JP6060928B2 - 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法 - Google Patents

電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法 Download PDF

Info

Publication number
JP6060928B2
JP6060928B2 JP2014063982A JP2014063982A JP6060928B2 JP 6060928 B2 JP6060928 B2 JP 6060928B2 JP 2014063982 A JP2014063982 A JP 2014063982A JP 2014063982 A JP2014063982 A JP 2014063982A JP 6060928 B2 JP6060928 B2 JP 6060928B2
Authority
JP
Japan
Prior art keywords
unit
phase
current
power conversion
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014063982A
Other languages
English (en)
Other versions
JP2015186432A (ja
Inventor
浩史 木野村
浩史 木野村
考弘 佐伯
考弘 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2014063982A priority Critical patent/JP6060928B2/ja
Priority to EP14196913.9A priority patent/EP2924858A1/en
Priority to US14/564,090 priority patent/US9407135B2/en
Priority to CN201510058664.8A priority patent/CN104953852B/zh
Publication of JP2015186432A publication Critical patent/JP2015186432A/ja
Application granted granted Critical
Publication of JP6060928B2 publication Critical patent/JP6060928B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency
    • H02M5/273Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/2932Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)

Description

開示の実施形態は、電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法に関する。
従来、電力変換装置として、交流電源の電力を任意の周波数・電圧の交流電力へ直接変換するマトリクスコンバータや交流電源への電力回生を行う回生コンバータなどが知られている。
かかる電力変換装置は、半導体スイッチなどのスイッチング素子を有しており、かかるスイッチング素子をスイッチングすることによって電力変換を行うことから、スイッチングに起因する高調波ノイズが発生することがある。そのため、電力変換装置においては、入力側にフィルタが配置されることがある。
このように入力側にフィルタを配置した場合、フィルタを構成するリアクトルとコンデンサによる共振によって入力電流にひずみが発生する場合がある。かかるひずみの抑制方法として、例えば、出力電流に含まれる振動成分を抽出し、かかる振動成分に基づいて出力電流指令を調整する技術がある(例えば、特許文献1参照)。
国際公開第2013/080744号
出力電流に含まれる振動成分に基づいて出力電流指令を調整する技術は、共振抑制制御と電流制御との干渉により電力変換制御の応答性が低下するおそれがある。
実施形態の一態様は、上記に鑑みてなされたものであって、新たな共振抑制技術により共振抑制を行うことができる電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法を提供することを目的とする。
実施形態の一態様に係る電力変換装置は、電力変換部と、制御部と、LCフィルタと、電圧検出部とを備える。前記電力変換部は、交流電源と負荷との間に設けられる。前記制御部は、前記電力変換部を制御して前記交流電源と前記負荷との間の電力変換制御を行う。前記LCフィルタは、前記交流電源と前記電力変換部との間に設けられる。前記電圧検出部は、前記LCフィルタのコンデンサの電圧を検出する。前記制御部は、指令生成部と、振動成分取得部と、調整部と、駆動部とを備える。前記指令生成部は、前記電力変換部の入力電流の指令である入力電流指令を生成する。前記振動成分取得部は、前記LCフィルタのコンデンサに流れる電流の振動成分を取得する。前記調整部は、前記振動成分取得部によって取得された前記振動成分に基づいて、前記入力電流指令を調整する。前記駆動部は、前記調整部によって調整された前記入力電流指令に基づいて前記電力変換部を制御する。前記振動成分取得部は、前記電圧検出部によって検出された前記コンデンサの電圧に基づいて、前記コンデンサに流れる電流を推定する電流推定部と、前記電流推定部によって推定された前記電流から当該電流に含まれる振動成分を抽出する振動成分抽出部と、を備える。
実施形態の一態様によれば、共振抑制を行うことができる電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法を提供することができる。
図1は、第1の実施形態に係る電力変換装置の構成例を示す図である。 図2は、図1に示す双方向スイッチの構成例を示す図である。 図3は、LCフィルタの構成例を示す図である。 図4は、LCフィルタの1相分について入出力の関係を示す図である。 図5Aは、電源側インピーダンスを増加させた場合の極の変化を示す図である。 図5Bは、電源側インピーダンスを増加させた場合の共振角速度の変化を示す図である。 図5Cは、電源側インピーダンスを増加させた場合の減衰係数の変化を示す図である。 図6Aは、電源側インピーダンスを増加させた場合の極の変化を示す図である。 図6Bは、電源側インピーダンスを一定にし、A*を変化させた場合の共振角速度の変化を示す図である。 図6Cは、電源側インピーダンスを一定にし、A*を変化させた場合の減衰係数の変化を示す図である。 図7は、制御部の構成例を示す図である。 図8は、式(20)に対応するブロック図である。 図9は、電流推定部の構成例を示す図である。 図10は、振動成分取得部の構成例を示す図である。 図11は、制御部による共振抑制処理の流れを示すフローチャートの一例である。 図12は、図11に示すステップS10の処理の流れを示すフローチャートの一例である。 図13は、第1の実施形態の電力変換装置による入力力率制御の状態を示す図である。 図14は、第2の実施形態の電力変換装置による入力力率制御の状態を示す図である。 図15は、第2の実施形態に係る電力変換装置の制御部の構成例の一部を示す図である。 図16は、第3の実施形態にかかる電力変換装置の構成を示す図である。
以下に、本願の開示する電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法の実施形態を図面に基づいて詳細に説明する。また、この実施形態によりこの発明が限定されるものではない。
[1.第1の実施形態]
[1.1.電力変換装置の構成例]
図1は、第1の実施形態に係る電力変換装置の構成例を示す図である。図1に示すように、第1の実施形態に係る電力変換装置1は、3相交流電源2(以下、単に交流電源2と記載する)と3相交流負荷3(以下、単に負荷3と記載する)との間に設けられるマトリクスコンバータである。
交流電源2は、例えば、電力系統である。負荷3は、例えば、交流電動機や交流発電機である。以下においては、交流電源2のR相、S相およびT相を入力相と記載し、負荷3のU相、V相およびW相を出力相と記載する。
電力変換装置1は、入力端子Tr、Ts、Ttと、出力端子Tu、Tv、Twと、電力変換部10と、LCフィルタ11と、入力電圧検出部12と、コンデンサ電圧検出部13と、出力電流検出部14と、制御部20とを備える。
電力変換部10は、交流電源2の各相と負荷3の各相とを接続する複数の双方向スイッチSru、Ssu、Stu、Srv、Ssv、Stv、Srw、Ssw、Stw(以下、双方向スイッチSwと総称する場合がある)を備える。
双方向スイッチSru、Ssu、Stuは、交流電源2のR相、S相、T相と負荷3のU相とをそれぞれ接続する。双方向スイッチSrv、Ssv、Stvは、交流電源2のR相、S相、T相と負荷3のV相とをそれぞれ接続する。双方向スイッチSrw、Ssw、Stwは、交流電源2のR相、S相、T相と負荷3のW相とをそれぞれ接続する。
図2は、双方向スイッチSwの構成例を示す図である。図2に示すように、双方向スイッチSwは、スイッチング素子Q1とダイオードD1の直列接続回路と、スイッチング素子Q2とダイオードD2との直列接続回路とを有し、これらの直列接続回路は逆並列接続される。
なお、双方向スイッチSwは、複数のスイッチング素子を有して導通方向を制御可能な構成であればよく、図2に示す構成に限定されない。例えば、図2に示す例では、ダイオードD1、D2のカソード同士が接続されているが、双方向スイッチSwは、ダイオードD1、D2のカソード同士が接続されない構成でもよい。
また、スイッチング素子Q1、Q2は、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などの半導体スイッチング素子である。また、スイッチング素子Q1、Q2は、例えば、窒化ガリウム(GaN)または炭化珪素(SiC)を含むワイドバンドギャップ半導体であってもよい。なお、スイッチング素子Q1、Q2が例えば逆阻止型IGBTの場合、ダイオードD1、D2を設けなくてもよい。
なお、ゲート信号S1〜S9は、双方向スイッチSru、Ssu、Stu、Srv、Ssv、Stv、Srw、Ssw、Stwのスイッチング素子Q1のゲートに入力される。また、ゲート信号S10〜S18は、双方向スイッチSru、Ssu、Stu、Srv、Ssv、Stv、Srw、Ssw、Stwのスイッチング素子Q2のゲートに入力される。
図1に戻って、電力変換装置1の説明を続ける。LCフィルタ11は、交流電源2のR相、S相およびT相と電力変換部10との間に設けられ、電力変換部10を構成する双方向スイッチSwのスイッチングに起因するスイッチングノイズを除去する。
図3は、LCフィルタ11の構成例を示す図である。図3に示すように、LCフィルタ11は、3つのリアクトルLr、Ls、Ltと、3つのコンデンサCrs、Cst、Ctrと、抵抗Rr、Rs、Rtとを含む。リアクトルLr、Ls、Ltは、交流電源2のR相、S相およびT相と電力変換部10との間にそれぞれ接続される。
リアクトルLr、Ls、Ltにはそれぞれ抵抗Rr、Rs、Rtが並列に設けられる。抵抗Rr、Rs、Rtは、LCフィルタ11の共振を抑制するダンピング抵抗である。なお、LCフィルタ11は、図1に示す構成に限定されない。例えば、LCフィルタ11は、抵抗Rr、Rs、Rtを設けない構成であってもよい。
コンデンサCrs、Cst、Ctrは、異なる2つの入力相の間にそれぞれ接続される。具体的には、コンデンサCrsは、R相とS相との間に接続され、コンデンサCstは、S相とT相との間に接続され、コンデンサCtrは、R相とT相との間に接続される。
図1に戻って、電力変換装置1の説明を続ける。入力電圧検出部12は、交流電源2から電力変換装置1へ入力される交流電源2のR相、S相、T相の各相の瞬時電圧値V、V、V(以下、入力相電圧V、V、Vと記載する)を検出する。なお、以下においては、入力相電圧V、V、Vを入力電圧Vrstと記載する場合がる。
コンデンサ電圧検出部13は、コンデンサCrs、Cst、Ctrの両端電圧の瞬時VC_rs、VC_st、VC_trを検出する。なお、以下においては、コンデンサ電圧VC_rs、VC_st、VC_trをコンデンサ電圧VC_rstと記載する場合がある。
出力電流検出部14は、電力変換部10と負荷3のU相、V相、W相のそれぞれとの間に流れる電流の瞬時値I、I、I(以下、出力相電流I、I、Iと記載する)を検出する。なお、出力電流検出部14は、例えば、磁電変換素子であるホール素子を利用して電流を検出する。また、以下においては、出力相電流I、I、Iを出力電流Iuvwと記載する場合がある。
制御部20は、電力変換部10を制御して交流電源2と負荷3との間の電力変換制御を行う。かかる制御部20は、実行する運転モードとして、力行運転モードと回生運転モードを有する。
力行運転モードの場合、制御部20は、交流電源2から入力端子Tr、Ts、Ttを介して供給される3相交流電力を任意の電圧および周波数の3相交流電力に変換して出力端子Tu、Tv、Twから負荷3へ出力するように電力変換部10を制御する。
回生運転モードの場合、制御部20は、負荷3から出力端子Tu、Tv、Twを介して供給される回生電力を、交流電源2の周波数および電圧の3相交流電力に変換して入力端子Tr、Ts、Ttから交流電源2へ供給するように電力変換部10を制御する。
かかる制御部20は、指令生成部31と、振動成分取得部32と、調整部33と、スイッチ駆動部35(駆動部の一例)とを備える。
指令生成部31は、電力変換部10の入力電流IO_rstの指令である入力電流指令IO_rst *を生成する。入力電流指令IO_rst *は、電力変換部10へ入力される交流電源2のR相、S相、T相の電流IO_r、IO_s、IO_tの指令IO_r *、IO_s *、IO_t *を含む。
振動成分取得部32は、コンデンサ電圧VC_rstに基づき、LCフィルタ11のコンデンサCrs、Cst、Ctrに流れる電流(以下、コンデンサ電流IC_rstと記載する場合がある)の振動成分ΔIを取得する。かかる振動成分ΔIは、LCフィルタ11の共振周波数成分を含む。
調整部33は、振動成分取得部32によって取得された振動成分ΔIに基づいて、入力電流指令IO_rst *を調整することにより入力電流指令I’O_rst *を生成する。スイッチ駆動部35は、調整部33から出力される入力電流指令I’O_rst *に基づいて電力変換部10を構成する双方向スイッチSwを制御する。入力電流指令I’O_rst *は、電力変換部10へ入力される交流電源2のR相、S相、T相の電流の指令I’O_r *、I’O_s *、I’O_t *を含む。
このように、制御部20は、コンデンサCrs、Cst、Ctrに流れる電流の振動成分ΔIに基づいて、入力電流指令IO_rst *を調整し、調整後の入力電流指令I’O_rst *に基づいて電力変換部10を制御することから、共振抑制を行うことができる。
[1.2.共振抑制]
ここで、共振抑制について図面を参照して説明する。図4は、LCフィルタ11の1相分について入出力の関係を示す図である。なお、図4に示す各符号は、以下に示す通りである。
grid:交流電源2の出力電圧
grid:交流電源2の出力電流
:交流電源2と電力変換装置1との間の配線のインダクタンス
L:リアクトルLr、Ls、Ltのインダクタンス
R:抵抗Rr、Rs、Rtの抵抗値
C:コンデンサCrs、Cst、Ctrのキャパシタンス
:リアクトルLr、Ls、Ltに流れる電流
:抵抗Rr、Rs、Rtに流れる電流
:コンデンサCrs、Cst、Ctrに流れる電流(コンデンサ電流)
:コンデンサCrs、Cst、Ctrの両端電圧(コンデンサ電圧)
:交流電源2からLCフィルタ11を経由して電力変換部10へ流れる電流
図4に示す回路から、R相、S相およびT相について、以下の式(1)〜(5)が成り立つ。なお、これらの式中、添え字の“rst”は、R相、S相およびT相の要素が3列に配置された3行1列の行列であることを示す。
Figure 0006060928
リアクトルLr、Ls、Ltと抵抗Rr、Rs、Rtとの並列接続部分についての状態方程式は、上記式(3)、(5)から、下記式(6)のように表すことができる。
Figure 0006060928
上記式(6)は、下記式(7)のように表すことができる。
Figure 0006060928
次に、コンデンサCrs、Cst、Ctrについての状態方程式は、上記式(1)、(2)から、下記式(8)のように表すことができる。
Figure 0006060928
また、交流電源2についての状態方程式は、上記式(4)から、下記式(9)のように表すことができる。
Figure 0006060928
上記式(7)〜(9)から、3相の状態方程式を行列式で表すと下記式(10)のように表すことができる。なお、下記式(10)において、O33は、3次正方行列の零行列を表し、I33は、3次の単位行列である。
Figure 0006060928
ここで、下記式(11)が成り立つと仮定する。
Figure 0006060928
この場合、上記式(10)、(11)から、3相の状態方程式は、下記式(12)のように表すことができる。
Figure 0006060928
したがって、3相の状態方程式は、下記式(13)のように表すことができる。
Figure 0006060928
上記式(13)に示す状態方程式の特性方程式は、下記式(14)のように表すことができる。
Figure 0006060928
上記式(14)において、行列Aは、下記式(15)のように表される。
Figure 0006060928
したがって、上記式(14)は、下記式(16)のように表すことができる。
Figure 0006060928
図5A〜図5Cは、上記式(16)に基づくシュミレーションにより、交流電源2と電力変換装置1との間のインピーダンス(以下、電源側インピーダンスと記載する)を増加させた場合の極、共振角速度および減衰係数の変化を示す図である。
図5Aに示すように、電源側インピーダンスが増加した場合、極は右側へ移動しており、不安定化する。また、図5Cに示すように、電源側インピーダンスが増加した場合、減衰係数が小さくなり、減衰し難くなることが分かる。なお、かかる共振抑制効果は、ダンピング抵抗である抵抗Rr、Rs、Rtによるものである。
次に、抵抗Rr、Rs、Rt以外による方法で共振抑制効果を得るための方法について検討する。上記式(13)に示す3相の状態方程式に対し、下記式(17)に示すように、コンデンサ電圧VC_rstに「A」という項を持たせるとする。これにより、3相の状態方程式は、コンデンサ電圧VC_rstの変化に対して、コンデンサ電圧VC_rstが収束させる項を持つ。
Figure 0006060928
上記式(17)から、コンデンサ電圧VC_rstは、下記式(18)に示すように表すことができる。なお、A*=C×Aである。
Figure 0006060928
上記式(18)中の「A*C_rst」は、例えば、A*=1/Rと仮定すれば、LCフィルタ11のコンデンサCrs、Cst、Ctrと並行に抵抗を接続している状態と同じである。図6A〜図6Cは、このように共振抑制項を持たせた場合のシュミレーション結果を示す図である。図6Aは、電源側インピーダンスを増加させた場合の極の変化を示し、図6Bは、電源側インピーダンスを一定にし、A*を変化させた場合の共振角速度の変化を示し、図6Cは、電源側インピーダンスを一定にし、A*を変化させた場合の減衰係数の変化を示す。
図6Aに示すように、電源側インピーダンスが増加した場合、極は左側へ移動し、安定化する。また、図6Cに示すように、A*を大きくすることで減衰係数が大きくなり、減衰しやすくなる。したがって、上記式(17)に示すように、「A」という項を持たせることで、共振抑制効果が得られ、また、ダンピング抵抗である抵抗Rr、Rs、Rtの場合に比べ、電源側インピーダンスが大きい場合に共振抑制効果が高いことが分かる。
上記式(18)は、下記式(19)のように表すことができる。したがって、コンデンサ電圧VC_rstに「A*」を乗じた値を入力電流指令IO_rst *に加算することにより共振抑制効果を得ることができる。
Figure 0006060928
ところで、共振によりコンデンサ電圧VC_rstに振動成分が生じると、コンデンサ電流IC_rstにも振動成分が生じる。そこで、本発明者らは、コンデンサ電流IC_rstの振動成分ΔIを入力電流指令IO_rst *に加算するシミュレーションを試みたところ、「A」という項を持たせた場合と同様に共振抑制効果を得ることができるとの知見を得ることができた。
かかる共振抑制効果は、コンデンサ電流IC_rstの振動成分ΔIを入力電流指令IO_rst *に加算することで、コンデンサ電流IC_rstの振動成分ΔIを打ち消すように入力電流IO_rstが流れることによるものと推測される。
本実施形態に係る電力変換装置1の制御部20では、コンデンサ電流IC_rstの振動成分ΔIを入力電流指令IO_rst *に加算した新たな入力電流指令I’O_rst *に基づき、電力変換部10を制御する。これにより、電力変換部10の入力電流IO_rstの位相が振動成分ΔIに応じて変化し、振動成分ΔIが低減する。そのため、電源側インピーダンスが大きく、抵抗Rr、Rs、Rtによる共振抑制効果が悪い場合であっても、LCフィルタ11の共振を抑制することができる。以下、制御部20の構成について具体的に説明する。なお、抵抗Rr、Rs、Rtは設けることにより共振抑制効果が高くなるが、抵抗Rr、Rs、Rtは設けなくてもよい。
[1.3.制御部20の構成]
図7は、制御部20の構成例を示す図である。図7に示す例では、制御部20は、3相をdq座標変換して演算処理する。dq座標は入力電圧位相θに応じて回転する直交2軸の座標である。
図7に示すように、制御部20は、位相検出部30と、指令生成部31と、振動成分取得部32と、調整部33と、電流制御部34と、スイッチ駆動部35とを備える。
位相検出部30は、例えば、入力電圧Vrstを固定座標上の直交した2軸のαβ成分へ変換することにより、α軸方向の電圧値Vαとβ軸方向の電圧値Vβとを求める。位相検出部30は、例えば、電圧値Vα、Vβをdq軸直交座標系のdq成分へ変換した場合にd軸成分が零となるようにdq軸直交座標系の位相を演算する。位相検出部30は、このように演算したdq軸直交座標系の位相を入力電圧位相θとして出力する。
指令生成部31は、電力変換部10の入力電流の指令である入力電流指令IO_rst *を生成する。入力電流指令IO_rst *は、d軸入力電流指令IO_d *とq軸入力電流指令IO_q *とを含む。かかる入力電流指令IO_d *、IO_q *は、R相、S相、T相の電流指令IO_r *、IO_s *、IO_t *をdq座標に変換したものである。
振動成分取得部32は、LCフィルタ11のコンデンサCrs、Cst、Ctrに流れる電流の振動成分ΔIを取得する。かかる振動成分取得部32は、dq座標変換部41と、電流推定部42と、振動成分抽出部43とを備える。
dq座標変換部41は、コンデンサ電圧VC_rstを固定座標上の直交した2軸のαβ成分へ変換した後、入力電圧位相θに基づき、入力電圧位相θに応じて回転する直交2軸のdq成分へ変換する。これにより、コンデンサ電圧VC_rstがd軸コンデンサ電圧VC_dとq軸コンデンサ電圧VC_qへ変換される。
電流推定部42は、d軸コンデンサ電圧VC_dとq軸コンデンサ電圧VC_qに基づいて、コンデンサ電流IC_rstのdq軸成分であるd軸コンデンサ電流IC_dとq軸コンデンサ電流IC_qを推定する。かかる電流推定部42は、例えば、コンデンサ電圧VC_d、VC_qからコンデンサ電流IC_d、C_qを推定するオブザーバである。
上記式(13)をdq座標変換すると、下記式(20)のように表すことができる。
Figure 0006060928
上記式(20)をブロック図で表現すると、図8に示すようなブロック図になる。図8において、枠線で囲われた部分がコンデンサCrs、Cst、Ctrのモデル70(以下、コンデンサモデル70と記載する)である。かかるコンデンサモデル70は、コンデンサ電流IC_rstのdq軸成分を入力とし、コンデンサ電圧VC_rstのdq軸成分を出力とする。電流推定部42は、かかるコンデンサモデル70を用いて、コンデンサ電圧VC_rstからコンデンサ電流IC_rstを推定する。
図9は、電流推定部42の構成を示すブロック図である。図9に示すように、電流推定部42は、コンデンサモデル70と、補償器71とを備える。コンデンサモデル70は、増幅器81、82、87、88と、加算器83、84と、積分器85、86とを備える。
増幅器81は、d軸コンデンサ推定電流IC_d_OBSに1/Cを乗算して出力する。加算器83は、増幅器81の出力と増幅器87の出力とを加算する。積分器85は、加算器83の出力に積分してd軸コンデンサ推定電圧VC_d_OBSを生成する。増幅器87は、積分器85の出力に角速度ω(=2πfo)を乗算して出力する。なお、foは交流電源2の周波数である。
また、増幅器82は、q軸コンデンサ推定電流IC_q_OBSに1/Cを乗算して出力する。加算器84は、増幅器82の出力と増幅器88の出力とを加算する。積分器86は、加算器84を積分してq軸コンデンサ推定電圧VC_q_OBSを生成する。増幅器88は、積分器86の出力に角速度ωを乗算して出力する。
補償器71は、減算器91、92と、PI(比例積分)制御器93、94と、増幅器95、96とを備える。減算器91は、d軸コンデンサ電圧VC_dとd軸コンデンサ推定電圧VC_d_OBSとの偏差を演算する。PI制御器93は、d軸コンデンサ電圧VC_dとd軸コンデンサ推定電圧VC_d_OBSとの偏差が零になるように増幅器95から出力されるd軸コンデンサ推定電流IC_d_OBSを調整する。増幅器95は、PI制御器93の出力にコンデンサCrs、Cst、Ctrのキャパシタンス値である「C」を乗算してd軸コンデンサ推定電流IC_d_OBSを生成する。
減算器92は、q軸コンデンサ電圧VC_qとq軸コンデンサ推定電圧VC_q_OBSとの偏差を演算する。PI制御器94は、q軸コンデンサ電圧VC_qとq軸コンデンサ推定電圧VC_q_OBSとの偏差が零になるように増幅器96から出力されるq軸コンデンサ推定電流IC_q_OBSを調整する。増幅器96は、PI制御器94の出力にキャパシタンス値である「C」を乗算してq軸コンデンサ推定電流IC_q_OBSを生成する。
このように、電流推定部42は、コンデンサ電圧VC_d、VC_qからコンデンサ推定電流IC_d_OBS、IC_q_OBSを演算することができる。なお、図9に示す構成は、電流推定部42の一例であり、電流推定部42は、コンデンサ電圧VC_d、VC_qからコンデンサ推定電流IC_d_OBS、IC_q_OBSを演算することができれば、図9に示す構成以外の構成であってもよい。
図7に戻って、制御部20の説明を続ける。振動成分取得部32は、d軸コンデンサ推定電流IC_d_OBSからd軸振動成分ΔIC_d_OBSを抽出し、q軸コンデンサ推定電流IC_q_OBSからq軸振動成分ΔIC_q_OBSを抽出する。かかる振動成分ΔIC_d_OBS、ΔIC_q_OBSは、LCフィルタ11の共振周波数成分を含む。
図10は、振動成分取得部32の構成例を示す図である。図10に示すように、振動成分取得部32は、ローパスフィルタ101、102と、減算器103、104とを備える。なお、振動成分取得部32は、図10に示す構成に限られず、例えば、LCフィルタ11の共振周波数帯域の信号を通過させるn次(nは自然数)のバンドパスフィルタであってもよい。
ローパスフィルタ101は、d軸コンデンサ推定電流IC_d_OBSの基本波成分よりも高いLCフィルタ11の共振周波数帯域を除去する。減算器103は、d軸コンデンサ推定電流IC_d_OBSからd軸コンデンサ推定電流IC_d_OBSの基本波成分を除去することで、d軸振動成分ΔIC_d_OBSを抽出する。
ローパスフィルタ102は、q軸コンデンサ推定電流IC_q_OBSの基本波成分よりも高いLCフィルタ11の共振周波数帯域を除去する。減算器104は、q軸コンデンサ推定電流IC_q_OBSからq軸コンデンサ推定電流IC_q_OBSの基本波成分を除去することで、q軸振動成分ΔIC_q_OBSを抽出する。
図7に戻って、制御部20の説明を続ける。調整部33は、指令生成部31から出力されるd軸入力電流指令IO_d *およびq軸入力電流指令IO_q *をd軸振動成分ΔIC_d_OBSおよびq軸振動成分ΔIC_q_OBSに基づいて調整し、d軸入力電流指令I’O_d *およびq軸入力電流指令I’O_q *を生成する。
具体的には、図10に示すように、調整部33は、加算器111、112を備える。加算器111は、d軸入力電流指令IO_d *にd軸振動成分ΔIC_d_OBSを加算し、d軸入力電流指令I’O_d *を生成する。また、加算器112は、q軸入力電流指令IO_q *にq軸振動成分ΔIC_q_OBSを加算し、q軸入力電流指令I’O_q *を生成する。
このように、調整部33は、振動成分取得部32によって取得されたコンデンサ電流IC_rstの振動成分ΔC_d_OBS、ΔIC_q_OBSに基づいて、入力電流指令IO_d *、IO_q *を調整して、入力電流指令I’O_d *、I’O_q *を生成する。
図7に戻って、制御部20の説明を続ける。電流制御部34は、出力電流指令Iuvw *が出力電流Iuvwと一致するように出力電圧指令Vuvw *を生成する。出力電流指令Iuvw *は、例えば、U相、V相およびW相の電流の指令である出力相電流指令I *、I *、I *を含む。また、出力電圧指令Vuvw *は、例えば、U相、V相およびW相の電圧の指令である出力相電圧指令V *、V *、V *を含む。
スイッチ駆動部35は、入力電流指令I’O_d *、I’O_q *に基づいてゲート信号S1〜S18を生成する。かかるスイッチ駆動部35は、図7に示すように、補正量演算部51と、位相決定部52と、ゲート信号生成部53とを備える。
補正量演算部51は、入力電流指令I’O_d *、I’O_q *に基づいて位相補正量Δθを求める。補正量演算部51は、例えば、tan-1(I’O_d */I’O_q *)を演算することで、位相補正量Δθ(=tan-1(I’O_d */I’O_q *))を求める。
位相決定部52は、入力電圧位相θと位相補正量Δθとに基づいて入力電流IO_rstの位相を決定する。具体的には、位相決定部52は、入力電圧位相θに位相補正量Δθを加算することにより、入力電流位相θ1(=θ+Δθ)を演算する。なお、入力電流位相θ1は、入力電流O_rstの位相に対する入力電流指令ある。
ゲート信号生成部53は、入力電流位相θ1、入力電圧Vrstおよび出力相電圧指令V *、V *、V *に基づいてゲート信号S1〜S18を生成する。かかるゲート信号S1〜S18により、入力電流IO_rstの位相が入力電流位相θ1に合うように調整され、かつ、出力相電圧指令V *、V *、V *が出力相電圧V、V、Vに合うように電力変換部10の双方向スイッチSwが調整される。
ゲート信号生成部53は、例えば、入力電圧V、V、Vの大きさの大小関係が変化しない期間において、入力電圧V、V、Vの大きさが大きい順に入力相電圧E、E、Eとする。また、ゲート信号生成部53は、例えば、入力電流位相θ1から入力電流分配率αを求めるテーブルを有する。
入力電流分配率αは、電力変換部10における入力電流IO_rstの分配率であり、例えば、入力相電圧Eへの接続期間T1と入力相電圧Eへの接続期間T2とを規定する。入力電流分配率αは、例えば、α=T2/T1で表される。
ゲート信号生成部53は、入力電流分配率αおよび入力相電圧V、V、Vの状態に基づき、搬送波信号の振幅を調整し、入力電流分配率αおよび出力相電圧V *、V *、V *に基づく変調波信号を生成する。ゲート信号生成部53は、搬送波信号と変調波信号と比較することにより、PWM信号を生成する。ゲート信号生成部53は、例えば、PWM信号に転流処理を施してゲート信号S1〜S18を生成する。
なお、制御部20は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポートなどを有するマイクロコンピュータやASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現される。
マイクロコンピュータのCPUは、ROMに記憶されたプログラムを読み出して実行することにより、位相検出部30、指令生成部31、振動成分取得部32、調整部33、電流制御部34およびスイッチ駆動部35の一部または全部の機能を実行することができる。また、ASICやFPGAなどの回路によって、位相検出部30、指令生成部31、振動成分取得部32、調整部33、電流制御部34およびスイッチ駆動部35の一部または全部の機能を実行することもできる。
図11は、制御部20による共振抑制処理の流れを示すフローチャートの一例である。図11に示すように、制御部20は、コンデンサ電流IC_rstの振動成分ΔIを取得し(ステップS10)、入力電流指令IO_rst *を生成する(ステップS11)。
制御部20は、コンデンサ電流IC_rstの振動成分ΔIに基づいて、入力電流指令IO_rst *を調整する(ステップS12)。そして、制御部20は、調整された入力電流指令IO_rst *に基づいて電力変換部10を制御する(ステップS13)。これにより、電力変換装置1は、例えば、電源側インピーダンスが大きい場合であっても、LCフィルタ11の共振を抑制することができる。
図12は、図11に示すステップS10の処理の流れを示すフローチャートの一例である。図12に示すように、制御部20は、コンデンサ電圧検出部13から出力されるコンデンサ電圧VC_rstを検出し(ステップS20)、かかるコンデンサ電圧VC_rstに基づいて、コンデンサ電流IC_rstを推定する(ステップS21)。そして、制御部20は、推定されたコンデンサ電流IC_rstに含まれる振動成分ΔIを抽出する(ステップS22)。
[2.第2の実施形態]
次に、第2の実施形態に係る電力変換装置について説明する。第2の実施形態に係る電力変換装置は、入力力率の改善制御を行う点で、第1の実施形態に係る電力変換装置1と異なる。なお、第2の実施形態においては、入力力率の改善制御を行う構成以外は、第1の実施形態に係る電力変換装置1と同様の構成であるため図示および説明を省略するものとする。また、第1の実施形態の電力変換装置1と同一機能を有する構成要素については同一符号を付し、重複する説明は省略する。
図13は、第1の実施形態の電力変換装置1による入力力率制御の状態を示す図であり、図14は、第2の実施形態の電力変換装置による入力力率制御の状態を示す図である。
第2の実施形態に係る電力変換装置は、LCフィルタ11のコンデンサCrs、Cst、Ctrによる影響を考慮した入力力率1制御を行う。交流電源2の出力電流Igrid(図4参照)は、電力変換部10へ流れる入力電流I(図4参照)と、コンデンサCrs、Cst、Ctrに流れるコンデンサ電流Ic(図4参照)である。
したがって、dq軸座標系において入力電流Iをq軸に一致させるように制御すると、図13に示すように、出力電流Igrid(図4参照)と出力電圧Vgrid(図4参照)との間で位相がずれる場合がある。そのため、入力力率を1にすることができないおそれがある。
そこで、第2の実施形態に係る電力変換装置は、コンデンサ電流IC_rstに応じて入力電流指令IO_rst *を調整することにより、図14に示すように、入力電流Iの位相をずらす。これにより、図14に示すように、交流電源2の出力電流Igridと出力電圧Vgridとの間の位相を合わせて入力力率を1にすることができる。
図15は、第2の実施形態に係る電力変換装置1Aの制御部20Aの構成例の一部を示す図である。図15では、指令生成部31および電流制御部34は、制御部20と同様の構成であり、図示を省略している。
図15に示すように、制御部20Aは、力率制御部36を備える。力率制御部36は、調整部33から出力される入力電流指令I’O_d *、I’O_q *を調整することにより、入力力率を改善する。
力率制御部36は、減算器121、122を備える。減算器121は、ローパスフィルタ101(電流演算部の一例)の出力を加算器111の出力から減算し、減算器122は、ローパスフィルタ102(電流演算部の一例)の出力を加算器112の出力から減算する。
具体的には、減算器121は、d軸入力電流指令I’O_d *からd軸コンデンサ推定電流IC_d_OBSの基本波成分を減算してd軸入力電流指令I”O_d *を生成する。また、減算器122は、q軸入力電流指令I’O_q *からq軸コンデンサ推定電流IC_q_OBSの基本波成分を減算してq軸入力電流指令I”O_q *を生成する。なお、力率制御部36は、別途ローパスフィルタを備え、かかるローパスフィルタによってコンデンサ推定電流IC_d_OBS、IC_q_OBSから振動成分ΔIC_d_OBS、IC_q_OBSを除去するようにしてもよい。
スイッチ駆動部35は、入力電流指令I”O_d *、I”O_q *に基づいてゲート信号S1〜S18を生成する。スイッチ駆動部35は、例えば、tan-1(I”O_d */I”O_q *)を演算することで、位相補正量Δθを求め、入力電圧位相θと位相補正量Δθとを加算して入力電流位相θ1を決定する。スイッチ駆動部35は、入力電流位相θ1および出力相電圧V *、V *、V *に基づいてゲート信号S1〜S18を生成する。
このように、第2の実施形態に係る電力変換装置1Aは、LCフィルタ11のコンデンサCrs、Cst、Ctrによる進み電流に応じた位相量だけ入力電流位相θ1を遅らせる。そのため、電力変換装置1Aは、交流電源2の出力電流Igridと出力電圧Vgridとの間の位相を合わせて入力力率を1に制御することができる。
[3.第3の実施形態]
次に、第3の実施形態に係る電力変換装置について説明する。第3の実施形態に係る電力変換装置は、コンデンサ電流の推定に代えてコンデンサ電流の検出を行う点で、第1および第2の実施形態に係る電力変換装置1、1Aと異なる。なお、第3の実施形態においては、コンデンサ電流を検出し、かかるコンデンサ電流から振動成分を抽出する構成以外は、第1および第2の実施形態に係る電力変換装置1、1Aと同様の構成であるため図示および説明を省略するものとする。例えば、入力電圧検出部12、コンデンサ電圧検出部13、出力電流検出部14、指令生成部31、電流制御部34および力率制御部36についての図示や説明を省略する。
図16は、第3の実施形態にかかる電力変換装置1Bの構成を示す図である。図16に示すように、電力変換装置1Bは、電力変換部10と、LCフィルタ11と、コンデンサ電流検出部16と、制御部20Bとを備える。
コンデンサ電流検出部16は、コンデンサ電流IC_rstを検出する。具体的には、コンデンサ電流検出部16はコンデンサCrs、Cst、Ctrにそれぞれ流れるコンデンサ電流IC_rs、IC_st、IC_trを検出する。なお、コンデンサ電流検出部16は、例えば、磁電変換素子であるホール素子を利用して電流を検出する。
制御部20Bは、指令生成部31と、振動成分取得部32Bと、調整部33と、スイッチ駆動部35とを備える。振動成分取得部32Bは、dq座標変換部41Bと、振動成分抽出部43Bとを備える。
dq座標変換部41Bは、コンデンサ電流IC_rstを固定座標上の直交した2軸のαβ成分へ変換した後、入力電圧位相θに基づき、入力電圧位相θに応じて回転する直交2軸のdq成分へ変換する。これにより、コンデンサ電流IC_rstがd軸コンデンサ電流IC_dとq軸コンデンサ電流IC_qへ変換される。
振動成分抽出部43Bは、d軸コンデンサ電流IC_dからd軸振動成分ΔIC_dを抽出し、q軸コンデンサ電流IC_qからq軸振動成分ΔIC_qを抽出する。かかる振動成分ΔIC_d、ΔIC_qは、LCフィルタ11の共振周波数成分を含む。なお、振動成分抽出部43Bは、振動成分取得部32と同様に、例えば、ローパスフィルタ101、102および減算器103、104(図10参照)を備える。また、振動成分抽出部43Bは、LCフィルタ11の共振周波数成分を通過させるn次(nは自然数)のバンドパスフィルタであってもよい。
このように、コンデンサ電流検出部16は、コンデンサ電流IC_d、IC_qを検出し、振動成分取得部32Bは、コンデンサ電流IC_d、IC_qから振動成分ΔIC_d、ΔIC_qを抽出する。そして、調整部33は、振動成分ΔIC_d、ΔIC_qにより、入力電流指令IO_d *、IO_q *を調整して入力電流指令I’O_d *、I’O_q *を生成する。制御部20Bは、かかる入力電流指令I’O_d *、I’O_q *に基づいてゲート信号S1〜S18を生成することにより、LCフィルタ11の共振振動を抑制することができる。
なお、電力変換装置1Bにおいて、コンデンサ電流検出部16に代えて、例えば、交流電源2のR相、S相およびT相からそれぞれ電力変換部10へ流れ込む電流を検出する入力電流検出部を設けるようにしてもよい。この場合、制御部20Bは、例えば、入力電流検出部によって検出された入力相電流I、I、Iをdq成分へ変換し、かかるdq成分からLCフィルタ11の共振周波数帯域の信号を抽出することにより、d軸振動成分ΔIC_dおよびq軸振動成分ΔIC_qを抽出する。
なお、上述の実施形態に係る電力変換装置1、1A、1Bは、3相からdq座標へ変換して入力電流指令を調整したが、dq座標変換を用いることなく、入力電流指令を調整することもできる。
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
1、1A、1B 電力変換装置
2 3相交流電源
3 3相負荷
10 電力変換部
11 LCフィルタ
12 入力電圧検出部
13 コンデンサ電圧検出部
20、20A、20B 制御部
30 位相検出部
31 指令生成部
32、32B 振動成分取得部
33 調整部
34 電流制御部
35 スイッチ駆動部
36 力率制御部
41、41B dq座標変換部
42 電流推定部
43、43B 振動成分抽出部
51 補正量演算部
52 位相決定部
53 ゲート信号生成部
Sru、Ssu、Stu、Srv、Ssv、Stv、Srw、Ssw、Stw 双方向スイッチ

Claims (7)

  1. 交流電源と負荷との間に設けられた電力変換部と、
    前記電力変換部を制御して前記交流電源と前記負荷との間の電力変換制御を行う制御部と、
    前記交流電源と前記電力変換部との間に設けられたLCフィルタと、
    前記LCフィルタのコンデンサの電圧を検出する電圧検出部と、を備え、
    前記制御部は、
    前記電力変換部の入力電流の指令である入力電流指令を生成する指令生成部と、
    記コンデンサに流れる電流の振動成分を取得する振動成分取得部と、
    前記振動成分取得部によって取得された前記振動成分に基づいて、前記入力電流指令を調整する調整部と、
    前記調整部によって調整された前記入力電流指令に基づいて前記電力変換部を制御する駆動部と、を備え
    前記振動成分取得部は、
    前記電圧検出部によって検出された前記コンデンサの電圧に基づいて、前記コンデンサに流れる電流を推定する電流推定部と、
    前記電流推定部によって推定された前記電流から当該電流に含まれる振動成分を抽出する振動成分抽出部と、を備える
    ことを特徴とする電力変換装置。
  2. 前記交流電源の電圧位相を検出する位相検出部と、
    前記調整部によって調整された前記入力電流指令に基づいて、位相補正量を演算する補正量演算部と、
    前記補正量演算部によって演算された前記位相補正量と前記位相検出部によって検出された前記電圧位相とに基づいて前記入力電流の位相を決定する位相決定部と、を備え、
    前記駆動部は、
    前記入力電流の位相が前記位相決定部によって決定された前記位相に合うように前記電力変換部を制御する
    ことを特徴とする請求項に記載の電力変換装置。
  3. 前記電流推定部によって推定された前記電流から前記振動成分を除いた電流を演算する電流演算部を備え、
    前記位相決定部は、
    前記補正量演算部によって演算された前記位相補正量と前記位相検出部によって検出された前記電圧位相とに加え、さらに、前記電流演算部によって演算された前記電流に基づいて前記入力電流の位相を決定する
    ことを特徴とする請求項に記載の電力変換装置。
  4. 前記駆動部は、
    前記調整部によって調整された前記入力電流指令に基づいて、前記入力電流の位相を制御する
    ことを特徴とする請求項1に記載の電力変換装置。
  5. 前記駆動部は、
    前記調整部によって調整された前記入力電流指令に基づいて、前記電力変換部における前記入力電流の分配率を決定し、当該決定した前記分配率に基づいて前記電力変換部を制御する
    ことを特徴とする請求項1に記載の電力変換装置。
  6. 交流電源と負荷との間の電力変換を行う電力変換部と前記交流電源との間に設けられたLCフィルタのコンデンサの電圧を検出する電圧検出部によって検出された前記コンデンサの電圧に基づいて前記コンデンサに流れる電流を推定し、当該推定した前記電流から当該電流に含まれる振動成分を抽出して当該振動成分を取得する振動成分取得部と、
    前記電力変換部の入力電流の指令である入力電流指令を生成する指令生成部と、
    前記振動成分取得部によって取得された前記振動成分に基づいて、前記入力電流指令を調整する調整部と、
    前記調整部によって調整された前記入力電流指令に基づいて前記電力変換部を制御する駆動部と、を備える
    ことを特徴とする電力変換装置の制御装置。
  7. 交流電源と負荷との間の電力変換を行う電力変換部と前記交流電源との間に設けられたLCフィルタのコンデンサの電圧を検出する工程と、
    前記検出された前記コンデンサの電圧に基づいて、前記コンデンサに流れる電流を推定する工程と、
    前記推定された前記電流から当該電流に含まれる振動成分を抽出する工程と、
    前記電力変換部の入力電流の指令である入力電流指令を生成する工程と、
    前記抽出された前記振動成分に基づいて、前記入力電流指令を調整する工程と、
    前記調整された前記入力電流指令に基づいて前記電力変換部を制御する工程と、を含む
    ことを特徴とする電力変換装置の制御方法。
JP2014063982A 2014-03-26 2014-03-26 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法 Active JP6060928B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014063982A JP6060928B2 (ja) 2014-03-26 2014-03-26 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法
EP14196913.9A EP2924858A1 (en) 2014-03-26 2014-12-09 Matrix converter with active damping for LC grid filter
US14/564,090 US9407135B2 (en) 2014-03-26 2014-12-09 Power conversion apparatus, control device for power conversion apparatus, and method for controlling power conversion apparatus
CN201510058664.8A CN104953852B (zh) 2014-03-26 2015-02-04 电力转换装置、其控制装置及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063982A JP6060928B2 (ja) 2014-03-26 2014-03-26 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法

Publications (2)

Publication Number Publication Date
JP2015186432A JP2015186432A (ja) 2015-10-22
JP6060928B2 true JP6060928B2 (ja) 2017-01-18

Family

ID=52011096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063982A Active JP6060928B2 (ja) 2014-03-26 2014-03-26 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法

Country Status (4)

Country Link
US (1) US9407135B2 (ja)
EP (1) EP2924858A1 (ja)
JP (1) JP6060928B2 (ja)
CN (1) CN104953852B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10312798B2 (en) 2016-04-15 2019-06-04 Emerson Electric Co. Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US11451156B2 (en) 2020-01-21 2022-09-20 Itt Manufacturing Enterprises Llc Overvoltage clamp for a matrix converter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154379A (en) * 1998-07-16 2000-11-28 Tdk Corporation Electric power conversion device
JP3650565B2 (ja) * 2000-04-03 2005-05-18 東芝三菱電機産業システム株式会社 電力変換装置
CN1961471A (zh) * 2004-06-01 2007-05-09 株式会社安川电机 Pwm循环转换器及其控制方法
JP4839844B2 (ja) * 2006-01-12 2011-12-21 日産自動車株式会社 電力変換器の制御方法およびそれを用いたハイブリッド電力変換システム
WO2008031893A1 (de) * 2006-09-15 2008-03-20 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
JP5419656B2 (ja) * 2009-12-02 2014-02-19 東洋電機製造株式会社 電力変換制御装置
JP5549644B2 (ja) * 2011-06-17 2014-07-16 株式会社安川電機 電力変換装置およびその制御方法
WO2013080744A1 (ja) 2011-11-30 2013-06-06 株式会社安川電機 マトリクスコンバータ
JP5664589B2 (ja) * 2012-04-20 2015-02-04 株式会社安川電機 電源回生コンバータおよび電力変換装置

Also Published As

Publication number Publication date
US20150280549A1 (en) 2015-10-01
CN104953852B (zh) 2018-04-20
JP2015186432A (ja) 2015-10-22
CN104953852A (zh) 2015-09-30
US9407135B2 (en) 2016-08-02
EP2924858A1 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP6060928B2 (ja) 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法
JP6295782B2 (ja) 電力変換装置、発電システム、制御装置および電力変換方法
US20150295506A1 (en) Power converting apparatus, control device of power converting apparatus, and control method of power converting apparatus
KR101512188B1 (ko) 모듈형 멀티레벨 컨버터의 구동방법 및 구동장치
JP6369423B2 (ja) 電力変換装置、制御装置および制御方法
US20150280597A1 (en) Power converting apparatus, control device of power converting apparatus, and control method of power converting apparatus
JP6375757B2 (ja) 電動機制御装置、電動機の磁束推定装置および電動機の磁束推定方法
US9843273B2 (en) Power conversion apparatus, phase current detection apparatus, and phase current detection method
AU2015220080B2 (en) Method of Controlling Power Conversion Apparatus
JP2015012729A (ja) マトリクスコンバータ
JP6848622B2 (ja) 電力変換器及びその制御装置
JP6135713B2 (ja) モータ制御装置、磁束指令の生成装置および磁束指令の生成方法
JP6372424B2 (ja) 電力変換装置および電流検出方法
JP6180696B2 (ja) 電力変換装置
JP7086741B2 (ja) 系統連系インバータ装置及び安定化制御方法
JP2005086973A (ja) 交流−交流直接変換器の制御装置
JP6471827B1 (ja) 電力変換装置
WO2023276181A1 (ja) 電力変換装置
JP6766550B2 (ja) 電力変換装置
JP2021191035A (ja) 制御装置及び電力変換装置
JP2000261964A (ja) アクティブフィルタの制御装置
JP2018050425A (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160719

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6060928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150