JP6028975B2 - 立体画像表示装置 - Google Patents

立体画像表示装置 Download PDF

Info

Publication number
JP6028975B2
JP6028975B2 JP2012265940A JP2012265940A JP6028975B2 JP 6028975 B2 JP6028975 B2 JP 6028975B2 JP 2012265940 A JP2012265940 A JP 2012265940A JP 2012265940 A JP2012265940 A JP 2012265940A JP 6028975 B2 JP6028975 B2 JP 6028975B2
Authority
JP
Japan
Prior art keywords
liquid crystal
image display
transparent
electrode
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012265940A
Other languages
English (en)
Other versions
JP2014112757A (ja
Inventor
高橋 聡之助
聡之助 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianma Japan Ltd
Original Assignee
NLT Technologeies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NLT Technologeies Ltd filed Critical NLT Technologeies Ltd
Priority to JP2012265940A priority Critical patent/JP6028975B2/ja
Priority to CN202010747690.2A priority patent/CN111929961A/zh
Priority to CN201310625953.2A priority patent/CN103852949A/zh
Priority to US14/096,971 priority patent/US9013647B2/en
Publication of JP2014112757A publication Critical patent/JP2014112757A/ja
Application granted granted Critical
Publication of JP6028975B2 publication Critical patent/JP6028975B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

本発明は、液晶レンズを用いた立体画像表示装置に関し、特に、電界効果による屈折率分布型液晶レンズを用いた立体画像表示装置に関する。
立体画像を観測者に認識させる手法として、一般的に、左眼と右眼の位置差を利用した両眼視差による立体画像表示方法が用いられている。この方法は、左眼と右眼にそれぞれ異なる2次元画像を視認させ、脳においてその見え方の違いから3次元の立体画像を認識させるステレオグラム(Stereogram)の原理を応用したものである。また、その立体画像の表示方法としては、メガネを用いた方式やメガネを使用しない裸眼立体視方式があり、裸眼立体視方式においては、観測者の視点数に応じて、2眼式や多眼式などが使用される。
通常のフラットパネルディスプレイなどの2次元画像表示装置を用いて、裸眼方式により立体画像を表現するには、スリット状の遮光パターンなどを表示パネルと光源の間に配置する視差バリア方式や、2次元画像表示パネルと観測者の間にレンチキュラレンズなどを配置するレンズ方式などにより、2次元画面上に表示された左眼と右眼用の画像を空間的に分離して、左右それぞれの眼に視認させる方法が用いられている。
一方、これら裸眼立体視方式においては、バリアやレンズを表示パネルと固定した状態で接合させる事が多く、立体視領域が狭い範囲に固定化されてしまう。また、多眼式により多視点化を行い、立体視領域を拡げる場合でも、視点の数に合せて画像を多数表示させる必要があり、解像度の低下を招いてしまう。このように立体視領域が狭い範囲に固定化された状態で観察者が移動した場合に、その視点が、立体視領域を外れたり、左/右眼用の各画像が逆に見えてしまう逆視領域に入ったりするため、立体視を得ることができなくなる。
このため、特許文献1や特許文献2では、観察者頭部の空間的位置を検出する頭部検出装置に同期させて、シリンドリカルレンズのアレイで構成されるレンチキュラレンズやバリアとなる遮光パターンを、サーボ機構により機械的に移動させることにより、観察者の視点と立体視領域を追従させている。また、特許文献3では、より少ない画像数で多視点化を行う為、時分割式に複数の画像を表示し、液晶による光偏向スイッチング素子を同期させ、更にバリアとレンズとを組み合わせて実現している。
また、立体画像表示装置においては、文字などのキャラクター表示が主体の2次元(2D)表示と、物体や風景が主体となる3次元(3D)表示とを、同一画面において混在表示させる要求が強く、同一画素において2Dと3Dを切替える方式として、表示サブ画素配列を工夫したレンチキュラレンズ方式(特許文献8)と、レンズ特性をON/OFF切替えできる液晶レンズ方式(特許文献4、5、6)が提案されている。
レンチキュラレンズ方式について、レンチキュラレンズの凸部稜線の長手方向を縦方向とした場合、従来は1画素あたりの縦と横は同じピッチで、R、G、B色のサブ画素は、レンチキュラレンズの長手方向と平行な縦ストライプ配置となるため、2Dと同じ3D解像度を確保する為には横解像度を倍にする必要があった。特許文献8では、1画素あたり横方向を縦方向の半分の画素ピッチとし、R、G、B色のサブ画素をレンチキュラレンズの長手方向と直交する横ストライプ配置とする事で、2Dと3Dを同じ解像度により、混在表示を実現している。
液晶レンズ方式について、液晶レンズとは、液晶材料の電気光学効果、大きな屈折率異方性を有する物性を利用し、低駆動電圧、低消費電力、素子の小型及び薄型化、2次元アレイ化が容易な利点を生かした光学素子(非特許文献1、2、3、4)の一つである。例えば、表面がレンズ形状を有する電極基板を用いた液晶セルに電圧を印加し、入射光の偏光方向に対する屈折率をneからnoに変化させることで、焦点可変液晶レンズが実現される。
また、液晶マイクロレンズは、スリットパターン電極や円形ホールパターン電極を配置した2枚の平坦な基板の間に、液晶を封入した液晶セルにより構成される。その電極に電圧を印加することで、電極のないスリットや円形ホールパターン開口部に軸対称状の不均一電界が生じる。この電界に沿って液晶が再配向し、開口中心部からパターンエッジ部へ向かってneからnoまでの連続的な二乗分布が形成される。この屈折率分布により、光路差Δndが生じ、レンズ効果が得られる。すなわち、可変型のGRIN(Gradient Index)レンズが実現される。
この液晶マイクロレンズは、理想的な二乗分布に近い屈折率分布を形成することが可能で、良好なレンズ特性が得られる。電極分割や外部制御電極構造により、その特性を維持した状態で、屈折率分布を液晶セル平面内において平行移動、すなわちレンズ位置を10μm(以下、本明細書ではumと表記)程度移動させることが可能である(非特許文献2、3)。しかしながら、レンズ特性が得られる開口部が初期の電極配置によって決められており、レンズ移動によりレンズの一部に欠けが生じたりするため、視点追従が可能な数百um程度の大きな移動量を得ることは難しい。
また、液晶レンズは十分な光路差を得る必要があり、リタデーション(Δnd)を大きくするために、セルギャップdが通常の液晶ディスプレイパネルのセルギャップよりも大きくなるため、応答が比較的遅くなってしまう。十分に大きい複屈折率Δnを有する液晶を使用できれば改善可能ではあるが、現時点では大きくても0.2程度であるため、改善は難しい。そのため、非特許文献4では液晶レンズの屈折率分布をフレネルレンズ形状とする事により、セルギャップの低減を実現している。
特許文献4では、立体画像表示装置において、レンチキュラレンズの代わりに液晶レンズを使用する場合、シリンドリカルレンズを並べた屈折率分布配置にする必要があり、その際に隣接するレンズの間、すなわち液晶レンズのエッジ付近においても、良好な液晶レンズ特性を得るために、電極の幅と、その間隔を変化させている。
特許文献5では、画素ごとに独立して液晶レンズの屈折率分布を調整するため、ストライプ電極間隔、幅を1方向へ向かって変化させることで電界勾配を得て、プリズム状の屈折率分布を得ている。各画素内のストライプ電極には、一定の駆動電圧が印加され、対向側電極はコモン電極となっている。
特許文献6では、レンチキュラレンズの代わりに液晶レンズと、2D/3Dの切替えには偏光面を回転させる位相変調手段(1/2波長板と強誘電性液晶セル)を使用することで、2D/3D切替を液晶レンズのON/OFFではなく、位相変調手段で高速に切替える事ができる。
特許文献7では、画素ごとに独立して制御するため、低抵抗ストライプ電極(金属もしくは低抵抗性ITO(Indium Tin Oxide)透明電極)を束ねるように接合された高抵抗の薄膜抵抗線の両端に、異なる電圧を印加する事で傾斜電界分布を得て、液晶レンズとしている。このように、薄膜抵抗線で接合し、異なる電圧を各ストライプ電極に印加する事で、出力電圧値の数を抑制しドライバのコストアップを抑えている。
特許文献9では、立体画像表示パネル平面(z−y軸を含む面)に対して垂直方向に出射する光軸をx軸としたとき、作業者の観察姿勢が前記パネル平面内のθ方向に回転する様に変化した場合でも、検知結果に基づいて、右目用画像と左目用画像とを空間的に分離する画像分離手段(レンチキュラレンズや視差バリア、液晶レンズなど)を回転させることで、立体視を維持する方法が提案されている。
特許文献10では、波面制御表示装置として微小な液晶セルをマトリクス状に配置し、各個別に制御を行うことで両眼視差を得ている。また、個別のセルとしてではなく、電極構造のみで制御している方式として、段落0061に記載の各対向基板上の電極を交差して配置した、単純マトリクス構造が示されている。
これらが従来技術として知られている。
特開平7-38926号公報 特開2005-175973号公報 特許第449582号(特開2005-223727号公報) 特開2009-104137号公報 特許第4687073号(特開2006-126721号公報) 特許第3940725号(特開2004-258631号公報) 特許第3814366号(特開平10-221703号公報) 特許第4400172号(特開2004-280052号公報) 特開2010-56712号公報 特開2002-328333号公報
S. Sato, Jpn. J. Appl. Phys., Vol.18, No.9(1979) pp.1679-1684. Appl. Opt.,Vol.36,No.20(1997),pp.4772-4778 Jpn. J. Appl. Phys., Vol.39,No.11(2000),pp.6383-6387 J. Display Technol., Vol.7,No.4(2011),pp.215-219
しかしながら、上述した従来技術において、特許文献1、2では、視点追従の為に、レンズを移動させるサーボ機構やスペースが必要であるため、装置サイズが大きくなるという課題がある。
特許文献3は、あくまで多視点化のための技術であり、視点をトレースする機能がなく、レンチキュラレンズと組合せる必要がある。また、楔形表面形状の液晶セルは、同公報の段落0033に「鋸歯形状基板に形成される…鋸歯形状の頂点を鋭角に作製することは難しく、一般的に頂点部には曲率がついてしまう。そのため、鋸歯形状の段差部では光を発散させてしまう恐れがあり、段差部を通過する画素ラインの画像は劣化してしまう。」との言及があるように、その表面加工が難しい。また、液晶を配向させる基板表面のラビング処理は、その段差部、特に楔の底点部の処理が不十分となり、配向異常となる可能性が高い。そのため底点部分でも光発散の恐れがある。さらに、レンチキュラレンズと液晶偏向セルを同じ材質にしないと、大型化した場合、収縮率の違いで歪みが生じ、視点のズレや発散光の漏れによる表示異常が起こる。この問題に対して、石英ガラスを基板に使用する方法があるが、石英ガラスは一般に価格が高いため大型製品への適用が困難になるという課題がある。
非特許文献2、3では、レンズ移動量が小さい為、視点追従するには移動量が不十分であるという課題がある。また、立体画像表示装置に適用する概念は提案されていない。
非特許文献4では、ストライプ状の電極を用いているが、セルギャップを薄くする為に、フレネルレンズ状の屈折率分布を用いている。その急峻な形状を液晶レンズで正確に実現するのは難しく、結像特性や立体のクロストーク増大を招いてしまう。さらに、透明電極ストライプパターンに対して、そのストライプ方向と平行となる様にホモジニアス配向の液晶層を封入しているため、隣接するストライプ電極の電位差が大きくなる時には、ストライプ方向と直交する方向に液晶が回転してしまい、液晶配向が乱れる恐れがある。また、初期のレンズ配置、ピッチにおいて最適なレンズ特性となるような電圧印加パターンを設定しており、レンズ移動は想定していないため、2D/3Dの切り替えのみを行っており、視点追跡システム及びそのような概念は提案されていない。
特許文献4では、電極ストライプ間隔や幅が一定でない為、基板面内(x、y平面内、水平方向)で屈折率分布形状を維持させながら移動させることは困難であり、また、レンズを移動させる概念がないため、視点追従は困難である。
特許文献5では、電極ストライプ間隔や幅が一定でない為、基板面内(水平方向)で屈折率分布形状を維持させながら移動させることは困難であり、画素ごとにレンズパターンを独立させているため、画素と画素の間など中間地点の屈折率分布の制御は出来ない。このように、レンズを移動させる概念がないため、視点追従は困難である。
特許文献6では、液晶レンズはエッジ部にのみ電極を配置しているため、位置が固定されており、基板面内(x、y平面内、水平方向)に移動させることはできない。また、レンズを移動させる概念がないため、視点追従は困難である。
特許文献7では、液晶レンズを構成するストライプ電極は抵抗配線で結合されており、1本1本個別に電圧調整することはできず、また、抵抗配線の長さでレンズピッチが固定化されてしまっている。よって、水平方向に屈折率分布を移動させることはできず、また、レンズを移動させる概念自体がないため、視点追従は困難である。
特許文献9では、画像分離手段の一つとして液晶レンズを用いている。その構成はマトリクス状の画素電極を配置し、前記各画素電極と対向基板上の電極と液晶材により構成される液晶レンズパネルの各ドットについて、前記各ドットの屈折率を独立して電気的に制御することで、屈折率分布を回転させている。しかし、各ドットをTFT(Thin Film Transistor)のようなアクティブ素子で駆動する必要があり、画像表示パネルの解像度が高くなるほど、液晶レンズパネルを構成するTFT素子数、配線数、ドライバ出力の数が増大し、歩留り低下、開口率低下、ドライバのコスト増などを招く。また、表示パネル平面(y−z平面)の水平方向、例えばy軸方向へ観察者が移動し、回転軸(x軸)から離れていった場合に、屈折率分布を平行移動させる方法が提案されていない為、立体視を維持する事は困難となる。
特許文献10で、微小な液晶セルをシール材などで区画したりすることは、工程が複雑になり、歩留低下の要因となる。また、1個1個のセルを個別にTFT素子などにより制御することは、コスト上昇の要因となりうる。また、微小セルでは区画部分の液晶が動作しない為、複数のセルを合わせてレンズ効果を得る場合、滑らかな屈折率分布形状が得られず、波面制御としては不十分なものとなる。すなわち、観察者の位置に対して集光は可能かもしれないが、非常に収差を含んだ劣化したゆがんだ画像となる。また、本文献では、液晶の配向状態に関する記載が無く、単に電圧を印加しただけでは、立体画像を得るのに十分になめらかな屈折率分布を得ることは実際には難しい。単純マトリクス構造において、通常の液晶レンズに使用される単純な一様配向状態では、隣接する動作領域(微小セル相当)ごとに電圧を変化させた場合、上、下、左、右、斜めを含めた隣接8方向からの異なる漏れ電界が外乱として影響する為、液晶の配向乱れ(ディスクリネーションライン)が発生し、この場合、良好な屈折率分布の制御は困難となる。
本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、レンズを移動させるサーボ機構などを用いることなく、観察者の視点に合せて立体視領域を最適な位置に調整でき、移動時の立体感喪失を防止することができる立体画像表示装置を提供することにある。
本発明の一側面に係る立体画像表示装置は、左視野用画素及び右視野用画素からなる単位画素が配列された画像表示装置と、当該画像表示装置の表示面から向かって観察者側に配置された屈折率分布型の液晶レンズと、前記液晶レンズを駆動する液晶レンズ駆動回路と、を含み、前記液晶レンズは、対向する2枚の透明基板と当該2枚の透明基板に挟まれた液晶層と偏光素子とを組み合わせた液晶セルで構成され、一方の透明基板の液晶層側の面には、前記単位画素の各列に対応する複数のストライプパターンの透明電極からなる複数の電極群が形成されており、他方の透明基板には、一定の電位を有する透明対向電極が形成されており、前記液晶レンズ駆動回路は、各々の前記電極群に対して、共通の電圧パターンで前記複数の透明電極に電圧を印加し、前記複数の透明電極と前記透明対向電極との間の電位差によって液晶を動作させることにより、前記電極群毎に所定の屈折率分布となる複数のレンズとして動作させ、前記観察者の視点位置情報に応じて、前記複数の透明電極に印加する電圧パターンをシフトさせることにより、各々の前記レンズの屈折率分布をシフトさせることを特徴とする。
また、観測者の視点位置を検出する機構として、CCD(Charge Coupled Devices)などの撮像装置による視点や顔の輪郭を認識するセンサを備え、その移動量を検出する視点追跡機構を使用することができる。または、液晶レンズを含む立体画像表示装置を傾けたり、移動させたりすることを加速度センサや傾きセンサによって検出し、観察者の視点位置の移動量や方向を算出もしくは推定する機能を備えた機構を使用することもできる。
また、視点位置を検出する機構の代わりに、レバーやタッチパネルなど機械的な読み取り装置を操作する事によって直接的に視点位置情報を与えたり、又は、パーソナルコンピュータや表示装置に対して位置情報を数値などで直接入力したりすることもできる。また、前記タッチパネルや前記パーソナルコンピュータなど外部制御装置からの直接的な信号などで位置情報を与える以外の、一般的な入力方法を用いても良い。このように視点位置情報を任意に与えた場合、立体視が得られる位置も任意に調整することも可能となる。
また、液晶レンズを構成する透明対向電極は、ベタパターンとしてもよいし、ストライプパターンとしてもよいし、透明電極や透明対向電極が一定の間隔で複数回屈曲している構成としてもよい。また、複数の透明電極に印加する電圧パターンの最大電圧値により、焦点距離を調整することも可能である。
場合によっては、透明電極が、画像表示装置から遠い側に配置され、透明対向電極が、画像表示装置に近い側に配置されていてもよい。また、透明電極及び透明対向電極は、透明基板の法線方向から見て、ストライプパターンが互いに重なるように配置されてもよいし、ストライプパターンが互いに重ならないようにずらして配置されていてもよい。
また、場合によっては、液晶レンズと画像表示装置との間に1枚の偏光板が配置され、当該1枚の偏光板が、画像表示装置用の偏光素子及び液晶レンズ用の偏光素子として兼用されるようにしてもよい。
また、一つの電極群を構成する複数の透明電極と同数の複数の金属配線が、透明電極のストライプパターンの長手に直交する方向に延在し、各電極群の同じ位置の透明電極が、層間絶縁膜を介して、同じ金属配線に接続されていてもよい。場合によっては、金属配線に、透明電極のストライプパターンの長手方向に延在する引き出し配線が接続され、引き出し配線が透明電極の直下の層に配置されていてもよいし、引き出し配線が、透明電極のストライプパターンよりも幅が細くなっていてもよい。
また、立体画像表示装置において、画像表示装置は、液晶表示装置や有機EL表示装置などのフラットパネルディスプレイを使用してもよい。
本発明は、視点追跡センサと液晶レンズの移動が連動するシステムであり、観察者の視点に合せて立体視領域を最適な位置に提供できるため、移動時の立体感喪失を防止することができる。
また、視点に追従するように立体視領域を移動させる際、画像表示装置のパネル上に貼り合せた液晶レンズの屈折率分布を電気的に制御することで、従来のレンチキュラレンズを移動させる事と同様の効果が得られる。また、本発明では、レンズ全体として液晶層は連続しているため、十分に滑らかな屈折率分布を得ることができる。すなわち、隣接するストライプ状透明電極を連続的に制御して、レンチキュラレンズに相当する屈折率分布を得ているため、垂直配向やホモジニアス配向などの一様配向においても、ディスクリネーションラインが発生しにくく、十分に滑らかな屈折率分布が得られる。
また、液晶レンズにより2D/3Dの切替が電気的に可能である。さらに、レンズを移動させる為の機械的なサーボ機構が不要で、薄型、小型化が容易である。また、前記液晶レンズを構成するストライプ状透明電極には周期的に等電位が印加されており、一周期分は更に複数の前記ストライプ透明電極で構成されており、液晶を動作させることにより、前記一周期内で所定の屈折率分布を与えることにより、レンズとして動作させることができる。また、周期的に等電位を印加することにより、駆動に必要なドライバの数や配線本数を少なくすることができるため、低い製造コストで、観察者の視点に追従するように立体視点を移動させることが可能な装置が実現できる。
本発明の実施例1に係る立体画像表示装置の液晶レンズ(液晶GRINレンズ)、画像表示装置(液晶パネル)、光源(バックライト)の配置図である。 本発明の実施例1に係る立体画像表示装置の動作を模式的に示す図である。 本発明の実施例1に係る視点追跡の方法を説明する図である。 本発明の実施例1に係る液晶レンズの制御手順を示すフローチャート図である。 本発明の実施例1に係る液晶レンズの電極配置と電圧無印加時の液晶配向と屈折率分布を示す図である。 本発明の実施例1に係る液晶レンズの電極配置と電圧印加時の液晶配向と屈折率分布を示す図である。 本発明の実施例1に係る液晶レンズの電極配置と電圧調整時の液晶配向と屈折率分布の移動を示す図である。 本発明の実施例1に係る液晶レンズの電極配置と焦点距離を変更したときの液晶配向と屈折率分布を示す図である。 本発明の実施例1に係る液晶レンズにおけるメタル配線とストライプ状透明電極の配置を示す図である。 本発明の実施例1に係る液晶レンズにおけるメタル配線とストライプ状透明電極の接続方法を示す図である。 本発明の実施例1に係る液晶レンズにおける液晶ダイレクタ分布及び電位分布のシミュレーション結果を示す図である。 本発明の実施例1に係る液晶レンズにおける屈折率分布移動のシミュレーション結果を示す図である。 本発明の実施例1に係る液晶レンズにおける焦点距離制御に関するシミュレーション結果を示す図である。 本発明の実施例1に係る視点移動量と液晶レンズ移動量との関係を示す概略図である。 本発明の実施例2に係る液晶レンズの電極配置と電圧印加時の液晶配向と屈折率分布を示す図である。 本発明の実施例3に係る液晶レンズの電極配置と電圧印加時の液晶配向と屈折率分布を示す図である。 本発明の実施例4に係る液晶レンズの電極配置と電圧印加時の液晶配向と屈折率分布を示す図である。 本発明の実施例5に係る液晶レンズの電極配置と電圧印加時の液晶配向と屈折率分布を示す図である。 本発明の実施例6に係る液晶レンズにおけるメタル配線とストライプ状透明電極の配置を示す図である。 本発明の実施例6に係る液晶レンズにおけるメタル配線からの引き出し配線とストライプ状透明電極の接続方法を示す図である。 本発明の実施例7に係る液晶レンズにおけるメタル配線とストライプ状透明電極の配置を示す図である。 本発明の実施例7に係る液晶レンズにおけるメタル配線とストライプ状透明電極の接続方法の詳細を示す図である。 本発明の実施例7に係る立体画像表示装置における、液晶レンズの移動量や焦点距離を画像表示画面の領域毎に分割して変化させた場合を示す図である。 本発明の実施例8に係る液晶レンズにおけるメタル配線と屈曲したストライプ状透明電極の配置を示す図である。 本発明の実施例8に係る液晶レンズにおけるメタル配線からの引き出し配線と屈曲したストライプ状透明電極の接続方法を示す図である。 本発明の実施例9に係る液晶レンズにおけるメタル配線とストライプ状透明電極の配置を示す図である。 本発明の実施例9に係る液晶レンズにおけるメタル配線とストライプ状透明電極の接続方法の詳細を示す図である。
本発明は、その一実施の形態において、左視野用画素及び右視野用画素からなる単位画素が配列された画像表示装置と、画像表示装置の表示面から向かって観察者側に配置された屈折率分布型の液晶レンズと、液晶レンズを駆動する液晶レンズ駆動回路と、を含む立体画像表示装置において、液晶レンズを、対向する2枚の透明基板と当該2枚の透明基板に挟まれた液晶層と偏光素子とを組み合わせた液晶セルで構成し、一方の透明基板の液晶層側の面に、単位画素の各列に対応する複数のストライプパターンの透明電極からなる複数の電極群を形成し、他方の透明基板に、一定の電位を有する透明対向電極を形成し、液晶レンズ駆動回路は、各々の電極群に対して、共通の電圧パターンで複数の透明電極に電圧を印加し、複数の透明電極と透明対向電極との間の電位差によって液晶を動作させることにより、電極群毎に所定の屈折率分布となる複数のレンズとして動作させ、観察者の視点位置情報に応じて、複数の透明電極に印加する電圧パターンをシフトさせることにより、各々のレンズの屈折率分布をシフトさせる構成とする。
以下、本発明の実施形態についてさらに詳細に説明すべく、本発明の実施例に係る液晶レンズを用いた立体画像表示装置について詳細に説明する。
まず、本発明の実施例1に係る液晶レンズを用いた立体画像表示装置の構成・動作・製法・手順等について、図1乃至図13を参照して説明する。
図1に示すように、本実施例の立体画像表示装置10は、液晶レンズ(本実施例では液晶GRINレンズ)20と、画像表示装置(本実施例では液晶表示パネル30)と、光源(本実施例ではバックライト40)とを備える。
液晶表示パネル30は、第1の方向に隣り合う左視野用画素と右視野用画素とからなる単位画素が第1の方向に直交する第2の方向に並んだ列を複数備えており、液晶表示パネル駆動回路によって駆動される。なお、液晶表示パネル30及びバックライト40は、立体画像表示装置用の通常の液晶表示装置と同様の構成であるため、以下では、液晶レンズ20の構成及び制御方法について説明する。
液晶レンズ20用の液晶パネルは、単位画素の各列に対応する複数のストライプ状の透明電極を形成した一方のガラス基板等の透明基板とその透明電極に対向する電極(透明対向電極と呼ぶ。)を形成した他方のガラス基板等の透明基板(対向基板)とを、透明電極のストライプパターンの長手方向と直交する方向に配向処理を行った後に貼り合せ、液晶を封入した後、偏光板を貼り付けて作製する。このとき、液晶分子は、透明電極のストライプパターンの長手方向と直交する方向に液晶分子ダイレクタが整列し、ホモジニアス配向を形成する。そして、複数の透明電極と透明対向電極との間の電位差によって液晶を動作させる。表1に液晶レンズ20の主な特性を記載する。
Figure 0006028975
液晶レンズ20の液晶材料として、メルク社製のBL015(複屈折率Δn=0.281、誘電率異方性Δε=18.4)を使用した。透明電極としては、ITOを成膜、パターンニングすることで、電極幅4um、電極間隔5umのストライプパターンを形成し、対向基板には共通電位(一定の電位)の透明対向電極(COM電極)をベタパターンで形成した。レンズピッチを198umとし、レンズピッチあたりの透明電極の本数は22本とした。このとき、液晶表示パネル30の左視野用画素に対応する透明電極VLは11本、右視野用画素に対応する透明電極VRも11本とした。ホモジニアス配向を得るために、低プレチルト(0.5度程度)となる配向膜を形成し、ラビング処理を実施した。スペーサーによりセルギャップを33umとした。偏光板は偏光軸(透過軸)と配向方向(ラビング方向)を一致させるように貼り付けて、液晶セルを作製した。
図1に記載の配置で、液晶表示パネル30の左視野用画素及び右視野用画素の列と液晶レンズ20のストライプパターンの長手方向とを揃え、2つのパネルを貼り合せた後、駆動用のIC、配線、信号基板の圧接を行い、バックライト40と組み合わせる。さらに、観察者の視点位置を観測するセンサ(後述するCCDセンサ50及び超音波センサ60など)を取り付け、液晶レンズ20を駆動する信号回路基板(後述する液晶レンズ駆動回路21)と接続し、立体画像表示装置10を作製した。
立体表示及び視点追従を行う場合には、図2に記載のように立体画像表示装置10に同期させて、液晶レンズ20を駆動する。その際、2D表示では、図4に記載のように、電圧印加0V設定として、液晶レンズ20を駆動させずに表示を行う。図4は、液晶レンズ20を構成する複数のレンズの内の、液晶表示パネル30の一列の左視野用画素及び右視野用画素に対応する1つのレンズに相当する部分のみを記載しており、ストライプパターンの長手方向に直交する方向に沿った断面図(図の上側が観察者側、図の下側が液晶表示パネル30側)を表している(図5〜7、図14〜17も同様)。このとき、液晶レンズ20の配向状態は、初期のホモジニアス配向で一様となっており、屈折率は一定となる。
一方、立体表示では(図2(a)の静止時)、図5に記載のように、液晶レンズ20に適切な印加電圧を与えて、液晶の配向状態を変化させて、レンズ特性の屈折率分布を形成する。例えば、表2のように、液晶表示パネル30の左視野用画素に対応するストライプ状透明電極VL0、VL1、VL2、…、VL10と液晶表示パネル30の右視野用画素に対応するストライプ状透明電極VR0、VR1、VR2、…、VR10とからなる電極群には、連続的な電圧値を設定する。より好ましくは、最適な立体視が得られる屈折率分布を形成するように、各VL、VRに各種電圧値を与える。例えば、実施例1では、初期状態として、最大電圧値が10Vとなるように、VL0=10V、VL1=9V、VL2=8V、…、VL10=0Vと、VR0=0V、VR1=0V、VR2=1V、…、VR10=10Vのように設定する。このとき、電圧の最低値付近がレンズの中心となる。
次に、レンズ中心を移動させる場合(図2(b)の移動時)、図6に記載のように、レンズ中心の移動先にあるストライプ状透明電極に最低電圧が設定されるように、前述のVL、VR電圧の組合せを変更する。例えば、レンズ中心をVR3付近に移動させたい場合、最大電圧値10Vは維持しつつ、最低電圧値はVR3、VR4に設定する。具体的には、VL0=7V、VL1=8V、VL2=9V、…、VL8=6V、VL9=5V、VL10=4Vと、VR0=3V、VR1=2V、VR2=1V、VR3=0V、…、VR10=6Vのように設定する。以下の表2にレンズ中心を移動させる前後の印加電圧パターンの一例を示す。
Figure 0006028975
以上のように、液晶レンズ20に駆動用印加電圧として、例えば0〜10Vを加えて、レンズ状の屈折率分布を得る。ただし、図7に示すように、必要な焦点距離によって印加電圧を変えても良い。図7は、例えば印加電圧を半分程度の5Vとした時の屈折率分布の断面図である。印加電圧が最大電圧値(10V)のとき、焦点距離(ガラス媒質中)は約854umである。そのほかの条件における焦点距離のシミュレーション結果は図12に記載する。そして、透明電極に印加する電圧パターンの最大値により焦点距離を調整する。
図10及び図11に、実施例1における液晶レンズ20のシミュレーション結果を示す。前述のように電圧印加方法を変えることにより、液晶配向および屈折率分布が約100um程度、レンズ特性を維持した状態で移動していることがわかる。
この液晶レンズ20の屈折率分布の移動について説明する。ここでは、視点移動量Xとした時の最適なレンズ移動量Wについて簡易的に算出する為、液晶レンズ20をレンチキュラなどのレンズに置き換えた簡略図(図13)で説明する。レンズ屈折率をn、レンズ曲率半径をr、レンズ焦点距離をfg、最適観察距離をD、画素からレンズへの入射角をγ、レンズから視点への出射角をβとしたとき、
(X−W)/D=tanβ (式1)
W/fg=tanγ (式2)
sin β=n sinγ (式3)
となる。
焦点の位置を画素上に配置した場合、Abbeの不変量から、焦点距離fgは、
n/fg−1/D=(n−1)/r (式4)
となる。
以上の4つの式から、Wとfgが求められる。例えば、視点移動量X=30cmとするとき、fg=0.08cm、D=39cmとすると、レンズ移動量Wを約600um程度とすれば良い事になる。詳細には、屈折率分布型液晶レンズとしての光線計算や、周囲の温度やその他条件を考慮して移動量の計算を行う。ちなみに、液晶表示パネル30の解像度に応じて、レンズピッチを適切に設定する。
次に、液晶レンズ20の駆動方法について説明する。観察者の視点位置を認識し、液晶レンズ20へ最適な駆動信号を提供するために、図3(a)に示すように、立体画像表示装置10に、観察者の顔面上のマーカーや視点や顔の輪郭を認識するCCDセンサ50や超音波センサ60などの視点位置検出機構と、液晶レンズ20を駆動する液晶レンズ駆動回路21及びドライバ26とを設ける。液晶レンズ駆動回路21は、視点位置検出機構から与えられる信号を処理して観察者の視点位置の移動量や方向を算出する機能(視点移動ベクトル演算部22)と、視点位置の移動量と方向をレンズ移動量に変換する機能(レンズ移動量演算部23)と、液晶レンズ20を移動させる機能(レンズ駆動機能部24)及びルックアップテーブル25からなる。なお、ドライバ26は、液晶レンズ駆動回路21内に構成してもよいし、液晶レンズ20の基板上に設置しても良い。必要に応じて液晶表示パネル30との同期を取る為の信号も、液晶レンズ駆動回路21から出力される。
以下、観察者の視点位置の検出から液晶レンズ20の焦点距離や移動量を演算して液晶レンズ20を駆動する手順について、図3(b)のフローチャート図を参照して説明する。
なお、ここでは図3及び図13などの座標系を用いて、各用語を次のように定義した。
右眼の座標;(xr、yr、zr)、
左眼の座標;(xl、yl、zl)、
両眼の中心位置の画面中央からのx軸方向のシフト量;xc
両眼の中心位置の画面からの距離;D
液晶レンズ焦点距離;flc、
液晶レンズの屈折率分布移動量;W
観察者が液晶レンズ20付き立体画像表示装置10の表示面側に来ると、CCDセンサ50や赤外線カメラなどの人感センサにより、人物が来た事を感知する。次に、CCDセンサ50などの撮像装置により撮像を行い、観察者の顔の画像データを得る。このとき、同時に超音波センサ60などの測距装置により、立体画像表示装置10の表示面と観察者との距離Dを計測する(S101)。
次に、視点移動ベクトル演算部22は、観察者の顔の画像データに対して所定の画像処理(例えば、エッジ強調処理や輪郭抽出処理)を行って、観察者の顔の輪郭等から眼を判別する(S102)。そして、眼の位置および表示面と観察者の距離Dから、両眼の座標(xr、yr、zr)、(xl、yl、zl)を推定する(S103)。この推定値から、両眼の中心位置の画面中央からx方向へのシフト量 xcが求められる。両眼の座標を抽出するに当たっては、画像からまず輪郭を抽出し、輪郭の位置から眼の位置を特定するアルゴリズムを用いた。このアルゴリズムで得られた両眼の中心位置の画面中央からのシフト量 xcおよびS101で取得した表示面と観察者との距離Dを、視点位置情報とする(S104)。
次に、レンズ移動量演算部23は、これらの視点位置情報から、レンズの焦点距離 flcおよび液晶レンズ20の屈折率分布移動量 Wを計算し、レンズ駆動機能部24へ出力する(S105)。レンズ駆動機能部24は、前記レンズの焦点距離 flcおよび前記液晶レンズ20の屈折率分布移動量 Wを元に、ルックアップテーブル25から液晶レンズ20を形成するための印加電圧パターンを選択し、液晶レンズ20を駆動するドライバ26へ制御信号を送る(S106)。前記ドライバ26は、レンズ駆動機能部24からの制御信号を元に、特定の印加電圧パターンを液晶レンズ20に与え、液晶レンズ20の屈折率分布を移動させる(S107)。これにより、観察者の視点位置に追従するように立体視領域を調整する事ができるため、良好な立体視特性を実現できる。
なお、図3(b)のフローでは、視点位置情報を、CCDセンサ50等による画像検出と超音波センサ60等による距離測定の結果から求めた視点位置情報に基づいて、前記液晶レンズ20の印加電圧パターンをシフトさせたが、立体画像表示装置10にレバーやタッチパネルなど、機械的に視点位置情報を入力する機構を設け、この入力機構から前記視点位置情報を入力することにより、前記液晶レンズの印加電圧パターンをシフトさせることもできる。
さらに、視点位置情報は、パーソナルコンピュータなどの端末と有線/無線の通信手段などを用いて、外部から電子的に入力することも可能であり、電子的に入力した視点位置情報により、前記液晶レンズ20の印加電圧パターンをシフトさせることもできる。
また、視点位置を検出する手法としては、上述の視点位置情報の他に、液晶レンズ20を含む立体画像表示装置10を傾けたり移動させたりしたことを、加速度センサや傾きセンサ等によって検出し、これらのセンサからの出力に基づいて、観察者の視点位置の移動量や方向を算出もしくは推定する構成としても良い。
次に、ドライバ26と液晶レンズ20の透明基板に形成するストライプ状透明電極との配線接続方法について説明する。図8に示すように、表示領域外に配置されたメタル配線は、液晶に電界を印加する為のストライプ状透明電極に接続され、信号や駆動電圧は、メタル配線から透明電極に供給される。ただし、透明電極は抵抗率が比較的高い為、画面を大きくした際に、透明電極への入力端から画面端付近へ向かって距離が長くなるほど電圧降下が生じ、必要な駆動電圧が確保できなくなる場合がある。その場合は、必要に応じてメタル配線(引き出し配線)を表示領域内まで延長して、透明電極とコンタクトを取る事で改善する事ができる。本実施例では、開口率への影響を最低限にするように、図8の右図に示すように、透明電極のストライプパターン幅よりも幅が狭いメタル配線をA−B断面のように透明電極の下層に配置している。
また、図9に示すように、メタル配線の本数については、液晶レンズ20の1ピッチ(液晶表示パネル30の一列の左視野用画素及び右視野用画素)あたりの透明電極の本数を2n本とした場合、レンズ左側を構成する透明電極のセットをVL、レンズ右側のセットをVRとすると、VL側用にメタル配線をn本、VR側用にn本の合計2n本を準備する。本実施例では、n=11本のため、合計22本となる。
具体的には、第1列目画素用の液晶レンズ20の透明電極「VL(1、0)〜VL(1、n)」と「VR(1、0)〜VR(1、n)」とからなる電極群から順に、「VL(2、0)〜VL(2、n)」と「VR(2、0)〜VR(2、n)」、…「VL(i、0)〜VL(i、n)」と「VR(i、0)〜VR(i、n)」とするとき、各透明電極VLには、VL側用メタル配線から供給し、同様に各透明電極VRには、VR側用メタル配線から印加電圧を供給する。電極間隔を等間隔、電極幅は同じに揃えている為、印加電圧を連続的に変化させる事で、レンズ状の屈折率分布を、複数画素に渡って移動させる事が可能である。以上のように、ストライプ状透明電極の全本数分の入力、すなわちメタル配線を準備することなく、液晶レンズ20の駆動が可能である。
このように、屈折率分布を制御することにより、立体視の視点を移動させる事ができる。また、ストライプ状透明電極のパターン間隔を一定とし、各透明電極のパターン幅も一定とすることで、一定の屈折率分布を維持した状態で、ストライプ状透明電極と直交する横方向(x方向)にその分布を容易に移動させることができる。また、液晶レンズ20の1/2ピッチ分に対応する、透明電極セットをそれぞれVL、VRとした時、液晶レンズ20のVL、VRの電圧設定を共通化することで、メタル配線の本数を少なくすることができる。
すなわち、
1番目のレンズの「VL(1,0)、VL(1,1)、…VL(1,n)」と、2番目のレンズの「VL(2,0)、VL(2,1)、…VL(2,n)」と、3番目、…、i番目のレンズの「VL(I,0)、VL(I,1)、…VL(I,n)」…
において、
VL(1,0)=VL(2,0)= … = VL(I,0)= …
VL(1,1)=VL(2,1)= … = VL(I,1)= …

VL(1,n)=VL(2,n)= … = VL(I,n)= …
のように、各VLへの印加電圧の組合せを共通化し、VRでも同様のことを行う事で、ドライバ26の出力電圧数及びメタル配線の本数を、透明電極の総本数よりも大幅に少なくすることができ、コスト低減、狭額縁化への対応が可能となる。
また、本実施例では、特許文献9や10のように、微小な液晶セルを個別にTFT素子などによって制御する必要が無い為、工程はより簡単となり、歩留りの低下を回避し、コスト上昇を抑えることが出来る。
また、特許文献10のような、単純マトリクス構造において、通常の液晶レンズに使用される単純な一様配向状態では、隣接する動作領域(微小セル相当)ごとに電圧を変化させた場合、表示画素の上、下、左、右、斜めを含めた隣接する表示サブ画素8方向からの異なる漏れ電界が外乱として影響する為、液晶の配向乱れ(ディスクリネーションライン)が発生し、この場合、良好な屈折率分布の制御は困難となる。しかしながら、本実施例では、ストライプ状透明電極のストライプの長手方向に直交する方向に配向処理を行うため、正の誘電異方性を持つ液晶分子の初期配向方向と、ストライプ状透明電極によって印加される電界方向が並行となる(ともにストライプ状透明電極のストライプの長手方向に対して直交する方向となる。)。よって、隣接画素領域からの漏れ電界による外乱が無い為、液晶の配向乱れが抑制され、良好な屈折率分布の制御が可能となる。
また、従来、レンズシートを大型化する際、液晶表示パネルとの材質の違いから、熱などによる収縮率が異なり、液晶画素とレンズとのピッチズレが発生し、立体表示品質が低下してしまっていた。しかしながら、本実施例では、電極パターン露光用の専用マスクと液晶材を新規に準備する以外は、液晶表示パネルと部材や製造設備を共用でき、液晶表示パネル30と液晶レンズ20用パネルは同じ部材構成のため、熱収縮などによるサイズ変動傾向が同じとなり、大画面化してもピッチズレが起きにくい。また、レンズシートを大型化する際、加工用金型や設備も大きくなり、コストが非常に高くなるが、液晶レンズ20は、液晶表示パネル30と同じ設備を使用し、電極をパターンニングする為の露光マスクを新たに準備する程度で、比較的初期コストを抑える事が可能となり、少量多品種にも対応しやすいといった利点も有する。
以上により、液晶表示パネル30を駆動し、左眼用画像と右眼用画像を表示させ、立体画像表示装置前面の観察者の位置を追跡センサで認識後、観測者の視点位置において立体視が得られるように、前述のように液晶レンズ20の駆動電圧を制御する。このように、各画素に対応した液晶レンズ20のセルにおいて、適切な駆動電圧を印加する事で、液晶の配向状態を制御して、所望の屈折率分布を得ることができる。
観察者の視点位置の移動先においても、追跡センサの結果に基づき、液晶レンズ20の屈折率分布を電気的に移動させることにより、レンズ効果を維持し、その画像分離作用により、同一平面上の左眼用画像と右眼用画像をそれぞれ、左眼のみ、右眼のみに振り分けて表示させることが可能となる。これにより、観察者は視点を移動しても立体感を損なうことがなく、高品位の立体画像表示装置10を提供することができる。
次に、本発明の実施例2に係る液晶レンズを用いた立体画像表示装置の構成・動作・製法・手順等について図14を参照して説明する。
前記した実施例1では、液晶表示パネル30に近い側に液晶レンズ20のストライプ状透明電極を配置し、観察者に近い側に液晶レンズ20の透明対向電極(COM電極)を配置したが、本実施例では、図14に示すように、液晶レンズ20の透明対向電極を実施例1とは上下反転させ、液晶表示パネル30に近い側(図の下側)に透明対向電極を配置する。これによって、液晶レンズ20の駆動時の電界が、液晶表示パネル30に与える影響を抑制することができる。
このように、本実施例では、液晶レンズ20の駆動電界によるノイズが抑制されるため、適切な表示画像が得られる。また反対に、液晶表示パネル30からのノイズも液晶レンズ20に影響を与えにくくなる為、最適なレンズ特性を維持できる。
次に、本発明の実施例3に係る液晶レンズを用いた立体画像表示装置の構成・動作・製法・手順等について図15を参照して説明する。
前記した実施例1、2では、液晶レンズ20の透明対向電極(COM電極)をベタパターンとしたが、本実施例では、図15に示すように、液晶レンズ20の透明対向電極を、VL、VR側ストライプ状透明電極と同様にストライプ状に分割し、透明対向電極側の電圧も個別に調整する。このようにする事で、液晶レンズ20の屈折率分布をより細かく調整することが出来る。
このように、本実施例では上記構成により、結像特性、左右画像の分離特性の良い液晶レンズ20が得られ、立体画像表示装置10の立体表示品質を向上させることができる。
次に、本発明の実施例4に係る液晶レンズを用いた立体画像表示装置の構成・動作・製法・手順等について図16を参照して説明する。
前記した実施例3では、液晶レンズ20のストライプ状透明電極とストライプ状透明対向電極(COM電極)とを対向するように配置したが、本実施例では、図16に示すように、液晶レンズ20のVL、VR側ストライプ状透明電極とストライプ状透明対向電極とを、x−y平面において、x方向に電極1本分だけ位置をずらして配置する。実施例3では、液晶レンズ20のVL、VR側ストライプ状透明電極とストライプ状透明対向電極の位置が重なる事により透過率が低下していたが、上記の配置にする事で、開口部と電極部が重なる為、透過率低下が少なくなり、位置による透過率の変動も平均化され、均一性が向上する。また、x−y平面内での透過率均一化により、VL、VR側ストライプ状透明電極とストライプ状透明対向電極とを重ねた時のモアレも減少する。
このように、本実施例では輝度、透過率の高い液晶レンズ20が得られ、光源の低消費電力化が実現できる。また、モアレの少ない、均一性の良い表示が得られる。
次に、本発明の実施例5に係る液晶レンズを用いた立体画像表示装置の構成・動作・製法・手順等について図17を参照して説明する。
前記した実施例1乃至4では、液晶レンズ20の液晶表示パネル30側に偏光板を配置したが、本実施例では、図17に示すように、液晶レンズ20と液晶表示パネル30の間の偏光板を1枚とし、この1枚偏光板を液晶レンズ20と液晶表示パネル30として兼用する。
このように、本実施例では、偏光板による光のロスが低減するため、輝度、透過率の高い立体画像表示装置10が得られ、光源の低消費電力化を実現することができる。
次に、本発明の実施例6に係る液晶レンズを用いた立体画像表示装置の構成・動作・製法・手順等について図18及び図19を参照して説明する。
前記した実施例1では、表示領域外にメタル配線を配置したが、本実施例では、図18及び図19に示すように、表示領域外のメタル配線から、液晶レンズ20のストライプ状透明電極のストライプの長手に対して直交する方向に、表示領域内に向かって、液晶レンズ20の一つの電極群のストライプ状透明電極と同数のメタル配線を引き出す。この時、表示領域内に引き出すメタル配線は液晶レンズ20に組み合わせる液晶表示パネル30の遮光部分(例えば、ゲート配線上の遮光部)に対応する領域に配置する。対応するメタル配線とストライプ状透明電極とは層間絶縁膜を介して接続する。表示領域内に引き出すメタル配線の本数は、表示画面の大きさに対応して決定する。
また、表示領域内に引き出すメタル配線からの不要な漏れ電界が、表示領域内のレンズ特性に影響を与える場合には、このメタル配線と液晶との間に、透明対向電極の電位(COM電位)に接続された電界シールド電極を配置しても良い。配置方法は、メタル配線と画素開口部との間に、メタル配線と同じ材料で形成されたシールドCOM配線を設置するか、メタル配線の束を覆うように、層間絶縁膜を介して、メタル配線とストライプ状透明電極との間に電界シールド電極を配置する。
ストライプの長手方向に延在する透明電極は、メタル配線と接続された印加電圧入力端から離れるほど、比較的高い透明電極の抵抗率により、電圧低下を招く。このように透明電極の抵抗率によっては液晶レンズが正常に駆動できなくなる恐れが有り、大画面化に伴い、入力端側の表示部と反対側の表示部との間隔が広がるほど影響は大きくなる。しかしながら、上記のように、ストライプ状透明電極の必要な位置に複数の接続点を配置することで、電圧の低下を回避する事ができる。なお、全ての遮光部、たとえばゲート配線上の遮光部の1本1本全てに、液晶レンズ20のメタル配線を配置する必要はなく、必要に応じて、ある一定間隔で配置すればよい。図19はレンズの1ピッチを2n本(n=5)で構成した場合を示す。
このように、本実施例では表示領域内にメタル配線を配置することにより、表示面内の液晶レンズ特性が、狙いの設定電圧どおりに駆動でき、視点追従を行う際に、良好な立体視特性が得られる。また、ドライバの数や、配線数を少なくする事ができる為、製造コストを低くする事が出来る。
次に、本発明の実施例7に係る液晶レンズを用いた立体画像表示装置の構成・動作・製法・手順等について図20乃至図22を参照して説明する。
前記した実施例1では、液晶表示パネル30の各列に対応する液晶レンズ20の全てのストライプ状透明電極に共通の駆動電圧を供給したが、本実施例では、図20及び図21に示すように、液晶レンズ20のストライプ状透明電極に対して、個別にドライバ26から駆動電圧を供給する。具体的には、ストライプ状透明電極の電極幅よりも細いメタル配線を、入力部から入力と反対の表示領域端部まで延長する。この時、メタル配線は、透明電極の下層(透明電極とガラス基板との間)に配置する。
この構造により、ストライプ状透明電極の1本1本の印加電圧を個別に設定できる為、より自由に液晶レンズ20の屈折率分布を調整することができる。例えば、図22のように、大画面の前にいる観察者が、左右どちらか一方の偏った位置に移動した場合、観察者に近い側の液晶レンズ20の移動量及び焦点距離と、遠い側の液晶レンズ20の移動量及び焦点距離を変えることが可能となる。
この構造では、実施例6と比較して、ドライバ26の数や配線数が増加する点が製造コスト的に不利ではあるが、表示領域の場所毎に、液晶レンズ20の移動量及び焦点距離を変えることができるため、観察者の視点追従を行った際の、輻輳視差などに対する影響を軽減することができ、目の疲労をより少なくすることが可能となり、より良好な立体視特性が得られる。
次に、本発明の実施例8に係る液晶レンズを用いた立体画像表示装置の構成・動作・製法・手順等について図23及び図24を参照して説明する。
前記した実施例1乃至7では、液晶レンズ20のストライプ状透明電極やストライプ状透明対向電極を長方形の形状としたが、本実施例では、図23及び図24に示すように、液晶レンズ20のストライプ状透明電極及びストライプ状透明対向電極を、液晶表示パネル30の左視野用画素と右視野用画素からなる単位画素の各列に合わせて(図示せず)、一定の間隔で複数回屈曲させた形状とする。これにより、液晶表示パネル30の画素を区切る遮光パターンなどと、レンズ移動時のレンズパターンエッジもしくはレンズ中央部との重なりが常に一致しない状態となる。なお、単位画素の各列とは、単位画素の右視野用画素が右隣の単位画素の左視野用画素と隣り合うように配置された行が、行毎に一定の間隔でずれて配置された構成において、順次、上記間隔だけずれた各行の単位画素を組み合わせた複数の単位画素を意味する。また、液晶レンズ20のストライプ状透明電極だけ屈曲させてもよい。
このように、本実施例では透明電極や透明対向電極を一定の間隔で複数回屈曲させた形状とするため、液晶表示パネル30の画素を区切る遮光パターンなどとの重なりによるモアレパターンや、レンズ移動時のエッジもしくはレンズ中央部が、それら前記遮光パターンと重なった時の急激な輝度低下を防ぐことができ、より良好な立体視特性が得られる。
次に、本発明の実施例9に係る液晶レンズを用いた立体画像表示装置の構成・動作・製法・手順等について図25及び図26を参照して説明する。
前記した実施例1の図8、及び実施例7の図20では、液晶レンズ20のメタル配線上にストライプ状透明電極を形成してメタル配線とストライプ状透明電極とを接続したが、本実施例では、図25及び図26に示すように、液晶レンズ20のストライプ状透明電極の端部とメタル配線とをコンタクトホール等で電気的に接続する構成とする。
モバイル用途などの画面サイズが小さいパネルと組み合わせる場合、液晶レンズ20も同様に小さくすることができる。そのため、金属よりも比較的に抵抗率の高いITOなどの透明金属材料を用いてストライプ状透明電極を形成したとしても、コンタクトホールのあるストライプ状透明電極の入力端部から、ストライプ状透明電極の端部までの電圧降下が小さくなり、液晶レンズ20のパネル面内均一性に影響を与えないレベルにする事が可能となる。
よって、実施例1のようにストライプ状透明電極の端から端までの直下にメタル配線を配置する、という構造が不要となる。これにより、ストライプ状透明電極の直下のメタル配線により遮光されていた光が透過可能となるため、液晶レンズ20の透過率が向上し、より良好な立体視特性が得られる。
なお、立体画像表示装置10は、有機EL装置であってもよい。また、本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、立体画像表示装置10の構成や制御方法は適宜変更可能である。
本発明は立体表示テレビや、携帯型のモバイル表示装置の立体表示や、その他、立体画像表示装置に利用することができる。
10 立体画像表示装置
20 液晶レンズ
21 液晶レンズ駆動回路
22 視点移動ベクトル演算部
23 レンズ移動量演算部
24 レンズ駆動機能部
25 ルックアップテーブル
26 ドライバ
30 液晶表示パネル
31 液晶表示パネル駆動回路
40 バックライト
50 CCDセンサ
60 超音波センサ

Claims (17)

  1. 左視野用画素及び右視野用画素からなる単位画素が配列された画像表示装置と、当該画像表示装置の表示面から向かって観察者側に配置された屈折率分布型の液晶レンズと、前記液晶レンズを駆動する液晶レンズ駆動回路と、を含み、
    前記液晶レンズは、
    対向する2枚の透明基板と当該2枚の透明基板に挟まれた液晶層と偏光素子とを組み合わせた液晶セルで構成され、
    一方の透明基板の液晶層側の面には、前記単位画素の各列に対応する複数のストライプパターンの透明電極からなる複数の電極群が形成されており、
    他方の透明基板には、一定の電位を有する透明対向電極が形成されており、
    前記液晶レンズ駆動回路は、
    各々の前記電極群に対して、共通の電圧パターンで前記複数の透明電極に電圧を印加し、
    前記複数の透明電極と前記透明対向電極との間の電位差によって液晶を動作させることにより、前記電極群毎に所定の屈折率分布となる複数のレンズとして動作させ、
    前記観察者の視点位置情報に応じて、前記複数の透明電極に印加する電圧パターンをシフトさせることにより、各々の前記レンズの屈折率分布をシフトさせ
    前記複数の透明電極に印加する電圧パターンの最大電圧値を増減することにより、焦点距離を調整することを特徴とする立体画像表示装置。
  2. 前記立体画像表示装置に、前記観察者の視点位置を検出する機構を備え、
    前記液晶レンズ駆動回路は、
    前記機構から与えられる前記視点位置情報に基づいて、前記複数の透明電極に印加する電圧パターンをシフトさせることを特徴とする請求項1に記載の立体画像表示装置。
  3. 前記立体画像表示装置に、前記観察者の視点位置を入力する機構を備え、
    前記液晶レンズ駆動回路は、
    前記機構から与えられる前記視点位置情報に基づいて、前記複数の透明電極に印加する電圧パターンをシフトさせることを特徴とする請求項1に記載の立体画像表示装置。
  4. 前記液晶レンズ駆動回路は、
    外部から電子的に入力された前記視点位置情報により、前記複数の透明電極に印加する電圧パターンをシフトさせることを特徴とする請求項1に記載の立体画像表示装置。
  5. 前記透明対向電極は、ベタパターンであることを特徴とする請求項1乃至のいずれか一に記載の立体画像表示装置。
  6. 前記透明電極が、前記画像表示装置から遠い側に配置され、前記透明対向電極が、前記画像表示装置に近い側に配置されていることを特徴とする請求項に記載の立体画像表示装置。
  7. 前記透明対向電極は、ストライプパターンであることを特徴とする請求項1乃至4のいずれか一に記載の立体画像表示装置。
  8. 前記ストライプパターンの透明電極及び前記ストライプパターンの透明対向電極は、対向する前記透明電極及び前記透明対向電極が平行に配置してあり、前記透明基板の法線方向から見て、それぞれの前記透明電極及び前記透明対向電極が互いに重なるように配置されていることを特徴とする請求項に記載の立体画像表示装置。
  9. 前記透明電極及び前記透明対向電極は、前記透明基板の法線方向から見て、ストライプパターンが互いに重ならないようにずらして配置されていることを特徴とする請求項に記載の立体画像表示装置。
  10. 一つの前記電極群を構成する複数の透明電極と同数の複数の金属配線が、前記透明電極のストライプパターンの長手に直交する方向に延在し、各電極群の同じ位置の前記透明電極が、層間絶縁膜を介して、同じ金属配線に接続されていることを特徴とする請求項1乃至のいずれか一に記載の立体画像表示装置。
  11. 前記金属配線に、前記透明電極のストライプパターンの長手方向に延在する引き出し配線が接続され、前記引き出し配線が前記透明電極の直下の層に配置されていることを特徴とする請求項10に記載の立体画像表示装置。
  12. 前記引き出し配線は、前記透明電極のストライプパターンの長手方向の全長に渡って配置されていることを特徴とする請求項11に記載の立体画像表示装置。
  13. 前記引き出し配線は、前記透明電極のストライプパターンよりも幅が細いことを特徴とする請求項11又は12に記載の立体画像表示装置。
  14. 前記透明電極、又は、前記透明電極及び前記透明対向電極は、一定の間隔で複数回、屈曲していることを特徴とする請求項1乃至13のいずれか一に記載の立体画像表示装置。
  15. 前記液晶レンズと前記画像表示装置との間に1枚の偏光板が配置され、当該1枚の偏光板が、前記画像表示装置用の偏光素子及び前記液晶レンズ用の偏光素子として兼用されることを特徴とする請求項1乃至14のいずれか一に記載の立体画像表示装置。
  16. 前記画像表示装置が、液晶表示装置であることを特徴とする請求項1乃至15のいずれか一に記載の立体画像表示装置。
  17. 前記画像表示装置が、有機EL表示装置であることを特徴とする請求項1乃至15のいずれか一に記載の立体画像表示装置。
JP2012265940A 2012-12-05 2012-12-05 立体画像表示装置 Active JP6028975B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012265940A JP6028975B2 (ja) 2012-12-05 2012-12-05 立体画像表示装置
CN202010747690.2A CN111929961A (zh) 2012-12-05 2013-11-28 立体图像显示装置
CN201310625953.2A CN103852949A (zh) 2012-12-05 2013-11-28 立体图像显示装置
US14/096,971 US9013647B2 (en) 2012-12-05 2013-12-04 Stereoscopic image display device comprising a gradient-refractive-index liquid-crystal lens having a plurality of electrode groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012265940A JP6028975B2 (ja) 2012-12-05 2012-12-05 立体画像表示装置

Publications (2)

Publication Number Publication Date
JP2014112757A JP2014112757A (ja) 2014-06-19
JP6028975B2 true JP6028975B2 (ja) 2016-11-24

Family

ID=50825130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265940A Active JP6028975B2 (ja) 2012-12-05 2012-12-05 立体画像表示装置

Country Status (3)

Country Link
US (1) US9013647B2 (ja)
JP (1) JP6028975B2 (ja)
CN (2) CN111929961A (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9497444B2 (en) * 2012-10-03 2016-11-15 Sharp Kabushiki Kaisha Stereoscopic display device
JP2014206638A (ja) * 2013-04-12 2014-10-30 株式会社ジャパンディスプレイ 立体表示装置
CN104216151B (zh) * 2013-05-31 2017-11-14 国际商业机器公司 液晶显示器的自动调焦装置和方法
JP6200789B2 (ja) * 2013-11-27 2017-09-20 株式会社ジャパンディスプレイ 表示装置
US20150193625A1 (en) * 2014-01-03 2015-07-09 Innolux Corporation Display device
CN104007585A (zh) * 2014-04-30 2014-08-27 深圳市亿思达显示科技有限公司 液晶透镜电子光栅和裸眼立体显示装置
KR20150139695A (ko) * 2014-06-03 2015-12-14 삼성디스플레이 주식회사 액정 렌즈 장치 및 이를 포함하는 표시 장치
US20160139422A1 (en) * 2014-11-13 2016-05-19 Innolux Corporation Three-dimensional image display apparatus
TR201906187T4 (tr) * 2014-12-24 2019-05-21 Koninklijke Philips Nv Otostereoskopik gösterim cihazı.
CN104503182B (zh) * 2014-12-30 2016-07-06 深圳超多维光电子有限公司 驱动电路、立体显示设备、显示切换装置及其方法
KR102440113B1 (ko) * 2015-01-02 2022-09-05 삼성디스플레이 주식회사 광 변조 장치
KR102662883B1 (ko) * 2015-12-29 2024-05-03 레이아 인코포레이티드 무안경 입체 디스플레이 장치 및 디스플레이 방법
CN105487277A (zh) * 2016-01-29 2016-04-13 京东方科技集团股份有限公司 一种显示模组、显示装置及其驱动方法
CN105629489B (zh) * 2016-03-15 2018-01-02 上海天马微电子有限公司 3d显示屏及3d显示装置
CN105607381B (zh) * 2016-04-01 2018-12-21 京东方科技集团股份有限公司 液晶透镜及其制造方法、曲面显示装置
CN105629622B (zh) * 2016-04-07 2019-01-04 京东方科技集团股份有限公司 一种显示模组及其控制方法、显示装置
US20170293151A1 (en) * 2016-04-08 2017-10-12 Wuhan China Star Optoelectronics Technology Co.Ltd 3d display device
CN105759436B (zh) * 2016-05-09 2018-02-23 京东方科技集团股份有限公司 裸眼三维显示***和折射率调节装置
CN105954956B (zh) 2016-05-26 2019-02-15 京东方科技集团股份有限公司 3d显示面板及其控制方法
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN106019761B (zh) * 2016-06-17 2019-01-22 京东方科技集团股份有限公司 一种液晶透镜、显示装置及显示装置的驱动方法
KR102647969B1 (ko) * 2016-10-28 2024-03-18 삼성디스플레이 주식회사 광 필드 표시 장치 및 이의 제조 방법
CN106526879A (zh) * 2016-12-15 2017-03-22 重庆卓美华视光电有限公司 一种立体显示光栅器件及立体显示设备
CN106842737A (zh) * 2017-03-30 2017-06-13 惠科股份有限公司 液晶显示器及其视角色差改善方法
CN107040773B (zh) * 2017-04-27 2020-12-08 京东方科技集团股份有限公司 一种显示装置及其控制方法
JP6943111B2 (ja) * 2017-09-25 2021-09-29 富士フイルムビジネスイノベーション株式会社 近接像表示装置
CN111095796B (zh) * 2017-09-28 2023-08-18 株式会社村田制作所 谐振子以及谐振装置
CN107817639A (zh) * 2017-10-25 2018-03-20 福州大学 一种聚焦平面可扫描的液晶透镜及其制作方法
KR102444666B1 (ko) * 2017-12-20 2022-09-19 현대자동차주식회사 차량용 3차원 입체 영상의 제어 방법 및 장치
US11022835B2 (en) 2018-12-15 2021-06-01 Facebook Technologies, Llc Optical system using segmented phase profile liquid crystal lenses
TWI832976B (zh) * 2019-02-27 2024-02-21 美商愛奎有限公司 測量視力功能的裝置及方法
CN113924520A (zh) * 2019-05-30 2022-01-11 京瓷株式会社 平视显示器***以及移动体
US11762197B2 (en) 2019-08-13 2023-09-19 Apple Inc. Display systems with geometrical phase lenses
US11822083B2 (en) * 2019-08-13 2023-11-21 Apple Inc. Display system with time interleaving
EP3874320A1 (en) * 2019-08-13 2021-09-08 Apple Inc. Display system with time interleaving
CN110989191B (zh) * 2019-12-20 2022-03-04 京东方科技集团股份有限公司 集成式显示面板及其制作方法、显示装置
CN111614879A (zh) * 2020-05-29 2020-09-01 Oppo广东移动通信有限公司 一种摄像头及电子设备
WO2024111475A1 (ja) * 2022-11-25 2024-05-30 ソニーグループ株式会社 情報処理装置、情報処理方法および情報処理プログラム

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670450B2 (ja) * 1988-08-30 1997-10-29 キヤノン株式会社 光学変調素子
JP2920051B2 (ja) * 1993-09-01 1999-07-19 シャープ株式会社 3次元ディスプレイ装置
JP2862462B2 (ja) * 1993-09-09 1999-03-03 シャープ株式会社 3次元ディスプレイ装置
JP3091939B2 (ja) * 1993-06-04 2000-09-25 キヤノン株式会社 液晶素子の製造方法
JPH0738926A (ja) 1993-07-26 1995-02-07 Sharp Corp 3次元ディスプレイ装置
JP3814366B2 (ja) 1997-02-07 2006-08-30 シチズン時計株式会社 液晶波面変調装置及びその駆動方法
JP4052803B2 (ja) * 2001-01-19 2008-02-27 株式会社リコー 画像表示装置
JP4967197B2 (ja) 2001-04-27 2012-07-04 ソニー株式会社 波面制御型表示装置及び撮像再生方法
US7113241B2 (en) * 2001-08-31 2006-09-26 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP3940725B2 (ja) 2003-02-06 2007-07-04 株式会社東芝 立体画像表示装置
JP4400172B2 (ja) 2003-02-28 2010-01-20 日本電気株式会社 画像表示装置、携帯端末装置、表示パネル及び画像表示方法
JP4495982B2 (ja) 2004-02-06 2010-07-07 株式会社リコー 立体画像表示装置および光偏向素子
JP4438497B2 (ja) * 2003-09-04 2010-03-24 株式会社リコー 光偏向素子
JP2005175973A (ja) * 2003-12-12 2005-06-30 Canon Inc 立体表示装置
JP4687073B2 (ja) 2004-11-01 2011-05-25 株式会社ニコン 液晶光学素子アレイおよび液晶装置
JP4929636B2 (ja) * 2005-07-15 2012-05-09 カシオ計算機株式会社 液晶表示装置
JP2007052323A (ja) * 2005-08-19 2007-03-01 Sanyo Epson Imaging Devices Corp 電気光学装置及び電子機器
JP5018222B2 (ja) * 2007-05-09 2012-09-05 セイコーエプソン株式会社 指向性表示ディスプレイ
KR101222990B1 (ko) * 2007-10-22 2013-01-18 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
KR101274705B1 (ko) * 2007-12-14 2013-06-12 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 적용한 입체 표시 장치
JP2010056712A (ja) 2008-08-27 2010-03-11 Seiko Epson Corp 遠隔作業用画像表示システム
JP2010231010A (ja) * 2009-03-27 2010-10-14 Seiko Epson Corp 電気光学装置
JP5521380B2 (ja) * 2009-04-13 2014-06-11 ソニー株式会社 立体表示装置
CN102053445B (zh) * 2009-10-29 2013-01-23 深圳华映显示科技有限公司 变焦透镜阵列和可切换式平面立体显示器
JP2011107589A (ja) * 2009-11-20 2011-06-02 Sony Corp 立体表示装置
CN102232200B (zh) * 2010-01-20 2012-10-03 深圳超多维光电子有限公司 立体显示装置及显示方法
JP5841131B2 (ja) * 2010-05-21 2016-01-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 切り替え可能なシングル−マルチビュー・モード表示装置
JP4720954B1 (ja) * 2010-09-28 2011-07-13 富士ゼロックス株式会社 無端帯状体の製造方法
CN102096200B (zh) * 2010-12-23 2012-04-18 深圳超多维光电子有限公司 一种立体显示装置及其透镜阵列
CN102141714B (zh) * 2011-03-31 2013-10-23 昆山龙腾光电有限公司 显示装置
JP5701690B2 (ja) * 2011-06-03 2015-04-15 株式会社ジャパンディスプレイ 表示装置
CN102830568B (zh) * 2011-06-15 2016-08-17 三星显示有限公司 液晶透镜及包括该液晶透镜的显示装置
KR101143558B1 (ko) * 2011-12-08 2012-06-14 주식회사 동운아나텍 액정렌즈 구동장치와 이를 포함하는 단말장치 및 그 온도 제어방법
CN102520558A (zh) * 2012-01-08 2012-06-27 四川大学 一种基于蓝相液晶微透镜阵列的集成成像显示装置
CN102736332B (zh) * 2012-02-22 2015-01-07 京东方科技集团股份有限公司 一种阵列基板、液晶显示面板及液晶显示器
CN103076706B (zh) * 2013-01-05 2015-02-04 东南大学 一种焦距可调液晶微透镜阵列

Also Published As

Publication number Publication date
US9013647B2 (en) 2015-04-21
CN103852949A (zh) 2014-06-11
US20140152926A1 (en) 2014-06-05
CN111929961A (zh) 2020-11-13
JP2014112757A (ja) 2014-06-19

Similar Documents

Publication Publication Date Title
JP6028975B2 (ja) 立体画像表示装置
JP6441514B2 (ja) 独立して制御可能な領域を有するパララックスバリア
US20150269893A1 (en) Display device and switching method of its display modes
US9497444B2 (en) Stereoscopic display device
US8279270B2 (en) Three dimensional display
US9213203B2 (en) Three-dimensional image display
US9507221B2 (en) Liquid crystal lens element, display unit and terminal
KR101370416B1 (ko) 입체영상 표시장치 및 그 제조 방법
WO2013061734A1 (ja) 立体表示装置
EP3086161B1 (en) Autostereoscopic display device
KR20130060637A (ko) 2차원/3차원 전환 가능한 디스플레이 장치
KR20130055997A (ko) 입체 영상 표시 장치
JPWO2015122480A1 (ja) 液晶レンチキュラレンズ素子及びその駆動方法、立体表示装置、端末機
JP2013531271A (ja) 切り替え可能なシングル−マルチビュー・モード表示装置
KR102171611B1 (ko) 입체 영상 디스플레이 장치
KR102144733B1 (ko) 입체 영상 디스플레이 장치
CN104267525B (zh) 立体显示装置及其制作方法
KR20130064325A (ko) 입체 영상 표시용 패럴랙스 배리어 및 이를 이용한 표시 장치
US9759925B2 (en) Three-dimensional image display apparatus
US9693047B2 (en) Transparent stereo display and operation method thereof
TWI432782B (zh) 立體顯示器以及用於立體顯示器之切換面板
US9983445B2 (en) Liquid crystal lens panel and display device including liquid crystal lens panel
KR20140078267A (ko) 하이브리드 입체 영상 표시장치
WO2011055280A1 (en) Optical-beam manipulation device
KR20140000395A (ko) 입체영상 표시장치

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150415

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20150410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161005

R150 Certificate of patent or registration of utility model

Ref document number: 6028975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250