の抗原結合及びアイソタイプを示す図である。   FIG. 6 shows the antigen binding and isotype of the isolated anti-human PD-1 antibody.

図7A〜図7Bは、単離されたハイブリドーマの幾つかが、中和抗ヒトPD−1抗体を発現したことを示す実験結果を示す図である。   7A to 7B are diagrams showing experimental results showing that some of the isolated hybridomas expressed neutralizing anti-human PD-1 antibody.

図8は、CHO−hPD−1に対する結合に関してテストされた抗PD−1抗体の中央値蛍光強度(MFI)を示す図である。テストされたクローンの何れも、親CHOラインとの交差反応は認められず、発現した抗体がヒトPD−1に対して免疫特異的性があることを示した。   FIG. 8 shows the median fluorescence intensity (MFI) of anti-PD-1 antibodies tested for binding to CHO-hPD-1. None of the tested clones showed any cross-reactivity with the parental CHO line, indicating that the expressed antibody was immunospecific for human PD-1.

図9は、選択された抗ヒトPD−1抗体のヒトPD−1発現CHO細胞結合アッセイの中央値蛍光強度(MFI)を示す図である。陽性対照:EH12(BioLegendから市販されている抗ヒトPD−1抗体);mIgG1:マウスIgG陰性対照。   FIG. 9 is a diagram showing the median fluorescence intensity (MFI) of human PD-1 expressing CHO cell binding assays for selected anti-human PD-1 antibodies. Positive control: EH12 (anti-human PD-1 antibody commercially available from BioLegend); mIgG1: mouse IgG negative control.

図10は、抗ヒトPD−1抗体の濃度変更時の細胞ベースの競合アッセイの中央値蛍光強度(MFI)の結果を示す図である。   FIG. 10 is a graph showing the median fluorescence intensity (MFI) results of the cell-based competition assay when changing the concentration of anti-human PD-1 antibody.

図11は、ヒトPD−1抗体の濃度が20μg/mlの時の細胞ベースの競合アッセイの中央値蛍光強度(MFI)の結果を示す図である。   FIG. 11 is a graph showing the median fluorescence intensity (MFI) results of the cell-based competition assay when the concentration of human PD-1 antibody is 20 μg / ml.

図12は、ヒトの完全長PD−1をトランスフェクトしたCHO細胞を、ビオチン標識hB7−H1−FCまたはhB7−DCmIgにより染色する前に、飽和量の抗ヒトPD−1モノクローナル抗体(mAbs)または対照Igと共に事前培養した実験の結果を示す図である。   FIG. 12 shows saturating amounts of anti-human PD-1 monoclonal antibody (mAbs) or CHO cells transfected with human full-length PD-1 before staining with biotin-labeled hB7-H1-FC or hB7-DCmIg. It is a figure which shows the result of the experiment pre-cultured with control Ig.

図13は、パネルAおよびパネルBが、(A)市販の抗PD−1抗体、EH12、と(B)キメラ(”CH”)マウス抗ヒトPD−1のFab領域およびヒトIgG1のFc領域とを有するマウスモノクローナル抗体との比較結合を示す図である。   FIG. 13 shows that Panel A and Panel B show (A) a commercially available anti-PD-1 antibody, EH12, and (B) a chimeric (“CH”) mouse anti-human PD-1 Fab region and a human IgG1 Fc region. It is a figure which shows the comparison coupling | bonding with the mouse monoclonal antibody which has this.

図14は、パネルAおよびパネルBが、ビオチン化B7−HL−Fcとビオチン化B7−DC−FcのPD−1に対する結合のブロッキング効果を発揮する、本発明の抗PD−1抗体の能力を示す図である。   FIG. 14 shows the ability of anti-PD-1 antibodies of the present invention for panel A and panel B to exert a blocking effect on the binding of biotinylated B7-HL-Fc and biotinylated B7-DC-Fc to PD-1. FIG.

図15は、抗hIg抗体によって検出された、CHO.hPD−1細胞に対する1H3抗ヒトPD−1キメラ抗体の結合曲線を示す図である。   FIG. 15 shows that CHO. It is a figure which shows the binding curve of 1H3 anti-human PD-1 chimeric antibody with respect to hPD-1 cell.

図16A〜図16Bは、陰性対照抗体(palivizumab;SYNAGIS(登録商標)、Medimmune、Inc.)と比較して、ヒト初代T細胞CD8+(図16A)およびCD4+(図16B)に対して結合する、1H3抗ヒトPD−1キメラ抗体の能力の研究結果を示す図である。 16A-16B show binding to human primary T cells CD8 + (FIG. 16A) and CD4 + (FIG. 16B) compared to negative control antibodies (palivizumab; SYNAGIS®, Medimune, Inc.). It is a figure which shows the research result of the capability of 1H3 anti-human PD-1 chimeric antibody.

図17は、破傷風毒素(TT)のリコールの際に、CFSE希釈により測定された抗原特異的T細胞の応答を高める、本発明の抗体の能力を示す図である。   FIG. 17 shows the ability of the antibodies of the present invention to enhance antigen-specific T cell responses measured by CFSE dilution upon tetanus toxin (TT) recall.

図18A〜図18Dは、CHO.hPDl細胞に結合するヒト化1H3変異体(h1H3 Var1〜h1H3 Var14)の能力を実証する図である。   18A to 18D show CHO. FIG. 3 demonstrates the ability of humanized 1H3 variants (h1H3 Var1 to h1H3 Var14) to bind to hPD1 cells.

図19A、図19Bは、B7−H1(図19A)またはB7−DC(図19B)を発現するhPD−1−FcおよびHEK293細胞間の相互作用をブロックする、ヒト化抗PD−1抗体の能力を実証する図である。   Figures 19A and 19B show the ability of humanized anti-PD-1 antibodies to block the interaction between hPD-1-Fc and HEK293 cells expressing B7-H1 (Figure 19A) or B7-DC (Figure 19B). FIG.

図20は、h1H3 Var1〜h1H3 Var6の結合曲線を示す図である。   FIG. 20 is a diagram illustrating binding curves of h1H3 Var1 to h1H3 Var6.

〔発明の詳細な説明〕
本発明は、B7−H1またはPD−1に対して免疫特異的に結合することが可能な、抗体、その抗原結合フラグメント、およびその他の分子に関連する。一部の実施形態において、上記分子は、B7−H1またはB7−DCの有する、PD−1に対して結合する能力を調節することがさらに可能であるか、または、B7−H1またはPD−1のシグナル伝達活性に対して影響を与えることが可能である。本発明はさらに、癌およびその他の疾病の治療における上記分子の使用に関連する。
Detailed Description of the Invention
The present invention relates to antibodies, antigen-binding fragments thereof, and other molecules capable of immunospecifically binding to B7-H1 or PD-1. In some embodiments, the molecule is further capable of modulating the ability of B7-H1 or B7-DC to bind to PD-1, or B7-H1 or PD-1 It is possible to influence the signal transduction activity. The invention further relates to the use of the above molecules in the treatment of cancer and other diseases.

ある分子が他の分子に結合し、その結合が抗体のその同族抗原に対する特異性および親和性を示す場合、前記分子は、前記他の分子に「免疫特異的に結合する」ことが可能であるといわれる。上記結合が、免疫グロブリン分子の抗原認識部位にかかわる場合、抗体は、抗原(特に、上記抗原:B7−H1またはPD−1)の標的領域または立体配座(「エピトープ」)に対して「免疫特異的に結合している」ことができると言われる。他の抗原が、たとえば、イムノアッセイ、BIACORE(登録商標)アッセイ、または、本技術分野において知られるその他アッセイによりにより割り出される抗原認識部位により認識されるある配列または立体配座的類似性を有する場合、特定の抗原に免疫特異的に結合する抗体は、より低い親和性で上記他の抗原に結合する場合があるが、無関係な抗原には結合しない。しかし、抗体(および、それらの抗原結合性フラグメント)が、他の抗原と交差反応しないことが好ましい。また、抗体は、Fc領域のような抗原認識部位を含まない上記分子の他の領域/ドメインにおける結合ドメインによって、たとえば、FcR受容体に対する結合のように、免疫特異的ではない方法で他の分子に対して結合する場合もある。   A molecule can “immunospecifically bind” to another molecule when it binds to the other molecule and the binding shows the specificity and affinity of the antibody for its cognate antigen. It is said. If the binding involves an antigen recognition site on an immunoglobulin molecule, the antibody is “immune” against the target region or conformation (“epitope”) of the antigen (particularly the antigen: B7-H1 or PD-1). It is said that it can be “specifically bound”. Other antigens have a certain sequence or conformational similarity that is recognized by an antigen recognition site determined by, for example, an immunoassay, BIACORE® assay, or other assays known in the art An antibody that immunospecifically binds to a specific antigen may bind to the other antigens with lower affinity but does not bind to unrelated antigens. However, it is preferred that the antibodies (and their antigen-binding fragments) do not cross-react with other antigens. Antibodies can also be produced by other domains / domains in other regions / domains of the molecule that do not contain an antigen recognition site, such as an Fc region, such as binding to FcR receptors in a non-immunospecific manner. In some cases, it may be combined.

本明細書において用いられる「調節する(modulate)」という用語は、効果または結果を改変する能に関連する。特に、本発明は、B7−H1とPD−1との間の結合の調節が可能である、および/または、B7−H1−PD−1結合の結果として起こるシグナル伝達の調節が可能である分子(特に、ヒトB7−H1またはヒトPD−1に免疫特異的に結合する抗体、または、それらの抗原結合フラグメント)に関連する。このような調節により、PD−1に対するB7−H1の結合能力を弱めたり、完全に阻止したりできる。さらなる実施形態において、上記の調節により、シグナル伝達を仲介するB7−H1またはPD−1の能力を弱めたり、完全に中和したりできる。さらなる実施形態において、上記の調節によって、(i)B7−H1とPD−1との間の相互作用を高め、B7−H1−PD−1結合を促進すること、または、(ii)B7−H1とPD−1とに直接結合し、これにより、内因性リガンドの活性を模倣すること、等により、B7−H1またはPD−1を介したシグナル伝達を高め得る、または、そうでなければ、シグナル伝達を刺激し得る。さらに別の実施形態において、誘発されるシグナル伝達の性質を変更するように、上記調節により、B7−H1とPD−1との間の相互作用の性質を変更し得る。たとえば、本発明の上記分子は、B7−H1またはPD−1に対する結合により、他のリガンドおよび受容体に対して結合する上記分子の能力を変更し(例、B7−DCに対して結合するPD−1の能力、または、B7−1(CD80)に結合するB7−H1の能力に影響を与える)、さらにそれにより、上記分子の活性全体を変更し得る。このような調節により、計測可能な免疫システム活性が少なくとも10%変化することが好ましく、そのような活性が少なくとも50%変化することがさらに好ましい、または、少なくとも2倍、5倍、または10倍変化することが好ましく、または、そのような活性が少なくとも100倍変化することがさらに一層好ましい。   The term “modulate” as used herein relates to the ability to modify an effect or result. In particular, the present invention provides molecules that are capable of modulating the binding between B7-H1 and PD-1 and / or modulating signaling that occurs as a result of B7-H1-PD-1 binding. (In particular, antibodies that immunospecifically bind to human B7-H1 or human PD-1, or antigen-binding fragments thereof). By such adjustment, the binding ability of B7-H1 to PD-1 can be weakened or completely blocked. In further embodiments, the above modulation can attenuate or completely neutralize the ability of B7-H1 or PD-1 to mediate signal transduction. In further embodiments, the above modulation (i) enhances the interaction between B7-H1 and PD-1 and promotes B7-H1-PD-1 binding, or (ii) B7-H1 Can directly enhance the signal transduction via B7-H1 or PD-1, such as by mimicking the activity of endogenous ligands, etc. May stimulate transmission. In yet another embodiment, the modulation may alter the nature of the interaction between B7-H1 and PD-1 so as to alter the nature of the signal transduction induced. For example, the molecules of the invention alter the ability of the molecule to bind to other ligands and receptors by binding to B7-H1 or PD-1 (eg, PD binding to B7-DC). -1 or the ability of B7-H1 to bind to B7-1 (CD80)), and thereby alter the overall activity of the molecule. Such modulation preferably changes measurable immune system activity by at least 10%, more preferably such activity changes by at least 50%, or at least 2-fold, 5-fold, or 10-fold change. Or even more preferably such activity changes at least 100-fold.

本明細書において用いられる、「抗体」という用語は、「可変領域」抗原認識部位を有する免疫グロブリン分子を意味することを意図する。上記用語「可変領域」は、免疫グロブリンの上記ドメインを抗体に広く共有されるドメイン(例、抗体Fcドメイン)から識別することを意図する。上記可変領域は、残基が抗原結合に関与する「超可変領域」を有する。上記超可変領域は、「相補性決定領域」、つまり、「CDR」からのアミノ酸残基(たとえば、通常、軽鎖可変ドメインのおよそ24−34(L1)、50−56(L2)および89−97(L3)の残基、および、重鎖可変ドメインにおける、およそ27−35(H1)、50−65(H2)および95−102(H3)の残基;Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991))、および/または、「超可変ループ」(たとえば、軽鎖可変ドメインにおける26−32(L1)、50−52(L2)および91−96(L3)の残基、および、重鎖可変ドメインにおける26−32(H1)、53−55(H2)および96−101(H3)の残基;Chothia, C. et al. (1987) "Canonical Structures For The Hypervariable Regions Of Immunoglobulins," J. Mol. Biol. 196:901-917)からのアミノ酸残基を有する。「フレームワーク領域」または「FR」残基は、本明細書において定義された超可変領域残基以外の可変ドメイン残基である。上記用語、抗体、には、モノクローナル抗体、多重特異性抗体、ヒト抗体、ヒト化抗体、合成抗体、キメラ抗体、ラクダ化抗体(たとえば、Muyldermans et al., 2001, Trends Biochem. Sci. 26:230; Nuttall et al., 2000, Cur. Pharm. Biotech. 1:253; Reichmann and Muyldermans, 1999, J. Immunol. Meth. 231:25;国際公開公報第WO94/04678号および第WO94/25591号;および、米国特許第6,005,079号、参照)、一本鎖Fvs(scFv)(たとえば、Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315 (1994)、参照)、一本鎖抗体、ジスルフィド結合Fvs(sdFv)、細胞内抗体、および、抗イディオタイプの(抗Id)抗体(たとえば、本発明の抗体に対する抗Idおよび抗抗Id抗体を含む)を含む。特に、上記抗体としては、任意のタイプ(たとえば、IgG、IgE、IgM、IgD、IgAおよびIgY)、クラス(たとえば、IgG1、IgG2、IgG3、IgG4、IgA1およびIgA2)、または、サブクラスの免疫グロブリン分子が挙げられる。 As used herein, the term “antibody” is intended to mean an immunoglobulin molecule having a “variable region” antigen recognition site. The term “variable region” is intended to distinguish the immunoglobulin domain from domains that are widely shared by antibodies (eg, antibody Fc domains). The variable region has a “hypervariable region” in which residues are involved in antigen binding. The hypervariable region is a “complementarity determining region”, ie, amino acid residues from “CDR” (eg, approximately 24-34 (L1), 50-56 (L2) and 89-89 of the light chain variable domain. 97 (L3) residues and approximately 27-35 (H1), 50-65 (H2) and 95-102 (H3) residues in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)), and / or “hypervariable loops” (eg, 26-32 (L1) in the light chain variable domain, 50− Residues 52 (L2) and 91-96 (L3), and residues 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia, C .; et al. (1987) "Canonical St ructures For The Hypervariable Regions Of Immunoglobulins, "J. Mol. Biol. 196: 901-917). “Framework Region” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined. The term antibody includes monoclonal antibodies, multispecific antibodies, human antibodies, humanized antibodies, synthetic antibodies, chimeric antibodies, camelized antibodies (eg, Muyldermans et al., 2001, Trends Biochem. Sci. 26: 230 Nuttall et al., 2000, Cur. Pharm. Biotech. 1: 253; Reichmann and Muyldermans, 1999, J. Immunol. Meth. 231: 25; International Publication Nos. WO94 / 04678 and WO94 / 25591; U.S. Pat. No. 6,005,079), single chain Fvs (scFv) (see, eg, Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315 (1994)), single chain antibodies, disulfide-bonded Fvs (sdFv), intracellular antibodies, and anti-idiotype (anti-Id) antibodies (eg, anti-Id and anti-anti-antibodies against the antibodies of the invention). Including Id antibody). In particular, the antibody may be any type (eg, IgG, IgE, IgM, IgD, IgA and IgY), class (eg, IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgA 1 and IgA 2 ), or A subclass of immunoglobulin molecules.

本明細書に用いられる、抗体の「抗原結合フラグメント」という用語は、抗体の相補性決定領域(「CDR」)を含有し、抗体の「可変領域」抗原認識部位を有するフレームワーク残基を任意に含有し、さらに、抗原に免疫特異的に結合する能力を示す抗体の1個以上のタンパク質を意味する。このようなフラグメントとしては、Fab’、F(ab’)2、Fv、一本鎖(ScFv)、および、それらの突然変異体、天然の変異体、および、上記抗体の「可変領域」抗原認識部位および異種タンパク質(たとえば、毒素、異なる抗原に対する抗原認識部位、酵素、受容体、または、受容体リガンド、など)を有する融合タンパク質が挙げられる。本明細書に用いられる、用語「フラグメント」は、少なくとも5個の連続するアミノ酸残基、少なくとも10個の連続するアミノ酸残基、少なくとも15個の連続するアミノ酸残基、少なくとも20個の連続するアミノ酸残基、少なくとも25個の連続するアミノ酸残基、少なくとも40個の連続するアミノ酸残基、少なくとも50個の連続するアミノ酸残基、少なくとも60個の連続するアミノ酸残基、少なくとも70個の連続するアミノ酸残基、少なくとも80個の連続するアミノ酸残基、少なくとも90個の連続するアミノ酸残基、少なくとも100個の連続するアミノ酸残基、少なくとも125個の連続するアミノ酸残基、少なくとも150個の連続するアミノ酸残基、少なくとも175個の連続するアミノ酸残基、少なくとも200個の連続するアミノ酸残基、または、少なくとも250個の連続するアミノ酸残基のアミノ酸配列を有するペプチドまたはポリペプチドを指す。 As used herein, the term “antigen-binding fragment” of an antibody refers to any framework residue that contains the complementarity determining region (“CDR”) of an antibody and that has an “variable region” antigen recognition site of an antibody In addition, it means one or more proteins of an antibody that are capable of being immunospecifically bound to an antigen. Such fragments include Fab ′, F (ab ′) 2 , Fv, single chain (ScFv), and their mutants, natural variants, and “variable region” antigen recognition of the antibody. Fusion proteins having sites and heterologous proteins (eg, toxins, antigen recognition sites for different antigens, enzymes, receptors, or receptor ligands, etc.). As used herein, the term “fragment” refers to at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acids. Residue, at least 25 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino acid residues, at least 70 contiguous amino acids Residue, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at least 100 contiguous amino acid residues, at least 125 contiguous amino acid residues, at least 150 contiguous amino acids Residue, at least 175 consecutive amino acid residues, at least 20 Consecutive amino acid residues, or refers to a peptide or polypeptide having an amino acid sequence of at least 250 contiguous amino acid residues.

ヒト抗体、キメラ抗体、または、ヒト化抗体が、人におけるインビボでの使用目的に特に好ましいが、マウス抗体、または、他種の抗体が多くの使用目的(たとえば、インビトロ、または、原位置検出アッセイ、インビボでの急性使用、など)に有利に用いられ得る。ヒトを対象とする治療上の処置の目的には、完全ヒト抗体が特に望ましい。   Human antibodies, chimeric antibodies, or humanized antibodies are particularly preferred for in vivo use in humans, but murine antibodies or other types of antibodies are often used for many purposes (eg, in vitro or in situ detection assays). , Acute use in vivo, etc.). For the purpose of therapeutic treatment in humans, fully human antibodies are particularly desirable.

ヒト抗体は、ヒト免疫グロブリン配列由来の抗体ライブラリを用いる上記のファージ提示法(米国特許第4,444,887号および第4,716,111号;および、国際公開公報第WO98/46645号、第WO98/50433号、第WO98/24893号、第WO98/16654号、第WO96/34096号、第WO96/33735および第WO91/10741号、参照)含む、本技術において周知の様々な方法で作製することができる。ヒト抗体は、機能性内因性免疫グロブリンを発現できないが、ヒト免疫グロブリン遺伝子を発現できるトランスジェニックマウスを用いて産生できる。たとえば、ヒト重鎖および軽鎖免疫グロブリン遺伝子複合体を、ランダムに、または、相同的組み換えにより、マウス胚幹細胞に導入してもよい。あるいは、ヒト重鎖および軽鎖遺伝子に加えて、ヒト可変領域、定常領域、および、多様性領域を、マウス胚幹細胞に導入してもよい。マウス重鎖および軽鎖免疫グロブリン遺伝子を、相同的組み換えによるヒト免疫グロブリン遺伝子座の導入と、別に、または、同時に、非機能性に変更してもよい。特に、JH領域のホモ接合体欠失は、内因性抗体の産生を妨げる。修飾された胚幹細胞は、キメラマウスを作製するために、増殖され、未分化胚芽細胞に微量注入される。それから、上記キメラマウスを、ヒト抗体を発現するホモ接合子孫を作製するために繁殖させる。上記トランスジェニックマウスは、選択された抗原、たとえば、本発明のポリペプチドの全て、または、一部を用いて、従来の手順を用いて免疫される。抗原に対して向けられるモノクローナル抗体が、従来のハイブリドーマ技術(たとえば、米国特許第5,916,771号参照)を用いて、免疫されたトランスジェニックマウスから得られる。上記トランスジェニックマウスが有する上記ヒト免疫グロブリン導入遺伝子は、B細胞分化の間に再配列し、その後、クラススイッチおよび体細胞変異をする。よって、上記技術を用いて、治療上有益なIgG、IgA、IgMおよびIgE抗体の産生が可能である。ヒト抗体の産生のための本技術の概要については、Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93、この全体を参照によって本明細書に援用する)を参照のこと。ヒト抗体およびヒトモノクローナル抗体を産生するための本技術の詳細な議論および上記抗体を産生するためのプロトコルについては、たとえば、国際公開公報第WO98/24893号、第WO96/34096号および第WO96/33735号;および、米国特許第5,413,923号、第5,625,126号、第5,633,425号、第5,569,825号、第5,661,016号、第5,545,806号、第5,814,318および第5,939,598号(これらの全体を、参照によって本明細書に援用する)を参照のこと。さらに、Abgenix,Inc.(Freemont,CA)およびMedarex(Princeton,NJ)などの企業は、上述の技術に類似した技術を用いて、選択された抗原に対して向けられるヒト抗体の提供に携わっている。 Human antibodies can be obtained by the above phage display method using an antibody library derived from human immunoglobulin sequences (US Pat. Nos. 4,444,887 and 4,716,111; and International Publication No. WO 98/46645, No. 1). (See WO98 / 50433, WO98 / 24893, WO98 / 16654, WO96 / 34096, WO96 / 33735, and WO91 / 10741). Can do. Human antibodies can be produced using transgenic mice that cannot express functional endogenous immunoglobulins but can express human immunoglobulin genes. For example, human heavy and light chain immunoglobulin gene complexes may be introduced into mouse embryonic stem cells randomly or by homologous recombination. Alternatively, human variable regions, constant regions, and diversity regions may be introduced into mouse embryonic stem cells in addition to human heavy and light chain genes. The mouse heavy and light chain immunoglobulin genes may be altered to non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production. The modified embryonic stem cells are expanded and microinjected into undifferentiated germ cells to create chimeric mice. The chimeric mice are then bred to produce homozygous offspring that express human antibodies. The transgenic mice are immunized using conventional procedures with a selected antigen, eg, all or part of a polypeptide of the invention. Monoclonal antibodies directed against the antigen are obtained from the immunized transgenic mice using conventional hybridoma technology (see, eg, US Pat. No. 5,916,771). The human immunoglobulin transgenes possessed by the transgenic mice rearrange during B cell differentiation, followed by class switching and somatic mutation. Thus, using the above techniques, it is possible to produce therapeutically beneficial IgG, IgA, IgM and IgE antibodies. For an overview of this technology for the production of human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13: 65-93, which is incorporated herein by reference in its entirety). For a detailed discussion of this technology for producing human and human monoclonal antibodies and protocols for producing such antibodies, see, eg, International Publication Nos. WO 98/24893, WO 96/34096, and WO 96/33735. U.S. Pat. Nos. 5,413,923, 5,625,126, 5,633,425, 5,569,825, 5,661,016, 5,545 806, Nos. 5,814,318 and 5,939,598, which are incorporated herein by reference in their entirety. Further, Abgenix, Inc. Companies such as (Freemont, CA) and Medarex (Princeton, NJ) are involved in providing human antibodies directed against selected antigens using techniques similar to those described above.

「キメラ抗体」は、抗体の異なる部分が、非ヒト抗体由来の可変領域およびヒト免疫グロブリン定常領域を有する抗体のような異なる免疫グロブリン分子に由来する分子である。本技術分野において、キメラ抗体の産出方法は周知である。たとえば、Morrison, 1985, Science 229:1202; Oi et al., 1986, BioTechniques 4:214; Gillies et al., 1989, J. Immunol. Methods 125:191-202;および、米国特許第6,311,415号、第5,807,715号、第4,816,567号および第4,816,397号を参照のこと。ヒト以外の生物種由来の1つ以上のCDRおよびヒト免疫グロブリン分子由来のフレームワーク領域を有するキメラ抗体は、たとえば、CDRグラフティング(欧州特許第239,400号;国際公開公報第WO91/09967号;および、米国特許第5,225,539号、第5,530,101号および第5,585,089号)、ベニアリング(veneering)、または、リサーフェシング(resurfacing)(欧州特許第592,106号;欧州特許第519,596号;Padlan, 1991, Molecular Immunology 28(4/5):489-498; Studnicka et al., 1994, Protein Engineering 7:805;および、Roguska et al., 1994, Proc. Natl. Acad. Sci. USA 91:969)、および、鎖混合(米国特許第5,565,332号)を含む、本技術分野において周知の様々な技術を用いて産生できる。   A “chimeric antibody” is a molecule in which different portions of the antibody are derived from different immunoglobulin molecules such as antibodies having a variable region derived from a non-human antibody and a human immunoglobulin constant region. In this technical field, methods for producing chimeric antibodies are well known. For example, Morrison, 1985, Science 229: 1202; Oi et al., 1986, BioTechniques 4: 214; Gillies et al., 1989, J. Immunol. Methods 125: 191-202; and US Pat. No. 6,311, 415, 5,807,715, 4,816,567 and 4,816,397. Chimeric antibodies having one or more CDRs from a non-human species and a framework region from a human immunoglobulin molecule are, for example, CDR grafting (European Patent No. 239,400; International Publication No. WO 91/09967). And US Pat. Nos. 5,225,539, 5,530,101 and 5,585,089), veneering, or resurfacing (European Patent No. 592,106); European Patent 519,596; Padlan, 1991, Molecular Immunology 28 (4/5): 489-498; Studnicka et al., 1994, Protein Engineering 7: 805; and Roguska et al., 1994, Proc. Natl. Acad. Sci. USA 91: 969) and various techniques known in the art, including strand mixing (US Pat. No. 5,565,332). I can live.

本発明は、特に、「ヒト化抗体」に関連する(たとえば、欧州特許第239,400号、第592,106号および第519,596号;国際公開公報第WO91/09967号および第WO93/17105号;米国特許第5,225,539号、第5,530,101号、第5,565,332号、第5,585,089号、第5,766,886号および第6,407,213号;Padlan, 1991, Molecular Immunology 28(4/5):489-498; Studnicka et al., 1994, Protein Engineering 7(6):805-814; Roguska et al., 1994, PNAS 91:969-73; Tan et al., 2002, J. Immunol. 169:1119-25; Caldas et al., 2000, Protein Eng. 13:353-60; Morea et al., 2000, Methods 20:267-79; Baca et al., 1997, J. Biol. Chem. 272:10678-84; Roguska et al., 1996, Protein Eng. 9:895-904; Couto et al., 1995, Cancer Res. 55 (23 Supp):5973s-5977s; Couto et al., 1995, Cancer Res. 55:1717-22; Sandhu, 1994, Gene 150:409-10; Pedersen et al., 1994, J. Mol. Biol. 235:959-73; Jones et al., 1986, Nature 321:522-525; Reichmann et al., 1988, Nature 332:323-329;および、Presta, 1992, Curr. Op. Struct. Biol. 2:593-596、参照)。本明細書において用いられる、「ヒト化抗体」という用語は、ヒトフレームワーク領域と非ヒト(通常、マウス、または、ラット)免疫グロブリン由来の1つ以上のCDRとを有する免疫グロブリンを指す。上記CDRを提供する上記非ヒト免疫グロブリンを、「ドナー」と呼び、上記フレームワークを提供する上記ヒト免疫グロブリンを、「アクセプター」と呼ぶ。定常領域は、存在する必要はないが、定常領域があれば、それらの定常領域は、ヒト免疫グロブリン定常領域と実質的に同一のもの、たとえば、少なくとも約85%〜90%、好ましくは約95%以上同一のものでなければならない。したがって、CDRは除く可能性はあるが、ヒト化免疫グロブリンの全部が、天然のヒト免疫グロブリン配列の対応部分と実質的に同一である。ヒト化抗体は、ヒト化軽鎖およびヒト化重鎖免疫グロブリンを有する抗体である。たとえば、キメラ抗体の可変領域全体が、ヒト以外のものであるため、たとえば、ヒト化抗体は、典型的なキメラ抗体を含まない。ドナー抗体は、「ヒト化」工程によって「ヒト化」されているといわれる。これは、結果として得られるヒト化抗体が、CDRを提供するドナー抗体と同じ抗原に結合すると見込まれるからである。たいてい、ヒト化抗体は、ヒト免疫グロブリン(レシピエント抗体)であり、このヒト免疫グロブリンにおいて、上記レシピエントの超可変領域残基が、望ましい特異性、親和性、および、能力を有する、マウス、ラット、ウサギ、または、非ヒト霊長類などのヒト以外の生物種(ドナー抗体)由来の超可変領域残基によって置き換えられる。場合によっては、上記ヒト免疫グロブリンのフレームワーク領域(FR)残基が、対応する非ヒト残基によって置き換えられる。さらに、ヒト化抗体は、レシピエント抗体またはドナー抗体の中には見られない残基を有していてもよい。これらの修飾が、抗体の性能をさらに改良するためになされてもよい。一般的に、上記ヒト化抗体は、実質的に少なくとも1つ、通常2つの可変ドメインの全てを有するものである。上記可変領域において、超可変領域の全て、または、実質全てが、非ヒト免疫グロブリンの超可変領域に対応し、かつ、FRの全て、または、実質全てが、ヒト免疫グロブリン配列のFRである。また、上記ヒト化抗体は、任意に、免疫グロブリン定常領域(Fc)の少なくとも1部、通常、FcγRIIBポリペプチドに対して免疫特異的に結合し、アミノ酸残基の置換、欠失、または、付加の導入(つまり、変異)により変化したヒト免疫グロブリンの定常領域の1部を有するものである。   The present invention particularly relates to “humanized antibodies” (eg, European Patent Nos. 239,400, 592,106 and 519,596; International Publication Nos. WO 91/09967 and WO 93/17105). U.S. Pat. Nos. 5,225,539, 5,530,101, 5,565,332, 5,585,089, 5,766,886 and 6,407,213 Issue; Padlan, 1991, Molecular Immunology 28 (4/5): 489-498; Studnicka et al., 1994, Protein Engineering 7 (6): 805-814; Roguska et al., 1994, PNAS 91: 969-73 Tan et al., 2002, J. Immunol. 169: 1119-25; Caldas et al., 2000, Protein Eng. 13: 353-60; Morea et al., 2000, Methods 20: 267-79; Baca et al., 1997, J. Biol. Chem. 272: 10678-84; Roguska et al., 1996, Protein Eng. 9: 895-904; Couto et al., 1995, Cancer Res. 55 (23 Supp): 5973s -5977s; Couto et al., 1995, Cancer Res. 55: 1717-22; Sandhu, 1994, Gene 150: 409-10; Pedersen et al., 1994, J. Mol. Biol. 235: 959-73; Jones et al., 1986, Nature 321: 522-525; Reichmann et al., 1988, Nature 332: 323-329; and Presta, 1992, Curr. Op. Struct. Biol. 2: 593-596). As used herein, the term “humanized antibody” refers to an immunoglobulin having a human framework region and one or more CDRs from a non-human (usually mouse or rat) immunoglobulin. The non-human immunoglobulin that provides the CDRs is referred to as a “donor” and the human immunoglobulin that provides the framework is referred to as an “acceptor”. Constant regions need not be present, but if there are constant regions, those constant regions are substantially the same as human immunoglobulin constant regions, eg, at least about 85% -90%, preferably about 95 % Must be the same. Thus, although the CDRs may be omitted, all of the humanized immunoglobulin is substantially identical to the corresponding portion of the natural human immunoglobulin sequence. A humanized antibody is an antibody having a humanized light chain and a humanized heavy chain immunoglobulin. For example, humanized antibodies do not include typical chimeric antibodies, for example, because the entire variable region of a chimeric antibody is non-human. A donor antibody is said to have been “humanized” by a “humanization” process. This is because the resulting humanized antibody is expected to bind to the same antigen as the donor antibody that provides the CDRs. Often, the humanized antibody is a human immunoglobulin (recipient antibody) in which the recipient's hypervariable region residues have the desired specificity, affinity, and ability, Replaced by hypervariable region residues from a non-human species (donor antibody) such as rat, rabbit, or non-human primate. In some cases, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may have residues that are not found in the recipient or donor antibody. These modifications may be made to further improve antibody performance. In general, the humanized antibody has substantially at least one, usually all of the two variable domains. In the variable region, all or substantially all of the hypervariable regions correspond to hypervariable regions of non-human immunoglobulin, and all or substantially all of FRs are FRs of human immunoglobulin sequences. The humanized antibody optionally binds immunospecifically to at least a portion of an immunoglobulin constant region (Fc), usually an FcγRIIB polypeptide, and substitutions, deletions or additions of amino acid residues. It has a part of the constant region of human immunoglobulin that has been altered by the introduction of (ie, mutation).

本発明の方法において用いられる抗体は、単一特異性のものであってよい。また、二重特異性抗体、三重特異性抗体、または、B7−H1またはPD−1に加えて異なる標的に対して特異性を示すより大きな多特異性の抗体も対象である。好ましい実施形態において、上記多重特異性抗体は、異なる免疫細胞標的に対して特異性を示すであろう。たとえば、上記抗体は、B7−H1およびB7−DCの両方に結合して、それにより、両方のPD−1依存性反応を調節してもよい。反対に、上記抗体は、PD−1およびB7−1の両方に結合して、両方のB7−H1依存性反応を妨げてもよい。別の実施形態において、上記多重特異性抗体は、CTLA4、TIM3、TIM4、OX40、CD40、GITR、4−1−BB、B7−H4、LIGHT、または、LAG3などの代替的免疫調節経路に含まれる分子(受容体、または、リガンド)に対して、免疫調節効果を高めるために結合してもよい。さらに、上記多重特異性抗体は、急性および慢性免疫反応の両方の調節に特に関連し得る、サイトカイン(たとえば、IL−7、IL−15、IL−12、IL−4 TGF−beta、IL−10、IL−17、IFNg、Flt3、BLys)およびケモカイン(たとえば、CCL21)のようなエフェクター分子に結合してもよい。   The antibody used in the method of the invention may be monospecific. Also of interest are bispecific antibodies, trispecific antibodies, or larger multispecific antibodies that exhibit specificity for different targets in addition to B7-H1 or PD-1. In preferred embodiments, the multispecific antibody will exhibit specificity for different immune cell targets. For example, the antibody may bind to both B7-H1 and B7-DC, thereby modulating both PD-1-dependent responses. Conversely, the antibody may bind to both PD-1 and B7-1 and prevent both B7-H1-dependent reactions. In another embodiment, the multispecific antibody is included in an alternative immunoregulatory pathway such as CTLA4, TIM3, TIM4, OX40, CD40, GITR, 4-1BB, B7-H4, LIGHT, or LAG3. It may bind to a molecule (receptor or ligand) in order to enhance the immunomodulatory effect. Furthermore, the multispecific antibody can be a cytokine (eg, IL-7, IL-15, IL-12, IL-4 TGF-beta, IL-10, which can be particularly relevant for the regulation of both acute and chronic immune responses. , IL-17, IFNg, Flt3, BLys) and chemokines (eg, CCL21).

さらに、多重特異性抗体は、抗体の標的を特定の細胞型または組織とするのに重要な抗原に結合してもよい。たとえば、PD−1とCD27と(または、B7−H1とCD27と)の両者に結合する抗体は、活性記憶B細胞(mBAct)の生存を助長するように抗原提示細胞(APC)により配列されたPD−1がmBAct B細胞の表面のリガンドと相互作用することができるように、mBAct B細胞とAPCとの共存を促進することができる。mBAct B細胞の喪失は、AIDSへのHIV感染の進行における引き金となるため(Titanji, K. et al. (2010) "Acute Depletion Of Activated Memory B Cells Involves The PD-1 Pathway In Rapidly Progressing SIV-Infected Macaques," J. Clin. Invest. 120(11):3878-3890)、PD−1とCD27との両者に結合する抗体は、感染の治療、および、AIDSの発症を防ぐ、または、遅らせることにおいて有用性がある。上述のように、PD−1経路は、慢性HIV感染中の免疫機能の障害(「T細胞疲弊」)において重要な役割を果たすものとして関与している(Khaitan, A. et al. (2011) "Revisiting Immune Exhaustion During HIV Infection," Curr. HIV/AIDS Rep. 8:4-11; Rodriquez-Garcia, M. et al. (November 19, 2010) "Expression Of PD-L1 And PD-L2 On Human Macrophages Is Up-Regulated By HIV-1 And Differentially Modulated By IL-10," J. Leukocyte Biol. 89: doi:10.1189/jlb.0610327:1-9; Grabmeier-Pfistershammer, K. et al. (2011) "Identification of PD-1 as a Unique Marker for Failing Immune Reconstitution in HIV-1-Infected Patients on Treatment," J Acquir. Immune Defic. Syndr. 56(2):118-124)。マクロファージは、有意にHIV感染の初期段階の一因となる(Carter, C. A. et al. (2008) "Cell Biology Of HIV-1 Infection Of Macrophages," Ann. Rev. Microbiol. 62:425-443; Noursadeghi, M. et al. (2006) "HIV-1 Infection Of Mononuclear Phagocytic Cells: The Case For Bacterial Innate Immune Deficiency In AIDS," Lancet Infect. Dis. 6:794-804)。したがって、PD−1とマクロファージ特異的マーカー(たとえば、CD14、CD68、CD163、TLR2、など)とに結合する抗体は(特に、毒素に接合したならば)、HIV感染を防ぐのに有用性がある。さらに、T細胞疲弊の複数のマーカー(たとえば、PD−1、および、以下のうちのいずれか、または、すべて:CTLA4、TIM3、TIM4またはLAG−3)に結合する抗体は、免疫応答性の治療または診断に有用性がある。対象となる他の標的抗原としては、癌細胞マーカーが挙げられる。 Furthermore, multispecific antibodies may bind to antigens that are important for targeting the antibody to specific cell types or tissues. For example, antibodies that bind to both PD-1 and CD27 (or B7-H1 and CD27) are sequenced by antigen presenting cells (APC) to promote the survival of active memory B cells (mB Act ). and PD-1 is to be able to interact with a ligand on the surface of mB act B cells can facilitate coexistence with mB act B cells and APC. Since loss of mB Act B cells triggers the progression of HIV infection in AIDS (Titanji, K. et al. (2010) "Acute Depletion Of Activated Memory B Cells Involves The PD-1 Pathway In Rapidly Progressing SIV- Infected Macaques, "J. Clin. Invest. 120 (11): 3878-3890), antibodies that bind to both PD-1 and CD27 prevent infection or prevent or delay the onset of AIDS. Useful in As mentioned above, the PD-1 pathway has been implicated as playing an important role in impaired immune function ("T cell exhaustion") during chronic HIV infection (Khaitan, A. et al. (2011). "Revisiting Immune Exhaustion During HIV Infection," Curr. HIV / AIDS Rep. 8: 4-11; Rodriquez-Garcia, M. et al. (November 19, 2010) "Expression Of PD-L1 And PD-L2 On Human Macrophages Is Up-Regulated By HIV-1 And Differentially Modulated By IL-10, "J. Leukocyte Biol. 89: doi: 10.1189 / jlb.0610327: 1-9; Grabmeier-Pfistershammer, K. et al. (2011)" Identification of PD-1 as a Unique Marker for Failing Immune Reconstitution in HIV-1-Infected Patients on Treatment, "J Acquir. Immune Defic. Syndr. 56 (2): 118-124). Macrophages significantly contribute to the early stages of HIV infection (Carter, CA et al. (2008) "Cell Biology Of HIV-1 Infection Of Macrophages," Ann. Rev. Microbiol. 62: 425-443; Noursadeghi , M. et al. (2006) "HIV-1 Infection Of Mononuclear Phagocytic Cells: The Case For Bacterial Innate Immune Deficiency In AIDS," Lancet Infect. Dis. 6: 794-804). Thus, antibodies that bind PD-1 and macrophage specific markers (eg, CD14, CD68, CD163, TLR2, etc.) (especially if conjugated to a toxin) have utility in preventing HIV infection. . Furthermore, antibodies that bind to multiple markers of T cell exhaustion (eg, PD-1 and any or all of the following: CTLA4, TIM3, TIM4 or LAG-3) are immunologically responsive Or useful for diagnosis. Other target antigens of interest include cancer cell markers.

さらに、PD−1+ CD8+細胞が抗HIV活性を有することが分かっている(Killian, M.S. et al. (2011) "Natural Suppression of Human Immunodeficiency Virus Type 1 Replication Is Mediated by Memory CD8+ T Cells," J. Virol. 85(4):1696-1705)。よって、PD−1とCD8との両者に結合する抗体は、たとえば、患者におけるHIV感染やAIDSの治療における最終的な使用目的で上記細胞集団を単離して産生する生体外手段において有用性がある。 Furthermore, PD-1 + CD8 + cells have been shown to have anti-HIV activity (Killian, MS et al. (2011) “Natural Suppression of Human Immunodeficiency Virus Type 1 Replication Is Mediated by Memory CD8 + T Cells,” J. Virol. 85 (4): 1696-1705). Thus, antibodies that bind to both PD-1 and CD8 have utility in, for example, in vitro means of isolating and producing the cell population for final use in the treatment of HIV infection and AIDS in patients. .

上記抗PD−1または抗B7−H1二重特異性抗体、三重特異性抗体または多重特異性抗体において用いてもよいその他マーカーとしては、CD4、CD8、CD25およびCTLA−4が挙げられる(De Keersmaecker, B. et al. (2011) ("Fighting with the Enemy's Weapons? The Role of Costimulatory Molecules in HIV," Curr. Molec. Med. 566-5240/11: 1-25、および、Sarikonda, G. (2011) "Immunosuppressive Mechanisms During Viral Infectious Diseases;" Methods in Molec. Biol. 677:431-447、両文献を、参照により本明細書に援用する)。   Other markers that may be used in the anti-PD-1 or anti-B7-H1 bispecific antibody, trispecific antibody or multispecific antibody include CD4, CD8, CD25 and CTLA-4 (De Keersmaecker , B. et al. (2011) ("Fighting with the Enemy's Weapons? The Role of Costimulatory Molecules in HIV," Curr. Molec. Med. 566-5240 / 11: 1-25 and Sarikonda, G. (2011 ) "Immunosuppressive Mechanisms During Viral Infectious Diseases;" Methods in Molec. Biol. 677: 431-447, both references are incorporated herein by reference).

同様に、CD4 T細胞は、結核菌(M.tuberculosis)の成長と拡散を減速するために必要であるが、PD−1を介した抑制も、CD4+ T細胞が重症疾病を促進するのを防ぐのに必要とされる(Barber, D.L. et al. (2011) "CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1-Mediated Inhibition," J. Immunol. 186:1598-1607; Sakai, S. et al. (2010) "PD-1 - PD-L1 pathway impairs Th1 immune response in the late stage of infection with Mycobacterium bovis bacillus Calmette-Guerin," Intl. Immunol. 22(12):915-925; Lazar-Molnar, E. et al. (2010) "Programmed Death-1 (PD-1)-Deficient Mice Are Extraordinarily Sensitive To Tuberculosis," Proc. Natl. Acad. Sci. (USA) 107(30):13402-13407)。よって、CD4とPD−1とに結合する抗体は、結核の治療において、および、結核の発症の防止、または、遅延において有用性がある。 Similarly, CD4 T cells are required to slow down the growth and spread of M. tuberculosis, but PD-1 mediated suppression also helps CD4 + T cells promote severe disease. (Barber, DL et al. (2011) "CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1-Mediated Inhibition," J. Immunol. 186: 1598-1607; Sakai, S. et al. (2010) "PD-1-PD-L1 pathway impairs T h 1 immune response in the late stage of infection with Mycobacterium bovis bacillus Calmette-Guerin," Intl. Immunol. 22 (12): 915-925 Lazar-Molnar, E. et al. (2010) "Programmed Death-1 (PD-1) -Deficient Mice Are Extraordinarily Sensitive To Tuberculosis," Proc. Natl. Acad. Sci. (USA) 107 (30): 13402 -13407). Thus, antibodies that bind to CD4 and PD-1 are useful in the treatment of tuberculosis and in preventing or delaying the onset of tuberculosis.

好ましいヒトアクセプターフレームワーク配列をコードするDNA配列としては、ヒト生殖細胞系VHセグメントVH1−18およびJH6、および、ヒト生殖細胞系VLセグメントVK−A26およびJK4由来のFRセグメントが挙げられるが、これらに限定はされない。具体的な実施形態において、所定の遺伝子組み換え技術を用いて、1つ以上のCDRがフレームワーク領域内に挿入される。上記フレームワーク領域は、天然フレームワーク領域、または、コンセンサスフレームワーク領域であってよく、好ましくは、ヒトフレームワーク領域であってよい(ヒトフレームワーク領域の列挙については、たとえば、Chothia et al., 1998, J. Mol. Biol. 278: 457-479、参照)。   Preferred DNA sequences encoding human acceptor framework sequences include human germline VH segments VH1-18 and JH6, and FR segments derived from human germline VL segments VK-A26 and JK4. It is not limited to. In a specific embodiment, one or more CDRs are inserted into the framework region using a predetermined genetic recombination technique. The framework region may be a natural framework region or a consensus framework region, and preferably a human framework region (for enumeration of human framework regions, see, eg, Chothia et al., 1998, J. Mol. Biol. 278: 457-479).

本発明のヒト化またはキメラ抗体は、少なくとも1つ、通常2つの可変ドメインの実質全てを有していてもよい。上記可変ドメインにおいて、CDR領域の全て、または、実質全てが非ヒト免疫グロブリン(i.e.、ドナー抗体)のCDR領域に対応し、かつ、フレームワーク領域の全て、または、実質全てはヒト免疫グロブリンコンセンサス配列である。本発明の抗体も、免疫グロブリン定常領域(Fc)の少なくとも一部、通常、ヒト免疫グロブリンの定常領域の一部を有することが好ましい。本発明の上記抗体の上記定常ドメインは、上記抗体の提案された機能、特に、必要とされるであろうエフェクター機能に関して選択してよい。いくつかの実施形態において、本発明の上記抗体の上記定常ドメインは、ヒトIgA、IgD、IgE、IgGまたはIgMドメインである(または有する)。具体的な実施形態において、本発明のヒト化抗体が治療上の使用を目的とし、抗体依存性細胞媒介性細胞傷害(ADCC)および補体依存性細胞傷害(CDC)活性のような抗体エフェクター機能が必要とされる場合、ヒトIgG定常ドメイン、特に、上記IgG1およびIgG3アイソタイプのヒトIgG定常ドメインが用いられる。たとえば、PD−1は、T細胞、および、血管免疫芽球性T細胞リンパ腫(AITL)のようなまれな抹消T細胞リンパ腫に高度に発現する。ADCCまたはCDC活性を有する抗PD−1抗体は、上記のような癌を治療するための治療剤として、特に関係がある。代替的な実施例において、本発明の上記抗体が治療目的を対象とし、抗体エフェクター機能が必要とされない場合には、IgG2およびIgG4アイソタイプが用いられる。たとえば、T細胞の表面のPD−1を標的にすることにより、T細胞の活性を増幅したい場合、T細胞を殺すであろうエフェクター機能は、望ましくないであろう。本発明は、米国特許出願公開公報第2005/0037000号および第2005/0064514号に記載されたもののような抗体エフェクター機能を変える1つ以上のアミノ酸修飾を有するFc定常ドメインを包含する。   The humanized or chimeric antibody of the invention may have at least one, usually substantially all of the two variable domains. In the variable domain, all or substantially all of the CDR region corresponds to the CDR region of non-human immunoglobulin (ie, donor antibody), and all or substantially all of the framework region is human immune. Globulin consensus sequence. The antibody of the present invention preferably has at least a part of an immunoglobulin constant region (Fc), usually a part of the constant region of a human immunoglobulin. The constant domains of the antibodies of the invention may be selected with respect to the proposed function of the antibody, in particular the effector functions that may be required. In some embodiments, the constant domain of the antibody of the invention is (or has) a human IgA, IgD, IgE, IgG, or IgM domain. In a specific embodiment, the humanized antibodies of the present invention are intended for therapeutic use and antibody effector functions such as antibody dependent cell mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC) activity. Are used, human IgG constant domains, in particular human IgG constant domains of the IgG1 and IgG3 isotypes described above, are used. For example, PD-1 is highly expressed on T cells and rare peripheral T cell lymphomas such as angioimmunoblastic T cell lymphoma (AITL). Anti-PD-1 antibodies having ADCC or CDC activity are particularly relevant as therapeutic agents for treating cancer as described above. In an alternative embodiment, IgG2 and IgG4 isotypes are used when the antibody of the invention is intended for therapeutic purposes and antibody effector function is not required. For example, if it is desired to amplify T cell activity by targeting PD-1 on the surface of the T cell, effector functions that would kill the T cell would be undesirable. The present invention includes Fc constant domains having one or more amino acid modifications that alter antibody effector function, such as those described in US Patent Application Publication Nos. 2005/0037000 and 2005/0064514.

いくつかの実施形態において、本発明の上記抗体は、軽鎖と少なくとも重鎖の可変ドメインとの両方を含有する。別の実施形態において、本発明の上記抗体は、重鎖のCH1、ヒンジ、CH2、CH3、およびCH4領域の1つ以上をさらに有していてもよい。上記抗体は、IgM、IgG、IgD、IgAおよびIgE含む免疫グロブリンの任意のクラス、および、IgG1、IgG2、IgG3およびIgG4を含む任意のアイソタイプより選択できる。いくつかの実施形態において、上記定常ドメインは、上記抗体が細胞傷害活性を提示することが望ましい補体結合性定常ドメイン、上記クラスは、通常、IgG1である。上記のような細胞傷害活性が望ましくない他の実施形態において、上記定常ドメインはIgG2クラスのものであってもよい。本発明の上記抗体は、1つ以上のクラス、または、アイソタイプ由来の配列を有していてもよい。そして、所望のエフェクター機能を最適化するように特定の定常ドメインを選択することは、本技術分野における通常技術の範囲内にある。 In some embodiments, the antibody of the invention contains both the light chain and at least the variable domain of the heavy chain. In another embodiment, the antibody of the invention may further comprise one or more of the CH1, hinge, CH2, CH3, and CH4 regions of the heavy chain. The antibody can be selected from any class of immunoglobulins including IgM, IgG, IgD, IgA and IgE, and any isotype including IgG 1 , IgG 2 , IgG 3 and IgG 4 . In some embodiments, the constant domains, complement binding constant domains it is desirable that the antibody is present a cytotoxic activity, the class is usually IgG 1. In another embodiment the cytotoxic activity as described above is not desirable, the constant domain may be of the IgG 2 class. The antibody of the present invention may have a sequence derived from one or more classes or isotypes. And it is within the ordinary skill in the art to select a particular constant domain to optimize the desired effector function.

ヒト化抗体の上記フレームワークおよびCDR領域は、正確に親配列に対応している必要はない。たとえば、CDRまたはフレームワーク残基がその部位で、コンセンサスまたはドナー抗体のどちらにも対応しないように、少なくとも1個の残基の置換、挿入、または、欠失により、上記ドナーCDR、または、コンセンサスフレームワークを変異させてもよい。しかし、このような変異は、広範囲に及ばないことが好ましい。通例、ヒト化抗体残基の少なくとも75%が、より多くの場合は90%が、さらに好ましくは95%超が、親フレームワーク領域(FR)およびCDR配列のものに対応する。ヒト化抗体は、本技術分野において周知の様々な技術を用いて産生できる。そのような技術としては、CDRグラフティング(欧州特許第239,400号;国際公開公報第WO91/09967号;および、米国特許第5,225,539号、第5,530,101号および第5,585,089号)、ベニアリング(veneering)、または、リサーフェシング(resurfacing)(欧州特許第592,106号および第519,596号;Padlan, 1991, Molecular Immunology 28(4/5):489-498; Studnicka et al., 1994, Protein Engineering 7(6):805-814;および、Roguska et al., 1994, Proc. Natl. Acad. Sci. 91:969-973)、鎖シャフリング(米国特許第5,565,332号)、および、たとえば、以下に開示される技術が挙げられるが、これらに限定されない:米国特許第6,407,213号、第5,766,886号および第5,585,089号;国際公開公報第WO9317105号;Tan et al., 2002, J. Immunol. 169:1119-25, Caldas et al., 2000, Protein Eng. 13:353-60, Morea et al., 2000, Methods 20:267-79, Baca et al., 1997, J. Biol. Chem. 272:10678-84, Roguska et al., 1996, Protein Eng. 9:895-904, Couto et al., 1995, Cancer Res. 55 (23 Supp):5973s-5977s, Couto et al., 1995, Cancer Res. 55:1717-22, Sandhu, 1994, Gene 150:409-10, Pedersen et al., 1994, J. Mol. Biol. 235:959-73, Jones et al., 1986, Nature 321:522-525, Riechmann et al., 1988, Nature 332:323、および、Presta, 1992, Curr. Op. Struct. Biol. 2:593-596。しばしば、フレームワーク領域におけるフレームワーク残基が、抗原結合を変えるため、好ましくは、改良するために、CDRドナー抗体由来の対応残基で置換される。これらのフレームワーク置換は、本技術分野において周知の方法で特定される。その方法として、たとえば、抗原結合に重要なフレームワーク残基を特定する、CDRとフレームワーク残基との相互作用のモデリング、および、特定位置における異常なフレームワーク残基を特定する配列比較が挙げられる(たとえば、Queenらの米国特許第5,585,089号;米国公開公報第2004/0049014号および第2003/0229208号;米国特許第6,350,861号、第6,180,370号、第5,693,762号、第5,693,761号、第5,585,089号および第5,530,101号;および、Riechmann et al., 1988, Nature 332:323、参照).
本発明の抗体は、ポリペプチドの産生に有益な、本技術分野において周知の方法により、産生してもよい。このような方法としては、たとえば、インビトロ合成、組み換えDNA産生、などがある。上記ヒト化抗体は、遺伝子組み換えDNA技術により産生されることが好ましい。本発明の上記抗体は、組み換え免疫グロブリン発現技術を用いて、産生してもよい。ヒト化抗体を含む、免疫グロブリン分子の組み換え体の産生は、以下に記載されている:米国特許第4,816,397号(Boss et al.);米国特許第6,331,415号および第4,816,567号(両方ともCabilly et al.に属する);英国特許第2,188,638号(Winter et al.);および、英国特許第2,209,757号。ヒト化免疫グロブリンを含む、免疫グロブリンの組み換え発現技術も、以下で確認できる:Goeddel et al., Gene Expression Technology Methods in Enzymology Vol. 185 Academic Press (1991);および、Borreback, Antibody Engineering, W. H. Freeman (1992)。組み換え抗体の生成、設計、および、発現に関わる付加情報は、以下で確認できる:Mayforth, Designing Antibodies, Academic Press, San Diego (1993)。
The framework and CDR regions of a humanized antibody need not correspond exactly to the parent sequence. For example, the donor CDR or consensus can be obtained by substitution, insertion or deletion of at least one residue such that the CDR or framework residue does not correspond to either a consensus or donor antibody at that site. The framework may be mutated. However, such mutations are preferably not extensive. Typically, at least 75% of the humanized antibody residues correspond to those of the parent framework region (FR) and CDR sequences, more often 90%, more preferably more than 95%. Humanized antibodies can be produced using various techniques well known in the art. Such techniques include CDR grafting (European Patent No. 239,400; International Publication No. WO 91/09967; and US Pat. Nos. 5,225,539, 5,530,101 and 5). 585, 089), veneering, or resurfacing (European Patent Nos. 592,106 and 519,596; Padlan, 1991, Molecular Immunology 28 (4/5): 489-498. Studnicka et al., 1994, Protein Engineering 7 (6): 805-814; and Roguska et al., 1994, Proc. Natl. Acad. Sci. 91: 969-973), chain shuffling (US Patent No. No. 5,565,332) and, for example, but not limited to, the techniques disclosed below: US Pat. Nos. 6,407,213, 5,766,886 and 5,585 International Publication No. WO9317105; Tan et al., 2002, J. Immunol. 169: 1119-25, Caldas et al., 2000, Protein Eng. 13: 353-60, Morea et al., 2000, Methods 20: 267-79, Baca et al., 1997, J. Biol. Chem. 272: 10678-84, Roguska et al., 1996, Protein Eng. 9: 895-904, Couto et al., 1995, Cancer Res. 55 (23 Supp): 5973s-5977s, Couto et al., 1995, Cancer Res. 55: 1717-22, Sandhu, 1994, Gene 150: 409-10, Pedersen et al., 1994, J. Mol. Biol. 235: 959-73, Jones et al., 1986, Nature 321: 522-525, Riechmann et al., 1988, Nature 332: 323 and Presta, 1992, Curr. Op. Struct. Biol. 2: 593-596. Often, framework residues in the framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art. The methods include, for example, identifying framework residues that are important for antigen binding, modeling the interaction of CDRs with framework residues, and sequence comparisons that identify unusual framework residues at specific positions. (Eg, Queen et al., US Pat. Nos. 5,585,089; US Publication Nos. 2004/0049014 and 2003/0229208; US Pat. Nos. 6,350,861, 6,180,370, No. 5,693,762, 5,693,761, 5,585,089 and 5,530,101; and Riechmann et al., 1988, Nature 332: 323).
The antibodies of the present invention may be produced by methods well known in the art that are beneficial for the production of polypeptides. Such methods include, for example, in vitro synthesis and recombinant DNA production. The humanized antibody is preferably produced by a recombinant DNA technique. The antibody of the present invention may be produced using recombinant immunoglobulin expression technology. Production of recombinant immunoglobulin molecules, including humanized antibodies, is described below: US Pat. No. 4,816,397 (Boss et al.); US Pat. Nos. 6,331,415 and 4,816,567 (both belonging to Cabilly et al.); British Patent 2,188,638 (Winter et al.); And British Patent 2,209,757. Recombinant expression techniques for immunoglobulins, including humanized immunoglobulins, can also be identified by: Goeddel et al., Gene Expression Technology Methods in Enzymology Vol. 185 Academic Press (1991); and Borreback, Antibody Engineering, WH Freeman ( 1992). Additional information related to recombinant antibody production, design, and expression can be found at: Mayforth, Designing Antibodies, Academic Press, San Diego (1993).

本発明の組み換えキメラ抗体の産生工程の例は、以下の工程を有していてもよい:a)マウス抗B7−H1(または抗PD−1)モノクローナル抗体のCDRおよび可変領域がヒト免疫グロブリン由来のFc領域に融合している抗体重鎖をコードし、発現する発現ベクターを、従来の分子生物学的方法により構築し、それにより、キメラ抗体重鎖の発現用ベクターを産生する工程;b)マウス抗B7−H1(または抗PD−1)モノクローナル抗体の抗体軽鎖をコードし、発現する発現ベクターを、従来の分子生物学的方法により、構築し、それにより、キメラ抗体軽鎖の発現用ベクターを産生する工程;c)キメラ抗体の発現用のトランスフェクト宿主細胞を産生するように、従来の分子生物学的方法により発現ベクターを宿主細胞に移入する工程;および、d)キメラ抗体を産生するために、従来の細胞培養技術でトランスフェクト細胞を培養する工程。   An example of the production process of the recombinant chimeric antibody of the present invention may comprise the following steps: a) CDR and variable region of mouse anti-B7-H1 (or anti-PD-1) monoclonal antibody is derived from human immunoglobulin Constructing an expression vector that encodes and expresses an antibody heavy chain fused to the Fc region of by a conventional molecular biological method, thereby producing a vector for expression of a chimeric antibody heavy chain; b) An expression vector encoding and expressing the antibody light chain of a murine anti-B7-H1 (or anti-PD-1) monoclonal antibody is constructed by conventional molecular biology methods, thereby expressing the chimeric antibody light chain Producing the vector; c) transferring the expression vector into the host cell by conventional molecular biology methods so as to produce a transfected host cell for expression of the chimeric antibody. That; and, d) to produce chimeric antibodies, culturing the transfected cells in a conventional cell culture techniques.

本発明の組み換えヒト化抗体の産出の工程の例は、以下の工程を有していてもよい:a)ドナー抗体結合特異性を保持する必要があるCDRと可変領域フレームワークの最低限の部分とがマウス抗B7−H1(または抗PD−1)モノクローナル抗体のような非ヒト免疫グロブリンに由来しており、上記抗体の残りの部分が、ヒト免疫グロブリンに由来している抗体重鎖をコードし、発現する発現ベクターを、従来の分子生物学的方法により構築し、それにより、ヒト化抗体重鎖の発現用ベクターを産生する工程;b)ドナー抗体結合特異性を保持する必要があるCDRと可変領域フレームワークの最低限の部分とがマウス抗B7−H1(または抗PD−1)モノクローナル抗体のような非ヒト免疫グロブリンに由来しており、上記抗体の残りの部分が、ヒト免疫グロブリンに由来している抗体軽鎖をコードし、発現する発現ベクターを、従来の分子生物学的方法により構築し、それにより、ヒト化抗体軽鎖の発現用ベクターを産生する工程;c)ヒト化抗体の発現用のトランスフェクト宿主細胞を産生するために、従来の分子生物学的方法により、発現ベクターを宿主細胞に移入する工程;および、d)ヒト化抗体を産生するために、従来の細胞培養技術でトランスフェクト細胞を培養する工程。   An example of a process for producing a recombinant humanized antibody of the present invention may comprise the following steps: a) a minimal portion of a CDR and variable region framework that needs to retain donor antibody binding specificity Are derived from non-human immunoglobulin such as a mouse anti-B7-H1 (or anti-PD-1) monoclonal antibody, and the remainder of the antibody encodes an antibody heavy chain derived from human immunoglobulin. An expression vector to be expressed is constructed by a conventional molecular biological method, thereby producing a vector for expression of a humanized antibody heavy chain; b) a CDR that needs to retain donor antibody binding specificity And a minimal part of the variable region framework are derived from non-human immunoglobulin, such as a mouse anti-B7-H1 (or anti-PD-1) monoclonal antibody, An expression vector that encodes and expresses an antibody light chain derived from human immunoglobulin is constructed by a conventional molecular biological method, thereby producing a vector for expression of a humanized antibody light chain C) transferring an expression vector into the host cell by conventional molecular biology methods to produce a transfected host cell for expression of the humanized antibody; and d) producing a humanized antibody. In order to do this, the process of culturing the transfected cells using conventional cell culture techniques.

いずれの方法の例についても、異なる選択可能なマーカーを含有していてもよいが重鎖および軽鎖をコードする配列を除いて同一であることが好ましい上記発現ベクターと、宿主細胞が共存していてもよい。この手順により、重鎖および軽鎖ポリペプチドが同等に発現される。あるいは、重鎖および軽鎖ポリペプチドの両方をコードする単一のベクターを用いてもよい。重鎖および軽鎖のコード配列は、cDNA、または、ゲノムDNA、または、これらの両方を有していてもよい。本発明の組み換え抗体を発現させるのに用いられる上記宿主細胞は、大腸菌(Escherichia coli)のような細菌性細胞であってもよいし、または、より好ましくは、真核細胞(たとえば、チャイニーズハムスター卵巣(CHO)細胞、または、HEK−293細胞)であってもよい。発現ベクターの選択は、宿主細胞の選択によってきまり、選択された宿主細胞において所望の発現、および、調節特性が得られるように選択してもよい。用いることが可能な他の細胞株としては、CHO−K1、NSO、およびPER.C6(Crucell社、ライデン、オランダ)が挙げられるが、これらに限定されない。さらに、宿主細胞が、種特異的なコドン使用頻度の偏りの主要因となり、タンパク質の発現を高めるように選択される場合、コドン使用頻度は、最適化できる。たとえば、CHO細胞の発現のために、抗体をコードするDNAが、優先的に用いられるコドンをモンゴルキヌゲネズミ(Cricetulus griseus)(これからチャイニーズハムスター卵巣細胞が得られる)により組み込んでいてもよい。コドン最適化方法は、所望の宿主細胞による改良された発現を促進するために用いられる(たとえば、Wohlgemuth, I. et al. (2011) "Evolutionary Optimization Of Speed And Accuracy Of Decoding On The Ribosome," Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1580):2979-2986; Jestin, J.L. et al. (2009) "Optimization Models And The Structure Of The Genetic Code," J. Mol. Evol. 69(5):452-457; Bollenbach, T. et al. (2007) "Evolution And Multilevel Optimization Of The Genetic Code," Genome Res. 17(4):401-404; Kurland, C.G. et al. (1984) "Optimization Of Translation Accuracy," Prog. Nucleic Acid Res. Mol. Biol. 31:191-219; Grosjean, H. et al. (1982) "Preferential Codon Usage In Prokaryotic Genes: The Optimal Codon-Anticodon Interaction Energy And The Selective Codon Usage In Efficiently Expressed Genes," Gene 18(3):199-209、参照)。   In any of the methods, the host cell may coexist with the above expression vector, which may contain different selectable markers, but is preferably identical except for sequences encoding heavy and light chains. May be. This procedure results in equivalent expression of heavy and light chain polypeptides. Alternatively, a single vector encoding both heavy and light chain polypeptides may be used. The heavy and light chain coding sequences may comprise cDNA, genomic DNA, or both. The host cell used to express the recombinant antibody of the present invention may be a bacterial cell such as Escherichia coli, or more preferably a eukaryotic cell (eg, a Chinese hamster ovary). (CHO) cells or HEK-293 cells). The choice of expression vector will depend on the choice of host cell and may be selected to obtain the desired expression and regulatory characteristics in the selected host cell. Other cell lines that can be used include CHO-K1, NSO, and PER. C6 (Crucell, Leiden, The Netherlands), but is not limited to these. Furthermore, codon usage can be optimized if the host cell is selected to be a major factor in species-specific codon usage bias and enhance protein expression. For example, for the expression of CHO cells, the DNA encoding the antibody may incorporate preferentially used codons by a Mongolian gerbil (from which Chinese hamster ovary cells are obtained). Codon optimization methods are used to promote improved expression by the desired host cell (eg, Wohlgemuth, I. et al. (2011) "Evolutionary Optimization Of Speed And Accuracy Of Decoding On The Ribosome," Philos Trans. R. Soc. Lond. B Biol. Sci. 366 (1580): 2979-2986; Jestin, JL et al. (2009) "Optimization Models And The Structure Of The Genetic Code," J. Mol. Evol. 69 (5): 452-457; Bollenbach, T. et al. (2007) "Evolution And Multilevel Optimization Of The Genetic Code," Genome Res. 17 (4): 401-404; Kurland, CG et al. (1984 ) "Optimization Of Translation Accuracy," Prog. Nucleic Acid Res. Mol. Biol. 31: 191-219; Grosjean, H. et al. (1982) "Preferential Codon Usage In Prokaryotic Genes: The Optimal Codon-Anticodon Interaction Energy And The Selective Codon Usage In Efficiently Expressed Genes, "Gene 18 (3): 199-209).

上述の抗体のいずれかは、本技術分野における当業者に周知の技術を用いて、抗イディオタイプ抗体を生成するために用いることができる(たとえば、Greenspan, N.S. et al. (1989) "Idiotypes: Structure And Immunogenicity," FASEB J. 7:437-444;および、Nisinoff, A. (1991) "Idiotypes: Concepts And Applications," J. Immunol. 147(8):2429-2438、参照)。   Any of the above-described antibodies can be used to generate anti-idiotype antibodies using techniques well known to those skilled in the art (eg, Greenspan, NS et al. (1989) “Idiotypes: Structure And Immunogenicity, "FASEB J. 7: 437-444; and Nisinoff, A. (1991)" Idiotypes: Concepts And Applications, "J. Immunol. 147 (8): 2429-2438).

上記抗体のいずれの結合特性も、望むなら、そのように所望の特性を提示する変異体についてスクリーニングすることによって、さらに改良することができる。たとえば、そのような抗体は、本技術分野において周知の様々なファージ提示法を用いて、生成できる。ファージ提示法では、機能抗体ドメインが、機能抗体ドメインをコードするポリヌクレオチド配列があるファージ粒子の表面に提示される。特定の実施形態において、レパートリーまたは組み合わせ抗体ライブラリ(たとえば、ヒト、または、マウス)より発現したFabおよびFv、または、ジスルフィド結合安定化Fvのような抗原結合ドメインを提示するために上記ファージを用いることができる。対象の抗原に結合する抗原結合ドメインを発現するファージは、抗原を用いて、たとえば、標識化された抗原、または、固体表面あるいはビーズに結合した、または、捕えられた抗原を用いて、選択または特定できる。これらの方法において用いられるファージは、通常、fdおよびM13を含む、線状ファージである。抗原結合メインは、ファージ遺伝子IIIまたは遺伝子VIIIタンパク質のどちらかに組み換え技術で融合したタンパク質として発現される。本発明の免疫グロブリン、または、そのフラグメントの作製に用いることができるファージ提示法の例としては、以下に開示される方法が挙げられる:Brinkman, U. et al. (1995) "Phage Display Of Disulfide-Stabilized Fv Fragments," J. Immunol. Methods, 182:41-50, 1995; Ames, R.S. et al. (1995) "Conversion Of Murine Fabs Isolated From A Combinatorial Phage Display Library To Full Length Immunoglobulins," J. Immunol. Methods, 184:177-186; Kettleborough, C.A. et al. (1994) "Isolation Of Tumor Cell-Specific Single-Chain Fv From Immunized Mice Using Phage-Antibody Libraries And The Re-Construction Of Whole Antibodies From These Antibody Fragments," Eur. J. Immunol., 24:952-958, 1994; Persic, L. et al. (1997) "An Integrated Vector System For The Eukaryotic Expression Of Antibodies Or Their Fragments After Selection From Phage Display Libraries," Gene, 187:9-18; Burton, D.R. et al. (1994) "Human Antibodies From Combinatorial Libraries," Adv. Immunol. 57:191-280;PCT公開公報第WO92/001047号、第WO90/02809号、第WO91/10737号、第WO92/01047号、第WO92/18619号、第WO93/11236号、第WO95/15982号および第WO95/20401号;および、米国特許第5,698,426号、第5,223,409号、第5,403,484号、第5,580,717号、第5,427,908号、第5,750,753号、第5,821,047号、第5,571,698号;、第5,427,908号;、第5,516,637号、第5,780,225号、第5,658,727号、第5,733,743号および第5,969,108号。   Any binding properties of the above antibodies can be further improved if desired by screening for variants that display such desired properties. For example, such antibodies can be generated using various phage display methods well known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles that have polynucleotide sequences encoding functional antibody domains. In certain embodiments, the phage is used to display antigen binding domains such as Fab and Fv expressed from a repertoire or combinatorial antibody library (eg, human or mouse), or disulfide bond stabilized Fv. Can do. Phage expressing an antigen binding domain that binds to the antigen of interest is selected or used with an antigen, for example, a labeled antigen or an antigen bound or captured to a solid surface or bead. Can be identified. The phage used in these methods is usually a linear phage containing fd and M13. The antigen-binding main is expressed as a protein fused recombinantly to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the immunoglobulins of the invention, or fragments thereof, include the methods disclosed below: Brinkman, U. et al. (1995) "Phage Display Of Disulfide -Stabilized Fv Fragments, "J. Immunol. Methods, 182: 41-50, 1995; Ames, RS et al. (1995)" Conversion Of Murine Fabs Isolated From A Combinatorial Phage Display Library To Full Length Immunoglobulins, "J. Immunol Methods, 184: 177-186; Kettleborough, CA et al. (1994) "Isolation Of Tumor Cell-Specific Single-Chain Fv From Immunized Mice Using Phage-Antibody Libraries And The Re-Construction Of Whole Antibodies From These Antibody Fragments, "Eur. J. Immunol., 24: 952-958, 1994; Persic, L. et al. (1997)" An Integrated Vector System For The Eukaryotic Expression Of Antibodies Or Their Fragments After Selection From Phage Display Libraries, "Gene, 187: 9-18; Burton, DR et al. (1994) "Human Antibodies From Combinatorial Libraries," Adv Immunol. 57: 191-280; PCT Publication Nos. WO 92/001047, WO 90/02809, WO 91/10737, WO 92/01047, WO 92/18619, WO 93/11236, WO 95 / 15982 and WO95 / 20401; and US Pat. Nos. 5,698,426, 5,223,409, 5,403,484, 5,580,717, 5,427. No. 5,908, No. 5,750,753, No. 5,821,047, No. 5,571,698; No. 5,427,908; No. 5,516,637, No. 5,780 No. 5,225, No. 5,658,727, No. 5,733,743 and No. 5,969,108.

上記参考文献に記載されるように、ファージの選択後、上記ファージ由来の抗体をコードする領域は、単離して、ヒト化抗体、または、任意の他の所望のフラグメントを含む全抗体を生成するのに用いることができ、哺乳類細胞、昆虫細胞、植物細胞、酵母、および、細菌を含む任意の所望の宿主において発現できる。この詳細は、たとえば、以下に記載される。たとえば、Fab、Fab’およびF(ab’)2フラグメントを組み換え技術によって産出する技術も、以下の文献に開示された、本技術分野において周知の方法を用いて、用いることができる:PCT公開公報第WO92/22324;Mullinax, R.L. et al. (1992) "Expression Of A Heterodimeric Fab Antibody Protein In One Cloning Step," BioTechniques, 12(6):864-869; and Sawai et al. (1995) "Direct Production Of The Fab Fragment Derived From The Sperm Immobilizing Antibody Using Polymerase Chain Reaction And cDNA Expression Vectors," Am. J. Reprod. Immunol. 34:26-34;および、Better, M. et al. (1988) "Escherichia coli Secretion Of An Active Chimeric Antibody Fragment," Science 240:1041-1043)。一本鎖Fvsと抗体との産生に用いることができる技術の例として、以下の文献に記載のものが挙げられる:米国特許第4,946,778号および第5,258,498号;Huston, J.S. et al. (1991) "Protein Engineering Of Single-Chain Fv Analogs And Fusion Proteins," Methods in Enzymology 203:46-88; Shu, L. et al., "Secretion Of A Single-Gene-Encoded Immunoglobulin From Myeloma Cells," Proc. Natl. Acad. Sci. (USA) 90:7995-7999; and Skerra. A. et al. (1988) "Assembly Of A Functional Immunoglobulin Fv Fragment In Escherichia coli," Science 240:1038-1040。 As described in the above references, after selection of the phage, the region encoding the antibody from the phage is isolated to produce a whole antibody comprising a humanized antibody, or any other desired fragment. And can be expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria. This detail is described below, for example. For example, techniques for producing Fab, Fab ′ and F (ab ′) 2 fragments by recombinant techniques can also be used using methods well known in the art disclosed in the following literature: PCT Publication No. WO 92/22324; Mullinax, RL et al. (1992) "Expression Of A Heterodimeric Fab Antibody Protein In One Cloning Step," BioTechniques, 12 (6): 864-869; and Sawai et al. (1995) "Direct Production Of The Fab Fragment Derived From The Sperm Immobilizing Antibody Using Polymerase Chain Reaction And cDNA Expression Vectors, "Am. J. Reprod. Immunol. 34: 26-34; and Better, M. et al. (1988)" Escherichia coli Secretion Of An Active Chimeric Antibody Fragment, "Science 240: 1041-1043). Examples of techniques that can be used to produce single chain Fvs and antibodies include those described in the following references: US Pat. Nos. 4,946,778 and 5,258,498; Huston, JS et al. (1991) "Protein Engineering Of Single-Chain Fv Analogs And Fusion Proteins," Methods in Enzymology 203: 46-88; Shu, L. et al., "Secretion Of A Single-Gene-Encoded Immunoglobulin From Myeloma Cells, "Proc. Natl. Acad. Sci. (USA) 90: 7995-7999; and Skerra. A. et al. (1988)" Assembly Of A Functional Immunoglobulin Fv Fragment In Escherichia coli, "Science 240: 1038-1040 .

ファージ提示技術は、本発明の抗体のB7−H1および/またはPD−1に対する親和性を高めるために用いることができる。この技術は、本発明の組み合わせ方法において用いることが可能な高親和性抗体を得ることにおいて有益であろう。この技術は、親和性成熟と呼ばれ、上記受容体あるいはリガンド(または、それらの細胞外ドメイン)、または、それらの抗原フラグメントを用いた、変異生成またはCDRウォーキング、および、再選択を用いて、初期抗体、または、親抗体と比べて抗原に対してより高い親和性で結合する抗体を特定する(たとえば、Glaser, S.M. et al. (1992) "Antibody Engineering By Codon-Based Mutagenesis In A Filamentous Phage Vector System," J. Immunol. 149:3903-3913、参照)。単一ヌクレオチドよりもコドン全体を変異させる結果として、アミノ酸変異体の半ランダム化したレパートリーが得られる。単一CDRにおける単一アミノ酸変化によってそれぞれ異なる、そして、各CDR残基のそれぞれ可能なアミノ酸置換を示す変異体を含有する、変異型クローンのプールからなるライブラリが構築できる。標識化抗原を有する固定化変異体を接触させることによって、抗原に対して高められた結合親和性を有する変異体をスクリーニングすることができる。抗原に対して高められた親和性を有する変異抗体を特定するのに、本技術分野において周知の任意のスクリーニング方法が用いられる(たとえば、ELISA)(たとえば、Wu, H. et al. (1998) "Stepwise In Vitro Affinity Maturation Of Vitaxin, An Alphav Beta3-Specific Humanized Mab," Proc. Natl. Acad. Sci. (USA) 95(11):6037-6042; Yelton, D.E. et al. (1995) "Affinity Maturation Of The BR96 Anti-Carcinoma Antibody By Codon-Based Mutagenesis," J. Immunol. 155:1994-2004、参照)。軽鎖をランダム化するCDRウォーキングを場合によっては用いることができる(Schier et al. (1996) "Isolation Of Picomolar Affinity Anti-C-Erbb-2 Single-Chain Fv By Molecular Evolution Of The Complementarity Determining Regions In The Center Of The Antibody Binding Site," J. Mol. Biol. 263:551-567、参照)。   Phage display technology can be used to increase the affinity of the antibodies of the invention for B7-H1 and / or PD-1. This technique would be beneficial in obtaining high affinity antibodies that can be used in the combination methods of the invention. This technique is called affinity maturation and uses mutagenesis or CDR walking and reselection with the above receptors or ligands (or their extracellular domains), or antigenic fragments thereof, Identify antibodies that bind to the antigen with higher affinity than the initial antibody or the parent antibody (eg, Glasser, SM et al. (1992) "Antibody Engineering By Codon-Based Mutagenesis In A Filamentous Phage Vector System, "J. Immunol. 149: 3903-3913). As a result of mutating the entire codon rather than a single nucleotide, a semi-randomized repertoire of amino acid variants is obtained. A library can be constructed consisting of a pool of mutant clones, each containing a variant that differs by a single amino acid change in a single CDR and shows each possible amino acid substitution of each CDR residue. By contacting an immobilized mutant having a labeled antigen, mutants having increased binding affinity for the antigen can be screened. Any screening method known in the art can be used to identify mutant antibodies with increased affinity for antigen (eg, ELISA) (eg, Wu, H. et al. (1998)). "Stepwise In Vitro Affinity Maturation Of Vitaxin, An Alphav Beta3-Specific Humanized Mab," Proc. Natl. Acad. Sci. (USA) 95 (11): 6037-6042; Yelton, DE et al. (1995) "Affinity Maturation Of The BR96 Anti-Carcinoma Antibody By Codon-Based Mutagenesis, "J. Immunol. 155: 1994-2004). CDR walking that randomizes the light chain can optionally be used (Schier et al. (1996) "Isolation Of Picomolar Affinity Anti-C-Erbb-2 Single-Chain Fv By Molecular Evolution Of The Complementarity Determining Regions In The Center Of The Antibody Binding Site, "J. Mol. Biol. 263: 551-567).

したがって、本発明は、改良CDRおよび/または可変領域を特定するためにファージ提示法と合わせてランダム変異生成を使用することを検討する。ファージ提示技術は、代替的に、対象の変異生成(たとえば、親和性成熟または「CDRウォーキング」)によるCDR親和性を高める(または、低下させる)ために用いることができる。この技術は、初期抗体、または、親抗体と比べた場合に、抗原に対してより高い(または、より低い)親和性で結合するCDRを有する抗体を特定するために、標的抗原、または、その抗原フラグメントを使用する(たとえば、Glaser, S.M. et al. (1992) "Antibody Engineering By Codon-Based Mutagenesis In A Filamentous Phage Vector System," J. Immunol. 149:3903-3913、参照)。単一ヌクレオチドよりもコドン全体を変異させる結果として、アミノ酸変異体の半ランダム化したレパートリーが得られる。単一CDRにおける単一アミノ酸変化によってそれぞれ異なる、そして、各CDR残基のそれぞれの可能なアミノ酸置換を示す変異体を含有する、変異型クローンのプールからなるライブラリが構築できる。標識化された抗原を有する固定化変異体を接触させることによって、抗原に対して高められた(または、低下された)結合親和性を有する変異体をスクリーニングすることができる。抗原に対して高められた(または、低下された)親和性を有する変異抗体を特定するのに、本技術分野において周知の任意のスクリーニング方法が用いられる(たとえば、ELISA)(Wu, H. et al. (1998) "Stepwise In Vitro Affinity Maturation Of Vitaxin, An Alphav Beta3-Specific Humanized Mab," Proc. Natl. Acad. Sci. (USA) 95(11):6037-6042; Yelton, D.E. et al. (1995) "Affinity Maturation Of The BR96 Anti-Carcinoma Antibody By Codon-Based Mutagenesis," J. Immunol. 155:1994-2004、参照)。軽鎖をランダム化するCDRウォーキングを場合によっては用いることができる(Schier et al. (1996) "Isolation Of Picomolar Affinity Anti-C-Erbb-2 Single-Chain Fv By Molecular Evolution Of The Complementarity Determining Regions In The Center Of The Antibody Binding Site," J. Mol. Biol. 263:551-567、参照)。   Thus, the present invention contemplates using random mutagenesis in conjunction with phage display methods to identify improved CDRs and / or variable regions. Phage display technology can alternatively be used to increase (or decrease) CDR affinity by subject mutagenesis (eg, affinity maturation or “CDR walking”). This technique can be used to identify an antibody having a CDR that binds with a higher (or lower) affinity for the antigen when compared to the initial antibody or the parent antibody, or the target antigen, or its Antigen fragments are used (see, eg, Glaser, SM et al. (1992) “Antibody Engineering By Codon-Based Mutagenesis In A Filamentous Phage Vector System,” J. Immunol. 149: 3903-3913). As a result of mutating the entire codon rather than a single nucleotide, a semi-randomized repertoire of amino acid variants is obtained. A library can be constructed consisting of a pool of mutant clones, each containing a variant that varies with a single amino acid change in a single CDR, and shows each possible amino acid substitution of each CDR residue. By contacting an immobilized variant with a labeled antigen, variants with increased (or reduced) binding affinity for the antigen can be screened. Any screening method known in the art can be used to identify mutant antibodies with increased (or decreased) affinity for antigen (eg, ELISA) (Wu, H. et al. al. (1998) "Stepwise In Vitro Affinity Maturation Of Vitaxin, An Alphav Beta3-Specific Humanized Mab," Proc. Natl. Acad. Sci. (USA) 95 (11): 6037-6042; Yelton, DE et al. 1995) "Affinity Maturation Of The BR96 Anti-Carcinoma Antibody By Codon-Based Mutagenesis," J. Immunol. 155: 1994-2004). CDR walking that randomizes the light chain can optionally be used (Schier et al. (1996) "Isolation Of Picomolar Affinity Anti-C-Erbb-2 Single-Chain Fv By Molecular Evolution Of The Complementarity Determining Regions In The Center Of The Antibody Binding Site, "J. Mol. Biol. 263: 551-567).

上記の親和性成熟を達成する方法は、たとえば、以下に記載されている:Krause, J.C. et al. (2011) An Insertion Mutation That Distorts Antibody Binding Site Architecture Enhances Function Of A Human Antibody," MBio. 2(1) pii: e00345-10. doi: 10.1128/mBio.00345-10; Kuan, C.T. et al. (2010) "Affinity-Matured Anti-Glycoprotein NMB Recombinant Immunotoxins Targeting Malignant Gliomas And Melanomas," Int. J. Cancer 10.1002/ijc.25645; Hackel, B.J. et al. (2010) "Stability And CDR Composition Biases Enrich Binder Functionality Landscapes," J. Mol. Biol. 401(1):84-96; Montgomery, D.L. et al. (2009) "Affinity Maturation And Characterization Of A Human Monoclonal Antibody Against HIV-1 gp41," MAbs 1(5):462-474; Gustchina, E. et al. (2009) "Affinity Maturation By Targeted Diversification Of The CDR-H2 Loop Of A Monoclonal Fab Derived From A Synthetic Naive Human Antibody Library And Directed Against The Internal Trimeric Coiled-Coil Of Gp41 Yields A Set Of Fabs With Improved HIV-1 Neutralization Potency And Breadth," Virology 393(1):112-119; Finlay, W.J. et al. (2009) "Affinity Maturation Of A Humanized Rat Antibody For Anti-RAGE Therapy: Comprehensive Mutagenesis Reveals A High Level Of Mutational Plasticity Both Inside And Outside The Complementarity-Determining Regions," J. Mol. Biol. 388(3):541-558; Bostrom, J. et al. (2009) "Improving Antibody Binding Affinity And Specificity For Therapeutic Development," Methods Mol. Biol. 525:353-376; Steidl, S. et al. (2008) "In Vitro Affinity Maturation Of Human GM-CSF Antibodies By Targeted CDR-Diversification," Mol. Immunol. 46(1):135-144;および、Barderas, R. et al. (2008) "Affinity maturation of antibodies assisted by in silico modeling," Proc. Natl. Acad. Sci. (USA) 105(26):9029-9034。   Methods for achieving the above affinity maturation are described, for example, in: Krause, JC et al. (2011) An Insertion Mutation That Distorts Antibody Binding Site Architecture Enhances Function Of A Human Antibody, "MBio. 2 ( 1) pii: e00345-10. Doi: 10.1128 / mBio.00345-10; Kuan, CT et al. (2010) "Affinity-Matured Anti-Glycoprotein NMB Recombinant Immunotoxins Targeting Malignant Gliomas And Melanomas," Int. J. Cancer 10.1002 /ijc.25645; Hackel, BJ et al. (2010) "Stability And CDR Composition Biases Enrich Binder Functionality Landscapes," J. Mol. Biol. 401 (1): 84-96; Montgomery, DL et al. (2009) "Affinity Maturation And Characterization Of A Human Monoclonal Antibody Against HIV-1 gp41," MAbs 1 (5): 462-474; Gustchina, E. et al. (2009) "Affinity Maturation By Targeted Diversification Of The CDR-H2 Loop Of A Monoclonal Fab Derived From A Synthetic Naive Human Antibody Library And Directed Against The Internal Trimeric Coiled-Coil Of Gp41 Yields A Set Of Fabs With Impro ved HIV-1 Neutralization Potency And Breadth, "Virology 393 (1): 112-119; Finlay, WJ et al. (2009)" Affinity Maturation Of A Humanized Rat Antibody For Anti-RAGE Therapy: Comprehensive Mutagenesis Reveals A High Level Of Mutational Plasticity Both Inside And Outside The Complementarity-Determining Regions, "J. Mol. Biol. 388 (3): 541-558; Bostrom, J. et al. (2009)" Improving Antibody Binding Affinity And Specificity For Therapeutic Development, " Methods Mol. Biol. 525: 353-376; Steidl, S. et al. (2008) "In Vitro Affinity Maturation Of Human GM-CSF Antibodies By Targeted CDR-Diversification," Mol. Immunol. 46 (1): 135- And Barderas, R. et al. (2008) "Affinity maturation of antibodies assisted by in silico modeling," Proc. Natl. Acad. Sci. (USA) 105 (26): 9029-9034.

本発明は、特に、上記抗体のいずれかおよびそれらの抗原結合性フラグメントの「誘導体」の生産と使用とに関する。ここで「誘導体」とは、免疫特異的に抗原に結合し、親(または野生種)分子に対して1つ、2つ、3つ、4つ、または5つ以上のアミノ酸の置換、付加、欠失、または修飾を含む抗体またはその抗原結合フラグメントのことを言う。そのようなアミノ酸の置換または付加によって、天然の(すなわち、DNAコードされた)または非天然のアミノ酸残基が取り込まれる。そのようなアミノ酸は、細胞リガンドや他のタンパク質に連結された周知の保護基、タンパク質分解的切断等によって、グリコシル化(たとえば、改変されたマンノース、2−Nアセチルグルコサミン、ガラクトース、フコース、グルコース、シアル酸、5−N−アセチルノラミン酸、5−グリコールノイラミン酸等の含有量を有する)、アセチル化、ペグ化、リン酸化、アミド化、誘導体化してもよい。いくつかの実施形態では、改変された炭水化物修飾によって、以下の1つ以上が調節される:抗体の可溶化、抗体の細胞内輸送と分泌の円滑化、抗体集合の促進、立体構造の整合性、および抗体媒介エフェクター機能。特定の実施形態では、改変された炭水化物修飾によって、炭水化物の修飾が欠如した抗体に対する抗体媒介エフェクター機能が強化される。抗体媒介エフェクター機能の改変をもたらす炭水化物修飾は、当該技術において周知である(たとえば、Shields, R.L. et al. (2002) "Lack Of Fucose On Human IgG N-Linked Oligosaccharide Improves Binding To Human Fcgamma RIII And Antibody-Dependent Cellular Toxicity.," J. Biol. Chem. 277(30): 26733-26740; Davies J. et al. (2001) "Expression Of GnTIII In A Recombinant Anti-CD20 CHO Production Cell Line: Expression Of Antibodies With Altered Glycoforms Leads To An Increase In ADCC Through Higher Affinity For FC Gamma RIII," Biotechnology & Bioengineering 74(4): 288-294参照)。炭水化物含有量を改変する方法は、当業者に周知である(たとえば、Wallick, S.C. et al. (1988) "Glycosylation Of A VH Residue Of A Monoclonal Antibody Against Alpha (1----6) Dextran Increases Its Affinity For Antigen," J. Exp. Med. 168(3): 1099-1109; Tao, M.H. et al. (1989) "Studies Of Aglycosylated Chimeric Mouse-Human IgG. Role Of Carbohydrate In The Structure And Effector Functions Mediated By The Human IgG Constant Region," J. Immunol. 143(8): 2595-2601; Routledge, E.G. et al. (1995) "The Effect Of Aglycosylation On The Immunogenicity Of A Humanized Therapeutic CD3 Monoclonal Antibody," Transplantation 60(8):847-53; Elliott, S. et al. (2003) "Enhancement Of Therapeutic Protein In Vivo Activities Through Glycoengineering," Nature Biotechnol. 21:414-21; Shields, R.L. et al. (2002) "Lack Of Fucose On Human IgG N-Linked Oligosaccharide Improves Binding To Human Fcgamma RIII And Antibody-Dependent Cellular Toxicity.," J. Biol. Chem. 277(30): 26733-26740参照)。   The invention particularly relates to the production and use of “derivatives” of any of the above antibodies and antigen binding fragments thereof. As used herein, a “derivative” refers to a substitution, addition, addition of one, two, three, four, or five or more amino acids with respect to a parent (or wild type) molecule that immunospecifically binds to an antigen. Refers to an antibody or antigen-binding fragment thereof containing a deletion or modification. Such amino acid substitutions or additions incorporate natural (ie, DNA-encoded) or non-natural amino acid residues. Such amino acids can be glycosylated (eg, modified mannose, 2-N acetylglucosamine, galactose, fucose, glucose, by well-known protecting groups linked to cellular ligands or other proteins, proteolytic cleavage, etc. It may have a content of sialic acid, 5-N-acetylnoramic acid, 5-glycolneuraminic acid, etc.), acetylated, PEGylated, phosphorylated, amidated or derivatized. In some embodiments, the modified carbohydrate modification modulates one or more of the following: antibody solubilization, facilitating intracellular transport and secretion of the antibody, facilitating antibody assembly, conformational integrity , And antibody-mediated effector functions. In certain embodiments, the altered carbohydrate modification enhances antibody-mediated effector function for antibodies lacking carbohydrate modification. Carbohydrate modifications that result in alteration of antibody-mediated effector function are well known in the art (eg, Shields, RL et al. (2002) "Lack Of Fucose On Human IgG N-Linked Oligosaccharide Improves Binding To Human Fcgamma RIII And Antibody- Dependent Cellular Toxicity., "J. Biol. Chem. 277 (30): 26733-26740; Davies J. et al. (2001)" Expression Of GnTIII In A Recombinant Anti-CD20 CHO Production Cell Line: Expression Of Antibodies With Altered Glycoforms Leads To An Increase In ADCC Through Higher Affinity For FC Gamma RIII, "Biotechnology & Bioengineering 74 (4): 288-294). Methods for modifying carbohydrate content are well known to those skilled in the art (eg, Wallick, SC et al. (1988) "Glycosylation Of A VH Residue Of A Monoclonal Antibody Against Alpha (1 ---- 6) Dextran Increases Its Affinity For Antigen, "J. Exp. Med. 168 (3): 1099-1109; Tao, MH et al. (1989)" Studies Of Aglycosylated Chimeric Mouse-Human IgG. Role Of Carbohydrate In The Structure And Effector Functions Mediated By The Human IgG Constant Region, "J. Immunol. 143 (8): 2595-2601; Routledge, EG et al. (1995)" The Effect Of Aglycosylation On The Immunogenicity Of A Humanized Therapeutic CD3 Monoclonal Antibody, "Transplantation 60 (8 ): 847-53; Elliott, S. et al. (2003) "Enhancement Of Therapeutic Protein In Vivo Activities Through Glycoengineering," Nature Biotechnol. 21: 414-21; Shields, RL et al. (2002) "Lack Of Fucose On Human IgG N-Linked Oligosaccharide Improves Binding To Human Fcgamma RIII And Antibody-Dependent Cellular Toxicity., "J. Biol. Chem. 277 (30): 26733-26740 .

いくつかの実施形態では、ヒト化抗体は誘導体である。そのようなヒト化抗体は、1つ以上の非ヒトCDRに、アミノ酸残基の置換、欠失、または付加を含む。このヒト化抗体誘導体は、非誘導体ヒト化抗体に比べて、同じ、優れた、または劣った結合を実質的に有してもよい。特定の実施形態では、CDRの1つ、2つ、3つ、4つ、または5つ以上のアミノ酸残基が置換、欠失、または付加(すなわち、変異)されている。   In some embodiments, the humanized antibody is a derivative. Such humanized antibodies comprise amino acid residue substitutions, deletions or additions in one or more non-human CDRs. The humanized antibody derivative may have substantially the same, superior or inferior binding compared to a non-derivatized humanized antibody. In certain embodiments, one, two, three, four, five or more amino acid residues of a CDR are substituted, deleted, or added (ie mutated).

誘導体抗体また抗体フラグメントは、当業者に周知の技術を用いて化学的修飾によって修飾してもよい。この化学的修飾としては、限定されないが、特定の化学分解、アセチル化、製剤、ツニカマイシンの代謝合成等が挙げられる。ある実施形態では、抗体誘導体は、親抗体と類似または同一の機能を有する。別の実施形態では、抗体誘導体は、親抗体に対して改変された活性を示す。たとえば、誘導体抗体(またはそのフラグメント)は、そのエピトープによって強固に結合することができる。または、タンパク質分解に対して親抗体よりも高い抵抗を示すことができる。   Derivative antibodies or antibody fragments may be modified by chemical modification using techniques well known to those skilled in the art. This chemical modification includes, but is not limited to, specific chemical degradation, acetylation, formulation, metabolic synthesis of tunicamycin, and the like. In certain embodiments, the antibody derivative has a similar or identical function as the parent antibody. In another embodiment, the antibody derivative exhibits altered activity against the parent antibody. For example, a derivative antibody (or fragment thereof) can be tightly bound by its epitope. Alternatively, it can exhibit higher resistance to proteolysis than the parent antibody.

誘導体化された抗体における置換、付加、または欠失は、抗体のFc領域に位置してもよく、それによって、1つ以上のFcγRに対する抗体の結合親和性を修飾する働きをしてもよい。1つ以上のFcγRへの結合が修飾された抗体を修飾する方法は、当該技術において周知である(たとえば、PCT出願第WO04/029207号、第WO04/029092号、第WO04/028564号、第WO99/58572号、第WO99/51642号、第WO98/23289号、第WO89/07142号、および第WO88/07089号、ならびに米国特許第5,843,597および第5,642,821号参照)。いくつかの実施形態では、本発明は、FcγRIIIA等の活性化FcγRに対する親和性が改変された抗体を包含する。そのような修飾は、Fc媒介エフェクター機能も改変されていることが好ましい。Fc媒介エフェクター機能に影響を与える修飾は、当該技術において周知である(米国特許第6,194,551号ならびにWO00/42072参考)。1つの特定の実施形態では、Fc領域の修飾によって、抗体の抗体媒介エフェクター機能、他のFc受容体(たとえば、Fc活性化受容体)への改変結合、抗体依存性細胞媒介細胞毒性(ADCC)活性、C1q結合活性、補体依存性細胞毒性(CDC)活性、食細胞活性、またはこれらの組み合わせが改変される。   Substitutions, additions, or deletions in the derivatized antibody may be located in the Fc region of the antibody, thereby serving to modify the binding affinity of the antibody for one or more FcγRs. Methods for modifying antibodies that are modified for binding to one or more FcγRs are well known in the art (eg, PCT applications WO 04/029207, WO 04/029092, WO 04/028564, WO 99). / 58572, WO99 / 51642, WO98 / 23289, WO89 / 07142, and WO88 / 07089, and US Pat. Nos. 5,843,597 and 5,642,821). In some embodiments, the invention encompasses antibodies with altered affinity for an activated FcγR, such as FcγRIIIA. Such modifications preferably also alter Fc-mediated effector functions. Modifications that affect Fc-mediated effector function are well known in the art (see US Pat. No. 6,194,551 and WO 00/42072). In one specific embodiment, modification of the Fc region results in antibody antibody-mediated effector function, altered binding to other Fc receptors (eg, Fc-activated receptors), antibody-dependent cell-mediated cytotoxicity (ADCC). Activity, C1q binding activity, complement dependent cytotoxicity (CDC) activity, phagocytic activity, or a combination thereof is altered.

誘導体化された抗体は、哺乳類、好ましくはヒト、における親抗体の半減期(たとえば、血中半減期)を改変するのに用いてもよい。好ましくは、そのような改変によって、半減期が15日、好ましくは20日、25日、30日、35日、40日、45日、2ヶ月、3ヶ月、4か月、または5か月を超える。哺乳類、好ましくはヒト、における本発明のヒト化抗体またはそのフラグメントの半減期の増加によって、哺乳類における上記抗体または抗体フラグメントの血清力価が高くなり、それにより、上記抗体または抗体フラグメントの投与の頻度または投与する上記抗体または抗体フラグメントの濃度が低下する。生体内半減期が増加した抗体またはそのフラグメントは、当業者に周知の技術によって生成することができる。たとえば、生体内半減期が増加した抗体またはそのフラグメントは、FcドメインとFcRn受容体との相互作用に関与すると同定されたアミノ酸残基を修飾(たとえば、置換、欠失、付加)することによって生成することができる。本発明のヒト化抗体は、生物学的半減期を増加させるように設計されてもよい(たとえば、米国特許第6,277,375号参照)。たとえば、本発明のヒト化抗体は、生体内または血中半減期を増加させるようにFcヒンジドメインで設計されてもよい。   The derivatized antibody may be used to alter the half-life (eg, blood half-life) of the parent antibody in a mammal, preferably a human. Preferably, such modification will result in a half-life of 15 days, preferably 20 days, 25 days, 30 days, 35 days, 40 days, 45 days, 2 months, 3 months, 4 months, or 5 months. Exceed. Increasing the half-life of the humanized antibody or fragment thereof of the present invention in a mammal, preferably a human, increases the serum titer of the antibody or antibody fragment in the mammal, thereby increasing the frequency of administration of the antibody or antibody fragment. Alternatively, the concentration of the antibody or antibody fragment administered is reduced. Antibodies or fragments thereof with increased in vivo half-life can be generated by techniques well known to those skilled in the art. For example, an antibody or fragment thereof with an increased in vivo half-life is generated by modifying (eg, substituting, deleting, adding) an amino acid residue that has been identified to be involved in the interaction between the Fc domain and the FcRn receptor. can do. The humanized antibodies of the invention may be designed to increase biological half-life (see, eg, US Pat. No. 6,277,375). For example, the humanized antibody of the present invention may be designed with an Fc hinge domain to increase in vivo or blood half-life.

生体内半減期が増加した抗体またはそのフラグメントは、高分子量のポリエチレングリコール(PEG)等の高分子を上記抗体または抗体フラグメントに結合させることによって生成することができる。PEGは、上記抗体または抗体フラグメントのN−またはC−末端にPEGの部位特異的接合またはリジン残基に存在するイプシロンアミノ基を介して、多官能性リンカーの有無にかかわらず、上記抗体または抗体フラグメントに結合することができる。生物活性のロスが最小限となる線状または分岐状のポリマー誘導体化が用いられる。接合度は、SDS−PAGEと質量分析法によって注意深く監視し、抗体に対するPEG分子の適正な接合を確保する。未反応PEGは、たとえば、サイズ排除またはイオン交換クロマトグラフィーによって、抗体とPEGの複合体から分離することができる。   An antibody or fragment thereof having an increased in vivo half-life can be produced by binding a polymer such as high molecular weight polyethylene glycol (PEG) to the antibody or antibody fragment. PEG is linked to the N- or C-terminus of the antibody or antibody fragment via a site-specific conjugation of PEG or an epsilon amino group present in a lysine residue, with or without a multifunctional linker. Can bind to fragments. Linear or branched polymer derivatization with minimal loss of biological activity is used. The degree of conjugation is carefully monitored by SDS-PAGE and mass spectrometry to ensure proper conjugation of the PEG molecule to the antibody. Unreacted PEG can be separated from the antibody-PEG complex, for example, by size exclusion or ion exchange chromatography.

実質的な免疫原性反応なしに哺乳類の循環系に注入できる組成物を提供するために、本発明の抗体をDavis et al. (米国特許第4,179,337号参照)に記載の方法とカップリング剤によって修飾してもよい。   In order to provide a composition that can be injected into the mammalian circulatory system without a substantial immunogenic reaction, the antibodies of the invention can be obtained by the method described in Davis et al. (See US Pat. No. 4,179,337) and It may be modified with a coupling agent.

本発明は、本発明のヒト化抗体のフレームワーク残基の修飾を包含する。フレームワーク領域におけるフレームワーク残基は、抗原結合を変性、好ましくは改善、するために、CDRドナー抗体からの対応する残基と置換してもよい。これらのフレームワーク置換は、当該技術において周知の方法によって同定される。たとえば、特定の位置で異常なフレームワーク残基を同定するための抗原結合および配列比較に重要なフレームワーク残基を同定するためのCDRとフレームワーク残基との相互作用のモデル化によって同定される(たとえば、米国特許第5,585,089号およびRiechmann, L. et al. (1988) "Reshaping Human Antibodies For Therapy," Nature 332:323-327参照)。   The present invention encompasses modification of framework residues of the humanized antibody of the present invention. Framework residues in the framework regions may be substituted with the corresponding residue from the CDR donor antibody to denature, preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art. For example, by modeling the interaction of CDRs with framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at a particular position. (See, eg, US Pat. No. 5,585,089 and Riechmann, L. et al. (1988) “Reshaping Human Antibodies For Therapy,” Nature 332: 323-327).

また、本発明は、異種分子(すなわち、非関連分子)に組み換え融合または化学的に結合(共有結合および非共有結合を共に含む)される抗ヒトB7−H1および抗ヒトPD−1抗体(および、好ましくは、ヒト化抗体)およびその抗原結合フラグメントを包含する。融合は、必ずしも直接融合である必要はなく、リンカー配列を通じて生じてもよい。   The present invention also includes anti-human B7-H1 and anti-human PD-1 antibodies (and both covalent and non-covalent) that are recombinantly fused or chemically conjugated (including both covalent and non-covalent) to heterologous molecules (ie, unrelated molecules). , Preferably humanized antibodies) and antigen-binding fragments thereof. The fusion need not necessarily be a direct fusion, but may occur through a linker sequence.

融合タンパク質のFc部分は、アイソタイプまたはサブクラスによって変化させてもよく、キメラタンパク質またはハイブリッドタンパク質であってもよく、および/または、たとえばエフェクター機能、半減期の制御、組織の入手しやすさを改善し、安定性などの生物物理学的特徴を強化し、生産の効率(およびコストの削減)を改善するために、修飾されてもよい。開示された融合プロテインの構築に有用な多くの修飾とその方法は、当該技術において周知である(たとえば、Mueller, J.P. et al. (1997) "Humanized Porcine VCAM-Specific Monoclonal Antibodies With Chimeric Igg2/G4 Constant Regions Block Human Leukocyte Binding To Porcine Endothelial Cells," Mol. Immun. 34(6):441-452, Swann, P.G. (2008) "Considerations For The Development Of Therapeutic Monoclonal Antibodies," Curr. Opin. Immun. 20:493-499 (2008)およびPresta, L.G. (2008) "Molecular Engineering And Design Of Therapeutic Antibodies," Curr. Opin. Immun. 20:460-470参照)。いくつかの実施形態では、Fc領域は、天然のIgG1、IgG2、またはIgG4 Fc領域である。いくつかの実施形態では、Fc領域は、ハイブリッド、たとえば、IgG2/IgG4 Fc定常領域から成るキメラである。Fc領域への修飾としては、Fcガンマ受容体と相補体への結合を防止するためのIgG4の修飾、1つ以上のFcガンマ受容体への結合を改善するためのIgG1の修飾、エフェクター機能(アミノ酸変化)を最小限に抑えるためのIgG1の修飾、(通常は発現ホストを変えることによって)グリカンが変性したまたはグリカンがないIgG1があるが、これらに限定されない。Fc領域は、ヒンジ領域全体、またはヒンジ領域全体未満を含んでもよい。   The Fc portion of the fusion protein may vary by isotype or subclass, may be a chimeric or hybrid protein, and / or improves, for example, effector function, half-life control, tissue accessibility It may be modified to enhance biophysical characteristics such as stability and improve production efficiency (and cost reduction). Many modifications and methods useful for the construction of the disclosed fusion proteins are well known in the art (eg, Mueller, JP et al. (1997) "Humanized Porcine VCAM-Specific Monoclonal Antibodies With Chimeric Igg2 / G4 Constant Regions Block Human Leukocyte Binding To Porcine Endothelial Cells, "Mol. Immun. 34 (6): 441-452, Swann, PG (2008)" Considerations For The Development Of Therapeutic Monoclonal Antibodies, "Curr. Opin. Immun. 20: 493 -499 (2008) and Presta, LG (2008) "Molecular Engineering And Design Of Therapeutic Antibodies," Curr. Opin. Immun. 20: 460-470). In some embodiments, the Fc region is a native IgG1, IgG2, or IgG4 Fc region. In some embodiments, the Fc region is a hybrid, eg, a chimera consisting of an IgG2 / IgG4 Fc constant region. Modifications to the Fc region include modification of IgG4 to prevent binding to the Fc gamma receptor and complement, modification of IgG1 to improve binding to one or more Fc gamma receptors, effector function ( Modifications of IgG1 to minimize (amino acid changes), including but not limited to IgG1, with glycans denatured or without glycans (usually by changing the expression host). The Fc region may include the entire hinge region or less than the entire hinge region.

非ホジキンリンパ腫またはワルデンシュトレームマクログロブリン血症のためのリツキシマブ(CD20に対するキメラマウス−ヒトIgG1モノクローナル抗体)で治療した患者における治療結果は、ヒトIgG1のFcドメインに対して個別に内在する親和性を持ったFcγ受容体の対立遺伝子多型の個人の発現と相関性があった。特に、低親和性活性Fc受容体CD16A(FcγIIIA)の高親和性対立遺伝子を持った患者は、より高い反応速度を示し、非ホジキンリンパ腫の場合は、無進行性生存率が改善した。別の実施形態では、低親和性抑制性Fc受容体CD32B(FcγRIIB)への結合を抑え、かつ、低親和性活性Fc受容体CD16A(FcγIIIA)への結合の野生型レベルを維持または親和性活性Fc受容体CD16A(FcγIIIA)への結合を促進する1つ以上のアミノ酸の挿入、欠失、または置換を含んでもよい。   Treatment results in patients treated with rituximab for non-Hodgkin's lymphoma or Waldenstrom's macroglobulinemia (chimeric mouse-human IgG1 monoclonal antibody against CD20) show a distinct intrinsic affinity for the Fc domain of human IgG1 There was a correlation with the expression of individuals with Fcγ receptor allelic polymorphisms. In particular, patients with a high affinity allele of the low affinity active Fc receptor CD16A (FcγIIIA) showed a higher response rate and improved nonprogressive survival in the case of non-Hodgkin lymphoma. In another embodiment, binding to the low affinity inhibitory Fc receptor CD32B (FcγRIIB) is suppressed and wild type levels of binding to the low affinity active Fc receptor CD16A (FcγIIIA) are maintained or affinity activity One or more amino acid insertions, deletions, or substitutions that facilitate binding to the Fc receptor CD16A (FcγIIIA) may be included.

別の実施形態には、IgG2−4ハイブリッドとIgG4突然変異体が含まれ、これらは、その半減期を延ばすFcRに対る結合を抑える。代表的なIgG2−4ハイブリッドとIgG4突然変異体は、Angal, S. et al. (1993) "A Single Amino Acid Substitution Abolishes The Heterogeneity Of Chimeric Mouse/Human (IgG4) Antibody," Molec. Immunol. 30(1):105-108; Mueller, J.P. et al. (1997) "Humanized Porcine VCAM-Specific Monoclonal Antibodies With Chimeric IgG2/G4 Constant Regions Block Human Leukocyte Binding To Porcine Endothelial Cells," Mol. Immun. 34(6):441-452、および米国特許第6,982,323号に記載されている。いくつかの実施形態では、IgG1および/またはIgG2ドメインが欠失しており、たとえば、Angal et al.では、セリン241をプロリンで置換したIgG1およびIgG2ドメインが記載されている。   Another embodiment includes IgG2-4 hybrids and IgG4 mutants that suppress binding to FcR, which increases its half-life. Representative IgG2-4 hybrids and IgG4 mutants are described in Angal, S. et al. (1993) "A Single Amino Acid Substitution Abolishes The Heterogeneity Of Chimeric Mouse / Human (IgG4) Antibody," Molec. Immunol. 30 ( 1): 105-108; Mueller, JP et al. (1997) "Humanized Porcine VCAM-Specific Monoclonal Antibodies With Chimeric IgG2 / G4 Constant Regions Block Human Leukocyte Binding To Porcine Endothelial Cells," Mol. Immun. 34 (6): 441-452, and US Pat. No. 6,982,323. In some embodiments, IgG1 and / or IgG2 domains are deleted, eg, Angal et al. Describe IgG1 and IgG2 domains in which serine 241 is replaced with proline.

好ましい実施形態では、Fcドメインは、CD16Aへの結合を促進するアミノ酸の挿入、欠失、または置換を含む。CD16Aへの結合を増加させ、かつ、CD32Bへの結合を減少させるヒトIgG1のFcドメインにおける多くの置換は、Stavenhagen, J.B. et al. (2007) "Fc Optimization Of Therapeutic Antibodies Enhances Their Ability To Kill Tumor Cells In Vitro And Controls Tumor Expansion In Vivo Via Low-Affinity Activating Fcgamma Receptors," Cancer Res. 57(18):8882-8890に記載されている。CD16Aへの結合増加および/またはCD32Bへの結合減少を持ったヒトIgG1Fcドメインの変異体としては、たとえば、F243L、R929P、Y300L、V305I、またはP296L置換が挙げられる。これらのアミノ酸置換は、任意の組み合わせでヒトIgG1Fcドメインに存在してもよい。一実施形態では、ヒトIgG1Fcドメイン変異体は、F243L、R929P、およびY300L置換を含む。別の実施形態では、ヒトIgG1Fcドメイン変異体は、F243L、R929P、Y300L、V305I、およびP296L置換を含む。別の実施形態では、ヒトIgG1Fcドメイン変異体は、N297Q置換を含むが、この突然変異体はFcR結合を破壊するためである。   In a preferred embodiment, the Fc domain comprises amino acid insertions, deletions or substitutions that facilitate binding to CD16A. Many substitutions in the Fc domain of human IgG1 that increase binding to CD16A and decrease binding to CD32B have been described by Stavenhagen, JB et al. (2007) "Fc Optimization Of Therapeutic Antibodies Enhances Their Ability To Kill Tumor Cells. In Vitro And Controls Tumor Expansion In Vivo Via Low-Affinity Activating Fcgamma Receptors, “Cancer Res. 57 (18): 8882-8890. Variants of the human IgG1 Fc domain with increased binding to CD16A and / or decreased binding to CD32B include, for example, F243L, R929P, Y300L, V305I, or P296L substitution. These amino acid substitutions may be present in the human IgG1 Fc domain in any combination. In one embodiment, the human IgG1 Fc domain variant comprises F243L, R929P, and Y300L substitutions. In another embodiment, the human IgG1 Fc domain variant comprises F243L, R929P, Y300L, V305I, and P296L substitutions. In another embodiment, the human IgG1 Fc domain variant contains an N297Q substitution because the mutant disrupts FcR binding.

一実施形態では、そのような異種分子は、少なくとも10、少なくとも20、少なくとも30、少なくとも40、少なくとも50、少なくとも60、少なくとも70、少なくとも80、少なくとも90、または少なくとも100個のアミノ酸を有するポリペプチドである。あるいは、そのような異種分子は、酵素、ホルモン、細胞表面受容体、薬物部分であってもよい。これらの例としては、毒素(たとえば、アブリン、リシンA、シュードモナス外毒素(すなわち、PE−40)、ジフテリア毒素、リシン、ゲロニン、またはヨウシュヤマゴボウ抗ウイルスタンパク質)、タンパク質(たとえば、腫瘍壊死因子、インターフェロン(たとえば、α−インターフェロン、β−インターフェロン)、神経成長因子、血小板由来成長因子、組織プラスミノーゲン活性化因子、またはアポトーシス剤(たとえば、腫瘍壊死因子、腫瘍壊死因子−β))、生物学的反応修飾物質(たとえば、リンホカイン(たとえば、インターロイキン-1(「IL−1」)、インターロイキン−2(「IL−2」)、インターロイキン−6(「IL−6」))、顆粒球マクロファージコロニー刺激因子(「GM−CSF」)、顆粒球コロニー刺激因子(「G−CSF」)、またはマクロファージコロニー刺激因子(「M−CSF」))、または成長因子(たとえば、成長ホルモン(「GH」)))、細胞毒素(たとえば、パクリタキソール、サイトカラシンB、グラミシジンD、臭化エチジウム、エメチン、マイトマイシン、エトポシド、テノポシド、ビンクリスチン、ビンブラスチン、コルヒチン、ドキソルビシン、ダウノルビシン、ジヒドロキシアントラシンジオン、ミトキサントロン、ミトラマイシン、アクチノマイシンD、1−デヒドロテストステロン、グルココルチコイド、プロカイン、テトラカイン、リドカイン、プロプラノロール、モノメチルアウリスタチンF(MMAF)、モノメチルアウリスタチンE(MMAE、たとえば、ベドチン)、ピューロマイシン、およびその類似体または同族体等の細胞増殖抑制または細胞破壊剤)、代謝拮抗物質(たとえば、メトトレキサート、6−メルカプトプリン、6−チオグアニン、シタラビン、5−フルオロウラシルデカルバジン)、アルキル化剤(たとえば、メクロレタミン、チオエパクロラムブシル、メルファラン、BiCNU(登録商標)(カルムスチン、BSNU)、およびロムスチン(CCNU)、シクロホスファミド、ブスルファン、ジブロモマンニトール、ストレプトゾトシン、マイトマイシンC、およびシスジクロロジアミン白金(II)(DDP)シスプラチン)、アントラサイクリン(たとえば、ダウノルビシン(旧ダウノマイシン)、およびドキソルビシン)、抗生物質(たとえば、ダクチノマイシン(旧アクチノマイシン)、ブレオマイシン、ミトラマイシン、およびアントラマイシン(AMC))、または抗有糸***剤(たとえば、ビンクリスチンおよびビンブラスチン)が挙げられる。   In one embodiment, such heterologous molecule is a polypeptide having at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, or at least 100 amino acids. is there. Alternatively, such heterologous molecules may be enzymes, hormones, cell surface receptors, drug moieties. Examples of these include toxins (eg, abrin, ricin A, Pseudomonas exotoxin (ie, PE-40), diphtheria toxin, ricin, gelonin, or pokeweed antiviral protein), proteins (eg, tumor necrosis factor, Interferon (eg, α-interferon, β-interferon), nerve growth factor, platelet-derived growth factor, tissue plasminogen activator, or apoptotic agent (eg, tumor necrosis factor, tumor necrosis factor-β), biology Response modifiers (eg, lymphokines (eg, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”)), granulocytes Macrophage colony stimulating factor ("GM-CSF"), granulocyte colony Stimulating factor (“G-CSF”), or macrophage colony stimulating factor (“M-CSF”)), or growth factor (eg, growth hormone (“GH”))), cytotoxin (eg, paclitaxol, cytochalasin) B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, doxorubicin, daunorubicin, dihydroxyanthracindione, mitoxantrone, mitramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoid , Procaine, tetracaine, lidocaine, propranolol, monomethyl auristatin F (MMAF), monomethyl auristatin E (MMAE, eg, vedotin), puromycin, And anti-metabolite agents such as methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (for example, Mechlorethamine, thioepachlorambucil, melphalan, BiCNU® (carmustine, BSNU), and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cisdichlorodiamineplatinum (II ) (DDP) cisplatin), anthracyclines (eg, daunorubicin (formerly daunomycin), and doxorubicin), antibiotics (eg, dactinomycin (formerly actinomycin), bleoma Shin, mithramycin, and anthramycin (AMC)), or anti-mitotic agents (e.g., vincristine and vinblastine).

このような治療部分を抗体に接合させる技術は周知である(たとえば、Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Reisfeld et al. (eds.), 1985, pp.243-56, Alan R. Liss, Inc.); Hellstrom et al., "Antibodies For Drug Delivery", in CONTROLLED DRUG DELIVERY (2nd Ed.), Robinson et al. (eds.), 1987, pp. 623-53, Marcel Dekker, Inc. ); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in MONOCLONAL ANTIBODIES '84: BIOLOGICAL AND CLINICAL APPLICATIONS, Pinchera et al. (eds.), 1985, pp. 475-506); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in MONOCLONAL ANTIBODIES FOR CANCER DETECTION AND THERAPY,Baldwin et al. (eds.), 1985, pp. 303-16, Academic Press; Thorpe et al. (1982) "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates," Immunol. Rev. 62:119-158; Carter, P.J. et al. (2008) "Antibody-Drug Conjugates for Cancer Therapy," Cancer J. 14(3):154-169; Alley, S.C. et al. (2010) "Antibody-Drug Conjugates: Targeted Drug Delivery For Cancer," Curr. Opin. Chem. Biol. 14(4):529-537; Carter, P. et al. (2005) "Designer Antibody-Based Therapeutics For Oncology," Amer. Assoc. Cancer Res. Educ. Book. 2005(1):147-154; Carter, P.J. et al. (2008) "Antibody-Drug Conjugates For Cancer Therapy," Cancer J. 14(3):154-169; Chari, R.V.J. (2008) "Targeted Cancer Therapy: Conferring Specificity To Cytotoxic Drugs," Acc. Chem Res. 41(1):98-107; Doronina, S.O. et al. (2003) "Development Of Potent Monoclonal Antibody Auristatin Conjugates For Cancer Therapy," Nat. Biotechnol. 21(7):778-784; Ducry, L. et al. (2010) "Antibody-Drug Conjugates: Linking Cytotoxic Payloads To Monoclonal Antibodies," Bioconjug Chem. 21(1):5-13; Senter, P.D. (2009) "Potent Antibody Drug Conjugates For Cancer Therapy," Curr. Opin. Chem. Biol. 13(3):235-244、およびTeicher, B.A. (2009) "Antibody-Drug Conjugate Targets," Curr Cancer Drug Targets. 9(8):982-1004参照)。   Techniques for conjugating such therapeutic moieties to antibodies are well known (eg, Arnon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy”, in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Reisfeld et al. (Eds.) , 1985, pp.243-56, Alan R. Liss, Inc.); Hellstrom et al., "Antibodies For Drug Delivery", in CONTROLLED DRUG DELIVERY (2nd Ed.), Robinson et al. (Eds.), 1987 , pp. 623-53, Marcel Dekker, Inc.); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in MONOCLONAL ANTIBODIES '84: BIOLOGICAL AND CLINICAL APPLICATIONS, Pinchera et al. (eds.), 1985, pp. 475-506); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in MONOCLONAL ANTIBODIES FOR CANCER DETECTION AND THERAPY, Baldwin et al. (Eds.), 1985, pp 303-16, Academic Press; Thorpe et al. (1982) "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates," Immunol. Rev. 62: 119-158; Carter, PJ et al. (2 008) "Antibody-Drug Conjugates for Cancer Therapy," Cancer J. 14 (3): 154-169; Alley, SC et al. (2010) "Antibody-Drug Conjugates: Targeted Drug Delivery For Cancer," Curr. Opin. Chem. Biol. 14 (4): 529-537; Carter, P. et al. (2005) "Designer Antibody-Based Therapeutics For Oncology," Amer. Assoc. Cancer Res. Educ. Book. 2005 (1): 147 -154; Carter, PJ et al. (2008) "Antibody-Drug Conjugates For Cancer Therapy," Cancer J. 14 (3): 154-169; Chari, RVJ (2008) "Targeted Cancer Therapy: Conferring Specificity To Cytotoxic Drugs , "Acc. Chem Res. 41 (1): 98-107; Doronina, SO et al. (2003)" Development Of Potent Monoclonal Antibody Auristatin Conjugates For Cancer Therapy, "Nat. Biotechnol. 21 (7): 778-784 Ducry, L. et al. (2010) "Antibody-Drug Conjugates: Linking Cytotoxic Payloads To Monoclonal Antibodies," Bioconjug Chem. 21 (1): 5-13; Senter, PD (2009) "Potent Antibody Drug Conjugates For Cancer Therapy, "Curr. Opin. Chem. Biol. 13 (3): 235-244, and Teicher, BA (2009)" Antibody-Drug Conju gate Targets, "Curr Cancer Drug Targets. 9 (8): 982-1004).

本発明のいかなる分子も、精製を促進するペプチド等のマーカー配列に融合することができる。好ましい実施形態では、マーカーアミノ酸配列は、インフルエンザヘマグルチニンタンパク質由来のエピトープに対応するヘキサヒスチジンペプチドであるヘマグルチニン「HA」タグ(Wilson, I.A. et al. (1984) "The Structure Of An Antigenic Determinant In A Protein," Cell, 37:767-778)、およびフラグタグ(Knappik, A. et al. (1994) "An Improved Affinity Tag Based On The FLAG Peptide For The Detection And Purification Of Recombinant Antibody Fragments," Biotechniques 17(4):754-761)である。   Any molecule of the invention can be fused to a marker sequence such as a peptide that facilitates purification. In a preferred embodiment, the marker amino acid sequence is a hemagglutinin “HA” tag, which is a hexahistidine peptide corresponding to an epitope derived from influenza hemagglutinin protein (Wilson, IA et al. (1984) “The Structure Of An Antigenic Determinant In A Protein, "Cell, 37: 767-778), and flag tags (Knappik, A. et al. (1994)" An Improved Affinity Tag Based On The FLAG Peptide For The Detection And Purification Of Recombinant Antibody Fragments, "Biotechniques 17 (4): 754-761).

また、本発明は、診断用薬、治療薬、または血中半減期を延ばすことが望まれる他の分子に接合される抗体またはそれらの抗原結合フラグメントを包含する。これらの抗体は、たとえば、所定の治療計画の有効性を決定するための臨床検査手順の一部として、たとえば、疾患、障害、または感染症の発症または進行を監視するために(生体内、自然位、または生体外で)診断に使用することができる。検出は、検出可能な物質に対する抗体を結合させることによって容易にすることができる。種々の酵素、補欠分子族、蛍光物質、発光物質、生物発光物質、放射性物質、陽電子放出金属、および非放射性常磁性金属イオンが挙げられる。検出可能な物質は、当該技術で周知の技術を用いて、中間体(たとえば、当該技術において周知のリンカー等)を介して、直接または間接的に抗体に結合または接合してもよい。本発明に係る診断法として使用する抗体に接合させることができる金属イオンについては、たとえば、米国特許第4,741,900号参照。そのような診断および検出は、検出可能な物質に交代を結合させることによって達成することができる。検出可能な物質としては、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ、β−ガラクトシダーゼ、またはアセチルコリンエステラーゼ等の種々の酵素、ストレプトアビジン/ビオチンおよびアビジン/ビオチン等の補欠分子族錯体、ウンベリフェロン、フルオレセイン、フルオレセインイソチオシアネート、ローダミン、ジクロロフルオレセイン、ダンシルクロリド、またはフィコエリトリン等の蛍光物質、ルミノール等の発光物質、ルシフェラーゼ、ルシフェリン、およびエクオリン等の生物発光物質、ビスマス(213Bi)、炭素(14C)、クロム(51Cr)、コバルト(57Co)、フッ素(18F)、ガドリニウム(153Gd、159Gd)、ガリウム(68Ga、67Ga)、ゲルマニウム(68Ge)、ホルミウム(166Ho)、インジウム(115In、113In、112In、111In)、ヨウ素(131I、125I、123I、121I)、ランタン(140La)、ルテチウム(177Lu)、マンガン(54Mn)、モリブデン(99Mo)、パラジウム(103Pd)、リン(32P)、プラセオジム(142Pr)、プロメチウム(149Pm)、レニウム(186Re、188Re)、ロジムム(105Rh)、ルテミウム(97Ru)、サマリウム(153Sm)、スカンジウム(47Sc)、セレン(75Se)、ストロンチウム(85Sr)、硫黄(35S)、テクネチウム(99Tc)、タリウム(201Ti)、スズ(113Sn、117Sn)、トリチウム(3H)、キセノン(133Xe)、イッテルビウム(169Yb、175Yb)、イットリウム(90Y)、亜鉛(65Zn)等の放射性物質、種々の陽電子放出トモグラフィーを用いた陽電子放出金属、および非放射性常磁性金属イオンが挙げられるが、これらに限定されない。 The invention also encompasses antibodies or antigen-binding fragments thereof that are conjugated to diagnostic agents, therapeutic agents, or other molecules that are desired to prolong blood half-life. These antibodies are used, for example, as part of a clinical laboratory procedure to determine the effectiveness of a given treatment plan, eg, to monitor the onset or progression of a disease, disorder, or infection (in vivo, natural Can be used for diagnosis). Detection can be facilitated by coupling an antibody against the detectable substance. Examples include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals, and nonradioactive paramagnetic metal ions. The detectable substance may be bound or conjugated to the antibody directly or indirectly via an intermediate (eg, a linker well known in the art) using techniques well known in the art. See, for example, US Pat. No. 4,741,900 for metal ions that can be conjugated to antibodies used as diagnostics according to the present invention. Such diagnosis and detection can be accomplished by coupling the alternation to a detectable substance. Detectable substances include various enzymes such as horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase, prosthetic group complexes such as streptavidin / biotin and avidin / biotin, umbelliferone, fluorescein, fluorescein isoform Fluorescent materials such as thiocyanate, rhodamine, dichlorofluorescein, dansyl chloride, or phycoerythrin, luminescent materials such as luminol, bioluminescent materials such as luciferase, luciferin, and aequorin, bismuth ( 213 Bi), carbon ( 14C ), chromium ( 51 cr), cobalt (57 Co), fluorine (18 F), gadolinium (153 Gd, 159 Gd), gallium (68 Ga, 67 Ga), germanium (68 Ge), holmium (166 Ho) Indium (115 In, 113 In, 112 In, 111 In), iodine (131 I, 125 I, 123 I, 121 I), lanthanum (140 La), lutetium (177 Lu), manganese (54 Mn), molybdenum ( 99 Mo), palladium (103 Pd), phosphorous (32 P), praseodymium (142 Pr), promethium (149 Pm), rhenium (186 Re, 188 Re), Rojimumu (105 Rh), Rutemiumu (97 Ru), samarium (153 Sm), scandium (47 Sc), selenium (75 Se), strontium (85 Sr), sulfur (35 S), technetium (99 Tc), thallium (201 Ti), tin (113 Sn, 117 Sn), Radioactive materials such as tritium ( 3 H), xenon ( 133 Xe), ytterbium ( 169 Yb, 175 Yb), yttrium ( 90 Y), zinc ( 65 Zn), various positrons These include, but are not limited to, positron emitting metals using emission tomography and non-radioactive paramagnetic metal ions.

本発明の分子は、米国特許第4,676,980号においてSegalによって記載されている通り、第2の抗体に接合させて異種複合体を形成することができる。そのような異種複合体は、さらにハプテン(たとえば、フルオレセイン等)、細胞マーカー(たとえば4−1−BB、B7−H4、CD4、CD8、CD14、CD25、CD27、CD40、CD68、CD163、CTLA4、GITR、LAG−3、OX40、TIM3、TIM4、TLR2、LIGHT、ICOS、B7−H3、B7−H7、B7−H7CR、CD70、CD47等)、サイトカイン(たとえば、IL−7、IL−15、IL−12、IL−4 TGF−β、IL−10、IL−17、IFNγ,Flt3,BLys)、またはケモカイン(たとえば、CCL21)等に結合してもよい。   The molecules of the invention can be conjugated to a second antibody to form a heterologous complex as described by Segal in US Pat. No. 4,676,980. Such heterologous complexes further include haptens (eg, fluorescein, etc.), cell markers (eg, 4-1BB, B7-H4, CD4, CD8, CD14, CD25, CD27, CD40, CD68, CD163, CTLA4, GITR). , LAG-3, OX40, TIM3, TIM4, TLR2, LIGHT, ICOS, B7-H3, B7-H7, B7-H7CR, CD70, CD47, etc.), cytokines (eg, IL-7, IL-15, IL-12) , IL-4 TGF-β, IL-10, IL-17, IFNγ, Flt3, BLys), or a chemokine (eg, CCL21).

本発明の分子は、固体担体に取り付けることができ、これら担体は、標的抗原の、または、本発明の抗体またはその抗原結合フラグメントへの結合を介して担体に固定化された標的抗原に結合可能な他の分子のイムノアッセイまたは精製に特に有用である。そのような固体担体としては、ガラス、セルロース、ポリアクリルアミド、ナイロン、ポリスチレン、ポリ塩化ビニル、またはポリプロピレンが挙げられるが、これらに限定されない。   The molecules of the invention can be attached to a solid support, which can bind to the target antigen immobilized on the support via binding of the target antigen or to an antibody of the invention or an antigen-binding fragment thereof. It is particularly useful for immunoassays or purification of other molecules. Such solid carriers include, but are not limited to glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride, or polypropylene.

本発明は、核酸分子(DNAまたはRNA)を伝達または複製することができる任意のそのような抗体、融合タンパク質またはその断片、ならびにベクター分子(たとえば、プラスミド等)をコードするそのような核酸分子を含む。核酸は、一本鎖、二本鎖とすることができ、一本鎖および二本鎖部分の両方を含んでもよい。   The present invention relates to any such antibody, fusion protein or fragment thereof capable of transferring or replicating a nucleic acid molecule (DNA or RNA), and such a nucleic acid molecule encoding a vector molecule (eg, a plasmid, etc.). Including. Nucleic acids can be single stranded, double stranded, and may include both single stranded and double stranded portions.

(A.本発明の好ましいモジュレータ組成物)
本発明は、特に、B7−H1またはPD−1に免疫特異的に結合し、かつ/または、被験者におけるPD−1へのB7−H1の結合能を調節する抗体に関する。ここで、「被験者」は、好ましくは非霊長類(たとえば、ウシ、ブタ、ウマ、ネコ、イヌ、ラットなど)および霊長類(たとえば、サル、ヒト)のような哺乳動物であり、最も好ましくはヒトである。従って、本発明は、ヒトB7−H1またはヒトPD−1に結合し、かつ、ヒトまたはヒトの組織(自然位または生体外で)におけるPD−1へのB7−H1の結合能を調節するヒト化抗体またはその抗原結合フラグメントに関する。
(A. Preferred Modulator Composition of the Present Invention)
The present invention particularly relates to antibodies that immunospecifically bind to B7-H1 or PD-1 and / or modulate the ability of B7-H1 to bind to PD-1 in a subject. Here, the “subject” is preferably a mammal such as a non-primate (eg, cow, pig, horse, cat, dog, rat, etc.) and primate (eg, monkey, human), most preferably Human. Accordingly, the present invention binds human B7-H1 or human PD-1 and modulates the ability of B7-H1 to bind to PD-1 in human or human tissues (natural or ex vivo). Antibody or antigen-binding fragment thereof.

最も好ましくは、そのような抗体および抗原結合フラグメントは、(特に、内因性濃度で表現されたときに)被験者の抗原提示細胞の表面に配列されたB7−H1が、(特に、内因性濃度で表現されたときに)当該被験者のT細胞の表面に配列されたPD−1に結合する能力およびその逆の場合の能力を調節するのに十分な親和性を有する。ここで「内因性濃度」とは、正常細胞、がん細胞、または感染細胞において内因性分子が自然に発現されるレベル(すなわち、発現ベクターや組み換えプロモーターない場合)を指す。   Most preferably, such antibodies and antigen-binding fragments have (especially when expressed at endogenous concentrations) B7-H1 arranged at the surface of a subject's antigen-presenting cells (especially at endogenous concentrations). Has sufficient affinity to modulate the ability to bind PD-1 arranged on the surface of the subject's T cells and vice versa (when expressed). As used herein, “endogenous concentration” refers to the level at which endogenous molecules are naturally expressed in normal cells, cancer cells, or infected cells (ie, when there is no expression vector or recombinant promoter).

一実施形態では、そのような調節は、そのように(好ましくは内因的に発現され)配列されたB7−H1およびそのように(好ましくは内因的に発現され)配列されたPD−1の結合を阻害または干渉することを含む。別の実施形態では、そのような調節は、内因的に発現され配列されたB7−H1およびそのように内因的に発現され配列されたPD−1の結合の強化または促進を含む。さらに別の実施形態では、そのような調節は、抗B7−H1または抗PD−1の結合が、対応する受容体を介したシグナル変換のトリガとなる直接的刺激を含む。   In one embodiment, such modulation is the binding of B7-H1 so (preferably endogenously expressed) and PD-1 so sequenced (preferably endogenously expressed). Inhibition or interference. In another embodiment, such modulation comprises enhancing or promoting the binding of endogenously expressed and sequenced B7-H1 and such endogenously expressed and sequenced PD-1. In yet another embodiment, such modulation includes direct stimulation where anti-B7-H1 or anti-PD-1 binding triggers signal transduction through the corresponding receptor.

(1.好ましい抗ヒトB7−H1抗体およびそのCDR)
本発明によると、そのような分子は、ヒトB7−H1に対して免疫特異的な抗体を産生する分子に対するハイブリドーマ系をスクリーニングし、その後任意で、調節活性(たとえば、中和活性、作動活性、変性シグナル変換活性等)を示す分子に対する当該系統の中でスクリーニングすることによって産生することができる。本発明は、特に、抗ヒトB7−H1クローン(すなわち、1E12、1F4、2G11、3B6、および3D10)を提供する。
(1. Preferred anti-human B7-H1 antibody and CDR thereof)
According to the present invention, such molecules are screened for hybridoma systems against molecules that produce antibodies specific for human B7-H1, and then optionally with regulatory activity (eg neutralizing activity, agonist activity, It can be produced by screening in the strain for molecules exhibiting denatured signal conversion activity or the like. The present invention particularly provides anti-human B7-H1 clones (ie, 1E12, 1F4, 2G11, 3B6, and 3D10).

抗ヒトB7−H1クローンによって発現された抗体を配列させて、それらの可変領域を明らかにした。CDR配列を太字と下線で示す。   Antibodies expressed by anti-human B7-H1 clones were sequenced to reveal their variable regions. CDR sequences are shown in bold and underlined.

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

(2.好ましい抗ヒトPD−抗体およびそのCDR)
または、そのような抗体は、ヒトPD−1に対して免疫特異的な抗体を産生する分子に対するハイブリドーマ系をスクリーニングし、その後任意で、調節活性(たとえば、中和活性、作動活性、変性シグナル変換活性等)を示す分子に対する当該系統の中でスクリーニングすることによって産生することができる。本発明は、特に、抗ヒトPD−1クローン(すなわち、1E3、1E8、および1H3)を提供する。
(2. Preferred anti-human PD-antibodies and their CDRs)
Alternatively, such antibodies can be screened for hybridoma systems against molecules that produce antibodies immunospecific for human PD-1, and optionally followed by regulatory activity (eg, neutralizing activity, agonist activity, denaturing signal transduction). For example, by screening in the strain for molecules exhibiting activity etc.). The present invention specifically provides anti-human PD-1 clones (ie, 1E3, 1E8, and 1H3).

抗ヒトPD−1クローンによって発現された抗体を配列させて、それらの可変領域を明らかにした。CDR配列を太字と下線で示す。   Antibodies expressed by anti-human PD-1 clones were sequenced to reveal their variable regions. CDR sequences are shown in bold and underlined.

Figure 0006072771
Figure 0006072771

(3.本発明の抗ヒトB7−H1および抗ヒトPD−1抗体の共通CDR)
同定された抗体のCDRの分析を行って、共通CDR配列および同様の結合特性を示す変異CDR配列候補を同定した。そのような変異CDRは、表1に基づいたBlosum62.iij分析 によって算出した。表1にBlosum62.iij置換スコアを示す。スコアが高ければ高いほど、置換がより同類であり、置換が機能に影響を与えない可能性がより高い。
(3. Common CDR of anti-human B7-H1 and anti-human PD-1 antibody of the present invention)
Analysis of the CDRs of the identified antibodies was performed to identify mutated CDR sequence candidates that exhibit common CDR sequences and similar binding characteristics. Such mutated CDRs are the same as Blosum62. Calculated by ij analysis. Table 1 shows Blosum62. Indicates ij replacement score. The higher the score, the more similar the substitution and the more likely that the substitution does not affect function.

Figure 0006072771
Figure 0006072771

本発明によれば、1つ、2つ、3つ、4つ、5つ、または6つの変異CDRを有する新規の抗体および抗原結合フラグメントの形成が可能になる。本発明の方法によって相当数の個別のCDRが同定されたため、本発明によれば、特定の同定されたCDRの任意の変異体において必要とされる可能性のあるCDR残基の認識が可能になる。そのような残基を表2〜5に太字で示す。比較されたCDRの中で変化することが分かっている残基については、表1の置換スコアは、許容された置換の同定を決定するための手段となる。たとえば、特定のCDRの特定の残基がRまたはSとして変化することが分かっている場合、RとSは置換スコアが−1であるので、置換スコアが−1以上のRまたはSに対する任意の置換は、観察された変異体(RまたはS)と同程度に(もしくはRまたはSよりも)、特定のCDRと結合特性が十分に類似した変異CDRを作製し、機能的な抗B7−H1、抗PD−1、または抗原結合フラグメントを形成するように、特定のCDRの代わりに変異CDRを採用することを許容する可能性がある。各位置について、置換スコアの高い残基を選択することが、置換スコアの低い残基を選択することより好ましい。    The present invention allows the formation of novel antibodies and antigen-binding fragments with 1, 2, 3, 4, 5, or 6 mutated CDRs. Since a significant number of individual CDRs have been identified by the method of the present invention, the present invention allows recognition of CDR residues that may be required in any variant of a particular identified CDR. Become. Such residues are shown in bold in Tables 2-5. For residues that are known to change in the compared CDRs, the substitution score in Table 1 provides a means to determine the identity of the permissible substitution. For example, if a particular residue of a particular CDR is known to change as R or S, R and S have a substitution score of -1, so any substitution for R or S with a substitution score of -1 or greater The substitution creates a mutant CDR that is similar in binding properties to the specific CDR to the same extent (or more than R or S) as the observed mutant (R or S), and is functional anti-B7-H1. It may be possible to employ a mutated CDR instead of a specific CDR to form an anti-PD-1, or antigen-binding fragment. For each position, it is more preferable to select a residue with a higher substitution score than to select a residue with a lower substitution score.

表2は、抗B7−H1抗体の軽鎖CDRの分析を示し、本発明の観察された好ましい変異軽鎖抗B7−H1CDRの共通配列を提供する。   Table 2 shows the analysis of the light chain CDRs of anti-B7-H1 antibodies and provides the consensus sequence of the observed preferred mutant light chain anti-B7-H1 CDRs of the present invention.

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

表3は、抗B7−H1抗体の重鎖CDRの分析を示し、本発明の観察された好ましい変異重鎖抗B7−H1CDRの共通配列を提供する。   Table 3 shows the analysis of the heavy chain CDRs of anti-B7-H1 antibodies and provides the consensus sequence of the observed preferred mutant heavy chain anti-B7-H1 CDRs of the present invention.

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

このように、B7−H1抗体1E12、1F4、2G11、3B6、および3D10のCDRを有する抗体および抗原結合フラグメントに加えて、本発明は、さらに、上記軽/重鎖共通配列を有するCDRを有する抗体および抗原結合フラグメントを提供する。   Thus, in addition to antibodies and antigen-binding fragments having CDRs of B7-H1 antibodies 1E12, 1F4, 2G11, 3B6, and 3D10, the present invention further provides antibodies having CDRs having the light / heavy chain consensus sequence. And antigen binding fragments.

表4は、抗PD−1抗体の軽鎖CDRの分析を示し、本発明の観察された好ましい変異軽鎖抗PD−1CDRの共通配列を提供する。   Table 4 shows the analysis of the light chain CDRs of anti-PD-1 antibodies and provides the consensus sequence of the observed preferred mutant light chain anti-PD-1 CDRs of the present invention.

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

表5は、抗PD−1抗体の重鎖CDRの分析を示し、本発明の観察された好ましい変異軽鎖抗PD−1CDRの共通配列を提供する。    Table 5 shows the analysis of the heavy chain CDRs of anti-PD-1 antibodies and provides consensus sequences for the observed preferred mutant light chain anti-PD-1 CDRs of the present invention.

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

このように、抗PD−1抗体1E3、1E8、および1H3のCDRを有する抗体および抗原結合フラグメントに加えて、本発明は、さらに、上記軽/重鎖共通配列を有するCDRを有する抗体および抗原結合フラグメントを提供する。    Thus, in addition to antibodies and antigen-binding fragments with CDRs of anti-PD-1 antibodies 1E3, 1E8, and 1H3, the present invention further provides antibodies and antigen-binding with CDRs having the light / heavy chain consensus sequence. Provide a fragment.

本発明は、上記クローンのいずれかによって生成されるマウスモノクローナル抗体の可変重鎖および/または可変軽鎖のアミノ酸配列に対して、少なくとも45%、少なくとも50%、少なくとも55%、少なくとも60%、少なくとも65%、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、または少なくとも99%同一であり、かつ、B7−H1またはPD−1に免疫特異的結合を示す可変重鎖および/または可変軽鎖のアミノ酸配列を含む抗体又はそのフラグメントを包含する。さらに、本発明は、上記に列挙したクローンの相補決定領域のアミノ酸配列に対して、少なくとも45%、少なくとも50%、少なくとも55%、少なくとも60%、少なくとも65%、少なくとも70%、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、または少なくとも99%同一であり、かつ、B7−H1またはPD−1に免疫特異的結合を示すCDRを含む抗体またはそのフラグメントを包含する。2つのアミノ酸配列の百分率同一性の決定は、BLASTのタンパク質比較によって決定することができる。   The present invention provides at least 45%, at least 50%, at least 55%, at least 60%, at least, relative to the amino acid sequence of the variable heavy and / or variable light chain of a murine monoclonal antibody produced by any of the above clones. 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical and has immunospecific binding to B7-H1 or PD-1 Antibodies or fragments thereof comprising the variable heavy chain and / or variable light chain amino acid sequences shown are included. Furthermore, the present invention provides at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, relative to the amino acid sequence of the complementary determining regions of the clones listed above Includes an antibody or fragment thereof comprising a CDR that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical and that exhibits immunospecific binding to B7-H1 or PD-1. . The determination of percent identity between two amino acid sequences can be determined by BLAST protein comparison.

ある特定の実施例では、本発明の抗体またはその抗原結合フラグメントは、上記の好ましい抗体の相補決定領域の1つ、2つ、3つ、4つ、5つ、より好ましくは、6つすべてを含み、ヒトのB7−H1またはPD−1に結合する能力を発揮する。
B.本発明の好ましい組成物の治療的および予防的使用
本発明は特に、ヒトB7−H1またはヒトPD−1に免疫特異的に結合し、および/またはB7−H1およびPD−1間の結合を調節することが可能であり、それによって対象(たとえば、ヒト患者)内において分子(B7−H1またはPD−1)が内生的に発現および配列され、および/またはPD−1またはB7−H1を介した信号伝達を調節することが可能な分子(特に、抗体またはそれらの抗原結合フラグメント)の治療的および/または予防的使用に関する。
In certain embodiments, an antibody of the invention or antigen-binding fragment thereof comprises one, two, three, four, five, more preferably all six of the complementary determining regions of the preferred antibodies described above. And exhibits the ability to bind to human B7-H1 or PD-1.
B. Therapeutic and prophylactic use of preferred compositions of the invention The present invention specifically binds human B7-H1 or human PD-1 and / or modulates the binding between B7-H1 and PD-1. Molecules (B7-H1 or PD-1) are endogenously expressed and sequenced in a subject (eg, a human patient) and / or via PD-1 or B7-H1 Therapeutic and / or prophylactic use of molecules (especially antibodies or antigen-binding fragments thereof) that are capable of modulating signal transduction.

本明細書に使用されるとき、「処置する」、「処置すること」、「処置」、および「治療的使用」という用語は、B7−H1およびPD−1の相互作用によって悪化した疾患の症状または障害のうちの1つ以上の除去、低減、または改善を指す。本明細書に使用されるとき、「治療的な有効量」はそのような症状の臨床的に関連する除去、低減、または改善を媒介するのに十分な治療薬の量を指す。効果は、受容対象の健康または予後に影響を与えるのに十分な規模である場合、臨床的に関連する。治療的な有効量とは、疾患の発現を遅らせるまたは最小限に抑える(たとえば、癌の拡大を遅らせるまたは最小限に抑える)のに十分な治療薬の量を指す。治療的な有効量はまた、疾患の処置または管理において治療的な利益を提供する治療薬の量を指す。さらに、本発明の治療薬に関する治療的な有効量とは、疾患の処置または管理において治療的利益を提供する治療薬単体の量または他の治療と組み合わせた量を意味し、たとえば、疾患を処置または管理するのに十分な治療的抗体の治療的有効性を増強するのに十分な量である。   As used herein, the terms “treat”, “treating”, “treatment”, and “therapeutic use” refer to symptoms of a disease that are exacerbated by the interaction of B7-H1 and PD-1. Or refers to the removal, reduction, or improvement of one or more of the obstacles. As used herein, “therapeutically effective amount” refers to an amount of a therapeutic agent sufficient to mediate clinically relevant removal, reduction, or amelioration of such symptoms. An effect is clinically relevant if it is of sufficient magnitude to affect the health or prognosis of the recipient subject. A therapeutically effective amount refers to the amount of therapeutic agent sufficient to delay or minimize the onset of disease (eg, delay or minimize the spread of cancer). A therapeutically effective amount also refers to that amount of a therapeutic agent that provides a therapeutic benefit in the treatment or management of a disease. Furthermore, a therapeutically effective amount for a therapeutic agent of the present invention means an amount of the therapeutic agent alone or in combination with other therapies that provides a therapeutic benefit in the treatment or management of the disease, eg, treating the disease Or an amount sufficient to enhance the therapeutic effectiveness of a therapeutic antibody sufficient to manage.

本明細書に使用されるとき、「予防薬」という用語は、障害または疾患の任意の症状を検出する前に、そのような障害または疾患の防止に使用され得る物質を指す。「予防的に有効な」量とは、そのような保護を媒介するのに十分な予防薬の量である。予防的に有効な量とは、疾患の防止において予防的利益を提供する予防薬の量も指し得る。さらに、本発明の予防薬に関する予防的に有効な量とは、疾患の防止において予防的利益を提供する予防薬単体の量または他の物質と組み合わせた量を意味する。   As used herein, the term “prophylactic agent” refers to a substance that can be used to prevent such a disorder or disease before detecting any symptoms of the disorder or disease. A “prophylactically effective” amount is an amount of a prophylactic agent sufficient to mediate such protection. A prophylactically effective amount can also refer to the amount of a prophylactic agent that provides a prophylactic benefit in the prevention of disease. Furthermore, the prophylactically effective amount for the prophylactic agent of the present invention means the amount of the prophylactic agent alone or in combination with other substances that provides a prophylactic benefit in the prevention of disease.

本明細書における投与量および投与頻度は、治療的に有効なおよび予防的に有効なという用語に包含される。さらに、通常は、投与量および頻度はそれぞれの患者に特有な要因によって異なり、投与される特定の治療薬または予防薬、癌の重篤度および種類、投与の経路、ならびに当該患者の年齢、体重、反応、および過去の病歴によって異なる。当業者は、そのような要因を考慮し、また、たとえば、文献において報告され、Physician’s Desk Reference (56th ed., 2002)において推奨された投与量に従って、適切な投与計画を選択することができる。   The dosage and frequency of administration herein are encompassed by the terms therapeutically effective and prophylactically effective. In addition, dosage and frequency usually depend on factors specific to each patient, the particular therapeutic or prophylactic agent being administered, the severity and type of cancer, the route of administration, and the age, weight of the patient. , Response, and past medical history. One of ordinary skill in the art can consider such factors and select an appropriate dosing regimen, for example, according to the dosages reported in the literature and recommended in the Physician's Desk Reference (56th ed., 2002).

(1.免疫システムの上流修飾因子の使用)
好ましい実施形態において、1つ以上の部位においてそれらの抗原と結合するそのような抗体およびフラグメントは、B7−H1またはPD−1に対して、B7−H1−PD−1結合部位に対して近接し、破壊的である。上述した通り、PD−1およびB7−H1間の相互作用によって、T細胞の増殖が抑制され、多数のサイトカインの生産が減少する(Sharpe, A.H. et al. (2002) "The B7-CD28 Superfamily," Nature Rev. Immunol. 2:116-126参照)。このように、好ましい実施形態において、本発明の分子を対象に投与することによってB7−H1−PD−1結合を相殺し、それによって対象の免疫システムを上流修飾する。別の実施形態では、抗PD−1抗体の結合活性および/または親和性は、非常に高レベルのPD−1を発現するT細胞であって、消耗したまたは機能不全のT細胞とのみ結合する(およびT細胞へのB7−H1結合を阻害する)ような結合活性および/または親和性であり、したがって、この細胞集団を特異的に標的とすることができる。このように、本発明は、IFN−γの生産向上を媒介する本発明の抗体の使用に関連する。このように、本発明は、IFN−γによって処置可能な疾患および病気(卵巣癌および他の形態の癌、慢性肉芽腫性疾患、大理石骨病、フリードライヒ失調症、など)の処置におけるそのような抗体の使用に関する。さらに、本発明は、T細胞の増殖の向上を媒介する本発明の抗体の使用に特に関連する。このように、本発明はT細胞の増殖の向上によって処置可能な疾患および病気の処置におけるそのような抗体の使用に関連し、そのような疾患および病気としては:エイズ;重症複合型免疫不全症(SCID);オーメン症候群;軟骨毛髪形成不全症;器官または組織の移植または化学療法によって起こるT細胞の損失または除去;低ガンマグロブリン血症;伴性無ガンマグロブリン血症;一過性低ガンマグロブリン血症;異ガンマグロブリン血症;IgA欠損症・IgG欠損症;IgM欠損症;高IgM症候群;ウィスコット・アルドリック症候群;高IgE症候群;分類不能型免疫不全(common variable immunodeficiency);ICF症候群;胸腺形成不全症(たとえば;ディ・ジョージ症候群;ネゼロフ症候群;血管拡張性失調症);プリンヌクレオシドホスホリラーゼ欠損症;アデノシンデアミナーゼ欠損症;ZAP70欠損症;不全リンパ球症候群;白血球減少症;リンパ球減少症(たとえば;特発性CD4+リンパ球減少症);または補体欠損症が挙げられる。本発明は、IFN−γの生産の向上およびT細胞増殖の向上の両方を媒介する本発明の抗体の使用に特に関連する。
(1. Use of upstream modifiers of the immune system)
In preferred embodiments, such antibodies and fragments that bind their antigen at one or more sites are in proximity to the B7-H1-PD-1 binding site, relative to B7-H1 or PD-1. Is destructive. As described above, the interaction between PD-1 and B7-H1 suppresses T cell proliferation and reduces the production of many cytokines (Sharpe, AH et al. (2002) "The B7-CD28 Superfamily, "See Nature Rev. Immunol. 2: 116-126). Thus, in a preferred embodiment, administration of a molecule of the invention to a subject counteracts B7-H1-PD-1 binding, thereby upstream modifying the subject's immune system. In another embodiment, the binding activity and / or affinity of the anti-PD-1 antibody binds only to depleted or dysfunctional T cells that express very high levels of PD-1. Binding activity and / or affinity such as (and inhibits B7-H1 binding to T cells), and thus this cell population can be specifically targeted. Thus, the present invention relates to the use of the antibodies of the present invention to mediate improved production of IFN-γ. Thus, the present invention is such as in the treatment of diseases and illnesses that can be treated by IFN-γ (ovarian cancer and other forms of cancer, chronic granulomatous disease, marble bone disease, Friedreich ataxia, etc.). The use of various antibodies. Furthermore, the present invention is particularly relevant to the use of the antibodies of the present invention to mediate improved T cell proliferation. Thus, the present invention relates to the use of such antibodies in the treatment of diseases and illnesses that can be treated by improved T cell proliferation, including: AIDS; severe combined immunodeficiency (SCID); Omen syndrome; cartilage dysplasia; loss or elimination of T cells caused by organ or tissue transplantation or chemotherapy; hypogammaglobulinemia; companion agammaglobulinemia; transient hypogammaglobulin Dysgammaglobulinemia; IgA deficiency / IgG deficiency; IgM deficiency; high IgM syndrome; Wiscott-Aldrick syndrome; high IgE syndrome; common variable immunodeficiency; ICF syndrome; Thymic dysplasia (eg; Di George syndrome; Neserofu syndrome; vasodilator ataxia); Purinuku Oh Sid phosphorylase deficiency; adenosine deaminase deficiency; ZAP70 deficiency; deficiency lymphocyte syndrome; leukopenia; lymphopenia (e.g., idiopathic CD4 + lymphopenia); or complement deficiency and the like. The invention is particularly relevant to the use of the antibodies of the invention to mediate both improved IFN-γ production and improved T cell proliferation.

免疫システムの上流修飾は、癌および慢性感染症の処置において特に好ましく、したがって本発明はそのような障害の処置において有用性を有する。PD−1およびB7−H1の両方は、HIV感染において過剰発現する(Xu, Huanbin et al. (2010) "Increased B7-H1 Expression on Dendritic Cells Correlates with Programmed Death 1 Expression on T Cells in Simian Immunodeficiency Virus-Infected Macaques and May Contribute to T Cell Dysfunction and Disease Progression," J.Immunol. 185:7340-7348; Grabmeier-Pfistershammer, K. et al. (2011) "Identification of PD-1 as a Unique Marker for Failing Immune Reconstitution in HIV-1-Infected Patients on Treatment," J Acquir. Immune Defic. Syndr. 56(2):118-124)。このように、そのような細胞におけるB7−H1の発現は、ヒトのHIVを診断するのに使用することができる。したがって、本発明の抗PD−1および抗B7−H1抗体は、HIV感染およびエイズの処置に対して特定の治療的な有用性を有する。本明細書に使用されるとき、「癌」という用語は、細胞の異常な無制限増殖から起こる新生物または腫瘍を指す。本明細書に使用されるとき、癌は明示的に白血病およびリンパ腫を含む。「癌」という用語は、遠位部位に転移する潜在性を有し、非癌細胞とは異なる表現型形質を示す細胞を伴う疾患を指し、たとえば、軟寒天などの3次元基質におけるコロニーの形成または3次元基底膜もしくは細胞外基質の生成における管状網もしくはクモの巣状マトリクスの形成が挙げられる。非癌細胞は、軟寒天においてコロニーを形成せず、3次元基底膜または細胞外基質の生成においては明確な球状構造を形成する。   Upstream modifications of the immune system are particularly preferred in the treatment of cancer and chronic infections, and thus the present invention has utility in the treatment of such disorders. Both PD-1 and B7-H1 are overexpressed in HIV infection (Xu, Huanbin et al. (2010) "Increased B7-H1 Expression on Dendritic Cells Correlates with Programmed Death 1 Expression on T Cells in Simian Immunodeficiency Virus- Infected Macaques and May Contribute to T Cell Dysfunction and Disease Progression, "J. Immunol. 185: 7340-7348; Grabmeier-Pfistershammer, K. et al. (2011)" Identification of PD-1 as a Unique Marker for Failing Immune Reconstitution in HIV-1-Infected Patients on Treatment, "J Acquir. Immune Defic. Syndr. 56 (2): 118-124). Thus, the expression of B7-H1 in such cells can be used to diagnose human HIV. Accordingly, the anti-PD-1 and anti-B7-H1 antibodies of the present invention have particular therapeutic utility for the treatment of HIV infection and AIDS. As used herein, the term “cancer” refers to a neoplasm or tumor that results from abnormal unrestricted growth of cells. As used herein, cancer explicitly includes leukemia and lymphoma. The term “cancer” refers to a disease with cells that have the potential to metastasize to a distant site and that exhibit a phenotypic trait that is different from non-cancerous cells, for example, the formation of colonies in a three-dimensional substrate such as soft agar. Alternatively, the formation of a tubular net or a web-like matrix in the production of a three-dimensional basement membrane or extracellular matrix can be mentioned. Non-cancerous cells do not form colonies in soft agar and form well-defined spherical structures in the production of three-dimensional basement membranes or extracellular matrix.

本発明の方法および組成物によって処置され得るまたは防止され得る癌および関連する障害としては以下が挙げられるが、これらに限定されない:急性白血病、急性リンパ性白血病、骨髄芽球、前骨髄球、骨髄単球、単球、赤白血病(erythroleukemia leukemias)および骨髄異形成症候群などの急性骨髄球性白血病、慢性骨髄性(顆粒球性)白血病、慢性リンパ性白血病、ヘアリー細胞白血病などの慢性白血病、などの白血病;真性赤血球増加症;ホジキン病または非ホジキン病リンパ腫(たとえば、びまん性未分化リンパ腫キナーゼ(ALK)陰性、大型B細胞リンパ腫(DLBCL);びまん性未分化リンパ腫キナーゼ(ALK)陽性、大型B細胞リンパ腫(DLBCL);未分化リンパ腫キナーゼ(ALK)陽性、ALK+未分化大型細胞リンパ腫(ALCL)、急性骨髄性リンパ腫(AML))などのリンパ腫;くすぶり型多発性骨髄腫、非分泌性骨髄腫、骨硬化性骨髄腫、形質細胞性白血病、孤立性形質細胞腫、および髄外性形質細胞腫などの多発性骨髄腫;ヴァルデンストレームマクログロブリン血症;重度不確定な単クローン性免疫グロブリン血症;良性単クローン性免疫グロブリン血症;重鎖病;骨肉腫(bone sarcoma)、骨肉腫(osteosarcoma)、軟骨肉腫、ユーイング肉腫、悪性巨細胞腫、骨線維肉腫、脊索腫、骨膜性肉腫、軟部組織肉腫、血管肉腫(血管内皮腫)、線維肉腫、カポージ肉腫、平滑筋肉腫、脂肪肉腫、リンパ管肉腫、神経鞘腫、横紋筋肉腫、滑膜肉腫などの骨および結合組織の肉腫;神経膠腫、星細胞腫、脳幹神経膠腫、脳室上皮腫、乏突起神経膠腫、非神経膠の腫瘍、聴神経腫、頭蓋咽頭腫、髄芽細胞腫、髄膜腫、松果体細胞腫、松果体芽腫、原発性脳リンパ腫などの脳腫瘍;腺癌、小葉(小細胞性)癌、分泌管内癌、骨髄性乳癌、粘液乳癌、管状腺乳癌、乳頭乳癌、パジェット病、および炎症性乳癌などの乳癌;褐色細胞腫(pheochromocytom)および副腎皮質癌などの副腎癌;乳頭性または濾胞性甲状腺癌、骨髄性甲状腺癌、および未分化甲状腺癌などの甲状腺癌;インスリノーマ、ガストリノーマ、グルカゴノーマ、ビポーマ、ソマトスタチン分泌腫瘍、およびカルチノイドまたは膵小島腫瘍などの膵癌;クッシング病、プロラクチン分泌腫瘍、先端巨大症、および尿崩症(insipius)などの下垂体癌;虹彩黒色腫、脈絡膜メラノーマ、および毛様(cilliary)体メラノーマなどの眼メラノーマ、および網膜芽細胞腫などの目癌;扁平上皮癌、腺癌、およびメラノーマなどの腟癌;扁平上皮癌、メラノーマ、腺癌、基底細胞癌、肉腫、およびパジェット病などの外陰癌;扁平上皮癌および腺癌などの子宮頸癌;子宮内膜癌および子宮肉腫などの子宮癌;上皮性卵巣癌、境界型腫瘍、胚細胞腫瘍、および間質腫瘍などの卵巣癌;扁平上皮癌、腺癌、腺様嚢胞癌(adenoid cyctic carcinoma)、粘表皮癌、腺扁平上皮癌、肉腫、メラノーマ、形質細胞腫、疣状癌、および燕麦細胞(小細胞)癌などの食道癌;腺癌、菌状発生的(ポリープ状)、潰瘍形成性、表在拡大型、びまん性拡大型、悪性リンパ腫、脂肪肉腫、線維肉腫、および癌肉腫などの胃癌;結腸癌;直腸癌;肝細胞癌および肝芽腫、腺癌などの胆嚢癌などの肝臓癌;乳頭性、結節性、およびびまん性などの胆管癌;非小細胞肺癌、扁平上皮癌(類表皮癌)、腺癌、大細胞癌、および小細胞肺癌などの肺癌;胚腫瘍、セミノーマ、未分化、標準的(典型的)、***細胞性、非セミノーマ、胎児性癌、奇形腫癌、絨毛癌(卵黄嚢腫瘍)、前立腺癌(腺癌、平滑筋肉腫、および横紋筋肉腫など)などの精巣癌;陰茎(penal)癌;扁平上皮癌などの口腔癌;基底(basal)癌;腺癌、粘表皮癌、および腺様嚢胞癌などの唾液腺癌;扁平上皮癌および疣状などの咽頭癌;基底細胞癌、扁平上皮癌およびメラノーマ、表在拡大型メラノーマ、結節性メラノーマ、悪性黒子メラノーマ、末端黒子型メラノーマなどの皮膚癌;腎細胞癌、腺癌、副腎腫、線維肉腫、移行細胞癌(腎盂および/または尿管(uterer))などの腎臓癌;ウィルムス腫瘍;移行上皮癌、扁平上皮癌、腺癌、癌肉腫などの膀胱癌。さらに、癌としては、粘液肉腫、骨原性肉腫、内皮肉腫(endotheliosarcoma)、リンパ管内皮肉腫(lymphangioendotheliosarcoma)、中皮腫、滑膜性腫瘍、血管芽細胞腫、上皮癌、嚢胞腺癌、気管支原生癌、汗腺癌、脂腺癌、乳頭状癌および乳頭腺癌が挙げられる(そのような病気については、Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia and Murphy et al., 1997, Informed Decisions: The Complete Book of Cancer Diagnosis, Treatment, and Recovery, Viking Penguin, Penguin Books U.S.A., Inc., United States of Americaを参照)。   Cancers and related disorders that can be treated or prevented by the methods and compositions of the present invention include, but are not limited to: acute leukemia, acute lymphocytic leukemia, myeloblast, promyelocyte, bone marrow Monocytes, monocytes, erythroleukemia leukemias and acute myelocytic leukemia such as myelodysplastic syndrome, chronic myelogenous (granulocytic) leukemia, chronic lymphocytic leukemia, chronic leukemia such as hairy cell leukemia, etc. Leukemia; polycythemia vera; Hodgkin's disease or non-Hodgkin's disease lymphoma (eg, diffuse anaplastic lymphoma kinase (ALK) negative, large B cell lymphoma (DLBCL); diffuse anaplastic lymphoma kinase (ALK) positive, large B cells Lymphoma (DLBCL); anaplastic lymphoma kinase (ALK) positive, ALK + undifferentiated large cell phosphorus Lymphomas such as Pammoma (ALCL), acute myelogenous lymphoma (AML); smoldering multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, plasma cell leukemia, solitary plasmacytoma, and marrow Multiple myeloma such as external plasmacytoma; Waldenstrom macroglobulinemia; severely uncertain monoclonal immunoglobulinemia; benign monoclonal immunoglobulinemia; heavy chain disease; sarcoma), osteosarcoma, chondrosarcoma, Ewing sarcoma, malignant giant cell tumor, osteofibrosarcoma, chordoma, periosteal sarcoma, soft tissue sarcoma, angiosarcoma (angioendothelioma), fibrosarcoma, Kaposi sarcoma, smooth Bone and connective tissue sarcomas such as myoma, liposarcoma, lymphangiosarcoma, schwannoma, rhabdomyosarcoma, synovial sarcoma; glioma, astrocytoma, brainstem glioma, ventricular epithelioma, poor Process glioma, non-neural Tumors, acoustic neuromas, craniopharynoma, medulloblastoma, meningiomas, pineal cell tumors, pineoblastoma, primary brain lymphoma, etc .; adenocarcinoma, lobular (small cell) cancer, Breast cancer such as secretory carcinoma, myeloid breast cancer, mucus breast cancer, tubular gland breast cancer, papillary breast cancer, Paget's disease, and inflammatory breast cancer; adrenal cancer such as pheochromocytom and adrenocortical carcinoma; papillary or follicular thyroid Thyroid cancer such as cancer, myeloid thyroid cancer, and undifferentiated thyroid cancer; pancreatic cancer such as insulinoma, gastrinoma, glucagonoma, bipoma, somatostatin secreting tumor, and carcinoid or islet tumor; Cushing disease, prolactin secreting tumor, acromegaly, And pituitary cancers such as insipius; ocular melanomas such as iris melanoma, choroidal melanoma, and cilliary melanoma, and Eye cancers such as membroblastoma; squamous carcinomas such as squamous cell carcinoma, adenocarcinoma, and melanoma; vulvar cancers such as squamous cell carcinoma, melanoma, adenocarcinoma, basal cell carcinoma, sarcoma, and Paget's disease; squamous cell carcinoma and Cervical cancer such as adenocarcinoma; uterine cancer such as endometrial cancer and uterine sarcoma; ovarian cancer such as epithelial ovarian cancer, borderline tumor, germ cell tumor, and stromal tumor; squamous cell carcinoma, adenocarcinoma, gland Esophageal cancer such as adenoid cyctic carcinoma, mucoepidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, plasmacytoma, rod-shaped carcinoma, and oat cell (small cell) carcinoma; adenocarcinoma, fungal development Gastric cancer such as (polypoid), ulceration, superficial enlargement, diffuse enlargement, malignant lymphoma, liposarcoma, fibrosarcoma, and carcinosarcoma; colon cancer; rectal cancer; hepatocellular carcinoma and hepatoblastoma, gland Liver cancer such as gallbladder cancer such as cancer; papillary, nodular, and diffuse Bile duct cancer such as sex; lung cancer such as non-small cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large cell cancer, and small cell lung cancer; embryo tumor, seminoma, undifferentiated, standard (typical), Testicular cancer such as spermatogenic, nonseminoma, fetal cancer, teratocarcinoma, choriocarcinoma (yolk sac tumor), prostate cancer (adenocarcinoma, leiomyosarcoma, and rhabdomyosarcoma); penal Cancer; oral cancer such as squamous cell carcinoma; basal cancer; salivary gland cancer such as adenocarcinoma, mucoepidermoid carcinoma, and adenoid cystic cancer; pharyngeal cancer such as squamous cell carcinoma and sputum; basal cell carcinoma, squamous epithelium Skin cancer such as cancer and melanoma, superficial enlarged melanoma, nodular melanoma, malignant melanoma, terminal melanoma; renal cell carcinoma, adenocarcinoma, adrenal carcinoma, fibrosarcoma, transitional cell carcinoma (renal pelvis and / or ureter) (Uterer)) and other kidney cancer; Wilms tumor; transitional cell carcinoma Squamous cell carcinoma, adenocarcinoma, bladder cancer, such as cancer sarcoma. In addition, cancers include myxosarcoma, osteogenic sarcoma, endothelial sarcoma (endotheliosarcoma), lymphatic endothelial sarcoma (lymphangioendotheliosarcoma), mesothelioma, synovial tumor, hemangioblastoma, epithelial cancer, cystadenocarcinoma, bronchial Primary cancer, sweat gland cancer, sebaceous gland cancer, papillary cancer, and papillary cancer (for such diseases, see Fishman et al., 1985, Medicine, 2d Ed., JB Lippincott Co., Philadelphia and Murphy et al., 1997, Informed Decisions: The Complete Book of Cancer Diagnosis, Treatment, and Recovery, Viking Penguin, Penguin Books USA, Inc., United States of America).

したがって、本発明の方法および組成物は、様々な癌または他の異常増殖性疾患の処置または防止においても有用である。これらの様々な癌または異常増殖性疾患としては以下が挙げられるが、これらに限定されない:膀胱癌、乳癌、結腸癌、腎臓癌、肝臓癌、肺癌、卵巣癌、膵臓癌、胃癌、頸癌、甲状腺癌および皮膚癌などの癌腫;扁平上皮癌など;白血病、急性リンパ球性白血病、急性リンパ性白血病、B細胞リンパ腫、T細胞リンパ腫、バーキット(Berketts)リンパ腫などのリンパ系造血器腫瘍;急性および慢性骨髄性白血病および前骨髄球白血病などの骨髄細胞系造血器腫瘍;線維肉腫および横紋筋肉腫(rhabdomyoscarcoma)などの間葉由来腫瘍;メラノーマ、セミノーマ、テトレート(tetrato)癌腫、神経芽細胞腫、および神経膠腫などの他の腫瘍;星細胞腫、神経芽細胞腫、神経膠腫、および神経鞘腫などの中枢神経系および末梢神経系腫瘍;線維肉腫(fibrosafcoma)、横紋筋肉腫(rhabdomyoscarama)、および骨肉腫などの間葉由来腫瘍;メラノーマ、色素性乾皮症(xenoderma pegmentosum)、角化性棘細胞腫(keratoactanthoma)、セミノーマ、甲状腺濾胞癌、および奇形癌腫などの他の腫瘍。アポトーシスにおける異常によって引き起こされた癌も、本発明の方法および組成物によって処置されることを意図する。そのような癌としては、濾胞性リンパ腫、p53突然変異による癌腫、胸部、前立腺、および卵巣のホルモン依存腫瘍、および家族性大腸腺腫症および骨髄異形成症候群などの前癌病変などが挙げられるが、これらに限定されない。特定の実施形態において、卵巣、膀胱、胸部、結腸、肺、皮膚、膵臓、または子宮における悪性または異常増殖性(dysproliferative)変化(化生および異形成など)または過剰増殖性障害が、本発明の方法および組成物によって処置または防止される。他の特定の実施形態において、肉腫、メラノーマ、または白血病が本発明の方法および組成物によって処置または防止される。   Accordingly, the methods and compositions of the present invention are also useful in the treatment or prevention of various cancers or other hyperproliferative diseases. These various cancers or hyperproliferative diseases include, but are not limited to: bladder cancer, breast cancer, colon cancer, kidney cancer, liver cancer, lung cancer, ovarian cancer, pancreatic cancer, gastric cancer, cervical cancer, Carcinomas such as thyroid and skin cancers; squamous cell carcinomas; lymphoid hematopoietic tumors such as leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Burkitts lymphoma; acute And myeloid hematopoietic tumors such as chronic myelogenous leukemia and promyelocytic leukemia; mesenchymal tumors such as fibrosarcoma and rhabdomyoscarcoma; melanoma, seminoma, tetrato carcinoma, neuroblastoma And other tumors such as glioma; central and peripheral nervous system tumors such as astrocytoma, neuroblastoma, glioma, and schwannoma; fibrosarcoma (fibro mesenchymal-derived tumors such as safcoma), rhabdomyoscarama, and osteosarcoma; melanoma, xenoderma pegmentosum, keratoactanthoma, seminoma, follicular thyroid carcinoma, and Other tumors such as teratocarcinoma. Cancers caused by abnormalities in apoptosis are also intended to be treated by the methods and compositions of the present invention. Such cancers include follicular lymphoma, carcinomas with p53 mutations, hormone-dependent tumors of the breast, prostate, and ovary, and precancerous lesions such as familial adenomatous and myelodysplastic syndromes, etc. It is not limited to these. In certain embodiments, a malignant or dysproliferative change (such as metaplasia and dysplasia) or hyperproliferative disorder in the ovary, bladder, breast, colon, lung, skin, pancreas, or uterus is present. Treated or prevented by the methods and compositions. In other specific embodiments, sarcoma, melanoma, or leukemia is treated or prevented by the methods and compositions of the invention.

癌細胞は、様々な機序を通じてではあるが、自身の発達中に機能特性を身につける。そのような機能としては、アポトーシスの回避、増殖信号の自足、抗増殖信号に対する無感覚、組織浸潤/転移、無限説明的潜在性、および持続的血管形成が挙げられる。「癌細胞」という用語は、前癌性細胞および悪性癌細胞の両方を包含することを意味している。いくつかの実施形態では、癌は、限局性を保った良性腫瘍を指す。他の実施形態において、癌は、周辺の身体構造に侵入および破壊し、その後遠位部位に拡大する悪性腫瘍を指す。さらに他の実施形態において、癌は、特定の癌抗原(たとえば、汎癌抗原(KS1/4)、卵巣癌抗原(CA125)、前立腺特異抗原(PSA)、癌胎児性抗原(CEA)、CD19、CD20、HER2/neu、など)に関連する。   Cancer cells acquire functional properties during their development, though through various mechanisms. Such functions include avoidance of apoptosis, self-sustaining of proliferative signals, insensitivity to anti-proliferative signals, tissue invasion / metastasis, infinite explanatory potential, and sustained angiogenesis. The term “cancer cell” is meant to include both precancerous and malignant cancer cells. In some embodiments, cancer refers to a benign tumor that remains localized. In other embodiments, cancer refers to a malignant tumor that invades and destroys surrounding body structures and then spreads to a distal site. In still other embodiments, the cancer is a specific cancer antigen (eg, pan-cancer antigen (KS1 / 4), ovarian cancer antigen (CA125), prostate specific antigen (PSA), carcinoembryonic antigen (CEA), CD19, CD20, HER2 / neu, etc.).

本発明の抗体および抗体フラグメントは、異常に高レベルなPD−1を発現する細胞(たとえば、消耗したT細胞、B細胞、単球、など)に関連する癌の処置に特に有用である(Youngblood, B. (2011) "Chronic Virus Infection Enforces Demethylation Of The Locus That Encodes PD-1 In Antigen-Specific CD8(+) T Cells," Immunity 35(3):400-412; Spahn, J. et al. (2011) "Ineffective CD8(+) T-Cell Immunity To Adeno-Associated Virus Can Result In Prolonged Liver Injury And Fibrogenesis," Amer. J. Pathol. 179(5):2370-2381; Wang, C. et al. (2011) "Phenotype, Effector Function, And Tissue Localization Of PD-1-Expressing Human Follicular Helper T Cell Subsets," BMC Immunol. 12:53, 1-15; Eichbaum, Q. (2011) "PD-1 Signaling In HIV And Chronic Viral Infection Potential For Therapeutic Intervention?" Curr. Med. Chem. 18(26):3971-3980; Hallett, W.H. et al. (2011) "Immunosuppressive Effects Of Multiple Myeloma Are Overcome By PD-L1 Blockade," Biol Blood Marrow Transplant. 17(8):1133-1145; Ni, L. et al. (2010) "PD-1 Modulates Regulatory T Cells And Suppresses T-Cell Responses In HCV-Associated Lymphoma," Immunol. Cell. Biol. 89(4):535-539; Inozume, T. et al. (2010) "Selection Of CD8+PD-1+ Lymphocytes In Fresh Human Melanomas Enriches For Tumor-Reactive T Cells," J. Immunother. 33(9):956-964; and Jin, H.T. et al. (2010) "Cooperation Of Tim-3 And PD-1 In CD8 T-Cell Exhaustion During Chronic Viral Infection," Proc. Natl. Acad. Sci. (USA) 107(33):14733-14738)。   The antibodies and antibody fragments of the present invention are particularly useful for the treatment of cancers associated with cells that express abnormally high levels of PD-1 (eg, exhausted T cells, B cells, monocytes, etc.) (Youngblood , B. (2011) "Chronic Virus Infection Enforces Demethylation Of The Locus That Encodes PD-1 In Antigen-Specific CD8 (+) T Cells," Immunity 35 (3): 400-412; Spahn, J. et al. 2011) "Ineffective CD8 (+) T-Cell Immunity To Adeno-Associated Virus Can Result In Prolonged Liver Injury And Fibrogenesis," Amer. J. Pathol. 179 (5): 2370-2381; Wang, C. et al. ( 2011) "Phenotype, Effector Function, And Tissue Localization Of PD-1-Expressing Human Follicular Helper T Cell Subsets," BMC Immunol. 12:53, 1-15; Eichbaum, Q. (2011) "PD-1 Signaling In HIV And Chronic Viral Infection Potential For Therapeutic Intervention? "Curr. Med. Chem. 18 (26): 3971-3980; Hallett, WH et al. (2011)" Immunosuppressive Effects Of Multiple Myeloma Are Overcome By PD-L1 Blockade, "Bi ol Blood Marrow Transplant. 17 (8): 1133-1145; Ni, L. et al. (2010) "PD-1 Modulates Regulatory T Cells And Suppresses T-Cell Responses In HCV-Associated Lymphoma," Immunol. Cell. Biol 89 (4): 535-539; Inozume, T. et al. (2010) "Selection Of CD8 + PD-1 + Lymphocytes In Fresh Human Melanomas Enriches For Tumor-Reactive T Cells," J. Immunother. 33 (9 ): 956-964; and Jin, HT et al. (2010) "Cooperation Of Tim-3 And PD-1 In CD8 T-Cell Exhaustion During Chronic Viral Infection," Proc. Natl. Acad. Sci. (USA) 107 (33): 14733-14738).

上述した腫瘍に対する使用と同様に、本発明の抗体および抗原結合フラグメントは、単独で、またはアジュバントとして、ワクチンまたは抗菌剤(antimibrobial agents)と組み合わせて、毒素または自己抗原に対する、または病原体(たとえば、HIV、HTLV、肝炎ウイルス、インフルエンザウイルス、呼吸器合胞体ウイルス、ワクシニアウイルス、狂犬病ウイルスなどのウイルス;マイコバクテリア、ブドウ球菌、連鎖球菌、肺炎球菌(Pneumonococci)、髄膜炎菌、コノコッカス、莢膜杆菌、プロテウス、セラチア、シュードモナス、レジオネラ、コリネバクテリア、サルモネラ、ビブリオ、クロストリジウム、バチルス、パスツレラ、レプトスピラ、ボルデテラ、および、特に、コレラ、破傷風、ボツリヌス中毒症、炭疽病、ペスト、およびライム病に関連するそれらの病原体などの細菌;またはカンジダ(アルビカンス、クルセイ、グラブラタ、トロピカリス、など)などの菌類病原体または寄生性病原体、クリプトコックス、アスペルギルス(フミガーツス(jumigatus)、ニガー、など)、ムーコル目(ケカビ、アブシジア、クモノスカビ(rhizophus)、スポロトリクス(シェンキー)、ブラストミセス(デルマチチジス)、パラコクシジオイデス(ブラジリエンシス)、コクシジオイデス(イミチス)およびヒストプラスマ(カプスラツーム)、エントアメーバ、ヒストリティカ、大腸バランチジウム、ネグレリアフォーレリ、アカントアメーバ種、ランブル鞭毛虫(Giardia lambia)、クリプトスポリジウム種、ニューモシスチス−カリニ、三日熱マラリア原虫、バベシア−ミクロチ、トリパノソーマ−ブルセイ、クルーズトリパノソーマ、トキソプラズマ原虫(Toxoplasma gondi)、など)、スポロトリクス属、ブラストミセス属、パラコクシジオイデス属、コクシジオイデス属、ヒストプラスマ属、エントアメーバ属、ヒストリティカ属、バランチジウム属、ネグレリア属、アカントアメーバ属、ジアルジア属、クリプトスポリジウム属、ニューモシスチス属、プラズモディウム属、バベシア属、またはトリパノソーマ属、などに対する免疫反応を促進するために使用することができる。このように、本発明の抗体および抗原結合フラグメントは、感染症の処置における有用性を有する。   Similar to the use for tumors described above, the antibodies and antigen-binding fragments of the present invention, alone or in combination with vaccines or antimibrobial agents, either as adjuvants or against toxins or self-antigens, or pathogens (eg, HIV Viruses such as HTLV, hepatitis virus, influenza virus, respiratory syncytial virus, vaccinia virus, rabies virus; mycobacteria, staphylococci, streptococci, pneumococci, meningococcus, conococcus, capsular bacillus, Proteus, Serratia, Pseudomonas, Legionella, Corynebacterium, Salmonella, Vibrio, Clostridium, Bacillus, Pasteurella, Leptospira, Bordetella, and, in particular, cholera, tetanus, botulism, anthrax, plague, and Bacteria such as those pathogens associated with Im's disease; or fungal or parasitic pathogens such as Candida (albicans, crusei, glabrata, tropicalis, etc.), cryptocox, aspergillus (jumigatus, niger, etc.), Mucor (Polygonidae, Absidia, Rhizophus), Sporotrix (Shenky), Blast Myces (Delmatizidis), Paracoccidioides (Braziliensis), Coccidioides (Imichis) and Histoplasma (Capsatum), Entameba, Ranchika, Colon Negrelia forerelli, Acanthamoeba species, Giardia lambia, Cryptosporidium species, Pneumocystis-carini, Plasmodium falciparum, Babesia-microchi , Trypanosoma brucei, Trypanosoma cruzi, Toxoplasma gondi, etc.), Sporotrix, Blastmyces, Paracoccidioides, Coccidioides, Histoplasma, Entoameba, Historica, Barantidium, Negrelia It can be used to promote an immune response against Amoeba, Giardia, Cryptosporidium, Pneumocystis, Plasmodium, Babesia, or Trypanosoma, etc. Thus, the antibodies and antigen-binding fragments of the invention Have utility in the treatment of infectious diseases.

(2.免疫システムの下流修飾因子の使用)
別の実施形態において、本発明の抗B7−H1または抗PD−1抗体は、B7−H1またはPD−1の抗イディオタイプペプチドまたは抗体の生成に使用される(Wallmann, J. et al. (2010) "Anti-Ids in Allergy: Timeliness of a Classic Concept," World Allergy Organiz. J. 3(6):195-201; Nardi, M. et al. (2000) "Antiidiotype Antibody Against Platelet Anti-Gpiiia Contributes To The Regulation Of Thrombocytopenia In HIV-1-ITP Patients," J. Exp. Med. 191(12):2093-2100) or mimetics (Zang, Y.C. et al. (2003) "Human Anti-Idiotypic T Cells Induced By TCR Peptides Corresponding To A Common CDR3 Sequence Motif In Myelin Basic Protein-Reactive T Cells," Int. Immunol. 15(9):1073-1080; Loiarro, M. et al.(Epub 2010 Apr 8) "Targeting TLR/IL-1R Signalling In Human Diseases," Mediators Inflamm. 2010:674363)。そのような分子はB7−H1またはPD−1の代用物として機能し、したがって、それらを対象に投与すると、B7−H1−PD−1結合を擬態または促進し、それによってその対象の免疫システムを下流修飾する。そのような分子は、移植片対宿主病の処置における有用性を有する。同様に、i)そのような抗体とそのような受容体/リガンドとの結合を増強するまたはii)B7−H1またはPD−1と直接結合した時に情報伝達を引き起こすアゴニスト抗体は、B7−H1−PD−1間信号伝達のアゴニストとして有用性を有し、したがって、直接的または間接的に受容体活性を刺激することによって、炎症および自己免疫疾患の処置における有用性を有する。
(2. Use of downstream modifiers of the immune system)
In another embodiment, an anti-B7-H1 or anti-PD-1 antibody of the invention is used to generate an anti-idiotype peptide or antibody of B7-H1 or PD-1 (Wallmann, J. et al. ( 2010) "Anti-Ids in Allergy: Timeliness of a Classic Concept," World Allergy Organiz. J. 3 (6): 195-201; Nardi, M. et al. (2000) "Antiidiotype Antibody Against Platelet Anti-Gpiiia Contributes To The Regulation Of Thrombocytopenia In HIV-1-ITP Patients, "J. Exp. Med. 191 (12): 2093-2100) or mimetics (Zang, YC et al. (2003)" Human Anti-Idiotypic T Cells Induced By TCR Peptides Corresponding To A Common CDR3 Sequence Motif In Myelin Basic Protein-Reactive T Cells, "Int. Immunol. 15 (9): 1073-1080; Loiarro, M. et al. (Epub 2010 Apr 8)" Targeting TLR / IL -1R Signaling In Human Diseases, "Mediators Inflamm. 2010: 674363). Such molecules function as surrogates of B7-H1 or PD-1, and therefore, when they are administered to a subject, they mimic or promote B7-H1-PD-1 binding, thereby damaging the subject's immune system. Modify downstream. Such molecules have utility in the treatment of graft versus host disease. Similarly, agonist antibodies that i) enhance binding of such antibodies to such receptors / ligands or ii) signal transduction when directly bound to B7-H1 or PD-1 are B7-H1- It has utility as an agonist of inter-PD-1 signaling and thus has utility in the treatment of inflammation and autoimmune diseases by stimulating receptor activity directly or indirectly.

PD−1およびB7−H1の両方との免疫特異性結合を示す二重特異性抗体は、APCおよびT細胞の両方との結合が可能であり、したがって、APCおよびT細胞の共局在化を促進する。そのような共局在化は、抗体と錯体を形成しないB7−H1およびPD−1分子を介してまたは共抑制性分子によって、そのような細胞同士の結合能力を促進する。そのような結合は、受容者の免疫システムの下流修飾を提供する。   Bispecific antibodies that show immunospecific binding to both PD-1 and B7-H1 are capable of binding to both APC and T cells, thus co-localizing APC and T cells. Facilitate. Such co-localization promotes such cell-cell binding ability via B7-H1 and PD-1 molecules that do not complex with antibodies or by co-inhibitory molecules. Such binding provides downstream modification of the recipient's immune system.

免疫システムの下流修飾は、炎症性および自己免疫性疾患、および移植片対宿主病(GvHD)の処置において好ましい。本発明の抗体を投与することによって処置可能な自己免疫障害の例としては、円形脱毛症、強直性脊椎炎、抗リン脂質症候群、自己免疫アジソン病、副腎の自己免疫疾患、自己免疫溶血性貧血、自己免疫肝炎、自己免疫卵巣炎および***、自己免疫血小板減少症、ベーチェット病、水疱性類天疱瘡、心筋症、セリアック病‐皮膚炎、慢性疲労免疫機能不全症候群(CFIDS)、慢性炎症性脱髄性多発神経障害、チャウグ・シュトラウス症候群、瘢痕性類天疱瘡、CREST症候群、寒冷凝集素症、クローン病、円板状、本態性混合型クリオグロブリン血症、線維筋痛‐線維筋炎、糸球体腎炎、グレーブス病、ギラン・バレー、橋本甲状腺腫、特発性肺線維症、特発性血小板減少性紫斑病(ITP)、IgAニューロパシー、若年性関節炎、扁平苔癬、エリテマトーデス(lupus erthematosus)、メニエール病、混合結合組織病、多発性硬化症、視神経脊髄炎症候群(NMO)、1型または免疫介在性糖尿病、重症筋無力症、尋常性天疱瘡、悪性貧血、結節性多発動脈炎、多発性軟骨炎(polychrondritis)、多腺症候群、リウマチ性多発筋痛、多発性筋炎および皮膚筋炎、先天性無ガンマグロブリン血症、原発性胆汁性肝硬変、乾癬、乾癬性関節炎、レイノー現象(Raynauld’s phenomenon)、ライター症候群、関節リウマチ、サルコイドーシス、強皮症、シェーグレン症候群、スティフマン症候群、全身性エリテマトーデス、エリテマトーデス、高安動脈炎、側頭動脈炎(temporal arteristis)/巨細胞動脈炎、横断性脊髄炎、潰瘍性大腸炎、ぶどう膜炎、疱疹状皮膚炎脈管炎、白斑、およびウェゲナー肉芽腫症などの脈管炎が挙げられるが、これらに限定されない。   Downstream modification of the immune system is preferred in the treatment of inflammatory and autoimmune diseases, and graft-versus-host disease (GvHD). Examples of autoimmune disorders that can be treated by administering the antibody of the present invention include alopecia areata, ankylosing spondylitis, antiphospholipid syndrome, autoimmune Addison's disease, autoimmune diseases of the adrenal gland, autoimmune hemolytic anemia , Autoimmune hepatitis, autoimmune ovitis and testicularitis, autoimmune thrombocytopenia, Behcet's disease, bullous pemphigoid, cardiomyopathy, celiac disease-dermatitis, chronic fatigue immune dysfunction syndrome (CFIDS), chronic inflammatory Demyelinating polyneuropathy, Chaugu Strauss syndrome, scarring pemphigus, CREST syndrome, cold agglutinin disease, Crohn's disease, discoid, essential mixed cryoglobulinemia, fibromyalgia-fibromyositis, thread Globe nephritis, Graves' disease, Guillain Valley, Hashimoto's goiter, idiopathic pulmonary fibrosis, idiopathic thrombocytopenic purpura (ITP), IgA neuropathy, juvenile arthritis Lichen planus, lupus erthematosus, meniere disease, mixed connective tissue disease, multiple sclerosis, neuromyelitis nephritis syndrome (NMO), type 1 or immune-mediated diabetes, myasthenia gravis, pemphigus vulgaris, malignant Anemia, polyarteritis nodosa, polychrondritis, polyadrenal syndrome, polymyalgia rheumatica, polymyositis and dermatomyositis, congenital agammaglobulinemia, primary biliary cirrhosis, psoriasis, psoriasis Osteoarthritis, Raynauld's phenomenon, Reiter syndrome, rheumatoid arthritis, sarcoidosis, scleroderma, Sjogren's syndrome, stiff man syndrome, systemic lupus erythematosus, lupus erythematosus, Takayasu arteritis, temporal arteristis / giant cell artery Inflammation, transverse myelitis, ulcerative colitis, uveitis, herpes zoster vasculitis, vitiligo, and wegena Vasculitides such as granulomatous diseases including but not limited to.

本発明の方法によって防止、処置、または管理し得る炎症性障害の例としては、喘息、脳炎(encephilitis)、炎症性腸疾患、慢性閉塞性肺疾患(COPD)、アレルギー性疾患、敗血症性ショック、肺線維症、未分化脊椎関節症、未分化関節症、関節炎、炎症性骨溶解、および慢性ウイルス性感染症または慢性細菌性感染症に起因する慢性炎症が挙げられるが、これらに限定されない。   Examples of inflammatory disorders that can be prevented, treated or managed by the methods of the present invention include asthma, encephilitis, inflammatory bowel disease, chronic obstructive pulmonary disease (COPD), allergic disease, septic shock, Examples include, but are not limited to, pulmonary fibrosis, anaplastic spondyloarthritis, anaplastic arthropathy, arthritis, inflammatory osteolysis, and chronic inflammation resulting from chronic viral infections or chronic bacterial infections.

このように、本発明の抗体および抗原結合フラグメントは、炎症性および自己免疫疾患の処置において有用性を有する。   Thus, the antibodies and antigen-binding fragments of the present invention have utility in the treatment of inflammatory and autoimmune diseases.

(C.投与方法)
様々な送達システムが周知であり、本発明の治療的または予防的組成物の投与に使用可能である。たとえば、リポソームによるカプセル封入、微粒子、マイクロカプセル、抗体または融合プロテインを発現可能な組み換え細胞、受容体媒介エンドサイトーシス(たとえば、Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432参照)、レトロウイルス性媒介動物または他の媒介動物の一部としての核酸の構築などが挙げられる。
(C. Administration method)
Various delivery systems are well known and can be used to administer the therapeutic or prophylactic compositions of the invention. For example, encapsulation with liposomes, microparticles, microcapsules, recombinant cells capable of expressing antibodies or fusion proteins, receptor-mediated endocytosis (see, eg, Wu and Wu, 1987, J. Biol. Chem. 262: 4429-4432 ), Construction of nucleic acids as part of retroviral vectors or other vectors.

本発明のヒト化抗体の投与方法としては、非経口的投与としての(たとえば、皮内、筋肉内、腹腔内、静脈内、および皮下)注射、硬膜外投与、および粘膜投与(たとえば、鼻腔内および経口経路)が挙げられるが、これらに限定されない。特定の実施形態では、本発明の抗体は、筋肉内、静脈内、または皮下に投与される。組成物は、任意の都合の良い経路によって投与すればよく、たとえば、注入または静脈内ボーラスによって、上皮内層または皮膚粘膜層(たとえば、口腔粘膜、直腸粘膜、および腸粘膜、など)を通じた吸収によって投与することができる。また、他の生物学的に活性な物質と共に投与してもよい。投与は、全身性でも局所性でもよい。さらに、たとえば、吸入器または噴霧器、およびエアロゾル化剤を用いた製剤による肺内投与でもよい。たとえば U.S. Patent Nos. 6,019,968; 5,985, 20; 5,985,309; 5,934,272; 5,874,064; 5,855,913; 5,290,540; および4,880,078; およびPCT Publication Nos. WO 92/19244; WO 97/32572; WO 97/44013; WO 98/31346; およびWO 99/66903参照。特定の実施形態では、本発明の医薬組成物を処置が必要な部位に局所的に投与することが好ましい;たとえば、この投与は、注射または移植手段による局所注入によって行うことができるが、これに限定されない。当該移植とは、シラスティック(sialastic)膜などの膜もしくは繊維などの多孔性物質、非多孔性物質、またはゲル状物質の移植である。好ましくは、本発明の抗体が投与される場合、抗体または融合プロテインが吸収されていない物質の使用には、注意しなければならない。   Methods for administering the humanized antibodies of the invention include parenteral administration (eg, intradermal, intramuscular, intraperitoneal, intravenous, and subcutaneous) injection, epidural administration, and mucosal administration (eg, nasal cavity). Internal and oral routes), but are not limited to these. In certain embodiments, the antibodies of the invention are administered intramuscularly, intravenously, or subcutaneously. The composition may be administered by any convenient route, for example, by infusion or intravenous bolus, by absorption through the epithelial lining or dermal mucosal layer (eg, oral mucosa, rectal mucosa, and intestinal mucosa, etc.) Can be administered. It may also be administered with other biologically active substances. Administration can be systemic or local. Further, for example, pulmonary administration by a preparation using an inhaler or a nebulizer and an aerosolizing agent may be used. US Patent Nos. 6,019,968; 5,985, 20; 5,985,309; 5,934,272; 5,874,064; 5,855,913; 5,290,540; and 4,880,078; and PCT Publication Nos.WO 92/19244; See WO 99/66903. In certain embodiments, it is preferred to administer the pharmaceutical composition of the invention locally to the site in need of treatment; for example, this administration can be by injection or local infusion by means of implantation, It is not limited. The transplant is a transplant of a porous material such as a membrane such as a sialastic membrane or a fiber, a non-porous material, or a gel material. Preferably, when the antibody of the present invention is administered, care must be taken in the use of substances in which the antibody or fusion protein is not absorbed.

いくつかの実施形態では、本発明のヒト化またはキメラ抗体は、本発明の抗体の標的化送達用のリポソームに調剤される。リポソームは、水相をカプセル化する、同心円状に配置されたリン脂質(phopsholipid)二重層からなる小胞である。通常は、リポソームは様々な種類の脂質、リン脂質、および/または界面活性剤を含む。生物学的な膜の脂質配列と同様に、リポソームの成分は二層構造で配置される。その生体適合性、低免疫原性、および低毒性が一因で、リポソームは特に好ましい送達媒体である。リポソームの作製方法は当該技術分野において周知であり、本発明に包含される。たとえば、Epstein et al., 1985, Proc. Natl. Acad. Sci. USA, 82: 3688; Hwang et al., 1980 Proc. Natl. Acad. Sci. USA, 77: 4030-4; U.S. Patent Nos. 4,485,045および4,544,545参照。   In some embodiments, the humanized or chimeric antibodies of the invention are formulated into liposomes for targeted delivery of the antibodies of the invention. Liposomes are vesicles composed of concentrically arranged phopsholipid bilayers that encapsulate the aqueous phase. Usually, liposomes contain various types of lipids, phospholipids, and / or surfactants. Similar to biological membrane lipid arrays, the components of liposomes are arranged in a bilayer structure. Liposomes are a particularly preferred delivery vehicle due in part to their biocompatibility, low immunogenicity, and low toxicity. Methods for preparing liposomes are well known in the art and are encompassed by the present invention. For example, Epstein et al., 1985, Proc. Natl. Acad. Sci. USA, 82: 3688; Hwang et al., 1980 Proc. Natl. Acad. Sci. USA, 77: 4030-4; US Patent Nos. 4,485,045 And 4,544,545.

本発明は、延長された血中半減期、すなわち、U.S. Patent No. 5,013,556に開示されたような延長された循環時間によるリポソームの作製方法も包含する。本発明の方法において使用される好ましいリポソームは、循環から速やかに除去されない、すなわち、単核食細胞系(MPS)に取り込まれない。本発明は、当業者に周知の一般的な方法を用いて作製した立体的に安定化されたリポソームを包含する。特定の作用機序に制約されないが、立体的に安定化されたリポソームは、リポソームと血清タンパク質との不要な反応を低減し、血清成分のオプソニン作用(oposonization)を低減し、MPSによる認識を低減する、高度に柔軟で大きな親水性部分を有する脂質成分を含む。立体的に安定化されたリポソームは、ポリエチレングリコールを用いて作製することが好ましい。リポソームおよび立体的に安定化されたリポソームの作製については、たとえば、Bendas et al., 2001 BioDrugs, 15(4): 215-224; Allen et al., 1987 FEBS Lett. 223: 42-6; Klibanov et al., 1990 FEBS Lett., 268: 235-7; Blum et al., 1990, Biochim. Biophys. Acta., 1029: 91-7; Torchilin et al., 1996, J. Liposome Res. 6: 99-116; Litzinger et al., 1994, Biochim. Biophys. Acta, 1190: 99-107; Maruyama et al., 1991, Chem. Pharm. Bull., 39: 1620-2; Klibanov et al., 1991, Biochim Biophys Acta, 1062; 142-8; Allen et al., 1994, Adv. Drug Deliv. Rev, 13: 285-309参照。本発明は、特定の器官の標的化に適合するリポソーム(たとえば、U.S. Patent No. 4,544,545参照)、または特定の細胞の標的化に適合するリポソームも包含する(たとえば、U.S. Patent Application Publication No. 2005/0074403参照)。本発明の組成物および方法に使用するのに特に有用なリポソームは、ホスファチジルコリン、コレステロール、およびPEG誘導体化ホスファチジルエタノールアミン(PEG−PE)を含む脂質組成物を用いた逆相蒸発法によって生成することができる。規定の孔径のフィルターを通してリポソームを押し出すことによって、所望の直径のリポソームが生成される。いくつかの実施形態では、本発明の抗体のフラグメント(たとえばF(ab’))は、上述した方法を用いてリポソームと接合することができる(Martin et al., 1982, J. Biol. Chem. 257: 286-288参照)。   The invention also encompasses a method of making liposomes with an extended blood half-life, ie, an extended circulation time as disclosed in U.S. Patent No. 5,013,556. Preferred liposomes used in the methods of the present invention are not rapidly removed from circulation, i.e., not taken up into a mononuclear phagocyte system (MPS). The present invention encompasses sterically stabilized liposomes made using general methods well known to those skilled in the art. Although not constrained by a specific mechanism of action, sterically stabilized liposomes reduce unwanted reactions between liposomes and serum proteins, reduce the opsonization of serum components, and reduce recognition by MPS. A lipid component having a highly flexible and large hydrophilic portion. The sterically stabilized liposome is preferably prepared using polyethylene glycol. For the production of liposomes and sterically stabilized liposomes, see, for example, Bendas et al., 2001 BioDrugs, 15 (4): 215-224; Allen et al., 1987 FEBS Lett. 223: 42-6; Klibanov et al., 1990 FEBS Lett., 268: 235-7; Blum et al., 1990, Biochim. Biophys. Acta., 1029: 91-7; Torchilin et al., 1996, J. Liposome Res. 6: 99 -116; Litzinger et al., 1994, Biochim. Biophys. Acta, 1190: 99-107; Maruyama et al., 1991, Chem. Pharm. Bull., 39: 1620-2; Klibanov et al., 1991, Biochim See Biophys Acta, 1062; 142-8; Allen et al., 1994, Adv. Drug Deliv. Rev, 13: 285-309. The invention also encompasses liposomes that are compatible with targeting specific organs (see, eg, US Patent No. 4,544,545), or liposomes that are compatible with targeting of specific cells (eg, US Patent Application Publication No. 2005 / 0074403). Liposomes particularly useful for use in the compositions and methods of the present invention are generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Can do. Extruding the liposomes through a filter with a defined pore size produces liposomes of the desired diameter. In some embodiments, fragments of the antibodies of the invention (eg, F (ab ′)) can be conjugated to liposomes using the methods described above (Martin et al., 1982, J. Biol. Chem. 257: 286-288).

本発明のヒト化抗体またはキメラ抗体はまた、免疫リポゾームとして製剤化されてもよい。免疫リポゾームは、本発明の抗体またはそのフラグメントがリポソームの表面に共有結合または非共有結合しているリポソーム組成物を指す。抗体をリポソームの表面に結合させる化学的性質は当該技術分野において公知であり、本発明に含まれる(たとえば、米国特許第6,787,153号;Allen et al., 1995, Stealth Liposomes, Boca Rotan: CRC Press, 233-44;Hansen et al., 1995, Biochim. Biophys. Acta, 1239: 133-144参照)。最も好適な実施形態では、本発明の方法および組成物に使用される免疫リポゾームはさらに、立体的に安定化されている。好ましくは、本発明のヒト化抗体は、リポゾームの脂質二重層に安定して定着している疎水性アンカーと共有結合または非共有結合している。疎水性アンカーの例は、リン脂質(たとえば、ホスファチジルエタノールアミン(PE)、ホスファチジルイノシトール(PI))を含むが、これに限定されない。抗体と疎水性アンカーとの間に共有結合を実現するために、当該技術分野に公知の任意の生化学的方法を使用してもよい(たとえば、J. Thomas August, ed., 1997, Gene Therapy: Advances in Pharmacology, Volume 40, Academic Press, San Diego, CA, p. 399-435参照)。たとえば、抗体分子の官能基は、リポゾームに関連の疎水性アンカーの活性基と反応してもよい。たとえば、抗体のリジン側鎖のアミノ基は、水溶性カルボジイミドで活性化された、リポゾームに関連のN−グルタリル−ホスファチジルエタノールアミンと結合されてもよい。または、還元抗体のチオール基は、ピリジルチオプロピオニルホスファチジルエタノールアミンなどのチオール反応アンカーを介してリポゾームに結合されることが可能である。たとえば、Dietrich et al., 1996, Biochemistry, 35: 1100-1105; Loughrey et al., 1987, Biochim. Biophys. Acta, 901: 157-160; Martin et al., 1982, J. Biol. Chem. 257: 286-288; Martin et al., 1981, Biochemistry, 20: 4429-38参照。特定の作用機序によって結合されることを意図するものではないが、本発明の抗体を含む免疫リポゾーム製剤は、標的細胞(すなわち、本発明の抗体が結合する受容体を有する細胞)の細胞質に本発明の抗体を送達することから、治療剤として特に効果的である。上記免疫リポゾームは、好ましくは血中(特に標的細胞中)の半減期が増大しており、標的細胞の細胞質内へ取り込まれることによって、治療剤の損失またはリソソーム内経路での分解を回避することが可能である。   The humanized antibody or chimeric antibody of the present invention may also be formulated as an immunoliposome. An immunoliposome refers to a liposome composition in which the antibody of the present invention or a fragment thereof is covalently or non-covalently bound to the surface of the liposome. The chemical nature of attaching antibodies to the surface of liposomes is known in the art and is encompassed by the present invention (eg, US Pat. No. 6,787,153; Allen et al., 1995, Stealth Liposomes, Boca Rotan). : CRC Press, 233-44; see Hansen et al., 1995, Biochim. Biophys. Acta, 1239: 133-144). In the most preferred embodiment, the immunoliposomes used in the methods and compositions of the present invention are further sterically stabilized. Preferably, the humanized antibody of the invention is covalently or non-covalently bound to a hydrophobic anchor that is stably anchored to the lipid bilayer of the liposome. Examples of hydrophobic anchors include, but are not limited to, phospholipids (eg, phosphatidylethanolamine (PE), phosphatidylinositol (PI)). Any biochemical method known in the art may be used to achieve a covalent bond between the antibody and the hydrophobic anchor (eg, J. Thomas August, ed., 1997, Gene Therapy : Advances in Pharmacology, Volume 40, Academic Press, San Diego, CA, p. 399-435). For example, a functional group of an antibody molecule may react with an active group of a hydrophobic anchor associated with liposomes. For example, the amino group of the lysine side chain of an antibody may be coupled with liposome-associated N-glutaryl-phosphatidylethanolamine activated with water-soluble carbodiimide. Alternatively, the thiol group of the reduced antibody can be bound to the liposome via a thiol reaction anchor such as pyridylthiopropionyl phosphatidylethanolamine. For example, Dietrich et al., 1996, Biochemistry, 35: 1100-1105; Loughrey et al., 1987, Biochim. Biophys. Acta, 901: 157-160; Martin et al., 1982, J. Biol. Chem. 257 : 286-288; see Martin et al., 1981, Biochemistry, 20: 4429-38. Although not intended to be bound by a specific mechanism of action, an immunoliposome formulation comprising an antibody of the present invention is directed to the cytoplasm of a target cell (ie, a cell having a receptor to which the antibody of the present invention binds). Since the antibody of the present invention is delivered, it is particularly effective as a therapeutic agent. The immunoliposome preferably has an increased half-life in the blood (especially in the target cell) and is taken into the cytoplasm of the target cell to avoid loss of therapeutic agent or degradation in the lysosomal pathway Is possible.

本発明の免疫リポゾーム組成物は、小胞を形成する1つ以上の脂質と、本発明の抗体またはそのフラグメントまたは変異体と、適宜、親水性ポリマーとを含む。小胞を形成する脂質は、好ましくは、2つの炭化水素鎖(アシル鎖など)と極性頭部基とを有する脂質である。小胞を形成する脂質の例は、リン脂質(たとえば、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジン酸、ホスファチジルイノシトール、スフィンゴミエリン)および糖脂質(たとえば、セレブロシド、ガングリオシド)を含む。発明の製剤に有用なさらなる脂質は当業者に公知であり、本発明に含まれる。一部の実施形態では、免疫リポゾーム組成物は、親水性ポリマー(たとえば、ポリエチレングリコール)と、リポソームの血中半減期を増大させるガングリオシドGM1とをさらに含む。親水性ポリマーをリポソームに結合する方法は当該技術分野に周知であり、本発明に含まれる。免疫リポゾームおよびその調製方法については、たとえば、米国特許出願公開第2003/0044407号;PCT国際公開第WO97/38731号;Vingerhoeads et al., 1994, Immunomethods, 4: 259-72;Maruyama, 2000, Biol. Pharm. Bull. 23(7): 791-799;Abra et al., 2002, Journal of Liposome Research, 12(1&2): 1-3;Park, 2002, Bioscience Reports, 22(2): 267-281;Bendas et al., 2001 BioDrugs, 14(4): 215-224、J. Thomas August, ed., 1997, Gene Therapy: Advances in Pharmacology, Volume 40, Academic Press, San Diego, CA, p. 399-435を参照。   The immunoliposome composition of the present invention comprises one or more lipids forming vesicles, the antibody of the present invention or a fragment or variant thereof, and optionally a hydrophilic polymer. The lipid forming the vesicle is preferably a lipid having two hydrocarbon chains (such as an acyl chain) and a polar head group. Examples of lipids that form vesicles include phospholipids (eg, phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylinositol, sphingomyelin) and glycolipids (eg, cerebroside, ganglioside). Additional lipids useful in the inventive formulations are known to those skilled in the art and are included in the present invention. In some embodiments, the immunoliposome composition further comprises a hydrophilic polymer (eg, polyethylene glycol) and a ganglioside GM1 that increases the blood half-life of the liposome. Methods for attaching hydrophilic polymers to liposomes are well known in the art and are included in the present invention. For example, US Patent Application Publication No. 2003/0044407; PCT International Publication No. WO 97/38731; Vingerhoeads et al., 1994, Immunomethods, 4: 259-72; Maruyama, 2000, Biol. Pharm. Bull. 23 (7): 791-799; Abra et al., 2002, Journal of Liposome Research, 12 (1 & 2): 1-3; Park, 2002, Bioscience Reports, 22 (2): 267-281 Bendas et al., 2001 BioDrugs, 14 (4): 215-224, J. Thomas August, ed., 1997, Gene Therapy: Advances in Pharmacology, Volume 40, Academic Press, San Diego, CA, p. 399- See 435.

本発明はまた、本発明のヒト化抗体またはキメラ抗体が、抗体量を記した密封容器(アンプルまたはサシェットなど)内に詰め込まれていることを規定している。一実施形態では、本発明の抗体は、密封容器内に含まれる、乾燥滅菌が行われた凍結乾燥紛体または無水濃縮物として供給される。本発明の抗体は、たとえば水または生理食塩水を加えて対象への投与に適した濃度としてもどすことが可能である。好ましくは、本発明の抗体は、密封容器に含まれる、乾燥滅菌が行われた凍結乾燥紛体として、少なくとも5mg、より好ましくは、少なくとも10mg、少なくとも15mg、少なくとも25mg、少なくとも35mg、少なくとも45mg、少なくとも50mg、または少なくとも75mgの単位投与量で供給される。発明の凍結乾燥抗体は、当初含まれていた容器内に2℃〜8℃で保存されるべきである。また、上記抗体は、乾燥状態からもどされてから12時間以内、好ましくは6時間以内、5時間以内、3時間以内、または1時間以内に投与されるべきである。代替の実施形態では、本発明の抗体は、抗体、融合タンパク質、または共役分子の量および濃度を記した密封容器に含まれる液体の形態で供給される。好ましくは、上記抗体の液状形態は、抗体含有量を少なくとも1mg/ml、より好ましくは、少なくとも2.5mg/ml、少なくとも5mg/ml、少なくとも8mg/ml、少なくとも10mg/ml、少なくとも15mg/ml、少なくとも25mg/ml、少なくとも50mg/ml、少なくとも100mg/ml、少なくとも150mg/ml、少なくとも200mg/mlにして、密封容器内に供給される。   The present invention also stipulates that the humanized antibody or chimeric antibody of the present invention is packed in a sealed container (such as an ampoule or sachet) indicating the amount of antibody. In one embodiment, the antibody of the invention is supplied as a lyophilized powder or anhydrous concentrate that has been sterilized and contained within a sealed container. The antibody of the present invention can be returned to a concentration suitable for administration to a subject by adding water or physiological saline, for example. Preferably, the antibody of the present invention is at least 5 mg, more preferably at least 10 mg, at least 15 mg, at least 25 mg, at least 35 mg, at least 45 mg, at least 50 mg as a lyophilized powder that has been dry sterilized, contained in a sealed container. Or at a unit dose of at least 75 mg. The lyophilized antibody of the invention should be stored at 2-8 ° C. in the originally included container. In addition, the antibody should be administered within 12 hours, preferably within 6 hours, within 5 hours, within 3 hours, or within 1 hour of returning from the dry state. In an alternative embodiment, the antibodies of the invention are supplied in the form of a liquid contained in a sealed container describing the amount and concentration of the antibody, fusion protein, or conjugated molecule. Preferably, the liquid form of the antibody has an antibody content of at least 1 mg / ml, more preferably at least 2.5 mg / ml, at least 5 mg / ml, at least 8 mg / ml, at least 10 mg / ml, at least 15 mg / ml, At least 25 mg / ml, at least 50 mg / ml, at least 100 mg / ml, at least 150 mg / ml, at least 200 mg / ml are supplied in a sealed container.

上記製剤に採用する正確な投与量はまた、投与経路および病態の重症度に依存することになるので、施術者の判断および各患者の状況に応じて決定されるべきである。有効量は、インビトロ試験系または動物モデル試験系から導かれる投与量−反応曲線より推定されてもよい。本発明に含まれる抗体に関しては、患者への投与量は、通常は患者の体重に対して0.01mg/kg〜100mg/kgの範囲の比とする。好ましくは、患者への投与量は、患者の体重に対して0.01mg/kg〜20mg/kgの範囲、0.01mg/kg〜10mg/kgの範囲、0.01mg/kg〜5mg/kgの範囲、0.01mg/kg〜2mg/kgの範囲、0.01mg/kg〜1mg/kgの範囲、0.01mg/kg〜0.75mg/kgの範囲、0.01mg/kg〜0.5mg/kgの範囲、0.01mg/kg〜0.25mg/kgの範囲、0.01mg/kg〜0.15mg/kgの範囲、0.01mg/kg〜0.10mg/kgの範囲、0.01mg/kg〜0.05mg/kgの範囲、または0.01mg/kg〜0.025mg/kgの範囲の比である。具体的には、本発明では、患者への投与量を0.2mg/kg、0.3mg/kg、1mg/kg、3mg/kg、6mg/kg、または10mg/kgの比とする場合を意図している。0.01mg/kg程度の少量の投与量は、かなりの薬力学的効果を示すであろうことが予想される。0.10mg/kg〜1mg/kgの範囲の投与量レベルが最も適当であると予想される。より多量の投与量(たとえば、1mg/kg〜30mg/kg)についても、活性となることが期待されるであろう。一般的に、ヒト抗体のヒト体内における半減期は、異質ポリペプチドに対するヒト体内の免疫反応によって、ヒト以外の種から得られる抗体と比較して長くなる。したがって、ヒト抗体の投与量をより少量にするとともに、その投与頻度をより少なくすることが多くの場合可能である。さらに、本発明の抗体またはそのフラグメントの投与量および投与頻度は、改変(たとえば脂質化)によって本発明の抗体の摂取および組織透過性を向上させることによって減少させてもよい。   The exact dosage employed in the formulation will also depend on the route of administration and the severity of the condition and should be determined according to the practitioner's judgment and the circumstances of each patient. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. With respect to the antibody included in the present invention, the dose to the patient is usually a ratio in the range of 0.01 mg / kg to 100 mg / kg relative to the patient's body weight. Preferably, the dose to the patient ranges from 0.01 mg / kg to 20 mg / kg, from 0.01 mg / kg to 10 mg / kg, from 0.01 mg / kg to 5 mg / kg relative to the patient's body weight. Range, 0.01 mg / kg to 2 mg / kg, 0.01 mg / kg to 1 mg / kg, 0.01 mg / kg to 0.75 mg / kg, 0.01 mg / kg to 0.5 mg / kg kg, 0.01 mg / kg to 0.25 mg / kg, 0.01 mg / kg to 0.15 mg / kg, 0.01 mg / kg to 0.10 mg / kg, 0.01 mg / kg A ratio in the range of kg to 0.05 mg / kg, or in the range of 0.01 mg / kg to 0.025 mg / kg. Specifically, in the present invention, it is intended that the dose to the patient is a ratio of 0.2 mg / kg, 0.3 mg / kg, 1 mg / kg, 3 mg / kg, 6 mg / kg, or 10 mg / kg. doing. It is expected that doses as small as 0.01 mg / kg will show significant pharmacodynamic effects. A dosage level in the range of 0.10 mg / kg to 1 mg / kg is expected to be most appropriate. Larger doses (eg, 1 mg / kg to 30 mg / kg) would be expected to be active. In general, the half-life of human antibodies in the human body is longer than antibodies obtained from species other than humans due to immune responses in the human body against foreign polypeptides. Therefore, it is often possible to reduce the dose of human antibodies and reduce the frequency of administration. Furthermore, the dosage and frequency of administration of the antibodies of the invention or fragments thereof may be reduced by improving the uptake and tissue permeability of the antibodies of the invention by modification (eg, lipidation).

さらに他の実施形態では、上記組成物を制御放出系または持続放出系内で送達することが可能である。当業者に周知の任意の技術を使用して、本発明の抗体を1つ以上含む持続放出性製剤を作製することが可能である。たとえば、米国特許第4,526,938号;PCT国際公開第WO91/05548号;PCT国際公開第WO96/20698号;Ning et al., 1996, "Intratumoral Radioimmunotheraphy of a Human Colon Cancer Xenograft Using a Sustained Release Gel," Radiotherapy & Oncology 39:179 189;Song et al., 1995, "Antibody Mediated Lung Targeting of Long Circulating Emulsions," PDA Journal of Pharmaceutical Science & Technology 50:372 397;Cleek et al., 1997, "Biodegradable Polymeric Carriers for a bFGF Antibody for Cardiovascular Application," Pro. Int'l. Symp. Control. Rel. Bioact. Mater. 24:853 854;およびLam et al., 1997, "Microencapsulation of Recombinant Humanized Monoclonal Antibody for Local Delivery," Proc. Int'l. Symp. Control Rel. Bioact. Mater. 24:759 760を参照。一実施形態では、制御放出系においてポンプを使用してもよい(Langer, supra; Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:20; Buchwald et al., 1980, Surgery 88:507; and Saudek et al., 1989, N. Engl. J. Med. 321:574参照)。他の実施形態では、ポリマー材料を用いて抗体の制御放出を実現することができる(たとえば、Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, J., Macromol. Sci. Rev. Macromol. Chem. 23:61; See also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 7 1:105); 米国特許第5,679,377号;米国特許第5,916,597号;米国特許第5,912,015号;米国特許第5,989,463号;米国特許第5,128,326号;PCT国際公開第WO99/15154号;およびPCT国際公開第WO99/20253参照)。持続放出性製剤に用いられるポリマーの例は、ポリ(2−ヒドロキシエチルメタクリレート)、ポリ(メチルメタクリレート)、ポリ(アクリル酸)、ポリ(エチレン共ビニルアセテート)、ポリ(メタクリル酸)、ポリグリコリド(PLG)、ポリ無水物、ポリ(N−ビニルピロリドン)、ポリ(ビニールアルコール)、ポリアクリルアミド、ポリ(エチレングリコール)、ポリラクチド(PLA)、ポリ(ラクチド共グリコリド)(PLGA)、およびポリオルトエステルを含むが、これらに限定されない。さらに他の実施形態では、制御放出系を治療標的(たとえば、肺)に近接して配置することができるので、全身投与量の僅か一部のみを必要とする(たとえば、Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)参照)。他の実施形態では、制御放出インプラントとして有用なポリマー組成物をDunn et al. (米国第5,945,155号参照)にしたがって使用する。この特定の方法は、上記ポリマー系からの生体活性材料のin situ制御放出の効果に基づいている。移植は、通常、治療処置を必要としている患者体内のあらゆる部位で行うことが可能である。他の実施形態では、患者体内の非ポリマー性インプラントが薬剤送達系として使用される非ポリマー性の持続送達系を使用する。体内への移植後、上記インプラントの有機溶媒は消散するか、分散するか、または上記組成物から周囲の組織液へと滲出することになるので、上記非ポリマー材料は次第に凝固することになるか、または沈殿して固体状の微孔性マトリクスを形成することになる(米国第5,888,533号参照)。制御放出系については、Langerによる論評(1990, Science 249:1527-1533)内にて検討されている。当業者に周知の任意の技術を用いて、発明に係る治療剤を1つ以上含む持続放出性製剤を作製することが可能である。たとえば、米国特許第4,526,938号;国際公開第WO91/05548号およびWO96/20698号;Ning et al., 1996, Radiotherapy & Oncology 39:179 189;Song et al., 1995, PDA Journal of Pharmaceutical Science & Technology 50:372 397;Cleek et al., 1997, Pro. Int'l. Symp. Control. Rel. Bioact. Mater. 24:853 854;およびLam et al., 1997, Proc. Int'l. Symp. Control Rel. Bioact. Mater. 24:759 760を参照。   In still other embodiments, the composition can be delivered in a controlled release or sustained release system. Any technique well known to those skilled in the art can be used to make a sustained release formulation comprising one or more antibodies of the invention. For example, US Pat. No. 4,526,938; PCT International Publication No. WO 91/05548; PCT International Publication No. WO 96/20698; Ning et al., 1996, “Intratumoral Radioimmunotheraphy of a Human Colon Cancer Xenograft Using a Sustained Release. Gel, "Radiotherapy & Oncology 39: 179 189; Song et al., 1995," Antibody Mediated Lung Targeting of Long Circulating Emulsions, "PDA Journal of Pharmaceutical Science & Technology 50: 372 397; Cleek et al., 1997," Biodegradable Polymeric Carriers for a bFGF Antibody for Cardiovascular Application, "Pro. Int'l. Symp. Control. Rel. Bioact. Mater. 24: 853 854; and Lam et al., 1997," Microencapsulation of Recombinant Humanized Monoclonal Antibody for Local Delivery , "Proc. Int'l. Symp. Control Rel. Bioact. Mater. 24: 759 760. In one embodiment, a pump may be used in a controlled release system (Langer, supra; Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:20; Buchwald et al., 1980, Surgery 88: 507; and Saudek et al., 1989, N. Engl. J. Med. 321: 574). In other embodiments, polymeric materials can be used to achieve controlled release of antibodies (eg, Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, J., Macromol. Sci. Rev. Macromol. Chem. 23:61; See also Levy et al., 1985, Science 228: 190; During et al., 1989, Ann. Neurol. 25: 351; Howard et al., 1989, J. Neurosurg. 7 1: 105); U.S. Pat. US Pat. No. 5,916,597; US Pat. No. 5,912,015; US Pat. No. 5,989,463; US Pat. No. 5,128,326; PCT International Publication No. WO 99 / 15154; and PCT International Publication No. WO 99/20253). Examples of polymers used in sustained release formulations include poly (2-hydroxyethyl methacrylate), poly (methyl methacrylate), poly (acrylic acid), poly (ethylene co-vinyl acetate), poly (methacrylic acid), polyglycolide ( PLG), polyanhydrides, poly (N-vinylpyrrolidone), poly (vinyl alcohol), polyacrylamide, poly (ethylene glycol), polylactide (PLA), poly (lactide coglycolide) (PLGA), and polyorthoesters Including, but not limited to. In still other embodiments, a controlled release system can be placed in close proximity to a therapeutic target (eg, lung), thus requiring only a fraction of the systemic dose (eg, Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)). In other embodiments, polymer compositions useful as controlled release implants are used according to Dunn et al. (See US Pat. No. 5,945,155). This particular method is based on the effect of in situ controlled release of the bioactive material from the polymer system. Transplantation can usually be performed at any site within a patient in need of therapeutic treatment. In other embodiments, non-polymeric sustained delivery systems are used in which non-polymeric implants within the patient are used as drug delivery systems. After implantation into the body, the organic solvent of the implant will dissipate, disperse, or leach out of the composition into the surrounding tissue fluid, so that the non-polymeric material will gradually solidify, Or it precipitates to form a solid microporous matrix (see US Pat. No. 5,888,533). Controlled release systems are discussed in a review by Langer (1990, Science 249: 1527-1533). Any technique well known to those skilled in the art can be used to make sustained release formulations comprising one or more therapeutic agents according to the invention. For example, U.S. Pat. No. 4,526,938; International Publication Nos. WO91 / 05548 and WO96 / 20698; Ning et al., 1996, Radiotherapy & Oncology 39: 179 189; Song et al., 1995, PDA Journal of Pharmaceutical Science & Technology 50: 372 397; Cleek et al., 1997, Pro. Int'l. Symp. Control. Rel. Bioact. Mater. 24: 853 854; and Lam et al., 1997, Proc. Int'l See Symp. Control Rel. Bioact. Mater. 24: 759 760.

本発明の治療用または予防用組成物が本発明の抗体をエンコードする核酸またはその抗原結合性フラグメントである特定の実施形態では、この核酸を適当な核酸発現ベクターの一部として構築して細胞内核酸となるように投与する(たとえば、レトロウイルスベクターの使用(米国特許第4,980,286号参照)、直接注射法、微粒子照射の使用(たとえば、遺伝子銃;Biolistic, Dupont)、脂質によるコーティング、細胞表面受容体、形質転換剤、または、核細胞内に入ることが知られているホメオボックス様ペプチドに連鎖させた投与(たとえば、Joliot et al., 1991, Proc. Natl. Acad. Sci. USA 88:1864-1868参照)など)ことによって、前記核酸をin vivoで投与して、前記核酸にエンコードされる抗体の発現を向上させることができる。代替法として、核酸を細胞内導入し、発現を目的として相同的組み換えによって宿主細胞DNA内に組み込むことも可能である。   In certain embodiments, where the therapeutic or prophylactic composition of the present invention is a nucleic acid encoding an antibody of the present invention or an antigen-binding fragment thereof, the nucleic acid is constructed as part of a suitable nucleic acid expression vector and subcellular. Administered as nucleic acids (eg, using retroviral vectors (see US Pat. No. 4,980,286), direct injection, using microparticle irradiation (eg, gene gun; Biolistic, Dupont), lipid coating Administration linked to cell surface receptors, transforming agents, or homeobox-like peptides known to enter nuclear cells (see, eg, Joliot et al., 1991, Proc. Natl. Acad. Sci. USA 88: 1864-1868), etc.) can be administered in vivo to improve the expression of the antibody encoded by the nucleic acid. Alternatively, the nucleic acid can be introduced into the cell and incorporated into the host cell DNA by homologous recombination for expression purposes.

本発明の抗体を治療的または予防的に有効な量を用いた対象の治療は単一の治療を含むことができる。または、好ましくは、一連の治療を含むことができる。   Treatment of a subject with a therapeutically or prophylactically effective amount of an antibody of the invention can include a single treatment. Or, preferably, a series of treatments can be included.

(D.医薬組成物)
本発明の組成物は、単位剤形の調製に使用することのできる、医薬組成物の製造に有用なバルク薬剤組成物(すなわち、対象または患者への投与に好適な組成物)を含む。このような組成物は、本願開示の予防薬および/または治療薬を予防的または治療的観点から有効とされる量含むか、またはこれと薬学的に許容可能な担体との組み合わせを含む。好ましくは、本発明の組成物は、本発明のヒト化抗体を予防的または治療的観点から有効とされる量と、薬学的に許容可能な担体とを含む。
(D. Pharmaceutical composition)
The compositions of the present invention include bulk drug compositions (ie, compositions suitable for administration to a subject or patient) that are useful for the manufacture of pharmaceutical compositions that can be used in the preparation of unit dosage forms. Such compositions comprise a prophylactic and / or therapeutic agent disclosed herein in an amount effective from a prophylactic or therapeutic standpoint, or a combination thereof with a pharmaceutically acceptable carrier. Preferably, the composition of the present invention comprises an amount of the humanized antibody of the present invention effective from a prophylactic or therapeutic standpoint and a pharmaceutically acceptable carrier.

特定の実施形態では、用語「薬学的に許容可能」は、動物(特にヒト)への使用について連邦または州政府の管理機関による認可を受けていること、または、米国薬局方のリストまたはそれ以外で一般に認知されている薬局方のリストに載せられていることを意味する。用語「担体」は、希釈剤、アジュバント(たとえば、(完全および不完全)フロイントアジュバント)、賦形剤、界面活性剤、抗凍結剤、または治療剤の投与媒体を指す。このような医薬担体として、水または油などの滅菌液体を使用することができる。このような用途に用いられる水または油は、石油源、動物源、植物源、または合成源由来の水または油(ピーナッツ油、大豆油、およびゴマ油など)を含む。医薬組成物を静脈内投与する場合には水が好適な溶媒である。また、液体担体(特に注射剤用の液体担体)として、食塩水、デキストロース水溶液、およびグリセロール水溶液を採用することができる。好適な医薬賦形剤は、スターチ、グルコース、ラクトース、サッカロース、ゼラチン、モルト、米、小麦粉、チョーク、シリカゲル、ステアリン酸ナトリウム、グリセロールモノステアレート、タルク、塩化ナトリウム、乾燥スキムミルク、グリセロール、プロピレン、グリコール、水、エタノール、およびポリソルベート−80などを含む。必要に応じて、上記組成物は、湿潤剤、乳化剤、またはpH緩衝剤を少量含むことができる。これらの組成物については、溶液、懸濁液、乳濁液、タブレット、ピル、カプセル、粉末、および持続放出性製剤などの形態を採ることができる。   In certain embodiments, the term “pharmaceutically acceptable” is approved by a federal or state administration for use on animals (particularly humans), or a list of US pharmacopoeia or otherwise. Means that it is on the list of pharmacopoeias generally recognized in. The term “carrier” refers to a vehicle for administration of diluents, adjuvants (eg, (complete and incomplete) Freund's adjuvant), excipients, surfactants, cryoprotectants, or therapeutic agents. As such a pharmaceutical carrier, a sterile liquid such as water or oil can be used. The water or oil used in such applications includes water or oils (such as peanut oil, soybean oil, and sesame oil) derived from petroleum sources, animal sources, plant sources, or synthetic sources. Water is a suitable solvent when the pharmaceutical composition is administered intravenously. Moreover, a saline solution, a dextrose aqueous solution, and a glycerol aqueous solution can be employed as a liquid carrier (particularly a liquid carrier for injections). Suitable pharmaceutical excipients include starch, glucose, lactose, saccharose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol Water, ethanol, and polysorbate-80. If desired, the composition can contain minor amounts of wetting, emulsifying, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained release formulations and the like.

通常、本発明の組成物の成分は別々に供給されるか、または単位製剤状に混合されて供給される。たとえば、活性剤の量を表示のアンプルまたはサシェットなどの密封容器内に含まれる、乾燥が行われた乾燥紛体または無水濃縮物として供給される。上記組成物の投与を注射によって行う場合では、滅菌が行われた製薬等級純水または生理食塩水を含む注射用ボトルを用いて上記組成物の分注を行うことができる。上記組成物を注射によって投与する場合では、投与前に成分同士の混合を行い得るように、注射用の滅菌水または生理食塩水を入れたアンプルを提供することができる。   Usually, the components of the composition of the present invention are supplied separately or mixed and supplied in a unit dosage form. For example, the amount of active agent is supplied as a dried powder or anhydrous concentrate in a sealed container such as an indicated ampoule or sachet. In the case where the composition is administered by injection, the composition can be dispensed using an injection bottle containing sterilized pharmaceutical grade pure water or physiological saline. When the composition is administered by injection, an ampoule containing sterile water for injection or physiological saline can be provided so that the components can be mixed before administration.

本発明の組成物は、中性形態または塩形態として製剤化することができる。薬学的に許容可能な塩は、アニオンを用いて形成される塩(塩酸、リン酸、酢酸、シュウ酸、酒石酸などから誘導される塩など)およびカチオンを用いて形成される塩(ナトリウム、カリウム、アンモニウム、カルシウム、水酸化第二鉄、イソプロピルアミン、トリエチルアミン、2−エチルアミノエタノール、ヒスチジン、プロカインなどから誘導される塩など)を含むが、これらに限定されない。   The compositions of the present invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include salts formed with anions (such as those derived from hydrochloric acid, phosphoric acid, acetic acid, oxalic acid, tartaric acid, etc.) and salts formed with cations (sodium, potassium, etc.). , Salts derived from ammonium, calcium, ferric hydroxide, isopropylamine, triethylamine, 2-ethylaminoethanol, histidine, procaine, etc.), but are not limited thereto.

(E.キット)
本発明は、本発明のヒト化抗体で充填された1つ以上の容器を備える医薬パックまたは医薬キットを提供する。さらに、上記医薬パックまたは医薬キットには、疾病治療に有用な他の予防剤または治療剤を1つ以上含めることができる。本発明はまた、本発明の医薬組成物の1つ以上の成分で充填された容器を1つ以上備える医薬パックまたは医薬キットも提供する。このような容器に適宜関連するものとしては、調合薬または生物学的製剤の製造、使用、または販売の管理行政機関によって指定の形態で呈示される情報を挙げることができる。なお、このような情報呈示は、ヒトに投与される調合薬または生物学的製剤の製造、使用、または販売の管理行政機関から取得した認可を反映するものである。
(E. Kit)
The present invention provides a pharmaceutical pack or kit comprising one or more containers filled with the humanized antibody of the present invention. Further, the pharmaceutical pack or pharmaceutical kit can contain one or more other prophylactic or therapeutic agents useful for disease treatment. The present invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more components of the pharmaceutical composition of the present invention. Appropriately associated with such containers may include information presented in a designated form by the administrative authority for the manufacture, use, or sale of the pharmaceutical or biological product. Such information presentation reflects the approval obtained from the administrative agency for the manufacture, use, or sale of pharmaceuticals or biological products to be administered to humans.

本発明は、上述の方法で使用可能なキットを提供する。一実施形態では、キットは、本発明のヒト化抗体を1つ以上備える。他の実施形態では、キットは、癌治療に有用な1つ以上の他の予防剤または治療剤を1つ以上の容器にさらに備える。他の実施形態では、キットは、癌に関連する1つ以上の癌抗原に結合する1つ以上の細胞傷害抗体をさらに備える。特定の実施形態では、上記他の予防剤または治療剤は化学療法薬である。他の実施形態では、上記予防剤または治療剤は生物学的治療薬またはホルモン治療薬である。   The present invention provides kits that can be used in the methods described above. In one embodiment, the kit comprises one or more humanized antibodies of the invention. In other embodiments, the kit further comprises one or more other prophylactic or therapeutic agents useful for cancer treatment in one or more containers. In other embodiments, the kit further comprises one or more cytotoxic antibodies that bind to one or more cancer antigens associated with cancer. In certain embodiments, the other prophylactic or therapeutic agent is a chemotherapeutic agent. In other embodiments, the prophylactic or therapeutic agent is a biological therapeutic or a hormonal therapeutic.

(G.診断方法)
本発明の抗体およびその抗原結合性フラグメントは、診断目的(B7−H1またはPD−1発現に関連する疾病、疾患、または感染症の検出、診断、または監視など)に使用することができる。本発明は、疾病、疾患、または感染症(特に、自己免疫疾患)の検出または診断であって、(a)免疫特異的に抗原に結合する1つ以上の抗体(またはそのフラグメント)を使用して、対象の細胞または組織サンプル内のB7−H1またはPD−1発現のアッセイを行うこと、および(b)前記抗原のレベルを対照レベル(たとえば、正常組織サンプル内の抗原レベルまたは治療前の抗原レベル)と比較することを備え、前記アッセイを行った抗原レベルが前記抗原の対照レベルと比較して増大または減少している場合では、疾病、疾患、または感染症、または、治療に対する患者の反応が示されている、疾病、疾患、または感染症の検出または診断を提供する。したがって、本発明はまた、疾病、疾患、または感染症の進行の監視であって、(a)抗原に免疫特異的に結合する1つ以上の抗体(またはそのフラグメント)を使用して、対象の細胞または組織サンプル内のB7−H1またはPD−1発現のアッセイを一時点において行う工程、および(b)前記対象の細胞または組織サンプル内のB7−H1またはPD−1発現の発現レベルの比較を他の一時点または期間において行う工程を備え、前記アッセイを行った抗原レベルの増大または減少は、疾病、疾患、または感染症の進行を示している、監視法を提供する。本発明はさらに、治療に対する応答の監視法であって、(a)抗原に免疫特異的に結合する1つ以上の抗体(またはそのフラグメント)を用いた処理を行う前に、対象の細胞または組織サンプル内のB7−H1またはPD−1発現のアッセイを行う工程、および(b)処理後の1以上の時点で対象の細胞または組織サンプル内のB7−H1またはPD−1発現のアッセイを事前に行っておき、抗原レベルの経時比較を行う工程を備え、前記アッセイを行った抗原レベルが処理前の抗原レベルと比較して増大または減少している場合では治療に対する応答の存在が示されている、疾病、疾患、または感染症の進行の監視を提供する。このような抗体およびそのフラグメントは、好ましくは、酵素免疫測定吸着(ELISA)法、放射免疫測(RIA)定、および蛍光活性化細胞分類(FACS)法などの免疫学的検定法に採用される。
(G. Diagnosis method)
The antibodies and antigen-binding fragments thereof of the present invention can be used for diagnostic purposes (such as detection, diagnosis or monitoring of diseases, disorders or infections associated with B7-H1 or PD-1 expression). The present invention is a detection or diagnosis of a disease, disorder, or infectious disease (especially an autoimmune disease), using (a) one or more antibodies (or fragments thereof) that immunospecifically bind to an antigen. Performing an assay for B7-H1 or PD-1 expression in a cell or tissue sample of interest, and (b) adjusting the level of said antigen to a control level (eg, an antigen level in a normal tissue sample or an antigen prior to treatment). And the patient's response to the disease, disorder, or infection, or treatment, in which the assayed antigen level is increased or decreased compared to the control level of the antigen Provides detection or diagnosis of a disease, disorder, or infection. Accordingly, the present invention also provides for monitoring the progression of a disease, disorder, or infection, using (a) one or more antibodies (or fragments thereof) that immunospecifically bind to an antigen, Performing an assay of B7-H1 or PD-1 expression in a cell or tissue sample at a point in time, and (b) comparing the expression level of B7-H1 or PD-1 expression in the cell or tissue sample of interest. Providing a method of monitoring comprising the step of performing at one other time or period, wherein an increase or decrease in the antigen level at which the assay is performed indicates the progression of the disease, disorder, or infection. The present invention further provides a method of monitoring response to therapy comprising: (a) subject cells or tissues prior to treatment with one or more antibodies (or fragments thereof) that immunospecifically bind to an antigen. Performing an assay for B7-H1 or PD-1 expression in the sample; and (b) pre-assessing an assay for B7-H1 or PD-1 expression in the subject cell or tissue sample at one or more time points after treatment. And includes a step of comparing antigen levels over time, where the presence of a response to therapy is indicated if the assayed antigen level is increased or decreased compared to the antigen level prior to treatment. Provide monitoring of the progression of a disease, disorder, or infection. Such antibodies and fragments thereof are preferably employed in immunoassays such as enzyme immunoassay adsorption (ELISA), radioimmunoassay (RIA) determination, and fluorescence activated cell sorting (FACS). .

本発明の一態様は、このような抗体およびフラグメント、および、特にヒトB7−H1に結合するような抗体およびフラグメントをIHC分析用の試薬としてin vitroまたはin situ組織サンプルの細胞内またはin vivoで使用することに関する。たとえば、B7−H1は癌細胞によって発現されるが、正常組織によって発現されることはない(Dong, H. (2003) "B7-H1 Pathway And Its Role In The Evasion Of Tumor Immunity," J. Mol. Med. 81:281-287)ので、こうした癌細胞が抗体またはフラグメントと結合することに基づいて細胞上のB7−H1の存在を検出することによって、癌細胞の存在が示唆されるとともに、癌細胞の診断が行われることになる。したがって本発明は、対象内の癌の存在を診断するための細胞学的アッセイを提供する。   One aspect of the present invention is to use such antibodies and fragments, and in particular antibodies and fragments that bind to human B7-H1, as reagents for IHC analysis, in cells or in vivo in in vitro or in situ tissue samples. About using. For example, B7-H1 is expressed by cancer cells but not by normal tissues (Dong, H. (2003) "B7-H1 Pathway And Its Role In The Evasion Of Tumor Immunity," J. Mol. Med. 81: 281-287), therefore, detecting the presence of B7-H1 on the cells based on the binding of these cancer cells to the antibody or fragment suggests the presence of the cancer cells and the cancer. Cell diagnosis will be performed. Thus, the present invention provides a cytological assay for diagnosing the presence of cancer in a subject.

腫瘍細胞上のB7−H1の存在は、腫瘍に反応するT細胞のアポトーシスを促進させることが見出されてきた(米国特許第7,794,710号)。したがって、癌患者の腫瘍細胞表面上に示されるB7−H1の範囲または程度を決定することによって、本発明は、癌の臨床的な深刻性を決定し、免疫反応に対する癌の抵抗が生じるであろう範囲および程度を決定する手段を提供する。   The presence of B7-H1 on tumor cells has been found to promote apoptosis of T cells responding to tumors (US Pat. No. 7,794,710). Thus, by determining the extent or extent of B7-H1 displayed on the tumor cell surface of a cancer patient, the present invention determines the clinical seriousness of the cancer and causes cancer resistance to an immune response. Provides a means to determine the wax range and extent.

同様に、B7−H1はリンパ系および粘膜系の樹状細胞(骨髄樹状細胞および形質細胞様樹状細胞の両方)上に発現され、その発現はSIV感染後に著しく増大する(Xu, Huanbin et al. (2010) "Increased B7-H1 Expression on Dendritic Cells Correlates with Programmed Death 1 Expression on T Cells in Simian Immunodeficiency Virus-Infected Macaques and May Contribute to T Cell Dysfunction and Disease Progression," J. Immunol. 185:7340-7348)。このような細胞上のB7−H1の発現を用いてヒトのHIVの診断を行い得る。さらに、CD8+細胞上のPD−1発現がHIV感染との関連において増大することが見出されてきた(Killian, M.S. et al. (2011) "Natural Suppression of Human Immunodeficiency Virus Type 1 Replication Is Mediated by Memory CD8+ T Cells," J. Virol. 85(4):1696-1705)。したがって、PD−1およびCD8の両方に結合する抗体は、HIV感染およびAIDS進行の診断用途に特に有用である。   Similarly, B7-H1 is expressed on lymphoid and mucosal dendritic cells (both bone marrow dendritic cells and plasmacytoid dendritic cells) and its expression is markedly increased after SIV infection (Xu, Huanbin et al. al. (2010) "Increased B7-H1 Expression on Dendritic Cells Correlates with Programmed Death 1 Expression on T Cells in Simian Immunodeficiency Virus-Infected Macaques and May Contribute to T Cell Dysfunction and Disease Progression," J. Immunol. 185: 7340- 7348). Such expression of B7-H1 on cells can be used to diagnose human HIV. Furthermore, it has been found that PD-1 expression on CD8 + cells is increased in the context of HIV infection (Killian, MS et al. (2011) "Natural Suppression of Human Immunodeficiency Virus Type 1 Replication Is Mediated by Memory CD8 + T Cells, "J. Virol. 85 (4): 1696-1705). Thus, antibodies that bind to both PD-1 and CD8 are particularly useful for diagnostic applications of HIV infection and AIDS progression.

本発明のさらなる態様は、このような抗体およびフラグメント、および、特にヒトPD−1に結合するこのような抗体およびフラグメントの使用に関する。PD−1は、免疫系の慢性的な活性化およびT細胞の疲弊を示すマーカーとして特に有用である。PD−1の発現はHIVウイルス感染患者のT細胞上で促進され、これら患者体内のウイルス量と相関する(Khaitan, A. et al. (2011) "Revisiting Immune Exhaustion During HIV Infection," Curr. HIV/AIDS Rep. 8:4-11; Grabmeier-Pfistershammer, K. et al. (2011) "Identification of PD-1 as a Unique Marker for Failing Immune Reconstitution in HIV-1-Infected Patients on Treatment," J Acquir. Immune Defic. Syndr. 56(2):118-124)。したがって、PD−1はHIV進行を示すマーカーとして特に有用である。最も好ましくは、PD−1発現のアッセイはフローサイトメトリー法を用いて行われる。このような抗体およびフラグメントの使用を介することによって、たとえT細胞(PD−1を発現する)が異種の調製物中に存在している場合であっても、複数の変数(たとえば、細胞カウント、細胞サイズ、表現型、および細胞の健常性など)についてT細胞のアッセイを行うことができる。したがって、PD−1に対する抗体およびその抗原結合性フラグメントと協調してこのような方法を用いることによって、AIDS、白血病、およびT細胞の細胞数および健常性に影響する他の疾病の程度および重症度の診断を行うことができる。本発明の目的に適合し得るフローサイトメトリー―の方法については、Peters, J.M. et al. (2011) "Multiparameter Flow Cytometry In The Diagnosis And Management Of Acute Leukemia," Arch. Pathol. Lab. Med. 135(1):44-54;Meyerson, H.J. (2010) "A Practical Approach To The Flow Cytometric Detection And Diagnosis Of T-Cell Lymphoproliferative Disorders," Lab. Hematol. 16(3):32-52;Vandewoestyne, M. et al. (Epub 2010 Aug 3) Laser Capture Microdissection In Forensic Research: A Review," Int. J. Legal. Med. 124(6):513-521;Ornatsky, O. et al. (Epub 2010 Jul 21) "Highly Multiparametric Analysis By Mass Cytometry," J. Immunol. Meth. 361(1-2):1-20;Mach, W.J. et al. (Epub 2010 Jul 13) "Flow Cytometry And Laser Scanning Cytometry, A Comparison Of Techniques," J. Clin. Monit. Comput. 24(4):251-259;およびChattopadhyay, P.K. et al. (2010) "Good Cell, Bad Cell: Flow Cytometry Reveals T-Cell Subsets Important In HIV Disease," Cytometry A. 77(7):614-622、並びに、米国特許第7,876,436号、同7,847,923号、同7,842,244号、同7,746,466号、同7,590,500号、同7,527,978号、同7,507,548号、同7,491,502号、同7,486,387号、同7,479,630号、同7,465,543号、同7,354,773号、同6,794,152号、および同6,784,981号に開示されている。   A further aspect of the present invention relates to the use of such antibodies and fragments, and in particular such antibodies and fragments that bind to human PD-1. PD-1 is particularly useful as a marker indicating chronic activation of the immune system and T cell exhaustion. PD-1 expression is promoted on T cells of HIV virus-infected patients and correlates with viral load in these patients (Khaitan, A. et al. (2011) "Revisiting Immune Exhaustion During HIV Infection," Curr. HIV / AIDS Rep. 8: 4-11; Grabmeier-Pfistershammer, K. et al. (2011) "Identification of PD-1 as a Unique Marker for Failing Immune Reconstitution in HIV-1-Infected Patients on Treatment," J Acquir. Immune Defic. Syndr. 56 (2): 118-124). Thus, PD-1 is particularly useful as a marker that indicates HIV progression. Most preferably, the PD-1 expression assay is performed using flow cytometry. Through the use of such antibodies and fragments, even if T cells (expressing PD-1) are present in a heterogeneous preparation, multiple variables (eg, cell count, T cell assays can be performed for cell size, phenotype, cell health, and the like. Thus, by using such methods in concert with antibodies to PD-1 and antigen-binding fragments thereof, the extent and severity of AIDS, leukemia, and other diseases that affect cell number and health of T cells. Can be diagnosed. For flow cytometry methods that can be adapted for the purposes of the present invention, see Peters, JM et al. (2011) "Multiparameter Flow Cytometry In The Diagnosis And Management Of Acute Leukemia," Arch. Pathol. Lab. Med. 135 ( 1): 44-54; Meyerson, HJ (2010) "A Practical Approach To The Flow Cytometric Detection And Diagnosis Of T-Cell Lymphoproliferative Disorders," Lab. Hematol. 16 (3): 32-52; Vandewoestyne, M. et al. (Epub 2010 Aug 3) Laser Capture Microdissection In Forensic Research: A Review, "Int. J. Legal. Med. 124 (6): 513-521; Ornatsky, O. et al. (Epub 2010 Jul 21)" Highly Multiparametric Analysis By Mass Cytometry, "J. Immunol. Meth. 361 (1-2): 1-20; Mach, WJ et al. (Epub 2010 Jul 13)" Flow Cytometry And Laser Scanning Cytometry, A Comparison Of Techniques, "J. Clin. Monit. Comput. 24 (4): 251-259; and Chattopadhyay, PK et al. (2010)" Good Cell, Bad Cell: Flow Cytometry Reveals T-Cell Subsets Important In HIV Disease, "Cytometry A 77 (7): 614-622, and National Patent Nos. 7,876,436, 7,847,923, 7,842,244, 7,746,466, 7,590,500, 7,527,978, 7,507,548, 7,491,502, 7,486,387, 7,479,630, 7,465,543, 7,354,773, 6, 794,152, and 6,784,981.

したがって、本発明の抗体およびフラグメントは、ヒトの疾病、疾患、または感染症の検出および診断に有用である。一実施形態では、このような診断は、(a)B7−H1またはPD−1に免疫特異的に結合する標識抗体または抗原結合性フラグメントの有効量を対象に投与(たとえば、非経口的投与、皮下投与、または腹腔内への投与)すること、(b)前記投与後に時間間隔を経過させて、前記対象内のB7−H1またはPD−1発現部位において上記標識分子の濃度を特異的に増大させること(および、上記標識分子のうち非結合状態のものをバックグラウンドレベルまで除去すること)、(c)バックグラウンドレベルを決定すること、および(d)前記対象内の前記標識抗体を検出することを備え、前記バックグラウンドレベルを超える標識抗体の検出は、前記対象が疾病、疾患、または感染症を有していることを示している。上記実施形態によれば、上記標識抗体は、当業者に周知の撮像系を用いて検出可能な撮像部分で標識される。バックグラウンドレベルの決定は、上記標識分子の検出量と特定の系について事前に決定した基準値との比較を含む多様な方法によって行うことが可能である。   Accordingly, the antibodies and fragments of the present invention are useful for the detection and diagnosis of human diseases, disorders, or infectious diseases. In one embodiment, such diagnosis comprises (a) administering to a subject an effective amount of a labeled antibody or antigen-binding fragment that immunospecifically binds to B7-H1 or PD-1 (eg, parenteral administration, (Subcutaneous administration or intraperitoneal administration), (b) a time interval after the administration, and the concentration of the labeled molecule is specifically increased at the B7-H1 or PD-1 expression site in the subject. (And removing unbound of the labeled molecules to a background level), (c) determining the background level, and (d) detecting the labeled antibody in the subject And the detection of the labeled antibody above the background level indicates that the subject has a disease, disorder or infection. According to the above embodiment, the labeled antibody is labeled with an imaging moiety that can be detected using an imaging system well known to those skilled in the art. The background level can be determined by various methods including a comparison between the detected amount of the labeled molecule and a reference value determined in advance for a specific system.

対象のサイズおよび使用する撮像系によって診断画像の形成に必要となる撮像部分の量が決定されることは、当該技術分野において理解されるであろう。腫瘍のin vivo撮像については、S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982)に記載されている。   It will be understood in the art that the size of the object and the imaging system used will determine the amount of imaging portion required to form a diagnostic image. For in vivo imaging of tumors, see SW Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, SW Burchiel and BA Rhodes, eds., Masson Publishing Inc. (1982).

上記標識分子の濃度が上記対象の部位において特異的に増大するのを可能にし、かつ上記非結合状態の標識分子をバックグラウンドレベルとなるまで除去することを可能にするための、上記投与後の時間間隔は、使用する標識の種類および投与方法を含む幾つかの変数に応じて、6時間〜48時間、6時間〜24時間、または6〜12時間となる。他の実施形態では、上記投与後の時間間隔は、5日間〜20日間、または5日間〜10日間である。   Post-dosing to allow the concentration of the labeled molecule to specifically increase at the site of interest and to remove the unbound labeled molecule to a background level. The time interval will be 6 to 48 hours, 6 to 24 hours, or 6 to 12 hours, depending on several variables including the type of label used and the method of administration. In other embodiments, the time interval after administration is from 5 days to 20 days, or from 5 days to 10 days.

一実施形態では、最初の診断を行ってからたとえば1カ月経過後、6カ月経過後、または一年経過後などに疾病、疾患、または感染症の診断方法を繰り返し行うことによって、疾病、疾患、または感染症の観測を行う。   In one embodiment, the disease, disease, disease, disease, disease, disease, disease, disease, disease, disease, Or observe infectious diseases.

上記標識の存在は、当該技術分野に公知の方法をin vivo走査に用いて対象内で検出することができる。これらの方法は、使用する標識の種類に応じて決まる。専門家であれば、特定の標識を検出する適切な方法を決定することができるであろう。本発明の診断方法に使用し得る方法および装置は、コンピュータ断層撮影(CT)法、陽電子放射断層撮影(PET)法、磁気共鳴映像(MRI)法などの全身走査法、および超音波法を含むが、これらに限定されない。   The presence of the label can be detected in the subject using methods known in the art for in vivo scanning. These methods depend on the type of label used. An expert will be able to determine an appropriate method for detecting a particular label. Methods and apparatus that can be used in the diagnostic methods of the present invention include computed tomography (CT), positron emission tomography (PET), whole body scanning such as magnetic resonance imaging (MRI), and ultrasound. However, it is not limited to these.

特定の実施形態では、上記分子は放射性同位体で標識され、放射線反応性外科用器具を用いて患者体内で検出される(Thurston et al., 米国特許第5,441,050号)。他の実施形態では、上記分子は蛍光化合物で標識され、蛍光反応性走査用器具を用いて患者体内で検出される。他の実施形態では、上記分子は陽電子放出金属で標識され、陽電子放出断層撮影法を用いて患者体内で検出される。さらに他の実施形態では、上記分子は常磁性標識で標識され、磁気共鳴映像(MRI)法を用いて患者体内で検出される。   In certain embodiments, the molecule is labeled with a radioisotope and detected in the patient using a radiation responsive surgical instrument (Thurston et al., US Pat. No. 5,441,050). In other embodiments, the molecule is labeled with a fluorescent compound and detected in the patient using a fluorescence reactive scanning instrument. In another embodiment, the molecule is labeled with a positron emitting metal and detected in the patient using positron emission tomography. In yet another embodiment, the molecule is labeled with a paramagnetic label and detected in the patient using magnetic resonance imaging (MRI).

以上、本発明の概要を説明した。本発明の内容は、以下の実施例を参照することによって、より容易に理解されるであろう。なお、以下の実施例は一例に過ぎず、特に規定のない限り、本発明を制限するよう意図されたものではない。   The outline of the present invention has been described above. The content of the present invention will be more readily understood by reference to the following examples. The following examples are merely examples, and are not intended to limit the present invention unless otherwise specified.

〔実施例1〕:抗ヒトB7−H1抗体の単離および特性決定
高親和性の中和抗ヒトB7−H1抗体の単離を行うために、マウスに最初に免疫性を与え、次にヒトB7−H1−Fcを用いて追加免疫を行った。標準的なプロトコルに従い、抗B7−H1陽性動物の脾細胞を骨髄腫細胞と融合させた。この結果得られたマウスハイブリドーマのうちB7−H1免疫反応性モノクローナル抗体を発現しているものを特定するためにスクリーニングを行った。抗体の評価をさらに行って、これらがIgG抗体またはIgM抗体の何れであるかについての決定を行った。これに応じて、B7−H1−Fcまたは陰性対照を固相担体に固定した。その後、上記固相担体にハイブリドーマ上清を接触させ、B7−H1抗体の存在を標識抗マウス抗IgGまたは標識抗マウス抗IgMを用いて決定した。図1は、試験を行ったハイブリドーマ上清の結果を示し、ヒトB7−H1に対して免疫反応性を有する抗体を発現する複数のハイブリドーマ株の単離を示す。
Example 1: Isolation and characterization of anti-human B7-H1 antibody To perform isolation of high affinity neutralizing anti-human B7-H1 antibody, mice are first immunized and then human. Booster immunization was performed using B7-H1-Fc. Splenocytes from anti-B7-H1 positive animals were fused with myeloma cells according to standard protocols. Screening was performed to identify those expressing the B7-H1 immunoreactive monoclonal antibody among the resulting mouse hybridomas. Further evaluation of the antibodies was performed to determine whether these were IgG antibodies or IgM antibodies. Accordingly, B7-H1-Fc or negative control was immobilized on a solid support. Thereafter, the hybridoma supernatant was brought into contact with the solid phase carrier, and the presence of the B7-H1 antibody was determined using labeled anti-mouse anti-IgG or labeled anti-mouse anti-IgM. FIG. 1 shows the results of the tested hybridoma supernatants and shows the isolation of multiple hybridoma lines that express antibodies that are immunoreactive with human B7-H1.

同定したハイブリドーマをスクリーニングに掛けて、その発現抗体が中和抗体であり、B7−H1とPD−1との結合を阻害可能であるか否かの決定を行った。PD−1−Fcを固相担体に固定し、これをビオチン化B7−H1−Fcを含む希釈馴化培地の存在下で培養した。上記固相担体に対するストレプトアビジンセイヨウワサビペルオキシダーゼ(SA−HRP)の結合のアッセイを行って、上記B7−H1および上記PD−1の互いに結合する能を検出した。抗B7−H1抗体は、PD−1に対するB7−H1の結合を改変可能なため、上記アッセイにおけるSA−HAS結合の減少を媒介していた。本実験の結果を図2に示す。図2の実験結果は、上記単離を行ったハイブリドーマの幾つかはヒトB7−H1中和抗体を発現したことを示す。抗体MIH−1(抗ヒトCD274(B7−H1))(Chen, Y. et al. (Epub 2005 Nov 11)”Expression Of B7-H1 In Inflammatory Renal Tubular Epithelial Cells," Nephron. Exp. Nephrol. 102(3-4):e81-e92)を陽性対照として使用した。29E.2AEは抗PD−1抗体であるが、上記アッセイでは非中和抗体であることが示された。無関係のハイブリドーマ(rand Ab)由来の馴化培地とベクター対照(VC:vector control)を陰性対照として使用した。   The identified hybridoma was screened to determine whether the expressed antibody is a neutralizing antibody and can inhibit the binding between B7-H1 and PD-1. PD-1-Fc was immobilized on a solid support and cultured in the presence of a diluted conditioned medium containing biotinylated B7-H1-Fc. The binding of streptavidin horseradish peroxidase (SA-HRP) to the solid phase carrier was assayed to detect the ability of B7-H1 and PD-1 to bind to each other. Anti-B7-H1 antibody was able to alter the binding of B7-H1 to PD-1 and thus mediated a decrease in SA-HAS binding in the assay. The results of this experiment are shown in FIG. The experimental results in FIG. 2 indicate that some of the hybridomas that have been isolated expressed human B7-H1 neutralizing antibodies. Antibody MIH-1 (anti-human CD274 (B7-H1)) (Chen, Y. et al. (Epub 2005 Nov 11) “Expression Of B7-H1 In Inflammatory Renal Tubular Epithelial Cells,” Nephron. Exp. Nephrol. 102 ( 3-4): e81-e92) was used as a positive control. 29E.2AE is an anti-PD-1 antibody, but the above assay was shown to be a non-neutralizing antibody. Conditioned media from an irrelevant hybridoma (rand Ab) and a vector control (VC) were used as negative controls.

発現された上記中和抗体が細胞表面上に配列されているB7−H1と結合可能であるか否かを決定するために、細胞結合アッセイを実施した。上記ハイブリドーマの各クローンの上清を1:4の比率で希釈し、これを親CHO細胞と全長ヒトB7−H1を過剰発現するクローンCHO株との存在下で培養した。結合を生じさせた後、上記細胞を洗浄した。そして、蛍光標識抗マウスIgG抗体を用いて、上記洗浄後に残存している細胞結合抗B7−H1抗体の存在を検出した。CHO−hB7−H1に対する結合についての蛍光強度の中央値(MFI)を図3に示す。試験を行ったクローンの何れについても親CHO株との交差反応が見出されず、このことより、上記発現抗体はヒトB7−H1に特異的であることが示された。   In order to determine whether the expressed neutralizing antibody could bind to B7-H1 sequenced on the cell surface, a cell binding assay was performed. The supernatant of each hybridoma clone was diluted at a ratio of 1: 4 and cultured in the presence of parental CHO cells and a clone CHO strain overexpressing full-length human B7-H1. After causing binding, the cells were washed. Then, the presence of the cell-bound anti-B7-H1 antibody remaining after the washing was detected using a fluorescence-labeled anti-mouse IgG antibody. The median fluorescence intensity (MFI) for binding to CHO-hB7-H1 is shown in FIG. No cross-reactivity with the parental CHO strain was found for any of the clones tested, indicating that the expressed antibody is specific for human B7-H1.

さらなる評価として、3つのクローンの濃度を異ならせて抗B7−H1抗体MIH−1と比較した。抗体は、プロテインGを用いて精製されており、内因性レベルを有してAPC表面上に配列されている場合のB7−H1との結合能について評価が行われていた。ヒトB7−H1を発現するCHO細胞を異なる濃度(10μg/ml、1μg/ml、または0.1μg/ml)の抗B7−H1抗体で培養し、その後にAPC結合ロバ抗マウス抗体で培養した。蛍光強度の中央値を測定することによって結合を報告した。結果は、試験抗体が対照抗体(MIH1)よりも大きな結合活性をB7−H1に対して示したことを呈示し(図4)、抗体1E12が対照の抗B7−H1抗体(5H1)(Dong, H. et al. (2002) "Tumor-Associated B7-H1 Promotes T-Cell Apoptosis: A Potential Mechanism Of Immune Evasion," Nature Med. 8(8):793-800)よりも大きな結合活性をB7−H1に対して示したことを呈示している(図5)。   As a further evaluation, three clones were compared at different concentrations with the anti-B7-H1 antibody MIH-1. The antibody has been purified using protein G and has been evaluated for its ability to bind B7-H1 when arrayed on the APC surface with endogenous levels. CHO cells expressing human B7-H1 were cultured with different concentrations (10 μg / ml, 1 μg / ml, or 0.1 μg / ml) of anti-B7-H1 antibody followed by APC-conjugated donkey anti-mouse antibody. Binding was reported by measuring the median fluorescence intensity. The results showed that the test antibody showed greater binding activity to B7-H1 than the control antibody (MIH1) (FIG. 4), and antibody 1E12 was the control anti-B7-H1 antibody (5H1) (Dong, H. et al. (2002) “Tumor-Associated B7-H1 Promotes T-Cell Apoptosis: A Potential Mechanism Of Immune Evasion,” Nature Med. 8 (8): 793-800). (Fig. 5).

要約すれば、ハイブリドーマを発現している複数の抗ヒトB7−H1が得られたことをデータに示されている。全クローンは、B7−H1−Fcを認識するIgG抗体であった。クローン1B3、1D11、1E2、1E4、1E10、2A6、2E12、2F2、2F5、2F11、3A4、および3B1は、スクリーニング結合アッセイでは脆弱な抗体であった。低信号は、低発現レベルおよび/または弱親和性に因るものであると考えられる。   In summary, the data show that multiple anti-human B7-H1 expressing hybridomas were obtained. All clones were IgG antibodies that recognize B7-H1-Fc. Clones 1B3, 1D11, 1E2, 1E4, 1E10, 2A6, 2E12, 2F2, 2F5, 2F11, 3A4, and 3B1 were vulnerable antibodies in the screening binding assay. A low signal is believed to be due to low expression levels and / or weak affinity.

意義深いことに、幾つかのクローン(たとえば、クローン1D5、1E12、1F4、2A7、2G11、3B6、3D10)は強力な中和活性を示した。上記クローンの全ては、試験を行った各濃度において中和活性を示しており、抗原と良好に結合しているように思われた。CHO−B7−H1細胞と結合するMFIは次のものである:1D5=50,821;1E12=56,152;1F4=62,015;2A7=49,008;2G11=55,947;3B6=59,638;3D10=53,114。   Significantly, some clones (eg clones 1D5, 1E12, 1F4, 2A7, 2G11, 3B6, 3D10) showed strong neutralizing activity. All of the clones showed neutralizing activity at each concentration tested and appeared to bind well to the antigen. The MFIs that bind to CHO-B7-H1 cells are: 1D5 = 50,821; 1E12 = 56,152; 1F4 = 62,015; 2A7 = 49,008; 2G11 = 55,947; 3B6 = 59 638; 3D10 = 53,114.

〔実施例2:抗ヒトPD−1抗体の単離および特性決定〕
高親和性の中和抗ヒトB7−H1抗体の単離を行うために、マウスに最初に免疫性を与え、次にヒトPD−1−Fcを用いて追加免疫を行った。標準的なプロトコルに従い、抗PD−1陽性動物の脾細胞を骨髄腫細胞と融合させた。この結果得られたマウスハイブリドーマのうち高親和性のヒトPD−1免疫反応性モノクローナル抗体を発現しているものを特定するためにスクリーニングを行った。抗体の評価をさらに行って、これらがIgG抗体またはIgM抗体の何れであるかについての決定を行った。これに応じて、PD−1−Fcまたは陰性対照(B7−H4−Fc)を固相担体に固定した。その後、上記固相担体にハイブリドーマ上清を接触させ、抗PD−1抗体の存在を標識抗マウスIgGまたは標識抗マウスIgMを用いて決定した。図6は、単離した抗ヒトPD−1抗体の抗原結合およびイソ型を示すとともに、ヒトPD−1に対して免疫反応性を有する抗体を発現する複数のハイブリドーマ株の単離を表す。
Example 2: Isolation and characterization of anti-human PD-1 antibody
To isolate high affinity neutralizing anti-human B7-H1 antibodies, mice were first immunized and then boosted with human PD-1-Fc. Splenocytes from anti-PD-1 positive animals were fused with myeloma cells according to standard protocols. Screening was performed to identify those expressing the high-affinity human PD-1 immunoreactive monoclonal antibody among the resulting mouse hybridomas. Further evaluation of the antibodies was performed to determine whether these were IgG antibodies or IgM antibodies. In response, PD-1-Fc or negative control (B7-H4-Fc) was immobilized on a solid support. Thereafter, the hybridoma supernatant was brought into contact with the solid phase carrier, and the presence of the anti-PD-1 antibody was determined using labeled anti-mouse IgG or labeled anti-mouse IgM. FIG. 6 shows the isolation of multiple hybridoma lines that express the antigen binding and isoforms of the isolated anti-human PD-1 antibody and express antibodies that are immunoreactive with human PD-1.

同定したハイブリドーマをスクリーニングに掛けて、その発現抗体が中和抗体であってB7−DCとPD−1との結合を阻害可能であるか否かの決定を行った。PD−1を結合する融合タンパク質であるB7−DC−Fcを固相担体に固定し、これをビオチン化PD−1−Fcを含む希釈馴化培地の存在下で培養した。上記固相担体に対するストレプトアビジンセイヨウワサビペルオキシダーゼ(SA−HRP:streptavidin−horse radish peroxidase)の結合についてアッセイを行って、B7−DCおよびPD−1の互いに対する結合する能を検出した。抗PD−1抗体は、PD−1に対するB7−DCの結合を阻害可能であるため、上記アッセイにおいてSA−HRP結合の減少を媒介していた。本実験の結果を図7Aおよび7Bに示す。図7Aおよび7Bの実験結果は、単離を行った上記ハイブリドーマの幾つかはヒトPD−1中和抗体を発現したことを示す(図7Bは図7Aと同一のグラフを異なるスケールで示している)。   The identified hybridoma was screened to determine whether the expressed antibody was a neutralizing antibody and could inhibit the binding between B7-DC and PD-1. B7-DC-Fc, which is a fusion protein that binds PD-1, was immobilized on a solid phase carrier and cultured in the presence of a diluted conditioned medium containing biotinylated PD-1-Fc. The binding of streptavidin-horseradish peroxidase (SA-HRP) to the solid support was assayed to detect the ability of B7-DC and PD-1 to bind to each other. Anti-PD-1 antibodies were able to inhibit the binding of B7-DC to PD-1 and thus mediated a decrease in SA-HRP binding in the above assay. The results of this experiment are shown in FIGS. 7A and 7B. The experimental results in FIGS. 7A and 7B show that some of the isolated hybridomas expressed human PD-1 neutralizing antibodies (FIG. 7B shows the same graph as FIG. 7A at different scales). ).

発現された上記中和抗体が細胞表面上に配列されているPD−1と結合可能であるか否かを決定するために細胞結合アッセイを実施した。各ハイブリドーマクローンの上清を1:4の比で希釈し、これを親CHO細胞と全長ヒトPD−1を過剰発現するクローンCHO株との存在下で培養した。結合を形成させた後、上記細胞を洗浄した。そして、蛍光標識抗マウスIgG抗体を用いて、洗浄後に残存している細胞結合抗PD−1抗体の存在を検出した。CHO−hPD−1に対する結合についての蛍光強度の中央値(MFI)を図8に示す。抗体1E3、1E8、および1H3は細胞表面上に発現されたヒトPD−1と特に結合可能であることが結果に示された。試験を行ったクローンの何れについても親CHO株との交差反応が見出されず、このことは、上記発現抗体がヒトPD−1に特異的であることを示すものであった。J116は市販の抗ヒトPD−1対照抗体(eBioscience, Inc.)である。イソ型の同定より、1E3、1E8、1H3はIgG1/カッパであることが明らかになった。   A cell binding assay was performed to determine if the expressed neutralizing antibody was able to bind to PD-1 sequenced on the cell surface. The supernatant of each hybridoma clone was diluted at a ratio of 1: 4 and cultured in the presence of parental CHO cells and a clone CHO strain overexpressing full-length human PD-1. After forming a bond, the cells were washed. Then, the presence of the cell-bound anti-PD-1 antibody remaining after washing was detected using a fluorescence-labeled anti-mouse IgG antibody. The median fluorescence intensity (MFI) for binding to CHO-hPD-1 is shown in FIG. The results showed that antibodies 1E3, 1E8, and 1H3 are particularly able to bind to human PD-1 expressed on the cell surface. No cross-reactivity with the parental CHO strain was found for any of the tested clones, indicating that the expressed antibody is specific for human PD-1. J116 is a commercially available anti-human PD-1 control antibody (eBioscience, Inc.). The identification of isoforms revealed that 1E3, 1E8, and 1H3 are IgG1 / kappa.

さらなる研究用に2つのクローン(1E3および1H3)を選択した。さらなる評価として、上記2つのクローンの濃度を異ならせて抗PD−1抗体M3およびEH−12と比較した。抗体は、タンパク質Gを用いて精製され、CHO細胞表面上に発現されたPD−1と結合する能について評価が行われた。CHO−hPD1細胞を非標識抗PD−1抗体(10μg/mL、1μg/mL、および0.1μg/mL)で染色し、その後にAPC結合ロバ抗マウス抗体で染色し、蛍光強度の中央値を記録した。このアッセイの結果を図9に報告する。陰性対照はマウスIgG(mIgG1)であり;陽性対照はM3(ヒトPD−1に対する中和モノクローナル抗体(Wu, K. et al. (2009) "Kupffer Cell Suppression of CD8+ T Cells in Human Hepatocellular Carcinoma Is Mediated by B7-H1/Programmed Death-1 Interactions," Cancer Res 69(20):8067-8075)および抗PD−1抗体EH12(Dorfman, D.M. et al. (2006) "Programmed Death-1 (PD-1) Is A Marker Of Germinal Center-Associated T Cells And Angioimmunoblastic T-Cell Lymphoma," Am. J. Surg. Pathol. 30(7):802-810)であった。   Two clones (1E3 and 1H3) were selected for further study. As a further evaluation, the two clones were compared at different concentrations with anti-PD-1 antibodies M3 and EH-12. The antibody was purified using protein G and evaluated for its ability to bind to PD-1 expressed on the CHO cell surface. CHO-hPD1 cells were stained with unlabeled anti-PD-1 antibodies (10 μg / mL, 1 μg / mL, and 0.1 μg / mL), followed by staining with APC-conjugated donkey anti-mouse antibody, and the median fluorescence intensity was determined. Recorded. The results of this assay are reported in FIG. Negative control is mouse IgG (mIgG1); positive control is M3 (neutralizing monoclonal antibody against human PD-1 (Wu, K. et al. (2009) "Kupffer Cell Suppression of CD8 + T Cells in Human Hepatocellular Carcinoma Is Mediated by B7-H1 / Programmed Death-1 Interactions, "Cancer Res 69 (20): 8067-8075) and anti-PD-1 antibody EH12 (Dorfman, DM et al. (2006)" Programmed Death-1 (PD-1) Is A Marker Of Germinal Center-Associated T Cells And Angioimmunoblastic T-Cell Lymphoma, “Am. J. Surg. Pathol. 30 (7): 802-810).

50,000個のCHO−hPD1細胞を抗PD−1抗体(0mg/ml〜0.1mg/mlの濃度範囲で存在)で30分間培養させることによって、細胞ベースの競合アッセイを行った。その後に10μg/mlのAPC標識B7−DC−Fcを添加し、培養をさらに30分間続けた。その後、結合B7−DC−Fcの蛍光を測定した。蛍光強度の中央値を図10に示す。抗体濃度を20μg/mLに固定して上記競合アッセイを繰り返し行った(図11)。   A cell-based competition assay was performed by incubating 50,000 CHO-hPD1 cells with anti-PD-1 antibody (present in a concentration range of 0 mg / ml to 0.1 mg / ml) for 30 minutes. Then 10 μg / ml APC-labeled B7-DC-Fc was added and the culture was continued for another 30 minutes. Thereafter, the fluorescence of bound B7-DC-Fc was measured. The median fluorescence intensity is shown in FIG. The competition assay was repeated with the antibody concentration fixed at 20 μg / mL (FIG. 11).

要約すれば、クローン1E3、1E8、および1H3は中和活性を示すとともに、抗原を良好に認識していたことが結果に示された。クローン1E6は、PD−1を中和することなくこれと交差結合することが可能であるので、結合の向上をもたらす。しかし、上記クローン1E6は、PD−1を細胞表面上に結合しているようには思われなかった。   In summary, clones 1E3, 1E8, and 1H3 showed neutralizing activity and the results showed good recognition of the antigen. Clone 1E6 can cross-link with PD-1 without neutralizing it, resulting in improved binding. However, the clone 1E6 did not appear to bind PD-1 on the cell surface.

〔実施例3:ヒト化抗体の産生:一般手法〕
上述のように、特定の目的(たとえば、ヒト疾病のin vivo治療への使用用途など)については、上述の抗ヒトB7−H1抗体および/または抗ヒトPD−1抗体のヒト化誘導体を採用することが好ましい。
[Example 3: Production of humanized antibody: general procedure]
As noted above, for specific purposes (eg, for use in in vivo treatment of human diseases), humanized derivatives of the above-described anti-human B7-H1 antibodies and / or anti-human PD-1 antibodies are employed. It is preferable.

このような誘導体を形成するためには、最初に、3D10抗体または1H3抗体と受容体ヒト抗体一式とのフレームワーク配列間の差異を同定するために、3D10抗体または1H3抗体のフレームワーク配列(「親」配列)を「受容体」ヒト抗体一式のフレームワーク配列と位置合わせした。上記親および受容体のフレームワーク配列間で不一致の残基を置換することによってヒト化を行った。バーニア域内の位置、VH/VL鎖間界面、またはCDR標準クラスの決定位置などの潜在的に重要となる位置での置換に関しては、想定される復帰突然変異について分析を行った(Foote, J. et al. (1992) ”Antibody Framework Residues Affecting The Conformation Of The Hypervariable Loops,"J. Molec. Biol. 224:487-499参照)。合計で14個のヒト化変異体配列を同定した。   To form such a derivative, first, to identify differences between the framework sequences of the 3D10 or 1H3 antibody and the set of receptor human antibodies, the framework sequence of the 3D10 or 1H3 antibody (“ The “parent” sequence) was aligned with the framework sequence of the “receptor” human antibody suite. Humanization was performed by replacing mismatched residues between the parental and receptor framework sequences. For possible back mutations, such as positions within the vernier region, VH / VL interchain interface, or CDR standard class determined positions were analyzed for possible backmutations (Foote, J. et al. et al. (1992) "Antibody Framework Residues Affecting The Conformation Of The Hypervariable Loops," J. Molec. Biol. 224: 487-499). A total of 14 humanized variant sequences were identified.

保存ドメインデータベース(COD)(Marchler-Bauer, et al. (2011) "COD: A Conserved Domain Database For The Functional Annotation Of Proteins," Nucleic Acids Res. 39:D225-D229)を使用して、各アミノ酸鎖のドメインの含有量および各ドメインのおおよその境界を決定した。一般的に使用される幾つかの定義(Kabat, E.A. et al. (1991) "Sequences of Proteins of Immunological Interest," Fifth Edition. NIH Publication No. 91-3242; Chothia, C. et al. (1987) "Canonical Structures For The Hypervariable Regions Of Immunoglobulins," J. Mol. Biol. 196:901-917); Honegger, A. et al. (2001) "Yet Another Numbering Scheme For Immunoglobulin Variable Domains: An Automatic Modeling And Analysis Tool," J. Molec. Biol. 309(3):657-670; Chothia's CDR definition (Chothia, C. et al. (1987) "Canonical Structures For The Hypervariable Regions Of Immunoglobulins," J. Mol. Biol. 196:901-917)に従い、可変ドメイン境界を相補性決定領域(CDR)の境界に沿って正確に決定した。以下では、このようなヒト化配列に対して使用する。   Each amino acid chain using a conserved domain database (COD) (Marchler-Bauer, et al. (2011) "COD: A Conserved Domain Database For The Functional Annotation Of Proteins," Nucleic Acids Res. 39: D225-D229) Domain content and approximate boundaries of each domain were determined. Some commonly used definitions (Kabat, EA et al. (1991) "Sequences of Proteins of Immunological Interest," Fifth Edition. NIH Publication No. 91-3242; Chothia, C. et al. (1987) "Canonical Structures For The Hypervariable Regions Of Immunoglobulins," J. Mol. Biol. 196: 901-917); Honegger, A. et al. (2001) "Yet Another Numbering Scheme For Immunoglobulin Variable Domains: An Automatic Modeling And Analysis Tool , "J. Molec. Biol. 309 (3): 657-670; Chothia's CDR definition (Chothia, C. et al. (1987)" Canonical Structures For The Hypervariable Regions Of Immunoglobulins, "J. Mol. Biol. 196: 901-917), the variable domain boundaries were accurately determined along the boundaries of the complementarity determining regions (CDRs). In the following, it will be used for such humanized sequences.

マウスおよびヒトの生殖細胞配列に対する親配列の多重位置合わせをMAFFTを用いて作製し(Katoh, K. et al. (2002) "MAFFT: A Novel Method For Rapid Multiple Sequence Alignment Based On Fast Fourier Transform," Nucleic Acids Res. 30: 3059-3066)、前記親配列との配列同一性に応じて各位置合わせのエントリを順序付けた。100%の配列同一性でクラスタリングを行い、重複しているエントリを除外することによって、参照配列一式を非反復配列一式にまで減少させた。   Multiple alignments of parental sequences to mouse and human germline sequences were made using MAFT (Katoh, K. et al. (2002) "MAFFT: A Novel Method For Rapid Multiple Sequence Alignment Based On Fast Fourier Transform," Nucleic Acids Res. 30: 3059-3066), the entries for each alignment were ordered according to sequence identity with the parent sequence. By clustering with 100% sequence identity and excluding duplicate entries, the reference sequence suite was reduced to a non-repetitive sequence suite.

最適な受容体フレームワークの選択は、上記親抗体全体の配列の両鎖のフレームワーク全域が上記受容体に対して有する配列同一性に基づいて行われた。しかし、VH/VL鎖間界面を形成する位置は特に関心のある対象であった。さらに、何れの生殖細胞のフレームワークが互いに同一の界面残基の両方を備えるとともに、上記CDRの類似のループ構造を支持していることが知られていたかを決定するために、上記CDRの5について定義された不連続な標準構造一式に関与している上記CDRのグループ長および位置(Chothia, C. et al. (1987) "Canonical Structures For The Hypervariable Regions Of Immunoglobulins," J. Mol. Biol. 196:901-917; Martin, A.C. et al. (1996) "Structural Families In Loops Of Homologous Proteins: Automatic Classification, Modelling And Application To Antibodies," J. Molec. Biol 263:800-815; Al-Laziniki, B. et al. (1997) "Standard Conformations For The Canonical Structures Of Immunoglobulins," J. Molec. Biol. 273:927-948)を上記生殖細胞系列と比較された。表6および表7は、Chothiaの定義に従って番号付けが行われており、上記VH/VL界面内の保存位置および上記CDRの標準クラスの決定位置をそれぞれ示す。   The selection of the optimal receptor framework was based on the sequence identity that the entire framework of both chains of the entire parent antibody sequence had for the receptor. However, the location of forming the VH / VL interchain interface was a particularly interesting object. In addition, to determine which germline frameworks were known to have both interface residues identical to each other and to support similar loop structures of the CDRs, Group lengths and positions of the CDRs involved in the discrete set of standard structures defined for (Chothia, C. et al. (1987) "Canonical Structures For The Hypervariable Regions Of Immunoglobulins," J. Mol. Biol. 196: 901-917; Martin, AC et al. (1996) "Structural Families In Loops Of Homologous Proteins: Automatic Classification, Modeling And Application To Antibodies," J. Molec. Biol 263: 800-815; Al-Laziniki, B et al. (1997) "Standard Conformations For The Canonical Structures Of Immunoglobulins," J. Molec. Biol. 273: 927-948) was compared to the germline. Tables 6 and 7 are numbered according to Chothia's definition and show the storage position within the VH / VL interface and the determined position of the standard class of CDRs, respectively.

Figure 0006072771
Figure 0006072771

Figure 0006072771
Figure 0006072771

上記ヒト生殖細胞系列に対する上記親抗体配列の位置合わせに応じて、最も一致性の高いエントリを同定した。好適なヒト生殖細胞系列の選択は、順序付けがなされた次の基準(1)〜(5)に応じて行われた:(1)フレームワーク全域の配列同一性;(2)同一または対応する鎖間界面残基;(3)親CDRの標準立体構造によるループの支持;(4)発現抗体に見られる重鎖および軽鎖の生殖細胞系列の組み合わせ;および(5)除去する必要のあるN−グリコシル化部位の存在。    Depending on the alignment of the parent antibody sequence to the human germline, the most consistent entry was identified. Selection of suitable human germline was performed according to the following ordered criteria (1)-(5): (1) sequence identity across the framework; (2) identical or corresponding strands Interfacial residues; (3) loop support by standard conformation of the parent CDR; (4) a combination of heavy and light chain germline found in the expressed antibody; and (5) N- that needs to be removed. Presence of glycosylation sites.

抗体1H3のFv領域の構造モデルを作製した。フレームワーク(FR)、相補性決定領域(CDR)、および全長Fvの構造鋳型配列候補は、標的に対する配列同一性および鋳型構造の定性性の結晶学的測定(結晶解像度(単位:オングストローム(Å)))に応じて、スコア付けおよびランク付けを行い、抗体データベースからの選択を行った。   A structural model of the Fv region of antibody 1H3 was prepared. Framework (FR), complementarity-determining region (CDR), and full-length Fv structural template sequence candidates are crystallographic measures of sequence identity to the target and qualitative template structure (crystal resolution (unit: angstrom (Å)) )) Was scored and ranked and selected from the antibody database.

上記CDRをFR鋳型に対して構造的に位置合わせするために、上記CDRの何れかの側の5残基をCDR鋳型に含める。上記フラグメントの位置合わせは、重複セグメントおよび作製した構造配列位置合わせに応じて作製した。上記位置合わせに沿った上記鋳型フラグメントをMODELLERで処理した(Sali, A. et al. (1993) "Comparative Protein Modelling By Satisfaction Of Spatial Restraints," J. Molec. Biol. 234:779-815)。このプロトコルによって、位置合わせを行った構造鋳型一式から誘導される立体構造の制限が形成される。共役勾配処置および焼き鈍し最適化処置によって、上記制限を満たす構造集合を作製した。タンパク質構造のスコアおよび構造制限の充足から導き出したエネルギースコアに応じて、この集合からモデル構造を選択した。上記モデルの検査を行い、標的および上記鋳型の間で異なる位置の側鎖は、鎖最適化アルゴリズムおよび最小化したエネルギーを用いて最適化した。視覚化および演算ツール一式を使用して上記CDR構造の可変性、局所包装、および表面分析の評価を行って、1つ以上の好適なモデルを選択した。   In order to structurally align the CDR with respect to the FR template, 5 residues on either side of the CDR are included in the CDR template. The alignment of the fragments was made according to the overlapping segments and the produced structural sequence alignment. The template fragment along the alignment was treated with MODELLER (Sali, A. et al. (1993) “Comparative Protein Modeling By Satisfaction Of Spatial Restraints,” J. Molec. Biol. 234: 779-815). This protocol creates conformational constraints derived from the set of aligned structural templates. A set of structures satisfying the above limitations was produced by conjugate gradient treatment and annealing optimization treatment. A model structure was selected from this set according to the protein structure score and the energy score derived from the satisfaction of the structure restriction. The model was examined and side chains at different positions between the target and the template were optimized using a chain optimization algorithm and minimized energy. One or more suitable models were selected by evaluating the CDR structure variability, local packaging, and surface analysis using a set of visualization and computing tools.

上記親抗体の構造モデルを構築して、原子の不完全包装、または、結合長、結合角度、またはねじれ角の歪みなどの欠陥について検査を行った。これらの欠陥は、抗体の構造安定性に関わる潜在的な問題を示している。モデル化プロトコルでは、このような欠陥を最小限に抑止することを図っている。ヒト化Fvの初期の構造モデルは、安全な置換(すなわち、結合親和力または安定性に作用を及ぼすことのないであろう置換)および慎重な置換(すなわち、位置置換が行われるが、結合親和力にとって位置が重要になり得る)の全てを含むものである。結合親和力の低下または安定性の低下のリスクに関連していると考えられる位置での置換に対しては改変が行われなかった。親との一致性の高い変異体モデルを作製することよりも、良好な独立モデルを作製するために、親鋳型の選択から独立して鋳型の検索または選択が行われた。潜在的な置換の評価が行われるにつれて、上記モデルはアップグレードされて、好適な置換および復帰突然変異の効果を反映した。   A structural model of the parent antibody was constructed and inspected for defects such as incomplete packaging of atoms or distortions in bond length, bond angle, or twist angle. These defects indicate a potential problem with the structural stability of antibodies. The modeling protocol seeks to minimize such defects. The initial structural model of humanized Fv is based on safe substitutions (ie substitutions that would not affect binding affinity or stability) and careful substitutions (ie positional substitutions are made, but for binding affinity). All of which can be important). No modifications were made to substitutions at positions believed to be associated with the risk of reduced binding affinity or decreased stability. In order to create a better independent model than to create a mutant model with high consistency with the parent, template searching or selection was performed independently of the selection of the parent template. As potential substitutions were evaluated, the model was upgraded to reflect the effects of suitable substitutions and backmutations.

〔実施例4:ヒト化抗ヒトB7−H1抗体〕
このようなヒト化誘導体の作製を説明するために、上述の手順に従って抗ヒトB7−H1抗体3D10のヒト化誘導体を作製した。
[Example 4: Humanized anti-human B7-H1 antibody]
To illustrate the preparation of such a humanized derivative, a humanized derivative of anti-human B7-H1 antibody 3D10 was prepared according to the procedure described above.

3D10の軽鎖の可変ドメインをヒト生殖細胞系と比較する配列位置合わせは、IGKV3軽鎖の生殖細胞系(IGKV3−11*01、IGKV3−11*02、IGKV3−NL5*01、IGKV3D−11*01、IGKV3−NL4*01、IGKV3D−7*01、IGKV3D−20*01、IGKV3−20*01、IGKV3−20*02、およびIGKV3−15*01)、IGKV1軽鎖の生殖細胞系(IGKV1−9*01、IGKV1−39*01、IGKV1D−13*01、IGKV1−16*01、 IGKV1−8*01、IGKV1−13*02、IGKV1−NL1*01、IGKV1D−43*01、IGKV1−27*01、およびIGKV1−12*01)、およびIGKJ軽鎖の生殖細胞系(IGKJ4*01、IGKJ2*02、IGKJ2*01、 IGKJ2*04、IGKJ2*03、IGKJ5*01、IGKJ1*01、および IGKJ3*01)を用いて作製した。 Sequence alignments comparing the 3D10 light chain variable domain to the human germline are as follows: IGKV3 light chain germline (IGKV3-11 * 01, IGKV3-11 * 02, IGKV3-NL5 * 01, IGKV3D-11 * 01, IGKV3-NL4 * 01, IGKV3D-7 * 01, IGKV3D-20 * 01, IGKV3-20 * 01, IGKV3-20 * 02, and IGKV3-15 * 01), IGKV1 light chain germline (IGKV1- 9 * 01, IGKV1-39 * 01, IGKV1D-13 * 01, IGKV1-16 * 01, IGKV1-8 * 01, IGKV1-13 * 02, IGKV1-NL1 * 01, IGKV1D-43 * 01, IGKV1-27 * 01, and IGKV1-12 * 01), and germline of IGKJ light chain ( IGKJ4 * 01, IGKJ2 * 02, IGKJ2 * 01, IGKJ2 * 04, IGKJ2 * 03, IGKJ5 * 01, IGKJ1 * 01, and IGKJ3 * 01).

3D10の重鎖の可変ドメインをヒト生殖細胞系と比較する配列位置合わせは、IGHV1の重鎖の生殖細胞系(IGHV1−2*02、IGHV1−2*04、IGHV1−f*01、IGHV1−48*01、IGHV1−2*03、IGHV1−2*01、IGHV1−46*02、IGHV1−2*05、IGHV1−3*01、およびIGHV1−8*01)、IGHV3の重鎖の生殖細胞系(IGHV3−49*04、IGHV3−49*01、IGHV3−49*02、IGHV3−49*03、IGHV3−64*01、IGHV3−64*02、IGHV3−72*01、IGHV3−66*01、およびIGHV3−23*01)、およびIGHJの重鎖の生殖細胞系(IGHJ3*02、 IGHJ6*01、IGHJ3*01、IGHJ6*03、IGHJ5*02、IGHJ5*01、IGHJ4*01、IGHJ1*01、IGHJ6*04、およびIGHJ2*01)を用いて作製した。 Sequence alignments comparing the 3D10 heavy chain variable domain to the human germline are as follows: IGHV1 heavy chain germline (IGHV1-2 * 02, IGHV1-2 * 04, IGHV1-f * 01, IGHV1-48) * 01, IGHV1-2 * 03, IGHV1-2 * 01, IGHV1-46 * 02, IGHV1-2 * 05, IGHV1-3 * 01, and IGHV1-8 * 01), the IGHV3 heavy chain germline ( IGHV3-49 * 04, IGHV3-49 * 01, IGHV3-49 * 02, IGHV3-49 * 03, IGHV3-64 * 01, IGHV3-64 * 02, IGHV3-72 * 01, IGHV3-66 * 01, and IGHV3 -23 * 01), and IGHJ heavy chain germline (IGHJ3 * 02, IGHJ6 * 01, IGHJ 3 * 01, IGHJ6 * 03, IGHJ5 * 02, IGHJ5 * 01, IGHJ4 * 01, IGHJ1 * 01, IGHJ6 * 04, and IGHJ2 * 01).

(A)軽鎖のヒト化
上記基準に基づいて、上記抗体3D10の軽鎖は生殖細胞系IGKV3−11*01(配列番号78)の軽鎖:
(A) Humanization of light chain Based on the above criteria, the light chain of antibody 3D10 is the light chain of germline IGKV3-11 * 01 (SEQ ID NO: 78):

Figure 0006072771
Figure 0006072771

および、生殖細胞系IGKV1−9*01(配列番号79)の軽鎖: And the germline IGKV1-9 * 01 (SEQ ID NO: 79) light chain:

Figure 0006072771
Figure 0006072771

に最も類似していることが見出された。なお、表8(上記抗体3D10のCDR残基はイタリック体で示し、位置合わせが行われた同一の残基は下線で示す)に示すように、IGKV3−11*01が好適である。 Was found to be most similar. Note that IGKV3-11 * 01 is preferable as shown in Table 8 (the CDR residues of the antibody 3D10 are shown in italics, and the same residues that have been aligned are indicated by underlining).

Figure 0006072771
Figure 0006072771

Jセグメントの遺伝子と親配列とをFR4全域について比較し、軽鎖にはJセグメントのIGKJ4*01(配列番号80:LTFGGGTKVEIK)を選択した。 The J segment gene and the parent sequence were compared for the entire FR4, and J segment IGKJ4 * 01 (SEQ ID NO: 80: LTFGGGTKVEIK) was selected as the light chain.

上記に示すように、上記抗体3D10の軽鎖は、標準クラスIループと類似する残基10個分の短鎖CDRL1を有している。ヒト生殖細胞系列は、このような短鎖CDRLlを有していない。選択した各生殖細胞系列(IGKV3−11*01およびIGKV1−9*01)は、こうした種類のループを担持するための正常フレームワーク残基を含むより短鎖のLIループを有する。良好な配列全体の類似性は受容体フレームワークおよび親配列の間に確認されるが、重要な相違点は界面位置Y33およびP45で確認される。残基Y33はCDRLI内に存在する。選択した上記2つの受容体群はこの位置にチロシンを含んでいないが、他の生殖細胞系配列はこの位置にチロシンを含んでいる。上記位置P45における上記受容体フレームワークと上記親配列の相違点は、ヒト生殖細胞系と異なりFR2を有する親生殖細胞系に起因している。この結果として、選択される受容体フレームワークに関わらず、この領域内の変化が提唱され、これにより、IGKV3−11*01およびIGKV1−9*01は受容体フレームワークとして促進された。 As indicated above, the light chain of antibody 3D10 has a short chain CDRL1 of 10 residues similar to the standard class I loop. Human germline does not have such a short CDRL1. Each selected germline (IGKV3-11 * 01 and IGKV1-9 * 01) has a shorter LI loop that contains normal framework residues to carry these types of loops. Good overall sequence similarity is confirmed between the receptor framework and the parental sequence, but important differences are identified at interface positions Y33 and P45. Residue Y33 is present in CDRLI. The two selected groups of receptors do not contain tyrosine at this position, but other germline sequences contain tyrosine at this position. The difference between the receptor framework and the parental sequence at position P45 is due to the parental germline having FR2 unlike the human germline. As a result, regardless of the receptor framework chosen, changes within this region were proposed, which promoted IGKV3-11 * 01 and IGKV1-9 * 01 as receptor frameworks.

上記2つの好適な受容体フレームワーク(IGKV3−11*01およびIGKV1−9*01)の各々について3つのヒト化鎖を作製した。3つのLC1鎖をIGKV3−11*01から誘導し、3つのLC2鎖をIGKV1−9*01から誘導した。各受容体フレームワークの第1のヒト化鎖がヒト化置換の全てを含むことは可能であると考えられ、3つの鎖で最もヒト鎖の性質を示すものであった。各受容体フレームワークの第2のヒト化鎖は、帯電を改変するか、潜在的にコアのパッキングを妨げるか、またはCDRの立体構造に影響を及ぼし得る位置に幾つかの復帰突然変異を含んでいた。コア受容体フレームワークの第3の鎖は、復帰突然変異のほぼ全て(帯電を改変し、かつ結合親和力を改変する可能性を有し得る置換を含む)を含んでいた。上記6つのヒト化鎖の配列を以下に示す。 Three humanized chains were generated for each of the two preferred receptor frameworks (IGKV3-11 * 01 and IGKV1-9 * 01). Three LC1 chains were derived from IGKV3-11 * 01 and three LC2 chains were derived from IGKV1-9 * 01. It was considered possible that the first humanized chain of each receptor framework contained all of the humanized substitutions, with the three chains exhibiting the most human chain properties. The second humanized strand of each receptor framework contains several back mutations at positions that can alter charge, potentially prevent core packing, or affect CDR conformation. It was out. The third strand of the core receptor framework contained nearly all of the back mutations, including substitutions that could alter charge and have the potential to alter binding affinity. The sequences of the six humanized chains are shown below.

Figure 0006072771
Figure 0006072771

親3D10軽鎖との相対的な相違点を太字および下線で示しつつ、上記6つのヒト化鎖の配列を表9に示す。    The sequences of the six humanized chains are shown in Table 9, with relative differences from the parent 3D10 light chain shown in bold and underlined.

Figure 0006072771
Figure 0006072771

(B)重鎖のヒト化
上述の基準に照らして、生殖細胞系受容体フレームワークの2つの候補であるIGHV1−2*02(IGHV1生殖細胞系)およびIGHV3−49*04(IGHV3生殖細胞系)を上記抗体3D10の重鎖のヒト化に選択した。
(B) Humanization of heavy chains In light of the above criteria, two candidates for germline receptor frameworks, IGHV1-2 * 02 (IGHV1 germline) and IGHV3-49 * 04 (IGHV3 germline) ) Was selected for humanization of the heavy chain of antibody 3D10.

上記親配列との配列類似性を有しており、かつドメインのコアパッキングに関与している極めて類似性の高い残基を含んでいることを理由にして、受容体フレームワークIGHV1−2*02を選択した。IGHV1−2*02に類似の他の生殖細胞系配列を検討して排斥した後に、受容体フレームワークIGHV3−49*04を選択した。受容体フレームワークIGHV3−49*04は、上記親配列に対する非類似性がIGHV1−2*02よりも僅かに高いので、より多くの置換基が必要とされた。しかし、この生殖細胞系受容体フレームワークは親CDRを担持することが可能である。上記受容体フレームワークIGHV1−2*02および上記フレームワークIGHV3−49*04の配列を以下に示す。 The receptor framework IGHV1-2 * 02 because it contains sequence similarity to the parent sequence and contains very similar residues involved in the core packing of the domain Selected. After reviewing and rejecting other germline sequences similar to IGHV1-2 * 02, the receptor framework IGHV3-49 * 04 was selected. The receptor framework IGHV3-49 * 04 required slightly more substituents because the dissimilarity to the parent sequence was slightly higher than IGHV1-2 * 02. However, this germline receptor framework can carry the parental CDR. The sequences of the receptor framework IGHV1-2 * 02 and the framework IGHV3-49 * 04 are shown below.

受容体フレームワークIGHV1−2*02(配列番号87) Receptor framework IGHV1-2 * 02 (SEQ ID NO: 87)

Figure 0006072771
Figure 0006072771

受容体フレームワークIGHV3−49*04(配列番号88) Receptor framework IGHV3-49 * 04 (SEQ ID NO: 88)

Figure 0006072771
Figure 0006072771

表10は、これら配列と上記抗体3D10の重鎖との位置合わせを示す(上記抗体3D10のCDR残基はイタリックで示し、位置合わせの行われた同一の残基は下線で示す);   Table 10 shows the alignment of these sequences with the heavy chain of antibody 3D10 (the CDR residues of antibody 3D10 are shown in italics and the same aligned residues are underlined);

Figure 0006072771
Figure 0006072771

上記Jセグメントの配列を上記親配列とFR4全域について比較し、上記JセグメントのIGHJ3*02(配列番号89:DAFDIWGQGTMVTVSS)を重鎖に選択した。 The sequence of the J segment was compared with the parent sequence for the entire FR4 region, and IGHJ3 * 02 (SEQ ID NO: 89: DAFDIWGQGTMVTVSS) of the J segment was selected as the heavy chain.

上記2つの好適な受容体フレームワークIGHV1−2*02およびIGHV3−49*04の各々について3つのヒト化鎖を作製した。IGHV1−2*02から3つのHC1鎖を誘導し、IGHV3−49*04から3つのHC2鎖を誘導した。各受容体フレームワークの第1のヒト化鎖は、可能と考えられる全てのヒト化置換を含み、3つの鎖のうち最もヒト鎖に近いものであった。各受容体フレームワークの第2のヒト化鎖は、帯電を改変するか、潜在的にコアのパッキングを妨げるか、CDRの立体構造に影響を及ぼし得るような位置に幾つかの復帰突然変異を含む。各受容体フレームワークの第3の鎖は、復帰突然変異のほぼ全て(帯電を改変し、かつ潜在的に結合親和力を改変し得る置換)を含むものであった。上記6つの鎖の配列を以下に示す。 Three humanized chains were generated for each of the two preferred receptor frameworks IGHV1-2 * 02 and IGHV3-49 * 04. Three HC1 chains were derived from IGHV1-2 * 02 and three HC2 chains were derived from IGHV3-49 * 04. The first humanized chain of each receptor framework, including all possible humanized substitutions, was the closest to the human chain of the three chains. The second humanized strand of each receptor framework has several backmutations in positions that may alter the charge, potentially prevent core packing, or affect the CDR conformation. Including. The third strand of each receptor framework contained nearly all of the back mutations (substitutions that can alter charge and potentially alter binding affinity). The six strand sequences are shown below.

Figure 0006072771
Figure 0006072771

上記親3D10の重鎖に相対的な相違点を太字および下線で示しつつ、上記6つのヒト化鎖の配列を図11に示す。    The sequence of the six humanized chains is shown in FIG. 11 with the differences relative to the parent 3D10 heavy chain shown in bold and underlined.

Figure 0006072771
Figure 0006072771

(C)抗体3D10のヒト化誘導体
IGKV3−11*01およびIGHV1−2*02の対合に類似の生殖細胞系の組み合わせを有する抗体が存在したことを検査によって確認した。この対合を受容体1と標識した。さらに、IGKV1−9*01とIGHV3−49*04に類似の生殖細胞系の組み合わせを有する抗体を発見した。この対合を受容体2と標識した。
(C) Humanized derivative of antibody 3D10 It was confirmed by examination that there was an antibody with a germline combination similar to the pairing of IGKV3-11 * 01 and IGHV1-2 * 02. This pairing was labeled as receptor 1. Furthermore, antibodies with germline combinations similar to IGKV1-9 * 01 and IGHV3-49 * 04 were discovered. This pairing was labeled as receptor 2.

上述の重鎖および軽鎖のヒト化鎖を組み合わせて14個の変異ヒト化抗体を作製した。これら変異ヒト化抗体の配列を表12に示す。   Fourteen humanized antibodies were generated by combining the above-described heavy and light chain humanized chains. The sequences of these mutant humanized antibodies are shown in Table 12.

Figure 0006072771
Figure 0006072771

〔実施例5:ヒト化抗ヒトPD−1抗体の作製〕
このようなヒト化誘導体の作製を説明するために、上述の手順(1H3の可変領域およびヒトIgG1のFc領域を組み込んだキメラ抗体を親抗体として使用した)に従って抗ヒトPD−1抗体1H3のヒト化誘導体を作製した。
[Example 5: Production of humanized anti-human PD-1 antibody]
To illustrate the preparation of such a humanized derivative, humans of anti-human PD-1 antibody 1H3 were prepared according to the procedure described above (a chimeric antibody incorporating the variable region of 1H3 and the Fc region of human IgG1 was used as the parent antibody). A modified derivative was prepared.

1H3軽鎖の可変ドメインをヒト生殖細胞系と比較する配列アライメントは、IGKV3軽鎖生殖細胞系(IGKV3−11*01、IGKV3−11*02、IGKV3D−11*01、IGKV3D−20*01、IGKV3−NL4*01、IGKV3D−7*01、IGKV3−20*01、IGKV3−NL5*01、IGKV3−15*01、IGKV3−NL1*01、IGKV3−20*01、IGKV3−NL2*01、IGKV3−NL3*01)、IGKV1軽鎖生殖細胞系(IGKV1−9*01、IGKV1D−43*01、IGKV1−39*01、IGKV1D−13*02、IGKV1−8*01、IGKV1D−13*01、IGKV1−12*01、IGKV1D−16*01、IGKV1−5*01、およびIGKV1−NL1*01)、およびIGKJ軽鎖生殖細胞系(IGKJ2*02、IGKJ2*01、IGKJ2*04、IGKJ2*03、IGKJ5*01、IGKJ4*01、IGKJ3*01、およびIGKJ1*01)を用いて作製した。 Sequence alignments comparing the variable domain of the 1H3 light chain to the human germline are IGKV3 light chain germline (IGKV3-11 * 01, IGKV3-11 * 02, IGKV3D-11 * 01, IGKV3D-20 * 01, IGKV3 -NL4 * 01, IGKV3D-7 * 01, IGKV3-20 * 01, IGKV3-NL5 * 01, IGKV3-15 * 01, IGKV3-NL1 * 01, IGKV3-20 * 01, IGKV3-NL2 * 01, IGKV3-NL3 * 01), IGKV1 light chain germline (IGKV1-9 * 01, IGKV1D-43 * 01, IGKV1-39 * 01, IGKV1D-13 * 02, IGKV1-8 * 01, IGKV1D-13 * 01, IGKV1-12 * 01, IGKV1D-16 * 01 , IGKV1-5 * 01 And IGKV1-NL1 * 01), and IGKJ light chain germline the (IGKJ2 * 02, IGKJ2 * 01 , IGKJ2 * 04, IGKJ2 * 03, IGKJ5 * 01, IGKJ4 * 01, IGKJ3 * 01, and IGKJ1 * 01) It was made using.

1H3重鎖の可変ドメインをヒト生殖細胞系と比較する配列アライメントは、IGHV3重鎖生殖細胞系(IGHV3−48*01、IGHV3−48*02、IGHV3−48*03、IGHV3−11*01、IGHV3−21*01、IGHV3−11*03、IGHV3−30*03、IGHV3−9*01、IGHV3−7*01、およびIGHV3−30*10)、IGHV1重鎖生殖細胞系(IGHV1−3*01、IGHV1−69*08、IGHV1−69*11、IGHV1−46*01、IGHV1−69*05、IGHV1−69*06、IGHV1−69*01、IGHV1−46*02、IGHV1−69*02、およびIGHV1−69*10)、および、IGHJ重鎖生殖細胞系(IGHJ6*01、IGHJ6*03、IGHJ4*01、IGHJ6*04、IGHJ5*02、IGHJ3*02、IGHJ5*01、IGHJ3*01、IGHJ2*01、およびIGHJ1*01)を用いて作製した。 Sequence alignments comparing the variable domain of the 1H3 heavy chain to the human germline are IGHV3 heavy chain germline (IGHV3-48 * 01, IGHV3-48 * 02, IGHV3-48 * 03, IGHV3-11 * 01, IGHV3 -21 * 01, IGHV3-11 * 03, IGHV3-30 * 03, IGHV3-9 * 01, IGHV3-7 * 01, and IGHV3-30 * 10), IGHV1 heavy chain germline (IGHV1-3 * 01, IGHV1-69 * 08, IGHV1-69 * 11, IGHV1-46 * 01, IGHV1-69 * 05, IGHV1-69 * 06, IGHV1-69 * 01, IGHV1-46 * 02, IGHV1-69 * 02, and IGHV1 -69 * 10), and, IGHJ heavy chain germline (IGHJ6 * 01, IG J6 * 03, IGHJ4 * 01, IGHJ6 * 04, IGHJ5 * 02, IGHJ3 * 02, IGHJ5 * 01, IGHJ3 * 01, IGHJ2 * 01, and IGHJ1 * 01) was made using the.

軽鎖および重鎖の各々について、全体の配列同一性、マッチング界面位置、および類似分類のCDR標準位置に基づいて、2つの生殖細胞系群を可能な受容体フレームワークとして同定した(軽鎖についてはIGKV3およびIGKV1を同定し、重鎖については1GHV3およびIGHV1を同定した)。抗体1H3は、上記軽鎖の生殖細胞系1GKV3−11*01および上記重鎖の生殖細胞系IGHV3−48*01に最も類似しているが見出された。軽鎖および重鎖の各々について、全体の配列同一性、マッチング界面位置、および類似分類のCDR標準位置に基づいて、2つの生殖細胞系群を可能な受容体フレームワークとして同定した(軽鎖についてはIGKV3およびIGKV1を同定し、重鎖については1GHV3、IGHV1を同定した)。 For each light and heavy chain, two germline groups were identified as possible receptor frameworks (for light chains) based on overall sequence identity, matching interface positions, and similar classes of CDR standard positions. Identified IGKV3 and IGKV1, and identified 1GHV3 and IGHV1 for the heavy chain). Antibody 1H3 was found to be most similar to the light chain germline 1GKV3-11 * 01 and the heavy chain germline IGHV3-48 * 01. For each light and heavy chain, two germline groups were identified as possible receptor frameworks (for light chains) based on overall sequence identity, matching interface positions, and similar classes of CDR standard positions. Identified IGKV3 and IGKV1, and identified 1GHV3 and IGHV1 for the heavy chain).

(A)軽鎖のヒト化
抗体1H3は、残基10個分の短鎖のCDRL1を含み、標準クラスIに分類される。ヒト生殖細胞系ではこのように短鎖のCDRL1を含むものはないが、選択された各群(IGKV3−II*01およびIGKV1−9*01)のうち最も近しい生殖細胞系は短L1ループを有し、クラスIのLIループを担持するのに適正のフレームワーク残基を含んでいる。全体の配列類似性は受容体フレームワークの両方にとって良好であるが、2つの界面位置(Y33およびP45)において相違している。Y33はCDRLl内に存在する。上記2つの受容体群がこの位置にチロシンを含まない一方で、他の潜在的な受容体群はこの位置にチロシンを含んでいる。P45の相違点は、上記親軽鎖のFR2内に存在する多数の他の相違点と結び付いていた。要するに、上記親生殖細胞系は、FR2がヒト生殖細胞系内の何れにも非類似のマウス生殖細胞系群に属している。
(A) Humanization of light chain Antibody 1H3 contains short-chain CDRL1 for 10 residues and is classified as standard class I. No human germline contains such a short chain CDRL1, but the closest germline of each selected group (IGKV3-II * 01 and IGKV1-9 * 01) has a short L1 loop. And contain the proper framework residues to carry a class I LI loop. Overall sequence similarity is good for both receptor frameworks, but differs at the two interface positions (Y33 and P45). Y33 is present in CDRL1. While the above two receptor groups do not contain tyrosine at this position, other potential receptor groups contain tyrosine at this position. The differences in P45 have been linked to a number of other differences that exist within FR2 of the parent light chain. In short, the parent germline belongs to the mouse germline group in which FR2 is dissimilar to any human germline.

軽鎖の受容体フレームワークとして、生殖細胞系1GKV3−11*01およびIGKV1−9*01を選択した。上記1GKV3−11*01およびIGKV1−9*01の軽鎖の配列は、それぞれ配列番号78および配列番号79として先述している。上記配列と抗体1H3の軽鎖との位置合わせを表13に示す(抗体1H3のCDR残基はイタリックで示し、位置合わせを行った同一の残基は下線で示す)。 Germline 1GKV3-11 * 01 and IGKV1-9 * 01 were selected as light chain receptor frameworks. The light chain sequences of 1GKV3-11 * 01 and IGKV1-9 * 01 are described above as SEQ ID NO: 78 and SEQ ID NO: 79, respectively. The alignment of the above sequence with the light chain of antibody 1H3 is shown in Table 13 (the CDR residues of antibody 1H3 are italicized and the same residues that have been aligned are underlined).

Figure 0006072771
Figure 0006072771

FR4全体についてJセグメントの遺伝子を親配列と比較し、JセグメントのIGKJ2*02(配列番号96:CTFGQGTKLEIK)を軽鎖に選択した。 For the entire FR4, the J segment gene was compared with the parent sequence, and the J segment IGKJ2 * 02 (SEQ ID NO: 96: CTFGQGTKLEIK) was selected as the light chain.

上記2つの好適な受容体フレームワークIGKV3−11*01およびIGKV1−9*01の各々について2つのヒト化鎖を作製した。IGKV3−11*01から2つのLC1鎖を誘導し、IGKV1−9*01から2つのLC2鎖を誘導した。各受容体フレームワークの第1のヒト化鎖は、可能と考えられるヒト化置換の全てを含んでおり、3つの鎖のうち最もヒト鎖に近いものであった。各受容体フレームワークの第2のヒト化鎖は、帯電を改変するか、潜在的にコアのパッキングを妨げるか、または、CDRの構造に影響を及ぼし得る位置に幾つかの復帰突然変異を含んでいる。上記4つのヒト化鎖の配列を以下に示す。 Two humanized chains were generated for each of the two preferred receptor frameworks IGKV3-11 * 01 and IGKV1-9 * 01. To induce the two LC1 chain from IGKV3-11 * 01, it was induced two LC2 chain from IGKV1-9 * 01. The first humanized chain of each receptor framework contained all possible humanized substitutions and was the closest to the human chain of the three chains. The second humanized strand of each receptor framework contains several back mutations at positions that can alter charge, potentially prevent core packing, or affect the structure of the CDRs. It is out. The sequences of the four humanized chains are shown below.

Figure 0006072771
Figure 0006072771

上記4つのヒト化鎖の配列は、親1H3 Var1軽鎖に相対的な相違点を太字および下線で示して表14に示す。    The sequences of the four humanized chains are shown in Table 14 with the differences relative to the parental 1H3 Var1 light chain shown in bold and underlined.

Figure 0006072771
Figure 0006072771

(B)重鎖のヒト化
上述の基準に照らして、生殖細胞系受容体フレームワークの2つの候補であるIGHV3−48*01(IGHV3生殖細胞系)およびIGHV1−3*01(IGHV1生殖細胞系)を抗体1H3 Var1の重鎖のヒト化のために選択した。
(B) Humanization of heavy chain In light of the above criteria, two candidates for germline receptor frameworks, IGHV3-48 * 01 (IGHV3 germline) and IGHV1-3 * 01 (IGHV1 germline) ) Was selected for humanization of the heavy chain of antibody 1H3 Var1.

受容体フレームワーク1GHV3−48*01は、その全体的な配列類似性から一次重鎖受容体フレームワークとして選択した。上記界面残基は、変異の発生可能であって、この変異がCDRH1の標準クラスを決定するための適正残基を含んでいる位置であるH35を除いて一致性を示す。CDRH2は、位置56のチロシンの存在によって、配列系の標準クラスに分類されなかった。上記受容体フレームワークIGHV3−48*01と密接に関連している任意の生殖細胞系を除いた後、上記第2の重鎖受容体フレームワークの選択を行った。最も近しい生殖細胞系はその後にIGHV1−3*01となった。考慮すべき相違点の数は、下コアのパッキングが異なっているため増大することになった。しかし、上記生殖細胞系は、CDRを担持し、好適な受容体フレームワークとして機能するものである。なお、上記親配列は、全ヒト生殖細胞系がチロシンを含んでいる保存位置60においてシステインを含む。上記受容体フレームワーク1GHV3−48*01およびIGHV1−3*01の配列を以下に示す。 The receptor framework 1GHV3-48 * 01 was selected as the primary heavy chain receptor framework because of its overall sequence similarity. The interfacial residues can be mutated and are consistent except for H35, which is the position where the mutation contains the proper residues to determine the standard class of CDRH1. CDRH2 was not classified into the standard class of sequence systems due to the presence of tyrosine at position 56. After removing any germline closely related to the receptor framework IGHV3-48 * 01, the second heavy chain receptor framework was selected. The closest germline later became IGHV1-3 * 01. The number of differences to consider has increased due to the different packing of the lower core. However, the germline carries a CDR and functions as a suitable receptor framework. The parent sequence contains a cysteine at conserved position 60 where all human germline contains tyrosine. The sequences of the receptor frameworks 1GHV3-48 * 01 and IGHV1-3 * 01 are shown below.

受容体フレームワーク1GHV3−48*01(配列番号101) Receptor framework 1GHV3-48 * 01 (SEQ ID NO: 101)

Figure 0006072771
Figure 0006072771

受容体フレームワークIGHV1−3*01(配列番号102) Receptor framework IGHV1-3 * 01 (SEQ ID NO: 102)

Figure 0006072771
Figure 0006072771

表15は、上記配列と抗体1H3の重鎖との位置合わせの結果を示している(抗体1H3のCDR残基はイタリックで示し、位置合わせを行った同一残基は下線で示している)。    Table 15 shows the results of alignment of the above sequences with the heavy chain of antibody 1H3 (the CDR residues of antibody 1H3 are shown in italics and the same residues that have been aligned are underlined).

Figure 0006072771
Figure 0006072771

FR4全体についてJセグメントの遺伝子を上記親配列と比較した。JセグメントのIGHJ6*01(配列番号103:WGQGTTVTV)を重鎖に選択した。 The gene of J segment was compared with the parent sequence for the entire FR4. J segment IGHJ6 * 01 (SEQ ID NO: 103: WGQGTTVTV) was selected as the heavy chain.

上記2つの好適な受容体フレームワークIGHV3−48*01およびIGHV1−3*01の各々について3つのヒト化鎖を作製した。上記IGHV3−48*01から3つのHC1鎖を誘導し、上記IGHV1−3*01から3つのHC2鎖を誘導した。各受容体フレームワークの第1のヒト化鎖は、可能とみなされる全てのヒト化置換を含み、上記3つの鎖のうち最もヒト鎖に近いものであった。各受容体フレームワークの第2のヒト化鎖は、帯電を改変するか、潜在的にコアのパッキングを妨げるか、またはCDRの構造に影響を及ぼし得る位置に幾つかの復帰突然変異を含んでいた。各受容体フレームワークの第3の鎖は、ほぼ全ての復帰突然変異(帯電を改変し、かつ潜在的に結合親和力を改変し得る置換を含む)を含んでいた。上記6つのヒト化鎖の配列を以下に示す。 Three humanized chains were generated for each of the two preferred receptor frameworks IGHV3-48 * 01 and IGHV1-3 * 01. It induces three HC1 chains from the IGHV3-48 * 01, induced three HC2 chains from the IGHV1-3 * 01. The first humanized chain of each receptor framework contained all humanized substitutions considered possible and was the closest to the human chain of the three chains. The second humanized strand of each receptor framework contains several back mutations at positions that can alter charge, potentially prevent core packing, or affect the structure of the CDRs. It was. The third strand of each receptor framework contained almost all back mutations (including substitutions that could alter the charge and potentially alter the binding affinity). The sequences of the six humanized chains are shown below.

Figure 0006072771
Figure 0006072771

上記親1H3との相対的な相違点を太字および下線で示しつつ、上記6つのヒト化鎖の配列を表16に示す。    The sequences of the six humanized chains are shown in Table 16 with the relative differences from the parent 1H3 shown in bold and underlined.

Figure 0006072771
Figure 0006072771

(C)抗体1H3のヒト化誘導体
IGKV3−11*01および重鎖IGHV3−48*01との対合に近しい生殖細胞系の組み合わせを有する抗体が存在したことを検査によって確認した。この対合を受容体Iと標識した。その後、IGKVI−9*01およびIGHVI−3*01の対合に類似の対合を有する抗体が発見された。この対合を受容体2と標識した。
(C) Humanized derivative of antibody 1H3 It was confirmed by testing that there was an antibody with a germline combination close to pairing with IGKV3-11 * 01 and heavy chain IGHV3-48 * 01. This pairing was labeled as receptor I. Subsequently, antibodies with similar pairs to those of IGKVI-9 * 01 and IGHVI-3 * 01 were discovered. This pairing was labeled as receptor 2.

上述の軽鎖および重鎖ヒト化鎖を組み合わせて14個の変異ヒト化抗体を作製した。これら変異ヒト化抗体の配列を表17に記載する。   14 mutant humanized antibodies were prepared by combining the above light chain and heavy chain humanized chain. The sequences of these mutant humanized antibodies are listed in Table 17.

Figure 0006072771
Figure 0006072771

〔実施例6:1H3抗ヒトPD−1抗体の特性決定〕
本発明の抗PD−1抗体の特性の評価を行うために、抗体1H3のマウス抗ヒトキメラ(「ch」)PD−1のFab領域とヒトIgG1のFc領域とを有するコンストラクト(1H3コンストラクト)を作製した。ヒトPD−1との結合能について、上記コンストラクトの試験を行った。
Example 6: Characterization of 1H3 anti-human PD-1 antibody
In order to evaluate the characteristics of the anti-PD-1 antibody of the present invention, a construct (1H3 construct) having a mouse anti-human chimera (“ch”) PD-1 Fab region of antibody 1H3 and an Fc region of human IgG1 is prepared. did. The construct was tested for its ability to bind to human PD-1.

ヒト全長PD−1で形質転換したCHO細胞をビオチン標識抗hB7−H1−Fcまたは抗hB7−DCmFcで染色する前に飽和線量のPD−1 mAbsで事前に培養を行った実験の結果を図12に示す。図12では、抗体1H3のマウス抗ヒトキメラ(「ch」)PD−1Fab領域とヒトIgG1のFc領域とを有するマウスモノクローナル抗体のコンストラクトは、ヒトPD−1を発現している細胞に抗体が結合した結果として、B7−H1−FcおよびB7−DC−Fcがこの細胞と結合することを阻害したことを示している。M1、m3、1E8は全て、陽性対照の抗PD−1抗体である。非還元ゲル上では、上記コンストラクトが約200MWの単一の帯として遊走した。還元条件下において、上記帯と約52MWの帯との置換を行った。   FIG. 12 shows the results of an experiment in which CHO cells transformed with human full-length PD-1 were previously cultured with a saturated dose of PD-1 mAbs before staining with biotin-labeled anti-hB7-H1-Fc or anti-hB7-DCmFc. Shown in In FIG. 12, a mouse monoclonal antibody construct having the mouse anti-human chimera (“ch”) PD-1 Fab region of antibody 1H3 and the Fc region of human IgG1 is bound to a cell expressing human PD-1. As a result, it was shown that B7-H1-Fc and B7-DC-Fc inhibited binding to this cell. M1, m3, 1E8 are all positive control anti-PD-1 antibodies. On the non-reducing gel, the construct migrated as a single band of about 200 MW. Under the reducing conditions, the above band was replaced with a band of about 52 MW.

上記1H3コンストラクトは、2.19nMの親和性KD、0.734×10-5/Msの「on速度」、および1.61×10-4/sの「off速度」を示した。上記コンストラクトのEC50は75gであることが見出された。図13では、このコンストラクトによって得られた結合を市販の抗PD−1抗体であるEH12によって得られた結合と比較している。上記コンストラクトは、図14に示すようなB7−H1−FcまたはB7−DC−Fcに対するhPD−1(CHO細胞によって発現)の結合能を完全に阻害することが可能であることが見出された。図15では、キメラ1H3コンストラクトがhPD−1−Fcと結合し、このようなhPD−1−FcがCHO細胞によって発現されるhB7−H1と結合することを阻害するが可能であることを示している。 The 1H3 construct exhibited an affinity K D of 2.19 nM, an “on rate” of 0.734 × 10 −5 / Ms, and an “off rate” of 1.61 × 10 −4 / s. The EC 50 of the construct was found to be 75 g. In FIG. 13, the binding obtained with this construct is compared to the binding obtained with the commercially available anti-PD-1 antibody EH12. The construct was found to be able to completely inhibit the binding ability of hPD-1 (expressed by CHO cells) to B7-H1-Fc or B7-DC-Fc as shown in FIG. . FIG. 15 shows that the chimeric 1H3 construct binds to hPD-1-Fc and can inhibit such hPD-1-Fc from binding to hB7-H1 expressed by CHO cells. Yes.

上記IH3コンストラクトが有するヒト一次T細胞との結合能を対照抗体(palivizumab:SYNAGIS(登録商標)、Medimmune, Inc.)と相対的に評価した。上記IH3は、CD8細胞およびCD4細胞の双方に対する結合が向上していることを示した(図16Aおよび16B)。   The binding ability of the IH3 construct to human primary T cells was evaluated relative to a control antibody (palivizumab: SYNAGIS (registered trademark), Medimune, Inc.). The IH3 showed improved binding to both CD8 and CD4 cells (FIGS. 16A and 16B).

本発明の抗体の機能特性を説明するために、上記コンストラクト1H3、抗体1H3のFAB領域を含むキメラ抗体コンストラクト(「コンストラクト1H3」)、抗体1E3のFAB領域を含むキメラ抗体コンストラクト(「1E3コンストラクト」)、および抗体3D10のFAB領域を含むキメラ抗体コンストラクト(「3D10コンストラクト」)について、T細胞活性を向上させる能の評価を行った。未成熟の樹状細胞(DC)をTNFαおよびPGE2に2日間晒した(成熟2日目に細胞を50μg/mlの破傷風トキソイド(TT)の存在下で一晩培養した)。この結果得られた細胞は、B7−H1およびB7−DCを発現する能を獲得してこの能に決定されるような成熟DCとなっていたことが見出された。その後、カルボキシフルオレセインスクシンイミジルエステル(CFSE)で標識した自己T細胞と、100ng/mlのTTと、上述の抗体コンストラクトとの存在下で、成熟後のDC細胞を2週間培養した。図17に示すように、本発明の抗体は、抗体特異的記憶T細胞の膨張によって測定されるように、B7−H1およびPD−1の相互作用を阻害することが可能であった。7日目、細胞上清中に存在しているサイトカインの分析を行った(表18)。   In order to explain the functional properties of the antibody of the present invention, the above-mentioned construct 1H3, a chimeric antibody construct comprising the FAB region of antibody 1H3 (“construct 1H3”), a chimeric antibody construct comprising the FAB region of antibody 1E3 (“1E3 construct”) , And a chimeric antibody construct containing the FAB region of antibody 3D10 (“3D10 construct”) was evaluated for its ability to improve T cell activity. Immature dendritic cells (DC) were exposed to TNFα and PGE2 for 2 days (cells were cultured overnight in the presence of 50 μg / ml tetanus toxoid (TT) on day 2 of maturation). It was found that the resulting cells acquired the ability to express B7-H1 and B7-DC and were mature DC as determined by this ability. Thereafter, matured DC cells were cultured for 2 weeks in the presence of autologous T cells labeled with carboxyfluorescein succinimidyl ester (CFSE), 100 ng / ml TT, and the above antibody construct. As shown in FIG. 17, the antibodies of the present invention were able to inhibit the interaction of B7-H1 and PD-1 as measured by expansion of antibody specific memory T cells. On day 7, the cytokines present in the cell supernatant were analyzed (Table 18).

Figure 0006072771
Figure 0006072771

表18に示すように、上記抗hPD−1コンストラクトの双方のTh1反応およびTh2反応が促進された。上記細胞上清中には極めて少量のIL−1β、IL−2、IL−4、IL−7、IL−10、およびG−CSFが見出された。mAbは全て、エンドトキシンが0.01EU/mg未満と極めて少量であった。さらに、上記DC細胞および上記T細胞を無血清培地に保存した。7日目の細胞に細胞内IFN−γ染色を行ったことによって、対照細胞の僅か0.15%のみがIFN−γ+であったのに対して、上記IH3コンストラクトで培養を行っていた細胞の1.9%がIFN−γ+であり、上記1E3コンストラクトで培養を行っていた細胞の0.91%がIFN−γ+であり、上記3D10コンストラクトで培養を行っていた細胞の3.2%がIFN−γ+であったことが明らかになった。 As shown in Table 18, both the Th1 reaction and Th2 reaction of the anti-hPD-1 construct were promoted. Very small amounts of IL-1β, IL-2, IL-4, IL-7, IL-10, and G-CSF were found in the cell supernatant. All mAbs had very low endotoxins of less than 0.01 EU / mg. Furthermore, the DC cells and the T cells were stored in a serum-free medium. By performing intracellular IFN-γ staining on the cells on the 7th day, only 0.15% of the control cells were IFN-γ + , whereas cells cultured with the above IH3 construct 1.9% were IFN-γ +, the 1E3 0.91% of the construct in cells that had been cultured is IFN-γ +, 3.2 cells were then cultured in the 3D10 construct % Was IFN-γ + .

したがって要約すれば、上記1H3コンストラクトは、T細胞の細胞増殖が約7倍に増大することを媒介し、各細胞毎のIFN−γ産生が約12倍に増大することを媒介したことが見出された。このような作用の累積的な効果として、IFN−γ分泌が約100倍に増大した。   Thus, in summary, the 1H3 construct was found to mediate about 7-fold increase in cell proliferation of T cells and about 12-fold increase in IFN-γ production per cell. It was done. As a cumulative effect of such action, IFN-γ secretion increased approximately 100-fold.

さらなる機能特性決定として、単球由来のDCをTNFαおよびPGE2で培養することによって成熟させた。その後、クラスIおよびIIの制限CEFペプチド(すなわち、サイトメガロウイルス(Cytomegalovirus)、エプスタインバーウイルス(Epstein−Barr virus)、およびインフルエンザウイルス(influenza virus)のペプチド)を混合した集合の存在下で細胞にパルスを2時間与え、CFSEで標識した自己T細胞(LDカラム、純度95%)を用いて2週間培養を行った。その後、CFSEで標識した自己T細胞(LDカラム、純度95%)および上述の抗体コンストラクトの存在下において、上記処理を行った細胞を2週間培養した。7日目、CFSEで希釈したT細胞のパーセンテージは、対照抗体で培養した細胞については40%であり、上記1H3コンストラクトで培養した細胞については37%であり、上記3D10コンストラクトで培養した細胞については50%であり、抗体CA−18C3(抗IL−1α特定的モノクローナル抗体)で培養した細胞については57%であることが見出された。11日目、CFSEで希釈したT細胞のパーセンテージの評価を再度行った。その結果、上記CFSEで希釈したT細胞のパーセンテージは、上記対照抗体で培養した細胞については17%であり、上記1H3コンストラクトで培養した細胞については38%であることが見出された。その後、上記CFSEで希釈したT細胞のパーセンテージは、上記抗体CA−18C3で培養した細胞については27%であることが見出された。   For further functional characterization, monocyte-derived DCs were matured by culturing with TNFα and PGE2. The cells were then added to cells in the presence of a mixed population of class I and II restricted CEF peptides (ie, Cytomegalovirus, Epstein-Barr virus, and influenza virus peptides). Pulses were given for 2 hours and cultured for 2 weeks using autologous T cells (LD column, purity 95%) labeled with CFSE. Thereafter, the cells treated with the above treatment were cultured in the presence of CFSE-labeled autologous T cells (LD column, purity 95%) and the above-described antibody construct for 2 weeks. On day 7, the percentage of T cells diluted with CFSE is 40% for cells cultured with control antibody, 37% for cells cultured with the 1H3 construct, and for cells cultured with the 3D10 construct. It was found to be 50% and 57% for cells cultured with antibody CA-18C3 (anti-IL-1α specific monoclonal antibody). On day 11, the percentage of T cells diluted with CFSE was evaluated again. As a result, the percentage of T cells diluted with CFSE was found to be 17% for cells cultured with the control antibody and 38% for cells cultured with the 1H3 construct. Subsequently, the percentage of T cells diluted with the CFSE was found to be 27% for cells cultured with the antibody CA-18C3.

7日目、IL−2サイトカインおよびIFN−γサイトカインに関しても、上記処理を行った細胞の上清の分析を行った(表19)。   On day 7, the supernatant of cells subjected to the above treatment was also analyzed for IL-2 cytokine and IFN-γ cytokine (Table 19).

Figure 0006072771
Figure 0006072771

11日目、IFN−γサイトカイン、TNFαサイトカイン、およびGM−CSFサイトカインに関しても、上記処理を行った細胞の上清の分析を行った。上記1H3コンストラクトは、3種類全てのサイトカインが対照抗体と相対的して向上するのを媒介したことが見出された(表20)。   On the 11th day, the supernatant of the cells subjected to the above treatment was also analyzed for IFN-γ cytokine, TNFα cytokine, and GM-CSF cytokine. The 1H3 construct was found to mediate the improvement of all three cytokines relative to the control antibody (Table 20).

Figure 0006072771
Figure 0006072771

さらなる機能特性決定として、単球由来のDC(HLA−A2陽性のドナーPBMCから取得)をTNFαおよびPGE2に曝して成熟させた。その後、HLA−A2制限MART−1ペプチドおよびHLA−A2制限FluM1ペプチドと一緒に、上記成熟させたDCにパルスを2時間与えた。その後、CFSEで標識した自己T細胞(LDカラム、純度95%)と上述の1H3コンストラクトまたは3D10コンストラクトとの存在下において、上記細胞を2週間培養した。上記MART−1ペプチドおよび上記M1ペプチドのサイトカイン産生に対する効果を表21に示す。    For further functional characterization, monocyte-derived DCs (obtained from HLA-A2 positive donor PBMC) were matured by exposure to TNFα and PGE2. The mature DCs were then pulsed for 2 hours with HLA-A2 restricted MART-1 peptide and HLA-A2 restricted FluM1 peptide. Thereafter, the cells were cultured for 2 weeks in the presence of CFSE-labeled autologous T cells (LD column, purity 95%) and the 1H3 construct or 3D10 construct described above. Table 21 shows the effects of the MART-1 peptide and the M1 peptide on cytokine production.

Figure 0006072771
Figure 0006072771

〔実施例7:ヒト化抗PD−1抗体の特性決定〕
上述のヒト化抗体1H3_var1〜1H3_var14(表17参照)の評価を行って、ヒトPD−1に対する結合能および治療能力の確認を行った。上記抗体をエンコードするポリペプチドはCHO細胞内で発現された。ELISA法を用いて機能的抗体の力価の決定を行った(表22)。
Example 7: Characterization of humanized anti-PD-1 antibody
The above-described humanized antibodies 1H3_var1 to 1H3_var14 (see Table 17) were evaluated to confirm the binding ability and therapeutic ability to human PD-1. The polypeptide encoding the antibody was expressed in CHO cells. The titer of functional antibodies was determined using an ELISA method (Table 22).

Figure 0006072771
Figure 0006072771

結合がヒトPD−1に特定的であるよう確実にするために、ヒトPD−1を発現するように形質転換を行ったCHO細胞を用いて結合の評価を行った。このような結合実験の結果を図18A〜18Dに示す。上記結合の実験を1ng、3ng、10ng、30ng、100ng、300ng、1000ng、または3000ngのh1H3変異体の存在下において繰り返し行うことによって、このようなヒト化抗体のPD−1に対する結合能はあらゆる場合において抗体濃度に依存していることが見出された。    To ensure that the binding was specific for human PD-1, binding was assessed using CHO cells that were transformed to express human PD-1. The results of such binding experiments are shown in FIGS. By repeating the above binding experiments in the presence of 1 ng, 3 ng, 10 ng, 30 ng, 100 ng, 300 ng, 1000 ng, or 3000 ng of h1H3 mutant, the ability of such a humanized antibody to bind to PD-1 is in any case Was found to be dependent on antibody concentration.

PD−1およびその天然リガンドの間の相互作用を阻害する本発明のヒト化抗PD−1抗体の阻害能を実証するために、B7−H1(またはB7−DC)と選択したh1H3変異体との存在下において、PD−1を発現するHEK293細胞を培養した。上記h1H3変異抗体は、上記B7−H1が上記HEK293細胞に結合することを阻害可能であることが見出された(図19A(B7−H1);図19B(B7−DC)(Ctl= synagis, WT=キメラ1H3))。   To demonstrate the ability of the humanized anti-PD-1 antibodies of the present invention to inhibit the interaction between PD-1 and its natural ligand, B7-H1 (or B7-DC) and a selected h1H3 variant HEK293 cells expressing PD-1 were cultured in the presence of. The h1H3 mutant antibody was found to be capable of inhibiting the binding of the B7-H1 to the HEK293 cells (FIG. 19A (B7-H1); FIG. 19B (B7-DC) (Ctl = synagis, WT = chimera 1H3)).

表23は、500ml規模での一過性発現および精製手段で得られた結果を示す。非還元性ゲルは、発現された抗体は主として約160kDの単一の帯として遊走することを示した。なお、還元性ゲル中で分析を行った場合では、上記帯は約60kDおよび約30kDの帯に置換されていた。この結果は、受容体1h1H3変異体(h1H3 Var1、h1H3 Var3、h1H3 Var4、およびh1H3 Var6)はヒトPD−1との良好な結合を示す一方で、受容体2h1H3変異体(h1H3 Var7〜h1H3 Var14)はヒトPD−1とのより不良の結合を示した。したがって、受容体1h1H3変異体であるh1H3 Var1〜h1H3 Var6の重鎖および軽鎖をクローニングして二重遺伝子ベクター(DGV:Lonza Biologics, Berkshire, UK; Bebbington, C.R. et al. (1992) "High-Level Expression Of A Recombinant Antibody From Myeloma Cells Using A Glutamine Synthetase Gene As An Amplifiable Selectable Marker," Biotechnology (NY) 10(2):169-175)を作製し、これをCHOに形質転換することによって、安定して抗体を産生する細胞株の作製を可能にした。   Table 23 shows the results obtained with transient expression and purification means on a 500 ml scale. Non-reducing gels showed that the expressed antibodies migrated mainly as a single band of about 160 kD. When the analysis was performed in a reducing gel, the band was replaced with bands of about 60 kD and about 30 kD. This result shows that receptor 1h1H3 variants (h1H3 Var1, h1H3 Var3, h1H3 Var4, and h1H3 Var6) show good binding to human PD-1, while receptor 2h1H3 variants (h1H3 Var7 to h1H3 Var14) Showed poorer binding to human PD-1. Accordingly, the heavy and light chains of the receptor 1h1H3 variant, h1H3 Var1-h1H3 Var6, were cloned to create a dual gene vector (DGV: Lonza Biologics, Berkshire, UK; Bebbington, CR et al. (1992) "High- Level Expression Of A Recombinant Antibody From Myeloma Cells Using A Glutamine Synthetase Gene As An Amplifiable Selectable Marker, “Biotechnology (NY) 10 (2): 169-175), which is stabilized by transforming into CHO This makes it possible to produce cell lines that produce antibodies.

Figure 0006072771
Figure 0006072771

抗体濃度を0.5ng/ml、1.5ng/ml、5ng/ml、15ng/ml、50ng/ml、150ng/ml、および500ng/ml、並びに1.5μg/ml、5μg/ml、15μg/ml、および50μg/mlとして結合分析を行った結果、結合は抗体濃度に依存していることが判明した。上記変異体のPD−1特異的な結合能は、0nM〜約350nMの範囲の抗体濃度で決定した。図20は、その結果得られるh1H3 Var1〜h1H3 Var6についての曲線を示し、これらの抗体がPD−1に結合することを示唆している。抗体h1H3 Var1およびh1H3 Var4は、親抗体と相対して低下した結合を示した。その一方、抗体h1H3 Var2、h1H3 Var3、h1H3 Var5、およびh1H3 Var6は、上記親抗体の結合に相当する結合を示した。これらの抗体に関するEC50のデータを表23に示す。   Antibody concentrations of 0.5 ng / ml, 1.5 ng / ml, 5 ng / ml, 15 ng / ml, 50 ng / ml, 150 ng / ml, and 500 ng / ml, and 1.5 μg / ml, 5 μg / ml, 15 μg / ml As a result of binding analysis at 50 μg / ml, binding was found to be dependent on antibody concentration. The PD-1 specific binding ability of the mutants was determined at antibody concentrations ranging from 0 nM to about 350 nM. FIG. 20 shows the resulting curves for h1H3 Var1-h1H3 Var6, suggesting that these antibodies bind to PD-1. Antibodies h1H3 Var1 and h1H3 Var4 showed reduced binding relative to the parent antibody. On the other hand, the antibodies h1H3 Var2, h1H3 Var3, h1H3 Var5, and h1H3 Var6 showed binding corresponding to the binding of the parent antibody. EC50 data for these antibodies is shown in Table 23.

本明細書で言及した全ての刊行物および特許については、参照することによって、その内容を援用するものである。なお、援用の範囲に関しては、参照することによって、その内容全体を援用する旨を個々の刊行物および特許について個別具体的に示した場合と同一の範囲まで含めるものである。本発明を特定の実施形態に関連して説明してきたが、さらなる変更を行うことが可能であることが理解されるであろう。また、本出願は、一般的に本発明の原則に従い、発明の任意の変更、使用、または適合を含むように意図されたものであることも理解されるであろう。そして、本出願は、本願開示内容からの変更が本発明の属する技術分野において公知または慣行の範囲内において行われる場合には、これら変更も含むものであり、先に規定した本質的特徴について適用され得ることも理解されるであろう。   The contents of all publications and patents mentioned in this specification are incorporated by reference. In addition, with respect to the scope of incorporation, by reference, the scope of incorporation includes the same scope as when individual publications and patents specifically indicate that the entire contents are incorporated. Although the present invention has been described with reference to particular embodiments, it will be understood that further modifications can be made. It will also be understood that this application is intended to generally include any modification, use, or adaptation of the invention in accordance with the principles of the invention. In addition, this application includes any changes made from the disclosure of the present application within the scope of publicly known or practiced in the technical field to which the present invention belongs, and includes these changes, and applies to the essential features defined above. It will also be understood that this can be done.

B7−H1に結合する抗体に関してテストされたハイブリドーマ上清の結合を示す図である。陽性対照(PC):ハイブリドーマ生成に用いられたマウス由来の1:1000希釈血清;陰性対照(NC):5%ミルク/PBS。B7−H1−Fcに対する結合および抗マウスIgGを用いた検出に関してデータが示される。FIG. 5 shows the binding of hybridoma supernatants tested for antibodies that bind to B7-H1. Positive control (PC): 1: 1000 diluted serum from mice used for hybridoma generation; Negative control (NC): 5% milk / PBS. Data are shown for binding to B7-H1-Fc and detection with anti-mouse IgG. 単離抗B7−H1抗体がPD−1に対するB7−H1の結合を調節することができるかどうかを判定するための実験結果を示す図である。陽性対照:クローンMIH−1および29E.2A3(両者は抗ヒトCD274(B7−H1);2つの陰性対照:無関係ハイブリドーマ(ランダムAb)およびベクター対照(VC)由来の馴化培地。FIG. 6 shows the results of an experiment for determining whether an isolated anti-B7-H1 antibody can modulate B7-H1 binding to PD-1. Positive controls: clones MIH-1 and 29E. 2A3 (both anti-human CD274 (B7-H1); two negative controls: conditioned medium from irrelevant hybridoma (random Ab) and vector control (VC). CHO−HB7−HLに対するに関してテストされた抗B7−HL抗体の中央値蛍光強度(MFI)を示す図である。テストされたクローンのいずれも、親CHOラインとの交差反応は認められず、発現した抗体がヒトB7−H1に対して免疫特異性があることを示した。FIG. 5 shows median fluorescence intensity (MFI) of anti-B7-HL antibodies tested for CHO-HB7-HL. None of the tested clones were cross-reactive with the parental CHO line, indicating that the expressed antibody was immunospecific for human B7-H1. 選択された抗ヒトB7−H1抗体のヒトB7−H1発現CHO細胞結合アッセイの中央値蛍光強度(MFI)の結果を示す図である。FIG. 3 shows the median fluorescence intensity (MFI) results of human B7-H1 expressing CHO cell binding assays for selected anti-human B7-H1 antibodies. 抗ヒトB7−H1抗体5H1および1E12のヒトB7−HL発現CHO細胞結合アッセイの中央値蛍光強度(MFI)の結果を比較する図である。FIG. 6 compares the median fluorescence intensity (MFI) results of human B7-HL expressing CHO cell binding assays of anti-human B7-H1 antibodies 5H1 and 1E12. 単離された抗ヒトPD−1抗体の抗原結合及びアイソタイプを示す図である。It is a figure which shows the antigen binding and isotype of isolated anti-human PD-1 antibody. 単離されたハイブリドーマの幾つかが、中和抗ヒトPD−1抗体を発現したことを示す実験結果を示す図である。It is a figure which shows the experimental result which shows that some of the isolated hybridomas expressed neutralizing anti-human PD-1 antibody. 単離されたハイブリドーマの幾つかが、中和抗ヒトPD−1抗体を発現したことを示す実験結果を示す図である。It is a figure which shows the experimental result which shows that some of the isolated hybridomas expressed neutralizing anti-human PD-1 antibody. CHO−hPD−1に対する結合に関してテストされた抗PD−1抗体の中央値蛍光強度(MFI)を示す図である。テストされたクローンの何れも、親CHOラインとの交差反応は認められず、発現した抗体がヒトPD−1に対して免疫特異的性があることを示した。FIG. 5 shows median fluorescence intensity (MFI) of anti-PD-1 antibodies tested for binding to CHO-hPD-1. None of the tested clones showed any cross-reactivity with the parental CHO line, indicating that the expressed antibody was immunospecific for human PD-1. 選択された抗ヒトPD−1抗体のヒトPD−1発現CHO細胞結合アッセイの中央値蛍光強度(MFI)を示す図である。陽性対照:EH12(BioLegendから市販されている抗ヒトPD−1抗体);mIgG1:マウスIgG陰性対照。FIG. 3 shows median fluorescence intensity (MFI) of human PD-1 expressing CHO cell binding assay for selected anti-human PD-1 antibodies. Positive control: EH12 (anti-human PD-1 antibody commercially available from BioLegend); mIgG1: mouse IgG negative control. 抗ヒトPD−1抗体の濃度変更時の細胞ベースの競合アッセイの中央値蛍光強度(MFI)の結果を示す図である。It is a figure which shows the result of the median fluorescence intensity (MFI) of the cell-based competition assay at the time of the density | concentration change of an anti-human PD-1 antibody. ヒトPD−1抗体の濃度が20μg/mlの時の細胞ベースの競合アッセイの中央値蛍光強度(MFI)の結果を示す図である。It is a figure which shows the result of the median fluorescence intensity (MFI) of a cell-based competition assay when the density | concentration of a human PD-1 antibody is 20 microgram / ml. ヒトの完全長PD−1をトランスフェクトしたCHO細胞を、ビオチン標識hB7−H1−FCまたはhB7−DCmIgにより染色する前に、飽和量の抗ヒトPD−1モノクローナル抗体(mAbs)または対照Igと共に事前培養した実験の結果を示す図である。CHO cells transfected with human full-length PD-1 were pre-stained with a saturating amount of anti-human PD-1 monoclonal antibody (mAbs) or control Ig before staining with biotin-labeled hB7-H1-FC or hB7-DCmIg. It is a figure which shows the result of the cultured experiment. パネルAおよびパネルBが、(A)市販の抗PD−1抗体、EH12、と(B)キメラ(”CH”)マウス抗ヒトPD−1のFab領域およびヒトIgG1のFc領域とを有するマウスモノクローナル抗体との比較結合を示す図である。Panel A and Panel B have (A) a commercially available anti-PD-1 antibody, EH12, and (B) a chimeric (“CH”) mouse anti-human PD-1 Fab region and a human IgG1 Fc region. It is a figure which shows the comparison coupling | bonding with an antibody. パネルAおよびパネルBが、ビオチン化B7−HL−Fcとビオチン化B7−DC−FcのPD−1に対する結合のブロッキング効果を発揮する、本発明の抗PD−1抗体の能力を示す図である。Panel A and Panel B show the ability of the anti-PD-1 antibody of the present invention to exert a blocking effect on the binding of biotinylated B7-HL-Fc and biotinylated B7-DC-Fc to PD-1. . 抗hIg抗体によって検出された、CHO.hPD−1細胞に対する1H3抗ヒトPD−1キメラ抗体の結合曲線を示す図である。CHO. Detected by anti-hIg antibody. It is a figure which shows the binding curve of 1H3 anti-human PD-1 chimeric antibody with respect to hPD-1 cell. 陰性対照抗体(palivizumab;SYNAGIS(登録商標)、Medimmune、Inc.)と比較して、ヒト初代T細胞CD8+(図16A)およびCD4+(図16B)に対して結合する、1H3抗ヒトPD−1キメラ抗体の能力の研究結果を示す図である。1H3 anti-human PD-1 chimera that binds to human primary T cells CD8 + (FIG. 16A) and CD4 + (FIG. 16B) compared to negative control antibodies (palivizumab; SYNAGIS®, Medimune, Inc.) It is a figure which shows the research result of the capability of an antibody. 陰性対照抗体(palivizumab;SYNAGIS(登録商標)、Medimmune、Inc.)と比較して、ヒト初代T細胞CD8+(図16A)およびCD4+(図16B)に対して結合する、1H3抗ヒトPD−1キメラ抗体の能力の研究結果を示す図である。1H3 anti-human PD-1 chimera that binds to human primary T cells CD8 + (FIG. 16A) and CD4 + (FIG. 16B) compared to negative control antibodies (palivizumab; SYNAGIS®, Medimune, Inc.) It is a figure which shows the research result of the capability of an antibody. 破傷風毒素(TT)のリコールの際に、CFSE希釈により測定された抗原特異的T細胞の応答を高める、本発明の抗体の能力を示す図である。FIG. 3 shows the ability of the antibodies of the invention to enhance antigen-specific T cell responses as measured by CFSE dilution upon tetanus toxin (TT) recall. CHO.hPDl細胞に結合するヒト化1H3変異体(h1H3 Var1〜h1H3 Var14)の能力を実証する図である。CHO. FIG. 3 demonstrates the ability of humanized 1H3 variants (h1H3 Var1 to h1H3 Var14) to bind to hPD1 cells. CHO.hPDl細胞に結合するヒト化1H3変異体(h1H3 Var1〜h1H3 Var14)の能力を実証する図である。CHO. FIG. 3 demonstrates the ability of humanized 1H3 variants (h1H3 Var1 to h1H3 Var14) to bind to hPD1 cells. CHO.hPDl細胞に結合するヒト化1H3変異体(h1H3 Var1〜h1H3 Var14)の能力を実証する図である。CHO. FIG. 3 demonstrates the ability of humanized 1H3 variants (h1H3 Var1 to h1H3 Var14) to bind to hPD1 cells. CHO.hPDl細胞に結合するヒト化1H3変異体(h1H3 Var1〜h1H3 Var14)の能力を実証する図である。CHO. FIG. 3 demonstrates the ability of humanized 1H3 variants (h1H3 Var1 to h1H3 Var14) to bind to hPD1 cells. B7−H1(図19A)またはB7−DC(図19B)を発現するhPD−1−FcおよびHEK293細胞間の相互作用をブロックする、ヒト化抗PD−1抗体の能力を実証する図である。FIG. 19 demonstrates the ability of a humanized anti-PD-1 antibody to block the interaction between hPD-1-Fc and HEK293 cells expressing B7-H1 (FIG. 19A) or B7-DC (FIG. 19B). B7−H1(図19A)またはB7−DC(図19B)を発現するhPD−1−FcおよびHEK293細胞間の相互作用をブロックする、ヒト化抗PD−1抗体の能力を実証する図である。FIG. 19 demonstrates the ability of a humanized anti-PD-1 antibody to block the interaction between hPD-1-Fc and HEK293 cells expressing B7-H1 (FIG. 19A) or B7-DC (FIG. 19B). h1H3 Var1〜h1H3 Var6の結合曲線を示す図である。It is a figure which shows the binding curve of h1H3 Var1-h1H3 Var6.

Claims (29)

PD−1に結合する抗体またはその抗原結合フラグメントであって、
配列番号98の24番目〜33番目のアミノ酸を含む第1の軽鎖CDRと、配列番号98の49番目〜55番目のアミノ酸を含む第2の軽鎖CDRと、配列番号98の88番目〜96番目のアミノ酸を含む第3の軽鎖CDRと、
配列番号106の26番目〜35番目のアミノ酸を含む第1の重鎖CDRと、配列番号106の50番目〜66番目のアミノ酸を含む第2の重鎖CDRと、配列番号106の99番目〜111番目のアミノ酸を含む第3の重鎖CDR
とを含む抗体またはその抗原結合フラグメント。
An antibody or antigen-binding fragment thereof that binds to PD-1,
A first light chain CDR comprising amino acids 24 to 33 of SEQ ID NO: 98; a second light chain CDR comprising amino acids 49 to 55 of SEQ ID NO: 98; and 88 to 96 of SEQ ID NO: 98. A third light chain CDR comprising the th amino acid;
A first heavy chain CDR comprising the 26th to 35th amino acids of SEQ ID NO: 106, a second heavy chain CDR comprising the 50th to 66th amino acids of SEQ ID NO: 106, and 99th to 111 of SEQ ID NO: 106 Third heavy chain CDR containing the amino acid of position
Or an antigen-binding fragment thereof.
配列番号98のアミノ酸配列を含む軽鎖可変領域を含む請求項1に記載の抗体またはその抗原結合フラグメント。   The antibody or antigen-binding fragment thereof according to claim 1, comprising a light chain variable region comprising the amino acid sequence of SEQ ID NO: 98. 配列番号106のアミノ酸配列を含む重鎖可変領域を含む請求項1または2に記載の抗体またはその抗原結合フラグメント。   The antibody or antigen-binding fragment thereof according to claim 1 or 2, comprising a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 106. 配列番号98のアミノ酸配列を含む軽鎖可変領域と、配列番号106のアミノ酸配列を含む重鎖可変領域とを含む請求項1〜3のいずれか1項に記載の抗体またはその抗原結合フラグメント。   The antibody or antigen-binding fragment thereof according to any one of claims 1 to 3, comprising a light chain variable region comprising the amino acid sequence of SEQ ID NO: 98 and a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 106. 結合した前記PD−1が、生細胞の表面に内因性濃度または形質移入濃度で発現される請求項1〜4のいずれか1項に記載の抗体またはその抗原結合フラグメント。   The antibody or antigen-binding fragment thereof according to any one of claims 1 to 4, wherein the bound PD-1 is expressed at an endogenous concentration or a transfection concentration on the surface of a living cell. 前記生細胞はT細胞である請求項5に記載の抗体またはその抗原結合フラグメント。   The antibody or antigen-binding fragment thereof according to claim 5, wherein the living cell is a T cell. 前記PD−1はヒトPD−1である請求項1〜6のいずれか1項に記載の抗体またはその抗原結合フラグメント。   7. The antibody or antigen-binding fragment thereof according to any one of claims 1 to 6, wherein the PD-1 is human PD-1. 前記抗体またはその抗原結合フラグメントが、
(A)PD−1リガンドの、PD−1に結合する能力を弱める;
(B)PD−1仲介シグナル伝達を刺激する;
(C)T細胞の増殖を増強する;
(D)IFN−γの産生を高める;または
(E)これらの組み合わせを実行する
請求項1〜7のいずれか1項に記載の抗体またはその抗原結合フラグメント。
The antibody or antigen-binding fragment thereof,
(A) weakens the ability of PD-1 ligand to bind to PD-1;
(B) stimulates PD-1 mediated signaling;
(C) enhance T cell proliferation;
(D) Increase production of IFN-γ; or (E) The antibody or antigen-binding fragment thereof according to any one of claims 1 to 7, wherein a combination thereof is performed.
免疫グロブリン定常領域(Fc)由来の1つまたはそれ以上の定常ドメインを含む請求項1〜8のいずれか1項に記載の抗体またはその抗原結合フラグメント。   9. The antibody or antigen-binding fragment thereof according to any one of claims 1 to 8, comprising one or more constant domains derived from an immunoglobulin constant region (Fc). 前記定常ドメインはヒト定常ドメインである請求項9に記載の抗体またはその抗原結合フラグメント。   The antibody or antigen-binding fragment thereof according to claim 9, wherein the constant domain is a human constant domain. 前記ヒト定常ドメインは、IgA、IgD、IgE、IgGまたはIgMドメインである請求項10に記載の抗体またはその抗原結合フラグメント。   The antibody or antigen-binding fragment thereof according to claim 10, wherein the human constant domain is an IgA, IgD, IgE, IgG, or IgM domain. ヒトlgG定常ドメインは、IgG1、IgG2、IgG3またはIgG4ドメインである請求項11に記載の抗体またはその抗原結合フラグメント。   The antibody or antigen-binding fragment thereof according to claim 11, wherein the human lgG constant domain is an IgG1, IgG2, IgG3, or IgG4 domain. 前記抗体またはその抗原結合フラグメントは、検出可能に標識化されているか、または、共役毒素、薬剤、受容体、酵素、受容体リガンドを含む請求項1〜12のいずれか1項に記載の抗体またはその抗原結合フラグメント。   13. The antibody of any one of claims 1 to 12, wherein the antibody or antigen-binding fragment thereof is detectably labeled or comprises a conjugated toxin, drug, receptor, enzyme, receptor ligand. Its antigen-binding fragment. 前記抗体は、モノクローナル抗体キメラ抗体、またはヒト化抗体である請求項1〜13のいずれか1項に記載の抗体またはその抗原結合フラグメント。 The antibody or antigen-binding fragment thereof according to any one of claims 1 to 13, wherein the antibody is a monoclonal antibody , a chimeric antibody, or a humanized antibody. PD−1に結合するヒト化抗体またはその抗原結合フラグメントであって、配列番号98のアミノ酸配列を含む軽鎖可変領域と、配列番号106のアミノ酸配列を含む重鎖可変領域と、1つまたはそれ以上のヒトIgG4定常ドメインとを含む、ヒト化抗体またはその抗原結合フラグメント。 A humanized antibody or antigen-binding fragment thereof that binds to PD-1, comprising a light chain variable region comprising the amino acid sequence of SEQ ID NO: 98, a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 106, and one or more thereof A humanized antibody or antigen-binding fragment thereof comprising the above human IgG4 constant domain. 請求項1〜15のいずれか1項に記載の抗体またはその抗原結合フラグメントと、生理学的に許容できる担体または添加剤とを含む医薬組成物。   A pharmaceutical composition comprising the antibody or antigen-binding fragment thereof according to any one of claims 1 to 15 and a physiologically acceptable carrier or additive. 癌の対象を処置する方法における使用のための医薬組成物であって、
治療効果のある量の請求項16に記載の医薬組成物を含む、医薬組成物。
A pharmaceutical composition for use in a method of treating a cancer subject comprising:
17. A pharmaceutical composition comprising a therapeutically effective amount of the pharmaceutical composition of claim 16.
前記医薬組成物は、前記癌の任意の症状が出る前に投与される請求項17に記載の医薬組成物。   18. The pharmaceutical composition according to claim 17, wherein the pharmaceutical composition is administered before any symptoms of the cancer appear. 感染症の対象を処置する方法における使用のための医薬組成物であって、
治療効果のある量の請求項16に記載の医薬組成物を含む、医薬組成物。
A pharmaceutical composition for use in a method of treating a subject with an infection, comprising:
17. A pharmaceutical composition comprising a therapeutically effective amount of the pharmaceutical composition of claim 16.
前記医薬組成物は、前記感染症の任意の症状が出る前に投与される請求項19に記載の医薬組成物。   20. The pharmaceutical composition according to claim 19, wherein the pharmaceutical composition is administered before any symptoms of the infection occur. 前記感染症は慢性ウイルス病である請求項19に記載の医薬組成物。   The pharmaceutical composition according to claim 19, wherein the infectious disease is chronic viral disease. 癌の処置のための医薬品の製造における請求項1〜15のいずれか1項に記載の抗体またはその抗原結合フラグメントの使用。   Use of the antibody or antigen-binding fragment thereof according to any one of claims 1 to 15 in the manufacture of a medicament for the treatment of cancer. 感染症の処置のための医薬品の製造における請求項1〜15のいずれか1項に記載の抗体またはその抗原結合フラグメントの使用。   Use of the antibody or antigen-binding fragment thereof according to any one of claims 1 to 15 in the manufacture of a medicament for the treatment of infectious diseases. PD−1の増大した発現によって特徴付けられる疾病の対象を処置する方法における使用のための医薬組成物であって、前記方法が、
(i)前記対象が、PD−1の増大した発現によって特徴付けられる疾病を有するかを決定する工程であって、
(a)請求項1〜15のいずれか1項に記載の抗体またはその抗原結合フラグメントを使用して、前記対象の細胞または組織サンプル内のPD−1発現のアッセイを行う工程と、
(b)前記PD−1のレベルを対照レベルと比較する工程であって、前記アッセイを行った前記PD−1のレベルが前記対照レベルと比較して増大している場合、前記対象が、前記PD−1の増大した発現によって特徴付けられる疾病を有することが示されている、工程とによって決定する、工程と、
(ii)前記対象が、PD−1の増大した発現によって特徴付けられる疾病を有する場合、前記対象に、治療的に有効な量の請求項16に記載の医薬組成物を投与する工程とを有する、医薬組成物。
A pharmaceutical composition for use in a method of treating a subject with a disease characterized by increased expression of PD-1, said method comprising:
(I) determining whether the subject has a disease characterized by increased expression of PD-1.
(A) performing an assay for PD-1 expression in the cell or tissue sample of interest using the antibody or antigen-binding fragment thereof of any one of claims 1-15;
(B) comparing the level of the PD-1 with a control level, wherein if the level of the PD-1 subjected to the assay is increased compared to the control level, the subject Determining by having a disease characterized by increased expression of PD-1; and
(Ii) if the subject has a disease characterized by increased expression of PD-1, administering to the subject a therapeutically effective amount of the pharmaceutical composition of claim 16. , Pharmaceutical composition.
前記PD−1の増大した発現によって特徴付けられる疾病は、癌である請求項24に記載の医薬組成物。   25. The pharmaceutical composition according to claim 24, wherein the disease characterized by increased expression of PD-1 is cancer. 前記PD−1の増大した発現によって特徴付けられる疾病は、感染症である請求項24に記載の医薬組成物。   25. The pharmaceutical composition according to claim 24, wherein the disease characterized by increased expression of PD-1 is an infectious disease. B7−H1の増大した発現によって特徴付けられる疾病の対象を処置する方法における使用のための医薬組成物であって、前記方法が、
(i)前記対象が、B7−H1の増大した発現によって特徴付けられる疾病を有するかを決定する工程であって、
(a)抗B7−H1抗体またはその抗原結合フラグメントを使用して、前記対象の細胞または組織サンプル内のB7−H1発現のアッセイを行う工程と、
(b)前記B7−H1のレベルを対照レベルと比較する工程であって、前記アッセイを行った前記B7−H1のレベルが前記対照レベルと比較して増大している場合、前記対象が、前記B7−H1の増大した発現によって特徴付けられる疾病を有することが示されている、工程とによって決定する、工程と、
(ii)前記対象が、B7−H1の増大した発現によって特徴付けられる疾病を有する場合、前記対象に、治療的に有効な量の請求項16に記載の医薬組成物を投与する工程とを有する、医薬組成物。
A pharmaceutical composition for use in a method of treating a subject with a disease characterized by increased expression of B7-H1, said method comprising:
(I) determining whether the subject has a disease characterized by increased expression of B7-H1, comprising
(A) performing an assay for B7-H1 expression in the cell or tissue sample of interest using an anti-B7-H1 antibody or antigen-binding fragment thereof;
(B) comparing the level of B7-H1 to a control level, wherein if the level of B7-H1 assayed is increased compared to the control level, the subject is Determining by having a disease characterized by increased expression of B7-H1,
(Ii) if the subject has a disease characterized by increased expression of B7-H1, administering a therapeutically effective amount of the pharmaceutical composition of claim 16 to the subject. , Pharmaceutical composition.
前記B7−H1の増大した発現によって特徴付けられる疾病は、癌である請求項27に記載の医薬組成物。   28. The pharmaceutical composition according to claim 27, wherein the disease characterized by increased expression of B7-H1 is cancer. 前記B7−H1の増大した発現によって特徴付けられる疾病は、感染症である請求項27に記載の医薬組成物。   28. The pharmaceutical composition according to claim 27, wherein the disease characterized by increased expression of B7-H1 is an infectious disease.
JP2014506544A 2011-04-20 2012-04-19 Antibodies and other molecules that bind to B7-H1 and PD-1 Expired - Fee Related JP6072771B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161477414P 2011-04-20 2011-04-20
US61/477,414 2011-04-20
PCT/US2012/034223 WO2012145493A1 (en) 2011-04-20 2012-04-19 Antibodies and other molecules that bind b7-h1 and pd-1

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016254558A Division JP2017101042A (en) 2011-04-20 2016-12-28 Antibody and other molecules that bind b7-h1 and pd-1

Publications (3)

Publication Number Publication Date
JP2014523401A JP2014523401A (en) 2014-09-11
JP2014523401A5 JP2014523401A5 (en) 2015-06-18
JP6072771B2 true JP6072771B2 (en) 2017-02-01

Family

ID=47041916

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014506544A Expired - Fee Related JP6072771B2 (en) 2011-04-20 2012-04-19 Antibodies and other molecules that bind to B7-H1 and PD-1
JP2016254558A Pending JP2017101042A (en) 2011-04-20 2016-12-28 Antibody and other molecules that bind b7-h1 and pd-1

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016254558A Pending JP2017101042A (en) 2011-04-20 2016-12-28 Antibody and other molecules that bind b7-h1 and pd-1

Country Status (20)

Country Link
US (2) US9205148B2 (en)
EP (2) EP3403672A1 (en)
JP (2) JP6072771B2 (en)
KR (1) KR101970025B1 (en)
CN (1) CN103608040B (en)
AU (1) AU2012245477C1 (en)
CA (1) CA2833636A1 (en)
CY (1) CY1120626T1 (en)
DK (1) DK2699264T3 (en)
ES (1) ES2669310T3 (en)
HR (1) HRP20180893T1 (en)
HU (1) HUE037651T2 (en)
LT (1) LT2699264T (en)
MX (1) MX338353B (en)
PL (1) PL2699264T3 (en)
PT (1) PT2699264T (en)
RS (1) RS57324B1 (en)
RU (1) RU2625034C2 (en)
SI (1) SI2699264T1 (en)
WO (1) WO2012145493A1 (en)

Families Citing this family (681)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018361B2 (en) 2008-01-31 2016-11-02 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Antibodies against human CD39 and their use for inhibiting regulatory T cell activity
TWI686405B (en) 2008-12-09 2020-03-01 建南德克公司 Anti-pd-l1 antibodies and their use to enhance t-cell function
WO2011159877A2 (en) * 2010-06-18 2011-12-22 The Brigham And Women's Hospital, Inc. Bi-specific antibodies against tim-3 and pd-1 for immunotherapy in chronic immune conditions
PL3409278T3 (en) 2011-07-21 2021-02-22 Sumitomo Pharma Oncology, Inc. Heterocyclic protein kinase inhibitors
BR112014028826A8 (en) 2012-05-15 2021-07-20 Bristol Myers Squibb Co monoclonal antibodies, use of anti-pd1, anti-pd-1 and anti-ctla-4 antibodies in immunotherapy and cancer treatment, as well as kits and individual selection process for treatment with anti-pd-1 antibody
CN112587658A (en) 2012-07-18 2021-04-02 博笛生物科技有限公司 Targeted immunotherapy for cancer
PL2904011T3 (en) 2012-10-02 2018-01-31 Bristol Myers Squibb Co Combination of anti-kir antibodies and anti-pd-1 antibodies to treat cancer
RU2015129551A (en) * 2012-12-19 2017-01-25 Эмплиммьюн, Инк. ANTIBODIES TO HUMAN B7-H4 AND THEIR APPLICATION
KR20150100715A (en) * 2012-12-21 2015-09-02 앰플리뮨, 인크. Anti-h7cr antibodies
WO2014121085A1 (en) 2013-01-31 2014-08-07 Thomas Jefferson University Pd-l1 and pd-l2-based fusion proteins and uses thereof
CA2901269C (en) 2013-03-06 2022-01-18 Astrazeneca Ab Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor
WO2014151006A2 (en) * 2013-03-15 2014-09-25 Genentech, Inc. Biomarkers and methods of treating pd-1 and pd-l1 related conditions
WO2014194293A1 (en) * 2013-05-30 2014-12-04 Amplimmune, Inc. Improved methods for the selection of patients for pd-1 or b7-h4 targeted therapies, and combination therapies thereof
WO2014209804A1 (en) * 2013-06-24 2014-12-31 Biomed Valley Discoveries, Inc. Bispecific antibodies
PL3030262T3 (en) 2013-08-08 2020-07-27 Cytune Pharma Combined pharmaceutical composition
PL3444271T3 (en) 2013-08-08 2022-03-07 Cytune Pharma Il-15 and il-15ralpha sushi domain based modulokines
AR097306A1 (en) 2013-08-20 2016-03-02 Merck Sharp & Dohme MODULATION OF TUMOR IMMUNITY
EP3043820A4 (en) 2013-09-13 2017-07-12 F. Hoffmann-La Roche AG Methods and compositions comprising purified recombinant polypeptides
RU2016107435A (en) 2013-09-13 2017-10-18 Дженентек, Инк. COMPOSITIONS AND METHODS FOR DETECTING AND QUANTITATIVE DETERMINATION OF THE PROTEIN OF CELLS-OWNERS IN CELL LINES AND RECOMBINANT POLYPEPTIDE PRODUCTS
HUE060420T2 (en) * 2013-09-13 2023-02-28 Beigene Switzerland Gmbh Anti-pd1 antibodies and their use as therapeutics and diagnostics
ES2728578T3 (en) 2013-09-20 2019-10-25 Bristol Myers Squibb Co Combination of anti-LAG-3 antibodies and anti-PD-1 antibodies to treat tumors
WO2015048312A1 (en) * 2013-09-26 2015-04-02 Costim Pharmaceuticals Inc. Methods for treating hematologic cancers
SG11201604738TA (en) 2013-12-12 2016-07-28 Shanghai Hengrui Pharm Co Ltd Pd-1 antibody, antigen-binding fragment thereof, and medical application thereof
EA201990240A1 (en) 2013-12-24 2019-06-28 Бристол-Маерс Сквибб Компани NEW TRICYCLIC CONNECTIONS AS ANTICATIVE AGENTS
SG11201605455YA (en) 2014-01-10 2016-08-30 Birdie Biopharmaceuticals Inc Compounds and compositions for treating egfr expressing tumors
TWI681969B (en) 2014-01-23 2020-01-11 美商再生元醫藥公司 Human antibodies to pd-1
TWI680138B (en) 2014-01-23 2019-12-21 美商再生元醫藥公司 Human antibodies to pd-l1
JOP20200094A1 (en) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc Antibody molecules to pd-1 and uses thereof
JOP20200096A1 (en) 2014-01-31 2017-06-16 Children’S Medical Center Corp Antibody molecules to tim-3 and uses thereof
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
WO2015134605A1 (en) 2014-03-05 2015-09-11 Bristol-Myers Squibb Company Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
NZ725006A (en) 2014-03-12 2019-11-29 Yeda Res & Dev Reducing systemic regulatory t cell levels or activity for treatment of disease and injury of the cns
US10519237B2 (en) 2014-03-12 2019-12-31 Yeda Research And Development Co. Ltd Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS
US9394365B1 (en) 2014-03-12 2016-07-19 Yeda Research And Development Co., Ltd Reducing systemic regulatory T cell levels or activity for treatment of alzheimer's disease
US10618963B2 (en) 2014-03-12 2020-04-14 Yeda Research And Development Co. Ltd Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS
PT3116909T (en) 2014-03-14 2020-01-30 Novartis Ag Antibody molecules to lag-3 and uses thereof
KR20230144099A (en) 2014-05-15 2023-10-13 브리스톨-마이어스 스큅 컴퍼니 Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
CA2951259A1 (en) 2014-06-06 2015-12-10 Flexus Biosciences, Inc. Immunoregulatory agents
SG10201810507WA (en) 2014-06-06 2018-12-28 Bristol Myers Squibb Co Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
TWI693232B (en) 2014-06-26 2020-05-11 美商宏觀基因股份有限公司 Covalently bonded diabodies having immunoreactivity with pd-1 and lag-3, and methods of use thereof
EP3160505A4 (en) 2014-07-03 2018-01-24 BeiGene, Ltd. Anti-pd-l1 antibodies and their use as therapeutics and diagnostics
AU2015286043B2 (en) 2014-07-09 2020-08-20 Birdie Biopharmaceuticals Inc. Anti-PD-L1 combinations for treating tumors
CN105440135A (en) 2014-09-01 2016-03-30 博笛生物科技有限公司 Anti-PD-L1 conjugate for treating tumors
SG11201700207WA (en) 2014-07-11 2017-02-27 Genentech Inc Anti-pd-l1 antibodies and diagnostic uses thereof
US10428146B2 (en) 2014-07-22 2019-10-01 Cb Therapeutics, Inc. Anti PD-1 antibodies
CN105330740B (en) * 2014-07-30 2018-08-17 珠海市丽珠单抗生物技术有限公司 Anti- PD-1 antibody and its application
JP6909153B2 (en) 2014-08-05 2021-07-28 アポロミクス インコーポレイテッド Anti-PD-L1 antibody
US9982053B2 (en) 2014-08-05 2018-05-29 MabQuest, SA Immunological reagents
US9982052B2 (en) 2014-08-05 2018-05-29 MabQuest, SA Immunological reagents
WO2016022994A2 (en) 2014-08-08 2016-02-11 The Board Of Trustees Of The Leland Stanford Junior University High affinity pd-1 agents and methods of use
WO2016040880A1 (en) 2014-09-13 2016-03-17 Novartis Ag Combination therapies of alk inhibitors
CN113929782A (en) 2014-09-16 2022-01-14 依奈特制药公司 Neutralization of inhibitory pathways in lymphocytes
SG11201701341UA (en) 2014-10-10 2017-03-30 Innate Pharma Cd73 blockade
EP4029508A1 (en) 2014-10-10 2022-07-20 Idera Pharmaceuticals, Inc. Treatment of cancer using tlr9 agonists and checkpoint inhibitors
TN2017000129A1 (en) 2014-10-14 2018-10-19 Dana Farber Cancer Inst Inc Antibody molecules to pd-l1 and uses thereof
JP6821560B2 (en) 2014-10-21 2021-01-27 サイクロン ファーマシューティカルズ インターナショナル エルティーディー.Sciclone Pharmaceuticals International Ltd. Cancer treatment with immunostimulants
AU2015335921B2 (en) 2014-10-23 2020-06-25 Regeneron Pharmaceuticals, Inc. Novel CHO integration sites and uses thereof
JP6687612B2 (en) 2014-10-24 2020-04-22 アストラゼネカ アクチボラグ combination
GB201419084D0 (en) 2014-10-27 2014-12-10 Agency Science Tech & Res Anti-PD-1 antibodies
ES2851390T3 (en) 2014-10-29 2021-09-06 Five Prime Therapeutics Inc Combination therapy for cancer
UY36390A (en) 2014-11-05 2016-06-01 Flexus Biosciences Inc MODULATING COMPOUNDS OF INDOLAMINE ENZYME 2,3-DIOXYGENASE (IDO), ITS SYNTHESIS METHODS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
AR102537A1 (en) 2014-11-05 2017-03-08 Flexus Biosciences Inc IMMUNOMODULATING AGENTS
WO2016073738A2 (en) 2014-11-05 2016-05-12 Flexus Biosciences, Inc. Immunoregulatory agents
EA038349B1 (en) 2014-11-21 2021-08-12 Бристол-Маерс Сквибб Компани Antibodies comprising modified heavy chain constant regions
EP3725808A1 (en) 2014-11-21 2020-10-21 Bristol-Myers Squibb Company Antibodies against cd73 and uses thereof
JP2017537927A (en) 2014-12-04 2017-12-21 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Combination of anti-CS1 and anti-PD1 antibodies to treat cancer (myeloma)
TWI595006B (en) 2014-12-09 2017-08-11 禮納特神經系統科學公司 Anti-pd-1 antibodies and methods of use thereof
AR103232A1 (en) 2014-12-22 2017-04-26 Bristol Myers Squibb Co TGFbR ANTAGONISTS
BR112017013385A2 (en) 2014-12-23 2018-02-06 Bristol-Myers Squibb Company antibodies to tigit
US10983128B2 (en) 2015-02-05 2021-04-20 Bristol-Myers Squibb Company CXCL11 and SMICA as predictive biomarkers for efficacy of anti-CTLA4 immunotherapy
ES2789331T3 (en) 2015-03-02 2020-10-26 Rigel Pharmaceuticals Inc TGF-beta inhibitors
BR112017018954A2 (en) 2015-03-06 2018-05-15 Beyondspring Pharmaceuticals, Inc. Use of Ras Protein Mutant Form and Method to Treat Cancer
JP6904570B2 (en) 2015-03-06 2021-07-21 ビヨンドスプリング ファーマシューティカルズ,インコーポレイテッド How to treat brain tumors
MA42971A (en) 2015-03-13 2018-08-15 Cytomx Therapeutics Inc ANTI-PDL1 ANTIBODIES, ACTIVABLE ANTI-PLD1 ANTIBODIES, AND METHODS OF USE THEREOF
BR112017021021A2 (en) 2015-04-03 2018-07-03 Bristol-Myers Squibb Company Indolamine-2,3-dioxigenase inhibitors for cancer treatment
TW201642897A (en) 2015-04-08 2016-12-16 F 星生物科技有限公司 HER2 binding agent therapies
GB201506411D0 (en) 2015-04-15 2015-05-27 Bergenbio As Humanized anti-axl antibodies
MY188749A (en) 2015-04-17 2021-12-28 Bristol Myers Squibb Co Compositions comprising a combination of nivolumab and ipilimumab
ES2861352T3 (en) 2015-04-28 2021-10-06 Bristol Myers Squibb Co Treatment of PD-L1-positive melanoma using an anti-PD-1 antibody
US10174113B2 (en) 2015-04-28 2019-01-08 Bristol-Myers Squibb Company Treatment of PD-L1-negative melanoma using an anti-PD-1 antibody and an anti-CTLA-4 antibody
WO2016183114A1 (en) 2015-05-11 2016-11-17 Bristol-Myers Squibb Company Tricyclic compounds as anticancer agents
EP3307740B1 (en) 2015-05-12 2019-12-18 Bristol-Myers Squibb Company 5h-pyrido[3,2-b]indole compounds as anticancer agents
US9725449B2 (en) 2015-05-12 2017-08-08 Bristol-Myers Squibb Company Tricyclic compounds as anticancer agents
US20180155429A1 (en) 2015-05-28 2018-06-07 Bristol-Myers Squibb Company Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody
UY36687A (en) 2015-05-29 2016-11-30 Bristol Myers Squibb Company Una Corporación Del Estado De Delaware ANTIBODIES AGAINST OX40 AND ITS USES
MA44594B1 (en) 2015-05-29 2020-09-30 Memorial Sloan Kettering Cancer Center Anti-ctla-4 Antibodies and Methods of Use thereof
WO2016196389A1 (en) 2015-05-29 2016-12-08 Bristol-Myers Squibb Company Treatment of renal cell carcinoma
KR20180011117A (en) 2015-05-31 2018-01-31 큐어제닉스 코포레이션 Composite composition for immunotherapy
TWI773646B (en) 2015-06-08 2022-08-11 美商宏觀基因股份有限公司 Lag-3-binding molecules and methods of use thereof
EP3307778A1 (en) 2015-06-12 2018-04-18 Bristol-Myers Squibb Company Treatment of cancer by combined blockade of the pd-1 and cxcr4 signaling pathways
TW201709929A (en) 2015-06-12 2017-03-16 宏觀基因股份有限公司 Combination therapy for the treatment of cancer
PE20181090A1 (en) 2015-06-24 2018-07-09 Janssen Biotech Inc IMMUNE MODULATION AND TREATMENT OF SOLID TUMORS WITH ANTIBODIES THAT SPECIFICALLY BIND CD38
JP2018526977A (en) 2015-06-29 2018-09-20 ザ ロックフェラー ユニヴァーシティ Antibody against CD40 with enhanced agonist activity
EA201890285A1 (en) 2015-07-13 2018-08-31 Сайтомкс Терапьютикс, Инк. ANTIBODIES AGAINST PD-1, ACTIVATED ANTIBODIES AGAINST PD-1 AND METHODS OF THEIR APPLICATION
CN108026075B (en) 2015-07-13 2021-06-29 大连万春布林医药有限公司 Plinabulin compositions
LT3322731T (en) 2015-07-14 2021-03-25 Bristol-Myers Squibb Company Method of treating cancer using immune checkpoint inhibitor; antibody that binds to programmed death-1 receptor (pd-1) or programmed death ligand 1 (pd-l1)
US10399987B2 (en) 2015-07-28 2019-09-03 Bristol-Myer Squibb Company TGF beta receptor antagonists
EP3328419B1 (en) 2015-07-30 2021-08-25 MacroGenics, Inc. Pd-1-binding molecules and methods of use thereof
JP2018526989A (en) 2015-08-07 2018-09-20 ピエリス ファーマシューティカルズ ゲーエムベーハー Novel fusion polypeptide specific for LAG-3 and PD-1
WO2017024465A1 (en) 2015-08-10 2017-02-16 Innovent Biologics (Suzhou) Co., Ltd. Pd-1 antibodies
CN106432494B9 (en) * 2015-08-11 2022-02-15 广州誉衡生物科技有限公司 Novel anti-PD-1 antibodies
CA2993276A1 (en) 2015-08-11 2017-02-16 Yong Zheng Novel anti-pd-1 antibodies
AR105654A1 (en) 2015-08-24 2017-10-25 Lilly Co Eli ANTIBODIES PD-L1 (LINKING 1 OF PROGRAMMED CELL DEATH)
KR20180042370A (en) 2015-08-25 2018-04-25 브리스톨-마이어스 스큅 컴퍼니 TGF beta receptor antagonist
CN107949573B (en) 2015-09-01 2022-05-03 艾吉纳斯公司 anti-PD-1 antibodies and methods of use thereof
MX2018003689A (en) 2015-09-29 2018-04-30 Celgene Corp Pd-1 binding proteins and methods of use thereof.
CN108368510B (en) 2015-09-30 2023-09-01 詹森生物科技公司 Agonistic antibodies that specifically bind to human CD40 and methods of use
KR102146319B1 (en) * 2015-10-02 2020-08-25 에프. 호프만-라 로슈 아게 Bispecific antibodies specific for PD1 and TIM3
UA123826C2 (en) * 2015-10-02 2021-06-09 Ф. Хоффманн-Ля Рош Аг Anti-pd1 antibodies and methods of use
MA45429A (en) 2015-10-08 2019-05-01 Macrogenics Inc POLYTHERAPY FOR CANCER TREATMENT
EP3362475B1 (en) 2015-10-12 2023-08-30 Innate Pharma Cd73 blocking agents
JP6954648B2 (en) 2015-10-19 2021-10-27 シージー オンコロジー, インコーポレイテッド Treatment of solid tumors or lymphoid tumors with combination therapy
US10149887B2 (en) 2015-10-23 2018-12-11 Canbas Co., Ltd. Peptides and peptidomimetics in combination with t cell activating and/or checkpoint inhibiting agents for cancer treatment
MX2018005517A (en) 2015-11-02 2018-11-09 Five Prime Therapeutics Inc Cd80 extracellular domain polypeptides and their use in cancer treatment.
MA43186B1 (en) 2015-11-03 2022-03-31 Janssen Biotech Inc Antibodies specifically binding to pd-1 and uses thereof
EP3371311B1 (en) 2015-11-06 2021-07-21 Orionis Biosciences BV Bi-functional chimeric proteins and uses thereof
KR20180071376A (en) * 2015-11-17 2018-06-27 쑤저우 선카디아 바이오파마수티컬즈 컴퍼니 리미티드 PD-L1 antibodies, antigen-binding fragments thereof and pharmaceutical uses thereof
EP3377534A1 (en) 2015-11-18 2018-09-26 Bristol-Myers Squibb Company Treatment of lung cancer using a combination of an anti-pd-1 antibody and an anti-ctla-4 antibody
CN106699889A (en) * 2015-11-18 2017-05-24 礼进生物医药科技(上海)有限公司 PD-1 resisting antibody and treatment application thereof
US11213586B2 (en) 2015-11-19 2022-01-04 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (GITR)
AU2016359609B2 (en) 2015-11-23 2023-12-07 Five Prime Therapeutics, Inc. FGFR2 inhibitors alone or in combination with immune stimulating agents in cancer treatment
FI3380522T3 (en) 2015-11-25 2024-01-16 Visterra Inc Antibody molecules to april and uses thereof
AU2016370376B2 (en) 2015-12-14 2023-12-14 Macrogenics, Inc. Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof
EP3390406A1 (en) 2015-12-15 2018-10-24 Bristol-Myers Squibb Company Cxcr4 receptor antagonists
US10392442B2 (en) 2015-12-17 2019-08-27 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
CN115252792A (en) 2016-01-07 2022-11-01 博笛生物科技有限公司 anti-EGFR combinations for the treatment of tumors
CN115554406A (en) 2016-01-07 2023-01-03 博笛生物科技有限公司 anti-CD 20 combinations for the treatment of tumors
CN106943598A (en) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 Anti- HER2 for treating tumour is combined
EP3403091B1 (en) 2016-01-11 2021-12-22 Technion Research & Development Foundation Limited Methods of determining prognosis of sepsis and treating same
KR20180101549A (en) 2016-01-21 2018-09-12 이나뜨 파르마 Neutralization of the inhibitory pathway in lymphocytes
US11214617B2 (en) 2016-01-22 2022-01-04 MabQuest SA Immunological reagents
CN109311981B (en) 2016-01-22 2022-08-23 马布奎斯特公司 PD 1-specific antibody
WO2017134305A1 (en) 2016-02-05 2017-08-10 Orionis Biosciences Nv Bispecific signaling agents and uses thereof
AU2017217426B2 (en) 2016-02-08 2022-12-01 Beyondspring Pharmaceuticals, Inc. Compositions containing tucaresol or its analogs
US11180546B2 (en) 2016-02-17 2021-11-23 Novartis Ag TGFbeta 2 antibodies
EA201891983A8 (en) 2016-03-04 2020-05-28 Бристол-Майерс Сквибб Компани COMBINED THERAPY BY ANTIBODIES TO CD73
WO2017153433A1 (en) 2016-03-08 2017-09-14 Innate Pharma Siglec neutralizing antibodies
WO2017156349A1 (en) 2016-03-10 2017-09-14 Cold Genesys, Inc. Methods of treating solid or lymphatic tumors by combination therapy
JP7137474B2 (en) 2016-03-15 2022-09-14 メルサナ セラピューティクス,インコーポレイティド NaPi2b targeting antibody-drug conjugates and methods of use thereof
WO2017165742A1 (en) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Methods of treating gastrointestinal immune-related adverse events in anti-ctla4 anti-pd-1 combination treatments
JP7069032B2 (en) 2016-03-24 2022-05-17 ミレニアム ファーマシューティカルズ, インコーポレイテッド Treatment of gastrointestinal immune-related adverse events in cancer immunotherapy
EP3436829A1 (en) 2016-03-30 2019-02-06 Centre Léon-Bérard Lymphocytes expressing cd73 in cancerous patient dictates therapy
US11209441B2 (en) 2016-04-05 2021-12-28 Bristol-Myers Squibb Company Cytokine profiling analysis
BR112018071307A2 (en) 2016-04-18 2019-02-26 Celldex Therapeutics, Inc. human cd40 binding agonist antibodies and uses thereof
US11066383B2 (en) 2016-05-04 2021-07-20 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
JP2019519485A (en) 2016-05-04 2019-07-11 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Indoleamine 2,3-dioxygenase inhibitors and methods of use thereof
JP2019516682A (en) 2016-05-04 2019-06-20 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Indoleamine 2,3-dioxygenase inhibitors and methods of use thereof
CN109415320A (en) 2016-05-04 2019-03-01 百时美施贵宝公司 The inhibitor and its application method of indole amine 2,3-dioxygenase
US10696648B2 (en) 2016-05-04 2020-06-30 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
AR108377A1 (en) * 2016-05-06 2018-08-15 Medimmune Llc BISPECIFIC UNION PROTEINS AND ITS USES
WO2017194782A2 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Therapeutic targeting of non-cellular structures
TWI822521B (en) 2016-05-13 2023-11-11 美商再生元醫藥公司 Methods of treating skin cancer by administering a pd-1 inhibitor
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
WO2017194783A1 (en) 2016-05-13 2017-11-16 Orionis Biosciences Nv Targeted mutant interferon-beta and uses thereof
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
CN105968200B (en) * 2016-05-20 2019-03-15 瑞阳(苏州)生物科技有限公司 Anti human PD-L 1 Humanized monoclonal antibodies and its application
CN106008714B (en) 2016-05-24 2019-03-15 瑞阳(苏州)生物科技有限公司 Anti-human PD-1 Humanized monoclonal antibodies and its application
KR20230091191A (en) 2016-05-27 2023-06-22 아게누스 인코포레이티드 Anti-tim-3 antibodies and methods of use thereof
WO2017210335A1 (en) 2016-06-01 2017-12-07 Bristol-Myers Squibb Company Imaging methods using 18f-radiolabeled biologics
KR20190008962A (en) 2016-06-02 2019-01-25 브리스톨-마이어스 스큅 컴퍼니 Use of anti-PD-1 antibodies in combination with anti-CD30 antibodies in the treatment of lymphoma
US11083790B2 (en) 2016-06-02 2021-08-10 Bristol-Myers Squibb Company Treatment of Hodgkin lymphoma using an anti-PD-1 antibody
KR20190015408A (en) 2016-06-03 2019-02-13 브리스톨-마이어스 스큅 컴퍼니 Anti-PD-1 antibody for use in methods of treating tumors
JP2019517498A (en) 2016-06-03 2019-06-24 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Anti-PD-1 antibody for use in a method of treating recurrent small cell lung cancer
KR102515509B1 (en) 2016-06-03 2023-03-28 브리스톨-마이어스 스큅 컴퍼니 Use of Anti-PD-1 Antibodies in the Treatment of Patients with Colorectal Cancer
RU2760348C2 (en) 2016-06-06 2021-11-24 Бейондспринг Фармасьютикалс, Инк. Method for reducing neutropenia
CA3029813A1 (en) 2016-06-13 2017-12-21 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
WO2018029474A2 (en) 2016-08-09 2018-02-15 Kymab Limited Anti-icos antibodies
MX2018016364A (en) 2016-06-20 2019-11-28 Kymab Ltd Anti-pd-l1 antibodies.
US9567399B1 (en) 2016-06-20 2017-02-14 Kymab Limited Antibodies and immunocytokines
RU2021127872A (en) 2016-06-30 2021-11-09 Онкорус, Инк. DELIVERY OF THERAPEUTIC POLYPEPTIDES THROUGH PSEUDOTYPED ONCOLYTIC VIRUSES
JP6993056B2 (en) 2016-07-05 2022-02-15 ベイジーン リミテッド Combination of PD-1 antagonist and RAF inhibitor for cancer treatment
CA3029902A1 (en) 2016-07-07 2018-01-11 The Board Of Trustees Of The Leland Stanford Junior University Antibody adjuvant conjugates
JP7027401B2 (en) 2016-07-14 2022-03-01 ブリストル-マイヤーズ スクイブ カンパニー Antibodies to TIM3 and its use
WO2018017633A1 (en) 2016-07-21 2018-01-25 Bristol-Myers Squibb Company TGF Beta RECEPTOR ANTAGONISTS
US11858996B2 (en) 2016-08-09 2024-01-02 Kymab Limited Anti-ICOS antibodies
AU2017313085A1 (en) 2016-08-19 2019-03-14 Beigene Switzerland Gmbh Use of a combination comprising a Btk inhibitor for treating cancers
CN106977602B (en) * 2016-08-23 2018-09-25 中山康方生物医药有限公司 A kind of anti-PD1 monoclonal antibodies, its medical composition and its use
CN106967172B (en) 2016-08-23 2019-01-08 康方药业有限公司 The anti-PD-1 bifunctional antibody of anti-CTLA 4-, its medical composition and its use
WO2018035710A1 (en) 2016-08-23 2018-03-01 Akeso Biopharma, Inc. Anti-ctla4 antibodies
EP3503916A1 (en) 2016-08-26 2019-07-03 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
WO2018048975A1 (en) 2016-09-09 2018-03-15 Bristol-Myers Squibb Company Use of an anti-pd-1 antibody in combination with an anti-mesothelin antibody in cancer treatment
US10766958B2 (en) 2016-09-19 2020-09-08 Celgene Corporation Methods of treating vitiligo using PD-1 binding antibodies
JP2019531284A (en) 2016-09-19 2019-10-31 セルジーン コーポレイション Methods of treating immune disorders using PD-1 binding proteins
US11390675B2 (en) 2016-09-21 2022-07-19 Nextcure, Inc. Antibodies for Siglec-15 and methods of use thereof
EA201990285A1 (en) 2016-09-29 2019-12-30 Бейджин Ханми Фармасьютикал Ко., Лтд. HETERODIMERIC IMMUNOGLOBULIN STRUCTURES AND METHODS FOR PRODUCING THEM
WO2018071500A1 (en) 2016-10-11 2018-04-19 Agenus Inc. Anti-lag-3 antibodies and methods of use thereof
ES2917000T3 (en) 2016-10-24 2022-07-06 Orionis Biosciences BV Target mutant interferon-gamma and uses thereof
US20190315865A1 (en) 2016-10-28 2019-10-17 Bristol-Myers Squibb Company Methods of treating urothelial carcinoma using an anti-pd-1 antibody
UY37463A (en) 2016-11-02 2018-05-31 Glaxosmithkline Ip No 2 Ltd UNION PROTEINS
BR112019008223A2 (en) 2016-11-03 2019-07-16 Bristol-Myers Squibb Company activatable anti-ctla-4 antibodies and uses thereof
WO2018083248A1 (en) 2016-11-03 2018-05-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
US10660909B2 (en) 2016-11-17 2020-05-26 Syntrix Biosystems Inc. Method for treating cancer using chemokine antagonists
MX2019005858A (en) 2016-11-18 2019-08-12 Beijing Hanmi Pharmaceutical Co Ltd Anti-pd-1/anti-her2 natural antibody structure-like bispecific antibody of heterodimeric form and preparation thereof.
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
US11135307B2 (en) 2016-11-23 2021-10-05 Mersana Therapeutics, Inc. Peptide-containing linkers for antibody-drug conjugates
TW201825119A (en) 2016-11-30 2018-07-16 日商協和醱酵麒麟有限公司 Method of treating cancer using anti-ccr4 antibody and anti-pd-1 antibody
BR112019011651A2 (en) 2016-12-07 2020-01-07 Agenus Inc. ANTI-CTTLA-4 ANTIBODIES AND METHODS OF USE OF THE SAME
CN110300599A (en) 2016-12-07 2019-10-01 艾吉纳斯公司 Antibody and its application method
WO2018112360A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating cancer
WO2018112364A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating melanoma
RU2766582C2 (en) 2016-12-23 2022-03-15 Ремд Биотерапьютикс, Инк. Immunotherapy using antibodies binding programmed cell death protein ligand 1 (pd-l1)
CN113480530A (en) 2016-12-26 2021-10-08 阿里根公司 Aromatic hydrocarbon receptor modulators
US10961239B2 (en) 2017-01-05 2021-03-30 Bristol-Myers Squibb Company TGF beta receptor antagonists
WO2018127570A1 (en) 2017-01-05 2018-07-12 Netris Pharma Combined treatment with netrin-1 interfering drug and immune checkpoint inhibitors drugs
WO2018129381A1 (en) 2017-01-06 2018-07-12 Beyondspring Pharmaceuticals, Inc. Tubulin binding compounds and therapeutic use thereof
BR112019014510A2 (en) 2017-01-13 2020-02-18 Agenus Inc. T-CELL RECEPTORS THAT CONNECT TO NY-ESO-1 AND METHODS OF USING THEM
AU2018211064A1 (en) * 2017-01-18 2019-09-05 Genentech, Inc. Idiotypic antibodies against anti-PD-L1 antibodies and uses thereof
WO2018134279A1 (en) 2017-01-18 2018-07-26 Pieris Pharmaceuticals Gmbh Novel fusion polypeptides specific for lag-3 and pd-1
EA201991729A1 (en) 2017-01-20 2019-12-30 Санофи ANTIBODIES TO TGF-BETA AND THEIR APPLICATION
EP4310082A3 (en) 2017-01-20 2024-04-10 Arcus Biosciences, Inc. Azolopyrimidine for the treatment of cancer-related disorders
TW202313678A (en) 2017-01-20 2023-04-01 法商賽諾菲公司 Anti-tgf-beta antibodies and their use
US20200237874A1 (en) 2017-01-20 2020-07-30 Novartis Ag Combination therapy for the treatment of cancer
AR110755A1 (en) 2017-01-20 2019-05-02 Genzyme Corp BONE DIRECTED ANTIBODIES
EP3573989A4 (en) 2017-01-25 2020-11-18 Beigene, Ltd. Crystalline forms of (s) -7- (1- (but-2-ynoyl) piperidin-4-yl) -2- (4-phenoxyphenyl) -4, 5, 6, 7-tetrahy dropyrazolo [1, 5-a]pyrimidine-3-carboxamide, preparation, and uses thereof
IL268305B1 (en) 2017-02-01 2024-04-01 Beyondspring Pharmaceuticals Inc Plinabulin in combination with one or more g-csf drug for use in the therapeutic treatment of docetaxel-induced
US10906985B2 (en) 2017-02-06 2021-02-02 Orionis Biosciences, Inc. Targeted engineered interferon and uses thereof
US20200023071A1 (en) 2017-02-06 2020-01-23 Innate Pharma Immunomodulatory antibody drug conjugates binding to a human mica polypeptide
KR102642385B1 (en) 2017-02-06 2024-03-04 오리오니스 바이오사이언시스 엔브이 Targeted chimeric proteins and uses thereof
KR20190115053A (en) 2017-02-10 2019-10-10 노파르티스 아게 1- (4-amino-5-bromo-6- (1H-pyrazol-1-yl) pyrimidin-2-yl) -1H-pyrazol-4-ol and its use in the treatment of cancer
TWI674261B (en) 2017-02-17 2019-10-11 美商英能腫瘤免疫股份有限公司 Nlrp3 modulators
EP3585431A4 (en) 2017-02-24 2020-12-16 MacroGenics, Inc. Bispecific binding molecules that are capable of binding cd137 and tumor antigens, and uses thereof
UY37621A (en) 2017-02-28 2018-09-28 Sanofi Sa THERAPEUTIC ARN THAT CODIFIES CYTOKINS
WO2018160538A1 (en) 2017-02-28 2018-09-07 Mersana Therapeutics, Inc. Combination therapies of her2-targeted antibody-drug conjugates
US11578136B2 (en) 2017-03-16 2023-02-14 Innate Pharma Compositions and methods for treating cancer
KR20190133213A (en) 2017-03-31 2019-12-02 브리스톨-마이어스 스큅 컴퍼니 How to treat a tumor
US20200031944A1 (en) 2017-03-31 2020-01-30 Five Prime Therapeutics, Inc. Combination therapy for cancer using anti-gitr antibodies
SG11201909156RA (en) 2017-04-01 2019-10-30 Beijing hanmi pharm co ltd Anti-pd-l1/anti-pd-1 natural antibody structure-like heterodimeric bispecific antibody and preparation thereof
PE20191494A1 (en) 2017-04-03 2019-10-21 Hoffmann La Roche IMMUNOCONJUGATES OF AN ANTI-PD-1 ANTIBODY WITH A MUTANT IL-2 OR IL-15
CN116375876A (en) 2017-04-05 2023-07-04 豪夫迈·罗氏有限公司 Bispecific antibodies that specifically bind PD1 and LAG3
US11603407B2 (en) 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
TWI788340B (en) 2017-04-07 2023-01-01 美商必治妥美雅史谷比公司 Anti-icos agonist antibodies and uses thereof
BR112019017241A2 (en) 2017-04-13 2020-04-14 Agenus Inc anti-cd137 antibodies and methods of using them
CN108728444A (en) 2017-04-18 2018-11-02 长春华普生物技术股份有限公司 Immunoregulation polynucleotide and its application
EP3612234B1 (en) 2017-04-20 2024-03-13 ADC Therapeutics SA Combination therapy with an anti-axl antibody-drug conjugate
CN106939049B (en) * 2017-04-20 2019-10-01 苏州思坦维生物技术股份有限公司 The monoclonal antibody and the preparation method and application thereof of antagonism inhibition people PD-1 antigen and its ligand binding
MX2019012465A (en) 2017-04-20 2020-07-27 Adc Therapeutics Sa Combination therapy with an anti-cd25 antibody-drug conjugate.
SG11201909710XA (en) 2017-04-21 2019-11-28 Kyn Therapeutics Indole ahr inhibitors and uses thereof
WO2018200430A1 (en) 2017-04-26 2018-11-01 Bristol-Myers Squibb Company Methods of antibody production that minimize disulfide bond reduction
CN108794467A (en) 2017-04-27 2018-11-13 博笛生物科技有限公司 2- amino-quinoline derivatives
AR111651A1 (en) 2017-04-28 2019-08-07 Novartis Ag CONJUGATES OF ANTIBODIES THAT INCLUDE TOLL TYPE RECEIVER AGONISTS AND COMBINATION THERAPIES
US11021537B2 (en) 2017-05-01 2021-06-01 Agenus Inc. Anti-TIGIT antibodies and methods of use thereof
US11066392B2 (en) 2017-05-12 2021-07-20 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
CN110891974B (en) 2017-05-12 2021-08-06 哈普恩治疗公司 Mesothelin binding proteins
US11685787B2 (en) 2017-05-16 2023-06-27 Bristol-Myers Squibb Company Treatment of cancer with anti-GITR agonist antibodies
CN110636846B (en) 2017-05-17 2023-05-16 艾库斯生物科学有限公司 Quinazoline pyrazole derivatives for the treatment of cancer-related diseases
AR111760A1 (en) 2017-05-19 2019-08-14 Novartis Ag COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT OF SOLID TUMORS THROUGH INTRATUMORAL ADMINISTRATION
CN110719915A (en) 2017-05-25 2020-01-21 百时美施贵宝公司 Antibodies comprising modified heavy chain constant regions
CN110691795A (en) 2017-05-30 2020-01-14 百时美施贵宝公司 Compositions comprising anti-LAG 3 antibodies, PD-1 pathway inhibitors, and immunotherapeutic agent combinations
CA3060984A1 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Treatment of lag-3 positive tumors
EP3630179A2 (en) 2017-05-30 2020-04-08 Bristol-Myers Squibb Company Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody
JOP20190279A1 (en) 2017-05-31 2019-11-28 Novartis Ag Crystalline forms of 5-bromo-2,6-di(1 h-pyrazol-1-yl)pyrimidin-4-amine and new salts
JP2020522508A (en) 2017-06-01 2020-07-30 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Method of treating tumor using anti-PD-1 antibody
US11168144B2 (en) 2017-06-01 2021-11-09 Cytomx Therapeutics, Inc. Activatable anti-PDL1 antibodies, and methods of use thereof
CN110997725A (en) * 2017-06-12 2020-04-10 蓝鳍生物医药公司 anti-IL 1RAP antibodies and antibody drug conjugates
US11318211B2 (en) 2017-06-14 2022-05-03 Adc Therapeutics Sa Dosage regimes for the administration of an anti-CD19 ADC
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
GB201709808D0 (en) 2017-06-20 2017-08-02 Kymab Ltd Antibodies
JP2020524694A (en) 2017-06-22 2020-08-20 ノバルティス アーゲー IL-1β binding antibodies for use in the treatment of cancer
WO2018235056A1 (en) 2017-06-22 2018-12-27 Novartis Ag Il-1beta binding antibodies for use in treating cancer
EP3641812A1 (en) 2017-06-22 2020-04-29 Novartis AG Antibody molecules to cd73 and uses thereof
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
US11517567B2 (en) 2017-06-23 2022-12-06 Birdie Biopharmaceuticals, Inc. Pharmaceutical compositions
US11597768B2 (en) 2017-06-26 2023-03-07 Beigene, Ltd. Immunotherapy for hepatocellular carcinoma
WO2019003164A1 (en) 2017-06-27 2019-01-03 Neuracle Science Co., Ltd. Use of anti-fam19a5 antibodies for treating cancers
CA3066747A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
EP3421494A1 (en) 2017-06-29 2019-01-02 Sanofi Use of isatuximab in combination with an anti-pd-1 antibody
JP2020526520A (en) 2017-06-30 2020-08-31 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Amorphous and crystalline forms of IDO inhibitors
TW201920275A (en) 2017-07-06 2019-06-01 荷蘭商米樂斯股份有限公司 Antibodies that modulate a biological activity expressed by a Cell
AU2018298676A1 (en) 2017-07-10 2019-12-19 Innate Pharma Siglec-9-neutralizing antibodies
EP3652166A1 (en) 2017-07-14 2020-05-20 Innate Tumor Immunity, Inc. Nlrp3 modulators
US20200172617A1 (en) 2017-07-20 2020-06-04 Novartis Ag Dosage regimens of anti-lag-3 antibodies and uses thereof
JP2020527158A (en) 2017-07-21 2020-09-03 ノビミューン エスアー Generation of multispecific antibody mixture and how to use it
JP7274454B2 (en) 2017-07-28 2023-05-16 ブリストル-マイヤーズ スクイブ カンパニー Predictive peripheral blood biomarkers for checkpoint inhibitors
KR20200032180A (en) 2017-07-28 2020-03-25 브리스톨-마이어스 스큅 컴퍼니 Cyclic dinucleotide as an anticancer agent
MX2020001451A (en) 2017-08-07 2020-08-06 Amgen Inc Treatment of triple negative breast cancer or colorectal cancer with liver metastases with an anti pd-l1 antibody and an oncolytic virus.
JP7269917B2 (en) 2017-08-17 2023-05-09 イケナ オンコロジー, インコーポレイテッド AHR inhibitors and uses thereof
SG11202000387YA (en) 2017-08-25 2020-03-30 Five Prime Therapeutics Inc B7-h4 antibodies and methods of use thereof
US11787859B2 (en) 2017-08-28 2023-10-17 Bristol-Myers Squibb Company TIM-3 antagonists for the treatment and diagnosis of cancers
CN111032672A (en) 2017-08-31 2020-04-17 百时美施贵宝公司 Cyclic dinucleotides as anticancer agents
KR102651946B1 (en) 2017-08-31 2024-03-26 브리스톨-마이어스 스큅 컴퍼니 Cyclic dinucleotides as anticancer agents
JP7208225B2 (en) 2017-08-31 2023-01-18 ブリストル-マイヤーズ スクイブ カンパニー Cyclic dinucleotides as anticancer agents
JP7387585B2 (en) 2017-09-04 2023-11-28 アジェナス インコーポレイテッド T-cell receptor that binds mixed lineage leukemia (MLL)-specific phosphopeptide and methods of use thereof
US11021540B2 (en) 2017-09-07 2021-06-01 Augusta University Research Institute, Inc. Antibodies to programmed cell death protein 1
JP7196160B2 (en) 2017-09-12 2022-12-26 スミトモ ファーマ オンコロジー, インコーポレイテッド Treatment Regimens for Cancers Insensitive to BCL-2 Inhibitors Using the MCL-1 Inhibitor Albocidib
US11623932B2 (en) 2017-09-22 2023-04-11 Kymera Therapeutics, Inc. Protein degraders and uses thereof
US11358948B2 (en) 2017-09-22 2022-06-14 Kymera Therapeutics, Inc. CRBN ligands and uses thereof
CA3074588A1 (en) 2017-10-06 2019-04-11 Innate Pharma Restoration of t cell activity via the cd39/cd73 axis
US11649212B2 (en) 2017-10-09 2023-05-16 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
WO2019074824A1 (en) 2017-10-09 2019-04-18 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
CN111344297B (en) 2017-10-10 2023-10-20 百时美施贵宝公司 Cyclic dinucleotides as anticancer agents
WO2019075090A1 (en) 2017-10-10 2019-04-18 Tilos Therapeutics, Inc. Anti-lap antibodies and uses thereof
JP2020536894A (en) 2017-10-15 2020-12-17 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Tumor treatment
KR20200065065A (en) 2017-10-16 2020-06-08 브리스톨-마이어스 스큅 컴퍼니 Cyclic dinucleotide as an anticancer agent
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2019082020A1 (en) 2017-10-27 2019-05-02 Pfizer Inc. Antibodies and antibody-drug conjugates specific for cd123 and uses thereof
EP3704159A1 (en) 2017-11-01 2020-09-09 Bristol-Myers Squibb Company Immunostimulatory agonistic antibodies for use in treating cancer
SG11202003237QA (en) * 2017-11-02 2020-05-28 Systimmune Inc Bispecific antibodies and methods of making and using thereof
JP7167146B2 (en) 2017-11-06 2022-11-08 ブリストル-マイヤーズ スクイブ カンパニー ISOFURANONE COMPOUNDS USEFUL AS HPK1 INHIBITORS
CN111213059B (en) 2017-11-06 2024-01-09 豪夫迈·罗氏有限公司 Diagnostic and therapeutic methods for cancer
CN111315397A (en) 2017-11-06 2020-06-19 百时美施贵宝公司 Method for treating tumors
CN111655288A (en) 2017-11-16 2020-09-11 诺华股份有限公司 Combination therapy
TW201925194A (en) 2017-11-20 2019-07-01 美商雅里俊公司 Indole compounds and their use
WO2019104289A1 (en) 2017-11-27 2019-05-31 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
CN111801334B (en) 2017-11-29 2023-06-09 百济神州瑞士有限责任公司 Treatment of indolent or invasive B-cell lymphomas using combinations comprising BTK inhibitors
KR20200096253A (en) 2017-11-30 2020-08-11 노파르티스 아게 BCMA-targeting chimeric antigen receptor, and uses thereof
WO2019122882A1 (en) 2017-12-19 2019-06-27 Kymab Limited Bispecific antibody for icos and pd-l1
GB201721338D0 (en) 2017-12-19 2018-01-31 Kymab Ltd Anti-icos Antibodies
US20220305127A1 (en) 2017-12-21 2022-09-29 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
WO2019133531A1 (en) 2017-12-26 2019-07-04 Kymera Therapeutics, Inc. Irak degraders and uses thereof
CN109970857B (en) * 2017-12-27 2022-09-30 信达生物制药(苏州)有限公司 anti-PD-L1 antibodies and uses thereof
CN111788227A (en) 2017-12-27 2020-10-16 百时美施贵宝公司 anti-CD 40 antibodies and uses thereof
JP2021508477A (en) 2017-12-29 2021-03-11 オンコラス, インコーポレイテッド Oncolytic virus delivery of therapeutic polypeptides
US11324774B2 (en) 2018-01-05 2022-05-10 Augusta University Research Institute, Inc. Compositions of oral alkaline salts and metabolic acid inducers and uses thereof
WO2019136112A1 (en) 2018-01-05 2019-07-11 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
WO2019136432A1 (en) 2018-01-08 2019-07-11 Novartis Ag Immune-enhancing rnas for combination with chimeric antigen receptor therapy
CN111770936A (en) 2018-01-12 2020-10-13 百时美施贵宝公司 Combination therapy of anti-IL-8 and anti-PD-1 antibodies for the treatment of cancer
WO2019140380A1 (en) 2018-01-12 2019-07-18 Kymera Therapeutics, Inc. Protein degraders and uses thereof
WO2019140387A1 (en) 2018-01-12 2019-07-18 Kymera Therapeutics, Inc. Crbn ligands and uses thereof
US20220089720A1 (en) 2018-01-12 2022-03-24 Bristol-Myers Squibb Company Antibodies against tim3 and uses thereof
EP3740506A1 (en) 2018-01-16 2020-11-25 Bristol-Myers Squibb Company Methods of treating cancer with antibodies against tim3
CA3096287A1 (en) 2018-01-22 2019-07-25 Pascal Biosciences Inc. Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells
SG11202006823XA (en) 2018-01-22 2020-08-28 Bristol Myers Squibb Co Compositions and methods of treating cancer
KR20200112881A (en) 2018-01-24 2020-10-05 비욘드스프링 파마수티컬스, 인코포레이티드. Composition and method for reducing thrombocytopenia through administration of plinabulin
SG11202006832YA (en) 2018-01-29 2020-08-28 Merck Patent Gmbh Gcn2 inhibitors and uses thereof
TWI816742B (en) 2018-01-29 2023-10-01 美商維泰克斯製藥公司 Gcn2 inhibitors and uses thereof
CA3090249A1 (en) 2018-01-31 2019-08-08 Novartis Ag Combination therapy using a chimeric antigen receptor
WO2019149716A1 (en) 2018-01-31 2019-08-08 F. Hoffmann-La Roche Ag Bispecific antibodies comprising an antigen-binding site binding to lag3
AU2019215440A1 (en) 2018-02-05 2020-08-27 Orionis Biosciences, Inc. Fibroblast binding agents and use thereof
US20200405806A1 (en) 2018-02-08 2020-12-31 Bristol-Myers Squibb Company Combination of a tetanus toxoid, anti-ox40 antibody and/or anti-pd-1 antibody to treat tumors
WO2019153200A1 (en) 2018-02-08 2019-08-15 北京韩美药品有限公司 Anti-pd-1/anti-her2 natural antibody structure-like bispecific antibody in heterodimeric form and preparation thereof
EP3752203A1 (en) 2018-02-13 2020-12-23 Novartis AG Chimeric antigen receptor therapy in combination with il-15r and il15
US10519187B2 (en) 2018-02-13 2019-12-31 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019165315A1 (en) 2018-02-23 2019-08-29 Syntrix Biosystems Inc. Method for treating cancer using chemokine antagonists alone or in combination
US20210002373A1 (en) 2018-03-01 2021-01-07 Nextcure, Inc. KLRG1 Binding Compositions and Methods of Use Thereof
CN111971308A (en) 2018-03-02 2020-11-20 戊瑞治疗有限公司 B7-H4 antibodies and methods of use thereof
JP7250808B2 (en) 2018-03-08 2023-04-03 ブリストル-マイヤーズ スクイブ カンパニー Cyclic dinucleotides as anticancer agents
BR112020019083A2 (en) 2018-03-21 2020-12-29 Five Prime Therapeutics, Inc. ANTIBODIES, NUCLEIC ACID, COMPOSITIONS, CELL AND METHODS FOR PREPARING AN ANTIBODY, FOR TREATING CANCER, FOR TREATING AN INFECTIOUS DISEASE, FOR TREATING INFLAMMATION, FOR THE IDENTIFICATION OF AN ANTIBODY, TO IMPROVE THE ANTICORUS OF ANTICORUS AND ANTICORUS OF AN ANTIBODY, TO SELECT AN ANTIBODY, TO IMPROVE ANTIBODY EFFICIENCY, TO ISOLATE ANTIBODIES, TO DETECT VIEW IN A SAMPLE AND TO TREAT CANCER
CN111886256A (en) 2018-03-23 2020-11-03 百时美施贵宝公司 anti-MICA and/or MICB antibodies and uses thereof
CN111971306A (en) 2018-03-30 2020-11-20 百时美施贵宝公司 Method for treating tumors
WO2019195452A1 (en) 2018-04-04 2019-10-10 Bristol-Myers Squibb Company Anti-cd27 antibodies and uses thereof
BR112020020826A2 (en) 2018-04-12 2021-01-19 Bristol-Myers Squibb Company ANTICANCER COMBINATION THERAPY WITH CD73 ANTAGONIST ANTIBODY AND PD-1 / PD-L1 AXIS ANTIBODY
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
US10973834B2 (en) 2018-04-16 2021-04-13 Arrys Therapeutics, Inc. EP4 inhibitors and use thereof
CN112074516A (en) 2018-04-25 2020-12-11 先天肿瘤免疫公司 NLRP3 modulators
CA3096909A1 (en) 2018-04-26 2019-10-31 Agenus Inc. Heat shock protein-binding peptide compositions and methods of use thereof
US20230339891A1 (en) 2018-05-03 2023-10-26 Bristol-Myers Squibb Company Uracil derivatives as mer-axl inhibitors
WO2019211492A1 (en) 2018-05-04 2019-11-07 Tollys Tlr3 ligands that activate both epithelial and myeloid cells
SG11202010469QA (en) 2018-05-23 2020-11-27 Adc Therapeutics Sa Molecular adjuvant
UY38247A (en) 2018-05-30 2019-12-31 Novartis Ag ANTIBODIES AGAINST ENTPD2, COMBINATION THERAPIES AND METHODS OF USE OF ANTIBODIES AND COMBINATION THERAPIES
EP3810109A4 (en) 2018-05-31 2022-03-16 Peloton Therapeutics, Inc. Compositions and methods for inhibiting cd73
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
CN112384531A (en) 2018-06-01 2021-02-19 诺华股份有限公司 Binding molecules against BCMA and uses thereof
EP3802613A4 (en) * 2018-06-05 2022-03-09 Jiangsu Alphamab Biopharmaceuticals Co., Ltd. Dimer and use thereof
KR20210035805A (en) 2018-06-15 2021-04-01 플래그쉽 파이어니어링 이노베이션스 브이, 인크. Increased immune activity through regulation of postcellular signaling factors
EP3807316A1 (en) 2018-06-18 2021-04-21 Innate Pharma Compositions and methods for treating cancer
US11180531B2 (en) 2018-06-22 2021-11-23 Bicycletx Limited Bicyclic peptide ligands specific for Nectin-4
TWI819011B (en) 2018-06-23 2023-10-21 美商建南德克公司 Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
CN112654621A (en) 2018-06-27 2021-04-13 百时美施贵宝公司 Substituted naphthyridinone compounds useful as T cell activators
JP7373512B2 (en) 2018-06-27 2023-11-02 ブリストル-マイヤーズ スクイブ カンパニー Naphthyridinone compounds useful as T cell activators
US11292792B2 (en) 2018-07-06 2022-04-05 Kymera Therapeutics, Inc. Tricyclic CRBN ligands and uses thereof
JP7411627B2 (en) 2018-07-09 2024-01-11 ファイヴ プライム セラピューティクス インク Antibody that binds to ILT4
CA3103385A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of ikaros family zinc finger 2 (ikzf2)-dependent diseases
AR116109A1 (en) 2018-07-10 2021-03-31 Novartis Ag DERIVATIVES OF 3- (5-AMINO-1-OXOISOINDOLIN-2-IL) PIPERIDINE-2,6-DIONA AND USES OF THE SAME
TW202028235A (en) 2018-07-11 2020-08-01 美商戊瑞治療有限公司 Antibodies binding to vista at acidic ph
WO2020014583A1 (en) 2018-07-13 2020-01-16 Bristol-Myers Squibb Company Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a mehtod of treating a cancer or a solid tumor
JP2021530502A (en) 2018-07-18 2021-11-11 ジェネンテック, インコーポレイテッド How to Treat Lung Cancer with PD-1 Axial Binding Antagonists, Antimetabolites, and Platinums
CA3106114A1 (en) 2018-07-20 2020-01-23 Surface Oncology, Inc. Anti-cd112r compositions and methods
WO2020023355A1 (en) 2018-07-23 2020-01-30 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
US20210355113A1 (en) 2018-07-23 2021-11-18 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
JP2021532143A (en) 2018-07-26 2021-11-25 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company LAG-3 combination therapy for the treatment of cancer
WO2020021061A1 (en) 2018-07-26 2020-01-30 Pieris Pharmaceuticals Gmbh Humanized anti-pd-1 antibodies and uses thereof
EP3837015B1 (en) 2018-08-16 2024-02-14 Innate Tumor Immunity, Inc. Imidazo[4,5-c]quinoline derived nlrp3-modulators
MX2021001581A (en) 2018-08-16 2021-04-19 Innate Tumor Immunity Inc SUBSTITUED 4-AMINO-<i>1H</i>-IMIDAZO[4,5-C]QUINOLINE COMPOUNDS AND IMPROVED METHODS FOR THEIR PREPARATION.
KR20210046023A (en) 2018-08-16 2021-04-27 인네이트 튜머 이뮤니티, 인코포레이티드 Imidazo[4,5-c]quinoline-derived NLRP3-modulator
TW202026423A (en) 2018-08-24 2020-07-16 法商賽諾菲公司 Therapeutic rna for solid tumor cancers
US20210246219A1 (en) 2018-08-27 2021-08-12 Pieris Pharmaceuticals Gmbh Combination therapies comprising cd137/her2 bispecific agents and pd-1 axis inhibitors and uses thereof
US10959986B2 (en) 2018-08-29 2021-03-30 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
US11253525B2 (en) 2018-08-29 2022-02-22 Bristol-Myers Squibb Company Inhibitors of indoleamine 2,3-dioxygenase and methods of their use
WO2020044252A1 (en) 2018-08-31 2020-03-05 Novartis Ag Dosage regimes for anti-m-csf antibodies and uses thereof
TW202024023A (en) 2018-09-03 2020-07-01 瑞士商赫孚孟拉羅股份公司 Therapeutic compounds and methods of use
WO2020049534A1 (en) 2018-09-07 2020-03-12 Novartis Ag Sting agonist and combination therapy thereof for the treatment of cancer
US20220089587A1 (en) 2018-09-07 2022-03-24 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
AU2019345151A1 (en) 2018-09-19 2021-04-29 Alpine Immune Sciences, Inc. Methods and uses of variant CD80 fusion proteins and related constructs
AU2019346466A1 (en) 2018-09-25 2021-05-20 Harpoon Therapeutics, Inc. DLL3 binding proteins and methods of use
KR20210072059A (en) 2018-10-09 2021-06-16 브리스톨-마이어스 스큅 컴퍼니 Anti-MerTK Antibodies to Treat Cancer
JP2022504839A (en) 2018-10-10 2022-01-13 ティロス・セラピューティクス・インコーポレイテッド Anti-LAP antibody mutants and their use
EP3867409A1 (en) 2018-10-16 2021-08-25 Novartis AG Tumor mutation burden alone or in combination with immune markers as biomarkers for predicting response to targeted therapy
MX2021003903A (en) 2018-10-19 2021-06-04 Bristol Myers Squibb Co Combination therapy for melanoma.
JP2022505647A (en) 2018-10-23 2022-01-14 ブリストル-マイヤーズ スクイブ カンパニー How to treat a tumor
EP3873534A1 (en) 2018-10-29 2021-09-08 Mersana Therapeutics, Inc. Cysteine engineered antibody-drug conjugates with peptide-containing linkers
EP3873532A1 (en) 2018-10-31 2021-09-08 Novartis AG Dc-sign antibody drug conjugates
TW202028222A (en) 2018-11-14 2020-08-01 美商Ionis製藥公司 Modulators of foxp3 expression
JP2022507606A (en) 2018-11-16 2022-01-18 ネオイミューンテック, インコーポレイテッド How to Treat Tumors with a Combination of IL-7 Protein and Immune Checkpoint Inhibitors
EP3880708A1 (en) 2018-11-16 2021-09-22 Bristol-Myers Squibb Company Anti-nkg2a antibodies and uses thereof
TW202038943A (en) 2018-11-19 2020-11-01 美商雅里俊公司 Methods of treating cancer
CN113348177A (en) 2018-11-28 2021-09-03 百时美施贵宝公司 Antibodies comprising modified heavy chain constant regions
US11352350B2 (en) 2018-11-30 2022-06-07 Kymera Therapeutics, Inc. IRAK degraders and uses thereof
MX2021006544A (en) 2018-12-04 2021-07-07 Sumitomo Pharma Oncology Inc Cdk9 inhibitors and polymorphs thereof for use as agents for treatment of cancer.
EP3891508A1 (en) 2018-12-04 2021-10-13 Bristol-Myers Squibb Company Methods of analysis using in-sample calibration curve by multiple isotopologue reaction monitoring
EP3894401A2 (en) 2018-12-11 2021-10-20 Theravance Biopharma R&D IP, LLC Naphthyridine and quinoline derivatives useful as alk5 inhibitors
EP3666905A1 (en) 2018-12-11 2020-06-17 Sanofi E. coli positive for pks island as marker of positive response to anti-pd1 therapy in colorectal cancer
EP3670659A1 (en) 2018-12-20 2020-06-24 Abivax Biomarkers, and uses in treatment of viral infections, inflammations, or cancer
CA3123511A1 (en) 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2020128613A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1beta binding antibodies
WO2020128637A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 binding antibodies in the treatment of a msi-h cancer
KR20210108422A (en) 2018-12-21 2021-09-02 노파르티스 아게 Uses of IL-1β Binding Antibodies
US20200369762A1 (en) 2018-12-21 2020-11-26 Novartis Ag Use of il-1beta binding antibodies
KR20210109564A (en) 2018-12-21 2021-09-06 옹쎄오 Novel conjugated nucleic acid molecules and uses thereof
EP3899951A1 (en) 2018-12-23 2021-10-27 F. Hoffmann-La Roche AG Tumor classification based on predicted tumor mutational burden
CN111423510B (en) 2019-01-10 2024-02-06 迈威(上海)生物科技股份有限公司 Recombinant anti-human PD-1 antibody and application thereof
CN113286786A (en) 2019-01-14 2021-08-20 先天肿瘤免疫公司 NLRP3 modulators
JP2022517111A (en) 2019-01-14 2022-03-04 イネイト・テューマー・イミュニティ・インコーポレイテッド Heterocyclic NLRP3 modulator for use in the treatment of cancer
EP3911416A1 (en) 2019-01-14 2021-11-24 Innate Tumor Immunity, Inc. Substituted quinazolines as nlrp3 modulators, for use in the treatment of cancer
WO2020150152A1 (en) 2019-01-14 2020-07-23 Genentech, Inc. Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine
CN113286787A (en) 2019-01-14 2021-08-20 先天肿瘤免疫公司 NLRP3 modulators
AU2020209766A1 (en) 2019-01-17 2021-07-08 Georgia Tech Research Corporation Drug delivery systems containing oxidized cholesterols
TW202043274A (en) 2019-01-21 2020-12-01 法商賽諾菲公司 Therapeutic rna and anti-pd1 antibodies for advanced stage solid tumor cancers
EP3923940A1 (en) 2019-02-12 2021-12-22 Novartis AG Pharmaceutical combination comprising tno155 and a pd-1 inhibitor
JP2022520361A (en) 2019-02-12 2022-03-30 スミトモ ダイニッポン ファーマ オンコロジー, インコーポレイテッド Pharmaceuticals containing heterocyclic protein kinase inhibitors
WO2020168244A1 (en) 2019-02-15 2020-08-20 Incelldx, Inc. Assaying bladder-associated samples, identifying and treating bladder-associated neoplasia, and kits for use therein
US20220144807A1 (en) 2019-02-15 2022-05-12 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
AU2020222346B2 (en) 2019-02-15 2021-12-09 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
CN113993549A (en) 2019-03-15 2022-01-28 博尔特生物治疗药物有限公司 Immunoconjugates targeting HER2
EA202192555A1 (en) 2019-03-19 2021-11-25 Фундасио Привада Институт Д'Инвестигасио Онколохика Де Валь Эброн COMBINATION THERAPY FOR CANCER TREATMENT
JP2022525149A (en) 2019-03-20 2022-05-11 スミトモ ダイニッポン ファーマ オンコロジー, インコーポレイテッド Treatment of Acute Myeloid Leukemia (AML) with Venetoclax Failure
JP2022519923A (en) 2019-03-22 2022-03-25 スミトモ ダイニッポン ファーマ オンコロジー, インコーポレイテッド Compositions comprising a PKM2 modulator and methods of treatment using it
EP3946628A1 (en) 2019-03-28 2022-02-09 Bristol-Myers Squibb Company Methods of treating tumor
US20220041733A1 (en) 2019-03-28 2022-02-10 Bristol-Myers Squibb Company Methods of treating tumor
CA3135569A1 (en) 2019-04-02 2020-10-08 Bicycletx Limited Bicycle toxin conjugates and uses thereof
CN113939300A (en) 2019-04-05 2022-01-14 凯麦拉医疗公司 STAT degradants and uses thereof
CN113906021A (en) 2019-04-15 2022-01-07 阿里根公司 Chiral indole compound and application thereof
EP3725370A1 (en) 2019-04-19 2020-10-21 ImmunoBrain Checkpoint, Inc. Modified anti-pd-l1 antibodies and methods and uses for treating a neurodegenerative disease
CN114364703A (en) 2019-04-19 2022-04-15 豪夫迈·罗氏有限公司 Anti-merk antibodies and methods of use thereof
CN113784981A (en) 2019-04-23 2021-12-10 先天制药公司 CD73 blocking antibodies
EP3962947A2 (en) 2019-05-03 2022-03-09 F. Hoffmann-La Roche AG Methods of treating cancer with an anti-pd-l1 antibody
EP3962493A2 (en) 2019-05-03 2022-03-09 Flagship Pioneering Innovations V, Inc. Methods of modulating immune activity/level of irf or sting or of treating cancer, comprising the administration of a sting modulator and/or purinergic receptor modulator or postcellular signaling factor
US20230242478A1 (en) 2019-05-13 2023-08-03 Bristol-Myers Squibb Company AGONISTS OF ROR GAMMAt
MX2021013815A (en) 2019-05-13 2021-12-14 Regeneron Pharma Combination of pd-1 inhibitors and lag-3 inhibitors for enhanced efficacy in treating cancer.
US20230295087A1 (en) 2019-05-13 2023-09-21 Bristol-Myers Squibb Company AGONISTS OF ROR GAMMAt
US20220363760A1 (en) 2019-05-30 2022-11-17 Bristol-Myers Squibb Company Multi-tumor gene signature for suitability to immuno-oncology therapy
EP3977132A1 (en) 2019-05-30 2022-04-06 Bristol-Myers Squibb Company Cell localization signature and combination therapy
CN114127315A (en) 2019-05-30 2022-03-01 百时美施贵宝公司 Method of identifying subjects suitable for immunooncology (I-O) therapy
KR20220034739A (en) 2019-05-31 2022-03-18 이케나 온콜로지, 인코포레이티드 TEAD inhibitors and uses thereof
US11246906B2 (en) 2019-06-11 2022-02-15 Alkermes Pharma Ireland Limited Compositions and methods for subcutaneous administration of cancer immunotherapy
CN114206379A (en) 2019-06-18 2022-03-18 爱尔兰詹森科学公司 Combination of Hepatitis B Virus (HBV) vaccine and anti-PD-1 antibody
KR20220041080A (en) 2019-06-18 2022-03-31 얀센 사이언시즈 아일랜드 언리미티드 컴퍼니 Combination of hepatitis B virus (HBV) vaccine and anti-PD-1 or anti-PC-L1 antibody
MX2022000164A (en) 2019-07-03 2022-04-01 Sumitomo Pharma Oncology Inc Tyrosine kinase non-receptor 1 (tnk1) inhibitors and uses thereof.
US20220306630A1 (en) 2019-08-06 2022-09-29 Bristol-Myers Squibb Company AGONISTS OF ROR GAMMAt
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
GB201912107D0 (en) 2019-08-22 2019-10-09 Amazentis Sa Combination
AR119821A1 (en) 2019-08-28 2022-01-12 Bristol Myers Squibb Co SUBSTITUTED PYRIDOPYRIMIDINOL COMPOUNDS USEFUL AS T-CELL ACTIVATORS
BR112022003740A2 (en) 2019-08-30 2022-05-31 Agenus Inc Anti-cd96 antibodies and methods of using them
CN114761386A (en) 2019-09-17 2022-07-15 比亚尔R&D投资股份公司 Substituted N-heterocyclic carboxamides as acid ceramidase inhibitors and their use as pharmaceuticals
CN114787135A (en) 2019-09-17 2022-07-22 比亚尔R&D投资股份公司 Substituted imidazole carboxamides and their use in the treatment of medical disorders
WO2021055630A1 (en) 2019-09-17 2021-03-25 Bial- Biotech Investments, Inc. Substituted, saturated and unsaturated n-heterocyclic carboxamides and related compounds for their use in the treatment of medical disorders
EP4031578A1 (en) 2019-09-18 2022-07-27 Novartis AG Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
TW202124446A (en) 2019-09-18 2021-07-01 瑞士商諾華公司 Combination therapies with entpd2 antibodies
TW202124448A (en) 2019-09-19 2021-07-01 美商必治妥美雅史谷比公司 Antibodies binding to vista at acidic ph
CN114450028A (en) 2019-09-22 2022-05-06 百时美施贵宝公司 Quantitative spatial profiling for LAG-3antagonist therapy
JP2022549337A (en) 2019-09-25 2022-11-24 ブリストル-マイヤーズ スクイブ カンパニー Composite biomarkers for cancer therapy
CN114728046A (en) 2019-09-25 2022-07-08 思进公司 Combination of anti-CD 30 ADC, anti-PD-1 and chemotherapy for treatment of hematologic cancers
CN114514037A (en) 2019-09-30 2022-05-17 阿斯利康(瑞典)有限公司 Combination therapy for cancer
CA3151322A1 (en) 2019-10-01 2021-04-08 Silverback Therapeutics, Inc. Combination therapy with immune stimulatory conjugates
BR112022007179A2 (en) 2019-10-21 2022-08-23 Novartis Ag TIM-3 INHIBITORS AND USES THEREOF
TW202128166A (en) 2019-10-21 2021-08-01 瑞士商諾華公司 Combination therapies
CA3155345A1 (en) 2019-11-04 2021-05-14 Spencer LIANG Siglec-9 ecd fusion molecules and methods of use thereof
WO2021090146A1 (en) 2019-11-04 2021-05-14 Astrazeneca Ab Combination therapy for treating cancer
KR20220092578A (en) 2019-11-05 2022-07-01 브리스톨-마이어스 스큅 컴퍼니 M-protein assay and uses thereof
WO2021092221A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092220A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
MX2022005474A (en) 2019-11-08 2022-06-02 Bristol Myers Squibb Co Lag-3 antagonist therapy for melanoma.
MX2022005775A (en) 2019-11-13 2022-06-09 Genentech Inc Therapeutic compounds and methods of use.
US20220395553A1 (en) 2019-11-14 2022-12-15 Cohbar, Inc. Cxcr4 antagonist peptides
AR120481A1 (en) 2019-11-19 2022-02-16 Bristol Myers Squibb Co COMPOUNDS USEFUL AS INHIBITORS OF THE HELIOS PROTEIN
US20230000864A1 (en) 2019-11-22 2023-01-05 Sumitomo Pharma Oncology, Inc. Solid dose pharmaceutical composition
KR20220104208A (en) 2019-11-22 2022-07-26 세라밴스 바이오파마 알앤디 아이피, 엘엘씨 Substituted 1,5-naphthyridine or quinoline as an ALK5 inhibitor
US11591339B2 (en) 2019-11-26 2023-02-28 Ikena Oncology, Inc. Solid forms of (R)-N-(2-(5-fluoropyridin-3-yl)-8-isopropylpyrazolo[ 1,5-a][1,3,5]triazin-4-yl)-2,3,4,9-tetrahydro-1H-carbazol-3-amine maleate as aryl hydrocarbon receptor (AHR) inhibitors
KR20220104794A (en) 2019-11-26 2022-07-26 브리스톨-마이어스 스큅 컴퍼니 Salt/cocrystal of (R)-N-(4-chlorophenyl)-2-((1S,4S)-4-(6-fluoroquinolin-4-yl)cyclohexyl)propanamide
GB201917254D0 (en) 2019-11-27 2020-01-08 Adc Therapeutics Sa Combination therapy
US11897950B2 (en) 2019-12-06 2024-02-13 Augusta University Research Institute, Inc. Osteopontin monoclonal antibodies
CA3164124A1 (en) 2019-12-09 2021-06-17 Seagen Inc. Combination therapy with liv1-adc and pd-1 antagonist
EP4076524A4 (en) 2019-12-17 2023-11-29 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2021127217A1 (en) 2019-12-17 2021-06-24 Flagship Pioneering Innovations V, Inc. Combination anti-cancer therapies with inducers of iron-dependent cellular disassembly
IL293917A (en) 2019-12-17 2022-08-01 Kymera Therapeutics Inc Irak degraders and uses thereof
KR20220118481A (en) 2019-12-19 2022-08-25 브리스톨-마이어스 스큅 컴퍼니 Combinations of DGK inhibitors and checkpoint antagonists
CN115052662A (en) 2019-12-20 2022-09-13 诺华股份有限公司 Use of anti-TGF-beta antibodies and checkpoint inhibitors for treating proliferative diseases
AR120823A1 (en) 2019-12-23 2022-03-23 Bristol Myers Squibb Co SUBSTITUTED BICYCLIC COMPOUNDS USEFUL AS T-CELL ACTIVATORS
WO2021133752A1 (en) 2019-12-23 2021-07-01 Bristol-Myers Squibb Company Substituted heteroaryl compounds useful as t cell activators
JP2023508375A (en) 2019-12-23 2023-03-02 ブリストル-マイヤーズ スクイブ カンパニー Substituted piperazine derivatives useful as T cell activators
KR20220151160A (en) 2019-12-23 2022-11-14 카이메라 쎄라퓨틱스 인코포레이티드 SMARCA disintegrant and its uses
IL294148A (en) 2019-12-23 2022-08-01 Bristol Myers Squibb Co Substituted quinazolinyl compounds useful as t cell activators
JP2023508055A (en) 2019-12-23 2023-02-28 ブリストル-マイヤーズ スクイブ カンパニー SUBSTITUTED QUINOLINONYL PIPERAZINE COMPOUNDS USEFUL AS T CELL ACTIVATIVES
WO2021141907A1 (en) 2020-01-06 2021-07-15 Hifibio (Hong Kong) Limited Anti-tnfr2 antibody and uses thereof
JP2023510429A (en) 2020-01-07 2023-03-13 ハイファイバイオ (エイチケー) リミテッド Anti-galectin-9 antibody and uses thereof
KR20220127848A (en) 2020-01-10 2022-09-20 인네이트 튜머 이뮤니티, 인코포레이티드 NLRP3 modulators
TW202140473A (en) 2020-01-15 2021-11-01 美商纜圖藥品公司 Map4k1 inhibitors
US20230058489A1 (en) 2020-01-17 2023-02-23 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
US20230090446A1 (en) 2020-01-28 2023-03-23 Universite De Strasbourg Antisense oligonucleotide targeting linc00518 for treating melanoma
KR20220132598A (en) 2020-01-28 2022-09-30 제넨테크, 인크. IL15/IL15R alpha heterodimer Fc-fusion protein for cancer treatment
BR112022014962A2 (en) 2020-01-30 2022-09-20 Ona Therapeutics S L COMBINATION THERAPY FOR TREATMENT OF CANCER AND CANCER METASTASIS
CN115397459A (en) 2020-01-31 2022-11-25 基因泰克公司 Method for inducing new epitope-specific T cells using PD-1 axis binding antagonists and RNA vaccines
KR20220139915A (en) 2020-02-06 2022-10-17 브리스톨-마이어스 스큅 컴퍼니 IL-10 and its uses
US20230220074A1 (en) 2020-02-18 2023-07-13 Alector Llc Pilra antibodies and methods of use thereof
AU2021225491A1 (en) 2020-02-28 2022-10-20 Novartis Ag A triple pharmaceutical combination comprising dabrafenib, an Erk inhibitor and a RAF inhibitor
US11753403B2 (en) 2020-03-03 2023-09-12 PIC Therapeutics, Inc. EIF4E inhibitors and uses thereof
WO2022074464A2 (en) 2020-03-05 2022-04-14 Neotx Therapeutics Ltd. Methods and compositions for treating cancer with immune cells
CN115484958A (en) 2020-03-06 2022-12-16 赛尔基因昆蒂赛尔研究公司 Combination of LSD-1 inhibitor and nivolumab for the treatment of SCLC or SQNSCLC
WO2021176424A1 (en) 2020-03-06 2021-09-10 Ona Therapeutics, S.L. Anti-cd36 antibodies and their use to treat cancer
JP2023516459A (en) 2020-03-09 2023-04-19 ブリストル-マイヤーズ スクイブ カンパニー ANTIBODY TO CD40 WITH ENHANCED AGONISTIC ACTIVITY
BR112022018678A2 (en) 2020-03-19 2022-11-01 Kymera Therapeutics Inc MDM2 DEGRADATORS AND THEIR USES
AU2021240068A1 (en) 2020-03-19 2022-09-08 Arcus Biosciences, Inc. Tetralin and tetrahydroquinoline compounds as inhibitors of hif-2alpha
TW202140441A (en) 2020-03-23 2021-11-01 美商必治妥美雅史谷比公司 Substituted oxoisoindoline compounds
WO2021194942A1 (en) 2020-03-23 2021-09-30 Bristol-Myers Squibb Company Anti-ccr8 antibodies for treating cancer
US11673879B2 (en) 2020-03-31 2023-06-13 Theravance Biopharma R&D Ip, Llc Substituted pyrimidines and methods of use
WO2021207449A1 (en) 2020-04-09 2021-10-14 Merck Sharp & Dohme Corp. Affinity matured anti-lap antibodies and uses thereof
MX2022013031A (en) 2020-04-21 2023-01-04 Novartis Ag Dosing regimen for treating a disease modulated by csf-1r.
SE2050559A1 (en) * 2020-05-13 2021-11-14 Khs Biomedinvent Ab PD-1 as a predictive marker for therapy in cancer
WO2021231732A1 (en) 2020-05-15 2021-11-18 Bristol-Myers Squibb Company Antibodies to garp
EP4157875A1 (en) 2020-06-02 2023-04-05 Arcus Biosciences, Inc. Antibodies to tigit
TW202210483A (en) 2020-06-03 2022-03-16 美商凱麥拉醫療公司 Crystalline forms of irak degraders
WO2021253041A1 (en) 2020-06-10 2021-12-16 Theravance Biopharma R&D Ip, Llc Naphthyridine derivatives useful as alk5 inhibitors
KR20230024967A (en) 2020-06-11 2023-02-21 노파르티스 아게 ZBTB32 Inhibitors and Uses Thereof
AR122644A1 (en) 2020-06-19 2022-09-28 Onxeo NEW CONJUGATED NUCLEIC ACID MOLECULES AND THEIR USES
WO2021258010A1 (en) 2020-06-19 2021-12-23 Gossamer Bio Services, Inc. Oxime compounds useful as t cell activators
EP4168007A1 (en) 2020-06-23 2023-04-26 Novartis AG Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
US20230355804A1 (en) 2020-06-29 2023-11-09 Flagship Pioneering Innovations V, Inc. Viruses engineered to promote thanotransmission and their use in treating cancer
WO2022003568A1 (en) 2020-06-30 2022-01-06 Dcprime B.V. Use of leukemia-derived cells in ovarian cancer vaccines
WO2022008519A1 (en) 2020-07-07 2022-01-13 BioNTech SE Therapeutic rna for hpv-positive cancer
WO2022009157A1 (en) 2020-07-10 2022-01-13 Novartis Ag Lhc165 and spartalizumab combinations for treating solid tumors
US11787775B2 (en) 2020-07-24 2023-10-17 Genentech, Inc. Therapeutic compounds and methods of use
KR20230044480A (en) 2020-07-30 2023-04-04 카이메라 쎄라퓨틱스 인코포레이티드 Methods of treating mutant lymphoma
US20230271940A1 (en) 2020-08-03 2023-08-31 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
MX2023001707A (en) 2020-08-10 2023-05-04 Shanghai Xunbaihui Biotechnology Co Ltd Compositions and methods for treating autoimmune diseases and cancers by targeting igsf8.
KR20230050389A (en) 2020-08-13 2023-04-14 브리스톨-마이어스 스큅 컴퍼니 Methods for Redirecting IL-2 to Target Cells of Interest
WO2022038158A1 (en) 2020-08-17 2022-02-24 Bicycletx Limited Bicycle conjugates specific for nectin-4 and uses thereof
WO2022046833A1 (en) 2020-08-26 2022-03-03 Regeneron Pharmaceuticals, Inc. Methods of treating cancer by administering a pd-1 inhibitor
BR112023003427A2 (en) 2020-08-28 2023-03-21 Bristol Myers Squibb Co LAG-3 ANTAGONIST THERAPY FOR HEPATOCELLULAR CARCINOMA
WO2022043558A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
US20230321285A1 (en) 2020-08-31 2023-10-12 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
JP2023538955A (en) 2020-08-31 2023-09-12 ブリストル-マイヤーズ スクイブ カンパニー Cellular localization signatures and immunotherapy
JP2023544410A (en) 2020-10-05 2023-10-23 ブリストル-マイヤーズ スクイブ カンパニー Methods for concentrating proteins
WO2022076596A1 (en) 2020-10-06 2022-04-14 Codiak Biosciences, Inc. Extracellular vesicle-aso constructs targeting stat6
WO2022086957A1 (en) 2020-10-20 2022-04-28 Genentech, Inc. Peg-conjugated anti-mertk antibodies and methods of use
EP4232019A1 (en) 2020-10-23 2023-08-30 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
AU2021369590A1 (en) 2020-10-28 2023-06-22 Ikena Oncology, Inc. Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine
CA3196191A1 (en) 2020-11-04 2022-05-12 Chi-Chung Li Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
CA3196076A1 (en) 2020-11-04 2022-05-12 Chi-Chung Li Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
KR20230095119A (en) 2020-11-04 2023-06-28 제넨테크, 인크. Dosing for Treatment with Anti-CD20/Anti-CD3 Bispecific Antibodies
AU2021373366A1 (en) 2020-11-06 2023-06-01 Novartis Ag Cd19 binding molecules and uses thereof
IL301268A (en) 2020-11-13 2023-05-01 Genentech Inc Methods and compositions comprising a krasg12c inhibitor and a pd-l1 binding antagonist for treating lung cancer
WO2022120353A1 (en) 2020-12-02 2022-06-09 Ikena Oncology, Inc. Tead inhibitors and uses thereof
CA3202523A1 (en) 2020-12-02 2022-06-09 Genentech, Inc. Methods and compositions for neoadjuvant and adjuvant urothelial carcinoma therapy
WO2022120354A1 (en) 2020-12-02 2022-06-09 Ikena Oncology, Inc. Tead inhibitors and uses thereof
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
CA3201219A1 (en) 2020-12-04 2022-06-09 Mir Ali Ionizable cationic lipids and lipid nanoparticles, and methods of synthesis and use thereof
TW202237119A (en) 2020-12-10 2022-10-01 美商住友製藥腫瘤公司 Alk-5 inhibitors and uses thereof
CN116964050A (en) 2020-12-16 2023-10-27 戈萨默生物服务公司 Compounds useful as T cell activators
TW202245808A (en) 2020-12-21 2022-12-01 德商拜恩迪克公司 Therapeutic rna for treating cancer
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
CA3201348A1 (en) 2020-12-28 2022-07-07 Masano HUANG Antibody compositions and methods of use thereof
CA3196999A1 (en) 2020-12-28 2022-07-07 Masano HUANG Methods of treating tumors
US20240050564A1 (en) 2021-01-08 2024-02-15 Bristol-Myers Squibb Company Combination therapy using an anti-fucosyl-gm1 antibody
WO2022148979A1 (en) 2021-01-11 2022-07-14 Bicycletx Limited Methods for treating cancer
EP4281102A1 (en) 2021-01-22 2023-11-29 Mendus B.V. Methods of tumor vaccination
JP2024506557A (en) 2021-01-29 2024-02-14 アイオバンス バイオセラピューティクス,インコーポレイテッド Methods of producing modified tumor-infiltrating lymphocytes and their use in adoptive cell therapy
JP2024505049A (en) 2021-01-29 2024-02-02 ノバルティス アーゲー Administration modes for anti-CD73 and anti-ENTPD2 antibodies and their uses
KR20230152692A (en) 2021-02-02 2023-11-03 리미널 바이오사이언시스 리미티드 GPR84 antagonists and their uses
BR112023015590A2 (en) 2021-02-02 2023-10-17 Liminal Biosciences Ltd GPR84 ANTAGONISTS AND USES THEREOF
WO2022169921A1 (en) 2021-02-04 2022-08-11 Bristol-Myers Squibb Company Benzofuran compounds as sting agonists
AU2022221124A1 (en) 2021-02-12 2023-08-03 F. Hoffmann-La Roche Ag Bicyclic tetrahydroazepine derivatives for the treatment of cancer
CA3207380A1 (en) 2021-02-15 2022-08-18 Haojing RONG Irak4 degraders and uses thereof
GB202102396D0 (en) 2021-02-19 2021-04-07 Adc Therapeutics Sa Molecular adjuvant
JP2024509192A (en) 2021-03-05 2024-02-29 ニンバス サターン, インコーポレイテッド HPK1 antagonists and their uses
JP2024510176A (en) 2021-03-08 2024-03-06 ブループリント メディシンズ コーポレイション MAP4K1 inhibitor
AU2022235341A1 (en) 2021-03-12 2023-09-21 Mendus B.V. Methods of vaccination and use of cd47 blockade
WO2022197641A1 (en) 2021-03-15 2022-09-22 Rapt Therapeutics, Inc. 1h-pyrazolo[3,4-d]pyrimidin-6-yl-amine derivatives as hematopoietic progenitor kinase 1 (hpk1) modulators and/or inhibitors for the treatment of cancer and other diseases
EP4308935A1 (en) 2021-03-18 2024-01-24 Novartis AG Biomarkers for cancer and methods of use thereof
WO2022204672A1 (en) 2021-03-23 2022-09-29 Regeneron Pharmaceuticals, Inc. Methods of treating cancer in immunosuppressed or immunocompromised patients by administering a pd-1 inhibitor
TW202304506A (en) 2021-03-25 2023-02-01 日商安斯泰來製藥公司 Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
IL307262A (en) 2021-03-29 2023-11-01 Juno Therapeutics Inc Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy
WO2022212784A1 (en) 2021-03-31 2022-10-06 Flagship Pioneering Innovations V, Inc. Thanotransmission polypeptides and their use in treating cancer
WO2022212876A1 (en) 2021-04-02 2022-10-06 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
KR20230167067A (en) 2021-04-05 2023-12-07 브리스톨-마이어스 스큅 컴퍼니 Pyridinyl substituted oxoisoindoline compounds for the treatment of cancer
AR125298A1 (en) 2021-04-06 2023-07-05 Bristol Myers Squibb Co PYRIDINYL-SUBSTITUTED OXOISOINDOLINE COMPOUNDS
TW202304979A (en) 2021-04-07 2023-02-01 瑞士商諾華公司 USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
CA3213079A1 (en) 2021-04-13 2022-10-20 Kristin Lynne ANDREWS Amino-substituted heterocycles for treating cancers with egfr mutations
JP2024514879A (en) 2021-04-16 2024-04-03 イケナ オンコロジー, インコーポレイテッド MEK inhibitors and their uses
KR20240005691A (en) 2021-04-30 2024-01-12 에프. 호프만-라 로슈 아게 Dosage for combination therapy with anti-CD20/anti-CD3 bispecific antibody and anti-CD79B antibody drug conjugate
JP2024516230A (en) 2021-04-30 2024-04-12 ジェネンテック, インコーポレイテッド Therapeutic and diagnostic methods and compositions for cancer
CA3219336A1 (en) 2021-05-18 2022-11-24 Kymab Limited Uses of anti-icos antibodies
AR125874A1 (en) 2021-05-18 2023-08-23 Novartis Ag COMBINATION THERAPIES
CN117337288A (en) 2021-05-21 2024-01-02 艾库斯生物科学有限公司 AXL inhibitor compounds
TW202313602A (en) 2021-05-21 2023-04-01 美商阿克思生物科學有限公司 Axl compounds
WO2022251359A1 (en) 2021-05-26 2022-12-01 Theravance Biopharma R&D Ip, Llc Bicyclic inhibitors of alk5 and methods of use
GB202107994D0 (en) 2021-06-04 2021-07-21 Kymab Ltd Treatment of cancer
US20230036928A1 (en) 2021-06-18 2023-02-02 Genzyme Corporation Anti-tgf-beta antibody formulations and their use
CA3224374A1 (en) 2021-06-29 2023-01-05 Flagship Pioneering Innovations V, Inc. Immune cells engineered to promote thanotransmission and uses thereof
TW202309078A (en) 2021-07-02 2023-03-01 美商建南德克公司 Methods and compositions for treating cancer
CA3225254A1 (en) 2021-07-13 2023-01-19 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
TW202321237A (en) 2021-07-14 2023-06-01 美商纜圖藥品公司 Map4k1 inhibitors
TW202321238A (en) 2021-07-15 2023-06-01 美商纜圖藥品公司 Map4k1 inhibitors
CA3224180A1 (en) 2021-07-28 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
WO2023010094A2 (en) 2021-07-28 2023-02-02 Genentech, Inc. Methods and compositions for treating cancer
CA3226281A1 (en) 2021-07-30 2023-02-02 ONA Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
WO2023012147A1 (en) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use
WO2023015198A1 (en) 2021-08-04 2023-02-09 Genentech, Inc. Il15/il15r alpha heterodimeric fc-fusion proteins for the expansion of nk cells in the treatment of solid tumours
WO2023020315A1 (en) * 2021-08-19 2023-02-23 南京吉盛澳玛生物医药有限公司 Antibody targeting pd-l1/pd-1 and use thereof
CA3229448A1 (en) 2021-08-23 2023-03-02 Immunitas Therapeutics, Inc. Anti-cd161 antibodies and uses thereof
WO2023028238A1 (en) 2021-08-25 2023-03-02 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
US20230150997A1 (en) 2021-08-25 2023-05-18 PIC Therapeutics, Inc. Eif4e inhibitors and uses thereof
TW202321308A (en) 2021-09-30 2023-06-01 美商建南德克公司 Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
CA3234647A1 (en) 2021-10-06 2023-04-13 Genmab A/S Multispecific binding agents against pd-l1 and cd137 in combination therapy
TW202333802A (en) 2021-10-11 2023-09-01 德商拜恩迪克公司 Therapeutic rna for lung cancer
WO2023077034A1 (en) 2021-10-28 2023-05-04 Lyell Immunopharma, Inc. Methods for culturing immune cells
IL309227A (en) 2021-10-29 2024-02-01 Bristol Myers Squibb Co Lag-3 antagonist therapy for hematological cancer
WO2023077046A1 (en) 2021-10-29 2023-05-04 Arcus Biosciences, Inc. Inhibitors of hif-2alpha and methods of use thereof
WO2023080900A1 (en) 2021-11-05 2023-05-11 Genentech, Inc. Methods and compositions for classifying and treating kidney cancer
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023084445A1 (en) 2021-11-12 2023-05-19 Novartis Ag Combination therapy for treating lung cancer
TW202332429A (en) 2021-11-24 2023-08-16 美商建南德克公司 Therapeutic compounds and methods of use
US20230203062A1 (en) 2021-11-24 2023-06-29 Genentech, Inc. Therapeutic compounds and methods of use
WO2023111203A1 (en) 2021-12-16 2023-06-22 Onxeo New conjugated nucleic acid molecules and their uses
WO2023114984A1 (en) 2021-12-17 2023-06-22 Ikena Oncology, Inc. Tead inhibitors and uses thereof
WO2023122777A1 (en) 2021-12-22 2023-06-29 Gossamer Bio Services, Inc. Oxime derivatives useful as t cell activators
WO2023122772A1 (en) 2021-12-22 2023-06-29 Gossamer Bio Services, Inc. Oxime derivatives useful as t cell activators
WO2023122778A1 (en) 2021-12-22 2023-06-29 Gossamer Bio Services, Inc. Pyridazinone derivatives useful as t cell activators
WO2023137161A1 (en) 2022-01-14 2023-07-20 Amgen Inc. Triple blockade of tigit, cd112r, and pd-l1
WO2023147371A1 (en) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
WO2023147488A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Cytokine associated tumor infiltrating lymphocytes compositions and methods
WO2023150186A1 (en) 2022-02-01 2023-08-10 Arvinas Operations, Inc. Dgk targeting compounds and uses thereof
WO2023159102A1 (en) 2022-02-17 2023-08-24 Regeneron Pharmaceuticals, Inc. Combinations of checkpoint inhibitors and oncolytic virus for treating cancer
WO2023161453A1 (en) 2022-02-24 2023-08-31 Amazentis Sa Uses of urolithins
WO2023164638A1 (en) 2022-02-25 2023-08-31 Bristol-Myers Squibb Company Combination therapy for colorectal carcinoma
WO2023168404A1 (en) 2022-03-04 2023-09-07 Bristol-Myers Squibb Company Methods of treating a tumor
WO2023170606A1 (en) 2022-03-08 2023-09-14 Alentis Therapeutics Ag Use of anti-claudin-1 antibodies to increase t cell availability
WO2023173053A1 (en) 2022-03-10 2023-09-14 Ikena Oncology, Inc. Mek inhibitors and uses thereof
WO2023173057A1 (en) 2022-03-10 2023-09-14 Ikena Oncology, Inc. Mek inhibitors and uses thereof
WO2023174210A1 (en) 2022-03-14 2023-09-21 Laekna Limited Combination treatment for cancer
WO2023178329A1 (en) 2022-03-18 2023-09-21 Bristol-Myers Squibb Company Methods of isolating polypeptides
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023192478A1 (en) 2022-04-01 2023-10-05 Bristol-Myers Squibb Company Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer
WO2023196987A1 (en) 2022-04-07 2023-10-12 Bristol-Myers Squibb Company Methods of treating tumor
US20230326022A1 (en) 2022-04-08 2023-10-12 Bristol-Myers Squibb Company Machine Learning Identification, Classification, and Quantification of Tertiary Lymphoid Structures
WO2023211889A1 (en) 2022-04-25 2023-11-02 Ikena Oncology, Inc. Polymorphic compounds and uses thereof
WO2023215719A1 (en) 2022-05-02 2023-11-09 Arcus Biosciences, Inc. Anti-tigit antibodies and uses of the same
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023220703A1 (en) 2022-05-12 2023-11-16 Genentech, Inc. Methods and compositions comprising a shp2 inhibitor and a pd-l1 binding antagonist
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023222854A1 (en) 2022-05-18 2023-11-23 Kymab Limited Uses of anti-icos antibodies
US11878958B2 (en) 2022-05-25 2024-01-23 Ikena Oncology, Inc. MEK inhibitors and uses thereof
WO2023235847A1 (en) 2022-06-02 2023-12-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023240156A1 (en) 2022-06-08 2023-12-14 Tidal Therapeutics, Inc. Ionizable cationic lipids and lipid nanoparticles, and methods of synthesis and use thereof
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
US20240124490A1 (en) 2022-07-15 2024-04-18 Arcus Biosciences, Inc. Inhibitors of hpk1 and methods of use thereof
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020034A1 (en) 2022-07-20 2024-01-25 Arcus Biosciences, Inc. Cbl-b inhibitors and methods of use thereof
EP4310197A1 (en) 2022-07-21 2024-01-24 Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majadahonda Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy
WO2024023740A1 (en) 2022-07-27 2024-02-01 Astrazeneca Ab Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors
WO2024028364A1 (en) 2022-08-02 2024-02-08 Liminal Biosciences Limited Aryl-triazolyl and related gpr84 antagonists and uses thereof
WO2024028365A1 (en) 2022-08-02 2024-02-08 Liminal Biosciences Limited Substituted pyridone gpr84 antagonists and uses thereof
WO2024028363A1 (en) 2022-08-02 2024-02-08 Liminal Biosciences Limited Heteroaryl carboxamide and related gpr84 antagonists and uses thereof
WO2024036100A1 (en) 2022-08-08 2024-02-15 Bristol-Myers Squibb Company Substituted tetrazolyl compounds useful as t cell activators
WO2024036101A1 (en) 2022-08-09 2024-02-15 Bristol-Myers Squibb Company Tertiary amine substituted bicyclic compounds useful as t cell activators
WO2024033458A1 (en) 2022-08-11 2024-02-15 F. Hoffmann-La Roche Ag Bicyclic tetrahydroazepine derivatives
WO2024033457A1 (en) 2022-08-11 2024-02-15 F. Hoffmann-La Roche Ag Bicyclic tetrahydrothiazepine derivatives
WO2024033389A1 (en) 2022-08-11 2024-02-15 F. Hoffmann-La Roche Ag Bicyclic tetrahydrothiazepine derivatives
WO2024033388A1 (en) 2022-08-11 2024-02-15 F. Hoffmann-La Roche Ag Bicyclic tetrahydrothiazepine derivatives
WO2024040175A1 (en) 2022-08-18 2024-02-22 Pulmatrix Operating Company, Inc. Methods for treating cancer using inhaled angiogenesis inhibitor
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024059142A1 (en) 2022-09-14 2024-03-21 Arcus Biosciences, Inc. Dispersions of etrumadenant
WO2024069009A1 (en) 2022-09-30 2024-04-04 Alentis Therapeutics Ag Treatment of drug-resistant hepatocellular carcinoma
WO2024077191A1 (en) 2022-10-05 2024-04-11 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer
WO2024077095A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating bladder cancer
WO2024077166A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating lung cancer

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US598520A (en) 1898-02-08 Marker s record for laundrymen
US529054A (en) 1894-11-13 Alfred zempliner
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4444887A (en) 1979-12-10 1984-04-24 Sloan-Kettering Institute Process for making human antibody producing B-lymphocytes
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
EP0092918B1 (en) 1982-04-22 1988-10-19 Imperial Chemical Industries Plc Continuous release formulations
US4716111A (en) 1982-08-11 1987-12-29 Trustees Of Boston University Process for producing human antibodies
US4741900A (en) 1982-11-16 1988-05-03 Cytogen Corporation Antibody-metal ion complexes
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
US5128326A (en) 1984-12-06 1992-07-07 Biomatrix, Inc. Drug delivery systems based on hyaluronans derivatives thereof and their salts and methods of producing same
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
JP3101690B2 (en) 1987-03-18 2000-10-23 エス・ビィ・2・インコーポレイテッド Modifications of or for denatured antibodies
US5258498A (en) 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
US4880078A (en) 1987-06-29 1989-11-14 Honda Giken Kogyo Kabushiki Kaisha Exhaust muffler
WO1989007142A1 (en) 1988-02-05 1989-08-10 Morrison Sherie L Domain-modified constant region antibodies
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
AU4308689A (en) 1988-09-02 1990-04-02 Protein Engineering Corporation Generation and selection of recombinant varied binding proteins
US20030229208A1 (en) 1988-12-28 2003-12-11 Protein Design Labs, Inc. Humanized immunoglobulins
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5413923A (en) 1989-07-25 1995-05-09 Cell Genesys, Inc. Homologous recombination for universal donor cells and chimeric mammalian hosts
AU6430190A (en) 1989-10-10 1991-05-16 Pitman-Moore, Inc. Sustained release composition for macromolecular proteins
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
WO1991006287A1 (en) 1989-11-06 1991-05-16 Enzytech, Inc. Protein microspheres and methods of using them
GB8928874D0 (en) 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
AU7247191A (en) 1990-01-11 1991-08-05 Molecular Affinities Corporation Production of antibodies using gene libraries
US5780225A (en) 1990-01-12 1998-07-14 Stratagene Method for generating libaries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules
ATE139258T1 (en) 1990-01-12 1996-06-15 Cell Genesys Inc GENERATION OF XENOGENE ANTIBODIES
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0546073B1 (en) 1990-08-29 1997-09-10 GenPharm International, Inc. production and use of transgenic non-human animals capable of producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5698426A (en) 1990-09-28 1997-12-16 Ixsys, Incorporated Surface expression libraries of heteromeric receptors
DK0564531T3 (en) 1990-12-03 1998-09-28 Genentech Inc Enrichment procedure for variant proteins with altered binding properties
IE921169A1 (en) 1991-04-10 1992-10-21 Scripps Research Inst Heterodimeric receptor libraries using phagemids
EP0583356B1 (en) 1991-05-01 2002-07-31 Henry M. Jackson Foundation For The Advancement Of Military Medicine A method for treating infectious respiratory diseases
DE69233482T2 (en) 1991-05-17 2006-01-12 Merck & Co., Inc. Method for reducing the immunogenicity of antibody variable domains
AU2238292A (en) 1991-06-14 1993-01-12 Xoma Corporation Microbially-produced antibody fragments and their conjugates
LU91067I2 (en) 1991-06-14 2004-04-02 Genentech Inc Trastuzumab and its variants and immunochemical derivatives including immotoxins
US6787153B1 (en) 1991-06-28 2004-09-07 Mitsubishi Chemical Corporation Human monoclonal antibody specifically binding to surface antigen of cancer cell membrane
ES2136092T3 (en) 1991-09-23 1999-11-16 Medical Res Council PROCEDURES FOR THE PRODUCTION OF HUMANIZED ANTIBODIES.
PT1024191E (en) 1991-12-02 2008-12-22 Medical Res Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US5766886A (en) 1991-12-13 1998-06-16 Xoma Corporation Modified antibody variable domains
GB9203459D0 (en) 1992-02-19 1992-04-08 Scotgen Ltd Antibodies with germ-line variable regions
US5714350A (en) 1992-03-09 1998-02-03 Protein Design Labs, Inc. Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region
US5912015A (en) 1992-03-12 1999-06-15 Alkermes Controlled Therapeutics, Inc. Modulated release from biocompatible polymers
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US6005079A (en) 1992-08-21 1999-12-21 Vrije Universiteit Brussels Immunoglobulins devoid of light chains
ATE427968T1 (en) 1992-08-21 2009-04-15 Univ Bruxelles IMMUNOGLOBULINS WITHOUT LIGHT CHAIN
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
CH686365A5 (en) 1992-10-06 1996-03-15 Werner Hofliger Mobile crane.
US5441050A (en) 1992-12-18 1995-08-15 Neoprobe Corporation Radiation responsive surgical instrument
US5934272A (en) 1993-01-29 1999-08-10 Aradigm Corporation Device and method of creating aerosolized mist of respiratory drug
DE69427974T2 (en) 1993-04-29 2001-12-06 Unilever Nv PRODUCTION OF ANTIBODIES OR FUNCTIONAL PARTS THEREOF, DERIVED FROM HEAVY CHAINS OF IMMUNOGLOBULINES FROM CAMELIDAE
EP0733070A1 (en) 1993-12-08 1996-09-25 Genzyme Corporation Process for generating specific antibodies
ES2247204T3 (en) 1994-01-31 2006-03-01 Trustees Of Boston University BANKS OF POLYCLONAL ANTIBODIES.
US5516637A (en) 1994-06-10 1996-05-14 Dade International Inc. Method involving display of protein binding pairs on the surface of bacterial pili and bacteriophage
US6962686B2 (en) 1994-10-12 2005-11-08 California Institute Of Technology Cell-specific gene delivery vehicles
US6214388B1 (en) 1994-11-09 2001-04-10 The Regents Of The University Of California Immunoliposomes that optimize internalization into target cells
CA2207961A1 (en) 1995-01-05 1996-07-11 Robert J. Levy Surface-modified nanoparticles and method of making and using same
US6019968A (en) 1995-04-14 2000-02-01 Inhale Therapeutic Systems, Inc. Dispersible antibody compositions and methods for their preparation and use
JP4312259B2 (en) 1995-04-27 2009-08-12 アムジェン フレモント インク. Human antibodies derived from immunized XenoMouse
AU2466895A (en) 1995-04-28 1996-11-18 Abgenix, Inc. Human antibodies derived from immunized xenomice
CA2230494A1 (en) 1995-08-31 1997-03-06 Alkermes Controlled Therapeutics Inc. Composition for sustained release of an agent
US5736152A (en) 1995-10-27 1998-04-07 Atrix Laboratories, Inc. Non-polymeric sustained release delivery system
JP2978435B2 (en) 1996-01-24 1999-11-15 チッソ株式会社 Method for producing acryloxypropyl silane
US5942328A (en) 1996-02-29 1999-08-24 International Business Machines Corporation Low dielectric constant amorphous fluorinated carbon and method of preparation
WO1997032572A2 (en) 1996-03-04 1997-09-12 The Penn State Research Foundation Materials and methods for enhancing cellular internalization
US5985309A (en) 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
US5855913A (en) 1997-01-16 1999-01-05 Massachusetts Instite Of Technology Particles incorporating surfactants for pulmonary drug delivery
US5874064A (en) 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5916771A (en) 1996-10-11 1999-06-29 Abgenix, Inc. Production of a multimeric protein by cell fusion method
WO1998023289A1 (en) 1996-11-27 1998-06-04 The General Hospital Corporation MODULATION OF IgG BINDING TO FcRn
KR100643058B1 (en) 1996-12-03 2006-11-13 아브게닉스, 인크. Transgenic mammals having human ig loci including plural vh and vk regions and antibodies produced therefrom
JP3884484B2 (en) 1997-01-16 2007-02-21 マサチューセッツ インスティチュート オブ テクノロジー Preparation of particles for inhalation
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
DK0970126T3 (en) 1997-04-14 2001-08-13 Micromet Ag Hitherto unknown method for the preparation of anti-human antigen receptors and uses thereof
US6235883B1 (en) 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
US5989463A (en) 1997-09-24 1999-11-23 Alkermes Controlled Therapeutics, Inc. Methods for fabricating polymer-based controlled release devices
SE512663C2 (en) 1997-10-23 2000-04-17 Biogram Ab Active substance encapsulation process in a biodegradable polymer
US5843597A (en) 1997-12-01 1998-12-01 Eveready Battery Company, Inc. Ribbed gasket for miniature galvanic cell
US6982323B1 (en) 1997-12-23 2006-01-03 Alexion Pharmaceuticals, Inc. Chimeric proteins for diagnosis and treatment of diabetes
CA2323757C (en) 1998-04-02 2011-08-02 Genentech, Inc. Antibody variants and fragments thereof
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
DE69907456T2 (en) 1998-06-24 2004-03-25 Advanced Inhalation Research, Inc., Cambridge LARGE POROUS PARTICLES SURROUNDERED BY AN INHALER
US6311415B1 (en) 1998-09-14 2001-11-06 Lind Shoe Company Bowling shoe with replaceable tip
EP1141024B1 (en) 1999-01-15 2018-08-08 Genentech, Inc. POLYPEPTIDE COMPRISING A VARIANT HUMAN IgG1 Fc REGION
US7780882B2 (en) 1999-02-22 2010-08-24 Georgetown University Simplified and improved method for preparing an antibody or an antibody fragment targeted immunoliposome for systemic administration of a therapeutic or diagnostic agent
MXPA02001878A (en) 1999-08-23 2003-08-20 Dana Farber Cancer Inst Inc Novel b74 molecules and uses therefor.
WO2001014557A1 (en) 1999-08-23 2001-03-01 Dana-Farber Cancer Institute, Inc. Pd-1, a receptor for b7-4, and uses therefor
US6890487B1 (en) 1999-09-30 2005-05-10 Science & Technology Corporation ©UNM Flow cytometry for high throughput screening
WO2001039722A2 (en) 1999-11-30 2001-06-07 Mayo Foundation For Medical Education And Research B7-h1, a novel immunoregulatory molecule
US6803192B1 (en) 1999-11-30 2004-10-12 Mayo Foundation For Medical Education And Research B7-H1, a novel immunoregulatory molecule
US6784981B1 (en) 2000-06-02 2004-08-31 Idexx Laboratories, Inc. Flow cytometry-based hematology system
US7262838B2 (en) 2001-06-29 2007-08-28 Honeywell International Inc. Optical detection system for flow cytometry
US6794152B2 (en) 2000-12-22 2004-09-21 Streck Laboratories Inc. Flow cytometry reagent and system
AR036993A1 (en) 2001-04-02 2004-10-20 Wyeth Corp USE OF AGENTS THAT MODULATE THE INTERACTION BETWEEN PD-1 AND ITS LINKS IN THE SUBMODULATION OF IMMUNOLOGICAL ANSWERS
WO2002086083A2 (en) 2001-04-20 2002-10-31 Mayo Foundation For Medical Education And Research Methods of enhancing cell responsiveness
US7479630B2 (en) 2004-03-25 2009-01-20 Bandura Dmitry R Method and apparatus for flow cytometry linked with elemental analysis
WO2003011911A1 (en) 2001-07-31 2003-02-13 Ono Pharmaceutical Co., Ltd. Substance specific to pd-1
CA2466279A1 (en) 2001-11-13 2003-05-22 Dana-Farber Cancer Institute, Inc. Agents that modulate immune cell activation and methods of use thereof
PT1537878E (en) 2002-07-03 2010-11-18 Ono Pharmaceutical Co Immunopotentiating compositions
FR2844513B1 (en) 2002-09-13 2007-08-03 Lab Francais Du Fractionnement ANTIBODIES FOR ADCC AND INDUCING PRODUCTION OF CYTOKINS.
FR2844455B1 (en) 2002-09-13 2007-12-14 Lab Francais Du Fractionnement TREATMENT OF PATHOLOGIES EXCLUDING IMMUNE RESPONSE BY OPTIMIZED ANTIBODIES
EP2364996B1 (en) 2002-09-27 2016-11-09 Xencor Inc. Optimized FC variants and methods for their generation
AU2003288675B2 (en) 2002-12-23 2010-07-22 Medimmune Limited Antibodies against PD-1 and uses therefor
JP2006524039A (en) 2003-01-09 2006-10-26 マクロジェニクス,インコーポレーテッド Identification and production of antibody containing mutant Fc region and use thereof
US7960512B2 (en) 2003-01-09 2011-06-14 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
EP2270051B1 (en) 2003-01-23 2019-05-15 Ono Pharmaceutical Co., Ltd. Antibody specific for human PD-1 and CD3
US7507548B2 (en) 2003-03-04 2009-03-24 University Of Salamanca Multidimensional detection of aberrant phenotypes in neoplastic cells to be used to monitor minimal disease levels using flow cytometry measurements
US7354773B2 (en) 2003-05-14 2008-04-08 Beckman Coulter, Inc. Method and apparatus for preparing cell samples for intracellular antigen detection using flow cytometry
US7590500B2 (en) 2004-03-03 2009-09-15 Beckman Coulter, Inc. System for high dynamic range analysis in flow cytometry
US7465543B1 (en) 2004-05-21 2008-12-16 The United States Of America, As Represented By The Secretary Of Agriculture Multiplex DNA identification of clinical yeasts using flow cytometry
US7527978B2 (en) 2004-10-07 2009-05-05 Children's Hospital & Research Center At Oakland Flow cytometry based micronucleus assays and kits
CN104104517B (en) 2004-10-15 2017-11-07 弗里塞恩公司 The method and system of disposal password checking
CA2589171A1 (en) * 2004-11-29 2006-06-01 Pharmacia & Upjohn Company Llc Thiazepine oxazolidinones as antibacterial agents
US7491502B2 (en) 2004-12-17 2009-02-17 The General Hospital Corporation In vivo flow cytometry system and method
KR101498834B1 (en) 2005-05-09 2015-03-05 오노 야꾸힝 고교 가부시키가이샤 Human monoclonal antibodies to programmed death 1 (pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics
NZ564243A (en) 2005-06-08 2011-03-31 Dana Farber Cancer Inst Inc Methods and compositions for the treatment of persistent infections by inhibiting the programmed cell death 1 (PD-1) pathway
HUE026039T2 (en) 2005-07-01 2016-05-30 Squibb & Sons Llc Human monoclonal antibodies to programmed death ligand 1 (pd-l1)
CA2664456C (en) 2006-09-29 2013-12-31 Guava Technologies, Inc. Differentiation of flow cytometry pulses and applications
JP5623747B2 (en) 2006-12-27 2014-11-12 エモリー ユニバーシティ Compositions and methods for treating infections and tumors
CN101236150B (en) 2007-02-02 2012-09-05 深圳迈瑞生物医疗电子股份有限公司 Stream type cell technique instrument opto-electronic sensor and its irradiation unit
US7746466B2 (en) 2007-05-14 2010-06-29 The Regents Of The University Of California System and method for flow cytometry
DK2170959T3 (en) * 2007-06-18 2014-01-13 Merck Sharp & Dohme ANTIBODIES AGAINST HUMAN PROGRAMMED DEATH RECEPTOR PD-1
US8062852B2 (en) 2007-10-01 2011-11-22 The Children's Hospital And Regional Medical Center Detection and treatment of autoimmune disorders
ES2639857T3 (en) * 2008-02-11 2017-10-30 Cure Tech Ltd. Monoclonal antibodies for tumor treatment
WO2009114335A2 (en) * 2008-03-12 2009-09-17 Merck & Co., Inc. Pd-1 binding proteins
JP5794917B2 (en) * 2008-09-12 2015-10-14 アイシス・イノベーション・リミテッドIsis Innovationlimited PD-1-specific antibodies and uses thereof
US8927697B2 (en) * 2008-09-12 2015-01-06 Isis Innovation Limited PD-1 specific antibodies and uses thereof
HUE030807T2 (en) 2008-09-26 2017-05-29 Dana Farber Cancer Inst Inc Human anti-pd-1, pd-l1, and pd-l2 antibodies and uses thereof
WO2010089411A2 (en) * 2009-02-09 2010-08-12 Universite De La Mediterranee Pd-1 antibodies and pd-l1 antibodies and uses thereof
TW201134488A (en) * 2010-03-11 2011-10-16 Ucb Pharma Sa PD-1 antibodies

Also Published As

Publication number Publication date
JP2017101042A (en) 2017-06-08
AU2012245477B2 (en) 2017-03-23
RS57324B1 (en) 2018-08-31
ES2669310T3 (en) 2018-05-24
CN103608040A (en) 2014-02-26
HRP20180893T1 (en) 2018-07-27
US20140044738A1 (en) 2014-02-13
EP2699264A4 (en) 2014-10-08
US20160130348A1 (en) 2016-05-12
AU2012245477C1 (en) 2017-06-15
HUE037651T2 (en) 2018-09-28
US9205148B2 (en) 2015-12-08
DK2699264T3 (en) 2018-06-25
KR20140048121A (en) 2014-04-23
EP2699264A1 (en) 2014-02-26
CN103608040B (en) 2017-03-01
WO2012145493A1 (en) 2012-10-26
SI2699264T1 (en) 2018-08-31
MX338353B (en) 2016-04-13
EP2699264B1 (en) 2018-03-14
CA2833636A1 (en) 2012-10-26
MX2013012088A (en) 2014-04-30
EP3403672A1 (en) 2018-11-21
LT2699264T (en) 2018-07-10
PL2699264T3 (en) 2018-08-31
RU2013151455A (en) 2015-05-27
PT2699264T (en) 2018-05-23
RU2625034C2 (en) 2017-07-11
KR101970025B1 (en) 2019-04-17
AU2012245477A1 (en) 2013-10-31
CY1120626T1 (en) 2019-12-11
JP2014523401A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP6072771B2 (en) Antibodies and other molecules that bind to B7-H1 and PD-1
JP6682426B2 (en) Anti-B7-H5 antibody and use thereof
JP6120848B2 (en) Anti-B7-H4 antibody and use thereof
AU2017201231B2 (en) ANTI-H7CR Antibodies
KR20160135190A (en) Improved methods for the treatment of vascularizing cancers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R150 Certificate of patent or registration of utility model

Ref document number: 6072771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees