JP6015372B2 - 無線通信装置、及び無線通信方法 - Google Patents

無線通信装置、及び無線通信方法 Download PDF

Info

Publication number
JP6015372B2
JP6015372B2 JP2012251702A JP2012251702A JP6015372B2 JP 6015372 B2 JP6015372 B2 JP 6015372B2 JP 2012251702 A JP2012251702 A JP 2012251702A JP 2012251702 A JP2012251702 A JP 2012251702A JP 6015372 B2 JP6015372 B2 JP 6015372B2
Authority
JP
Japan
Prior art keywords
matrix
received signal
unit
signal
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012251702A
Other languages
English (en)
Other versions
JP2014099815A (ja
Inventor
長谷川 剛
剛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012251702A priority Critical patent/JP6015372B2/ja
Priority to EP13180702.6A priority patent/EP2733865A1/en
Priority to US13/972,005 priority patent/US9178729B2/en
Publication of JP2014099815A publication Critical patent/JP2014099815A/ja
Application granted granted Critical
Publication of JP6015372B2 publication Critical patent/JP6015372B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03961Spatial equalizers design criteria
    • H04L25/03968Spatial equalizers design criteria mean-square error [MSE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Description

本発明は、無線通信装置に関する。
移動無線通信の方式として、無線信号の送受信に、複数のアンテナを利用するMIMO(Multiple Input Multiple Output)方式が知られている。特に、直交周波数分割多重(OFDM: Orthogonal Frequency Division Multiplexing)アクセスに、MIMO多重伝送を用いた場合、MIMO復調が容易になる。信号分離処理をマルチパス干渉の影響を受けることなく高精度に実現できるためである。
直交周波数分割多重アクセスに、MIMO多重伝送を用いる具体的な無線通信方式には、LTE(Long Term Evolution)が含まれる。
MIMO技術における信号分離技術として、様々な方式が提案されている。
MIMO技術における信号分離技術のうち、MLD(Maximum Likelihood Detection)法を採用することが現実的とされている。OFDMの各サブキャリアにおいては隣接するシンボルからの干渉が小さいためである。
OFDMに対して、CDMA(Code Division Multiple Access)等のマルチパス干渉の影響が大きな無線通信方式では隣接する多数のシンボルを考慮する必要がある。多数のシンボルを考慮する必要があるため、MLDの処理量は指数的に増大するため、MLDを使用するのは、現実的ではない。
MLDの処理量を低減するために、MLD処理の前にMMSE(Minimum Mean Square Error)ベースのマルチパス干渉キャンセラによりマルチパス干渉を取り除くことが知られている。
マルチパス干渉キャンセラによりマルチパス干渉を取り除く場合、演算量が多い。演算量が多いため、携帯端末へ、マルチパス干渉キャンセラによりマルチパス干渉を取り除く処理を適用した場合、消費電力が増大する虞がある。また、携帯端末へ、マルチパス干渉キャンセラによりマルチパス干渉を取り除く処理を適用した場合、携帯端末のサイズが大きくなる虞がある。
開示の無線通信装置は、信号分離処理の負荷を低減することを目的とする。
開示の一実施例の無線通信装置は、
複数のアンテナを介して、複数のアンテナを有する送信装置からの信号を受信する無線部と、
前記無線部からの受信信号に基づいて生成されるチャネル行列をQR分解し、Q行列から復調するシンボルに対応する重み係数を抽出し、該重み係数により重み付けされた前記受信信号をフィルタリングし、R行列の部分行列に基づいて、前記フィルタリングされた前記受信信号を分離する復調部と
を備える。
開示の実施例によれば、信号分離処理の負荷を低減することができる。
無線通信装置の一実施例を示す図である。 復調回路の一実施例を示す図である。 重み演算処理の一実施例を示す図である。 重み演算処理の一実施例を示す図である。 復調回路の一変形例を示す図である。 重み演算処理の一変形例を示す図である。 復調回路の一変形例を示す図である。 重み演算処理の一変形例を示す図である。 復調回路の一変形例を示す図である。 復調回路の一変形例を示す図である。 復調回路の処理の一変形例を示す図である。 復調回路の処理の一変形例を示す図である。 誤り率特性の一例を示す図である。 誤り率特性の一例を示す図である。
以下、図面に基づいて、実施例を説明する。
なお、実施例を説明するための全図において、同一機能を有するものは同一符号を用い、繰り返しの説明は省略する。
<無線通信装置>
図1は、無線通信装置100の一実施例を示す。無線通信装置100は、ユーザ端末に適用されてもよいし、基地局に適用されてもよい。図1には、主に、ハードウェア構成について示される。図1では、アナログ素子は省略される。具体的には、デュプレクサ、フィルタ、ダウンコンバータ、低雑音増幅回路(LNA: Low Noise Amplifier)等は省略される。また、図1には、1アンテナブランチについて示されるが、複数のアンテナ、AGC、A/Dコンバータを用意して復調回路108に入力することにより、MIMO多重された無線信号を受信することができる。
無線通信装置100は、アンテナ102と、AGC(Automatic Gain Control)アンプ104と、A/Dコンバータ106と、復調回路108と、デジタル信号処理回路112とを有する。
アンテナ102は、複数のアンテナを有する他の無線通信装置から送信された信号を受信する。
AGCアンプ104は、アンテナ102と接続される。AGCアンプ104は、受信信号の振幅が変動する場合に、内蔵する増幅回路の利得を自動的に調整する。例えば、AGCアンプ104は、IF帯にダウンコンバートした受信信号の振幅が変動する場合に、利得を自動的に調整するようにしてもよい。AGCアンプ104は、内蔵する増幅回路の利得を自動的に調節することにより線形増幅された一定の信号をA/Dコンバータ106に出力する。
A/Dコンバータ106は、AGCアンプ104と接続される。A/Dコンバータ106は、デジタル信号に、AGCアンプ104からのアナログ信号を変換する。A/Dコンバータ106は、デジタル信号を復調回路108に入力する。
復調回路108は、A/Dコンバータ106と接続される。復調回路108は、A/Dコンバータ106からのデジタル信号に基づいて、同期検波、MIMO多重された信号を分離する処理等を行う。復調回路108により信号分離されたMIMO多重された信号は、ビット毎に対数尤度比(LLR: Log Likelihood Ratio)が計算され、デジタル信号処理回路112に入力される。
デジタル信号処理回路112は、復調回路108と接続される。デジタル信号処理回路112は、復号部110を有する。復号部110は、復調回路108からの出力信号に基づいて、誤り訂正を行う。復号部110は、誤り訂正を行った結果得られた「0」、「1」からなるビット列を出力する。
<復調処理>
一例として、2本の送信アンテナから送信された信号を、2本の受信アンテナにより受信する場合を考える。2次元送信信号ベクトルを「s」、2次元受信信号ベクトルを「v」、2次元雑音ベクトルを「n」、2×2のチャネル行列を「H」とする。受信信号ベクトル「v」は、式(1)により表される。
v=Hs+n (1)
チャネル行列Hは、送受信アンテナ間のチャネル応答値に表される成分を有する。換言すれば、チャネル行列Hは、送信アンテナT1、T2から受信アンテナR1、R2に至る伝搬路の特性を表す。「成分」は、「要素」と呼ばれてもよい。送信信号ベクトルsは、送信アンテナT1、T2からの送信信号ベクトルである。雑音ベクトルnは、ガウス雑音を表す。無線通信装置100の一実施例では、アンテナ数は2本を仮定する。この場合、送信信号ベクトルs1、s2は、それぞれ送信アンテナT1、T2からの送信シンボルで、長さNtの縦ベクトルs1=(s1,1,s1,2,・・・,s1,Nt)T等であってもよい。これは、各アンテナからNt個のシンボルが連続して同時に送信されることを示す。sは、s1、s2を縦に並べたベクトルである。従って、sは、長さ2×Ntの縦ベクトルになる。式(1)は、式(2)のように表すことができる。
Figure 0006015372
式(2)において、v1、v2は受信信号点、s1、s2は送信信号点(又は送信信号候補点)、H11、H12、H21、H22はチャネル行列Hの各成分、n、nは雑音の各成分を示す。チャネル行列Hは、Nt個のシンボルを送信している間は変化のない準静的なマルチパスフェージングに基づいて表される。パスプロファイルの長さをNp[chip]とすると、H11等(H12、H21、H22)は、(Nt+Np−1)×Ntの行列となる。よって、Hは、H11の縦横2倍の行列になる。v1、v2は、受信アンテナR1、R2の受信信号ベクトルで、長さは(Nt+Np−1)である。
ここで、チャネル行列Hは、式(3)に示されるように、ユニタリー行列Q(複素共役転置行列Qとの行列積が単位行列に等しい行列)と上三角行列Rとに分解できる(QR分解)。
H=QR (3)
ここで、Rは、式(4)により表される。
Figure 0006015372
ここで、MLD法について説明する。
<MLD法>
MLD法は、最尤判定に基づく信号分離法である。全送信アンテナpのデジタル変調における送信信号点候補cの全ての組み合わせについて推定されたチャネル行列を用いて、受信信号レプリカを生成する。全候補について受信信号と受信信号レプリカとの2乗のユークリッド距離に基づいて、式(5)に示されるように、メトリックeが計算される。一例として、送信アンテナが4(p=4)の場合について示す。
Figure 0006015372
式(5)において、メトリックeが最小となる送信シンボル候補c(p=1,...,4)の組合せを選択することにより、信号分離を行う。
復調回路108の一実施例では、MLD法を利用した復調処理の前に、受信信号に等化処理を行う。受信信号に等化処理を行うことにより、マルチパス干渉キャンセラを使用した場合よりも演算量を削減できる。
<復調回路108>
図2は、復調回路108の一実施例を示す。図2には、2本のアンテナを備える無線通信装置100の一実施例を示す。無線通信装置100は、2本のアンテナを備える無線通信装置からの信号を受信する。無線通信装置100が3本以上のアンテナを備え、3本以上のアンテナを備える無線通信装置からの信号を受信する場合でも同様である。
復調回路108は、チャネル推定部1081と、チャネル行列生成部1082と、重み演算部1083と、第1のフィルタ1084と、第2のフィルタ1085と、第3のフィルタ1086と、第4のフィルタ1087と、第1の加算器1088と、第2の加算器1089と、信号分離部1090とを有する。
チャネル推定部1081、チャネル行列生成部1082、重み演算部1083、第1のフィルタ1084、第2のフィルタ1085、第3のフィルタ1086、第4のフィルタ1087、第1の加算器1088、第2の加算器1089、信号分離部1090の機能は、それぞれ、ハードウェア(デジタル回路)、又はDSP(Digital Signal Processor)等のプロセッサを含む半導体LSIにより実現される。また、チャネル推定部1081、チャネル行列生成部1082、重み演算部1083、第1のフィルタ1084、第2のフィルタ1085、第3のフィルタ1086、第4のフィルタ1087、第1の加算器1088、第2の加算器1089、信号分離部1090の機能をソフトウェアにより実現するようにしてもよい。
チャネル推定部1081は、各アンテナからの信号に基づいて、サブキャリア信号毎に、送信アンテナと、受信アンテナとの間の伝送路の特性を表すチャネル推定を行う。チャネル推定部1081は、チャネル行列生成部1082へ、チャネル推定値を入力する。
チャネル行列生成部1082は、チャネル推定部1081と接続される。チャネル行列生成部1082は、チャネル推定部1081からのチャネル推定値に基づいて、チャネル行列Hを生成する。チャネル行列生成部1082は、重み演算部1083へ、チャネル行列Hを入力する。
重み演算部1083は、チャネル行列生成部1082と接続される。重み演算部1083は、チャネル行列生成部1082からのチャネル行列Hに基づいて、第1のフィルタ1084−第4のフィルタ1087の各フィルタに使用する重みwを演算する。
図3は、重み演算部1083の処理の一実施例を示す。
(1)は、チャネル行列生成部1082からのチャネル行列Hを示す。図3に示されるチャネル行列Hにおいて、ハッチングされた領域の成分には主に零でない値が含まれ、ハッチングされた領域以外の領域の成分には零又は略零が含まれる。シングルキャリア信号のチャネル行列は、斜め方向に同じ値が並ぶ場合がある。
重み演算部1083は、チャネル行列Hに含まれる複数の列ベクトルから、復調するタイミングのチャネルを選択する。重み演算部1083は、送信側の無線通信装置のアンテナの数と同数の列ベクトルを選択するようにしてもよいし、送信側の無線通信装置のアンテナの数より多い数の列ベクトルを選択するようにしてもよい。ここでは、無線通信装置100は、2本のアンテナを備える無線通信装置からの信号を受信する。従って、無線通信装置100は、2列のチャネル302、304を選択する場合について説明する。
(2)は、2列のチャネル302、304の選択例を示す。
重み演算部1083は、チャネル行列Hにおいて、選択した2列のチャネル302、304に含まれる成分を右端に移動させる。チャネル行列Hにおいて、選択した2列のチャネル302、304に含まれる成分を右端に移動させた行列を、チャネル行列H´という。選択した2列のチャネル302、304に含まれる成分と、チャネル行列Hの右端の2列の成分とを交換するようにしてもよい。また、選択した2列のチャネル302、304に含まれる成分を右端に移動させ、他の成分を左側にシフトさせるようにしてもよい。
(3)は、チャネル行列Hにおいて、選択した2列のチャネル302、304を右端に移動させ、他の成分を左側にシフトさせたチャネル行列H´を示す。
重み演算部1083は、チャネル行列H´をQR分解する。
(4)は、チャネル行列H´をQR分解することにより得られるQ行列、R行列の一実施例を示す。
Q行列で、受信信号を直交変換することにより、復調したいタイミングの信号を含む信号を生成できる。MIMOの場合、復調したいタイミングの信号を含む信号には、他の信号が含まれる。
Q行列の特定の列ベクトルを用いて重み付け加算することにより、受信信号を等化することができる。従って、第1のフィルタ1084−第4のフィルタ1087の重みとして、Q行列の特定の列ベクトルを用いることができる。(4)には、第1のフィルタ1084−第4のフィルタ1087に用いる重みとして、それぞれw11、w12、w21、w22が示される。
重み演算部1083は、R行列の成分の一部を抜き出した部分行列(以下、「部分行列H2×2」という)314を生成する。無線通信装置100の一実施例では、2行2列の行列を生成する。部分行列H2×2314は、R行列から、左側の成分が全て零になる成分を抜き出すのが好ましい。左側の成分が全て零になる成分を抜き出し、部分行列H2×2314を生成することにより、マルチパス干渉を含まない、等化後の信号を生成することができる。従って、マルチパスを気にすることなく効率的に信号分離を行うことができる。
重み演算部1083は、第1のフィルタ1084−第4のフィルタ1087に、重みw11、w12、w21、及びw22をそれぞれ入力する。また、重み演算部1083は、信号分離部1090に、部分行列H2×2314を入力する。
図4は、重み演算部1083の処理の一実施例を示す。図4には、数式を用いた例が示される。
上述したように、受信信号ベクトルを「v」とし、送信信号ベクトルを「s」とし、雑音ベクトルを「n」とする。
受信信号ベクトルは、v=Hs+nにより表される。HをQR分解することにより、v=QRs+nが得られる。さらに、両辺にQのエルミート転置行列を掛けることにより、Qv=Rs+Qnが得られる。
重み演算部1083は、復調する信号を取り出す。
図4には、Qのエルミート転置行列Q、受信信号v、R行列R、送信信号ベクトルsの模式図が示される。
復調する信号は、エルミート転置行列Q400の第1の行402と、第2の行404に、受信信号v410を掛けたものである。
MLD処理の際には、伝搬路として、R行列の成分の一部を抜き出した部分行列H2×2314を用いる。
第1のフィルタ1084は、重み演算部1083からの重みw11で、受信信号を重み付けし、フィルタリングする。第1のフィルタ1084は、第1の加算器1088に、重みw11で重み付けし、フィルタリングした受信信号を入力する。例えば、第1のフィルタ1084は、第1のアンテナR1からの受信信号を重み付けし、フィルタリングする。
第2のフィルタ1085は、重み演算部1083からの重みw12で、受信信号を重み付けし、フィルタリングする。第2のフィルタ1085は、第1の加算器1088に、重みw12で重み付けし、フィルタリングした受信信号を入力する。例えば、第2のフィルタ1085は、第1のアンテナR1からの受信信号を重み付けし、フィルタリングする。
第3のフィルタ1086は、重み演算部1083からの重みw21で、受信信号を重み付けし、フィルタリングする。第3のフィルタ1086は、第2の加算器1089に、重みw21で重み付けし、フィルタリングした受信信号を入力する。例えば、第3のフィルタ1086は、第2のアンテナR2からの受信信号を重み付けし、フィルタリングする。
第4のフィルタ1087は、重み演算部1083からの重みw22で、受信信号を重み付けし、フィルタリングする。第4のフィルタ1087は、第2の加算器1089に、重みw22で重み付けし、フィルタリングした受信信号を入力する。例えば、第4のフィルタ1087は、第2のアンテナR2からの受信信号を重み付けし、フィルタリングする。
第1の加算器1088は、第1のフィルタ1084からの、重みw11で重み付けしフィルタリングした受信信号と、第2のフィルタ1085からの、重みw12で重み付けしフィルタリングした受信信号とを加算する。第1の加算器1088は、信号分離部1090へ、重みw11で重み付けしフィルタリングした受信信号と、重みw12で重み付けしフィルタリングした受信信号とを加算した信号(以下、「第1の加算信号」という)を入力する。
第2の加算器1089は、第3のフィルタ1086からの、重みw21で重み付けしフィルタリングした受信信号と、第4のフィルタ1087からの、重みw22で重み付けしフィルタリングした受信信号とを加算する。第2の加算器1089は、信号分離部1090へ、重みw21で重み付けしフィルタリングした受信信号と、重みw22で重み付けしフィルタリングした受信信号とを加算した信号(以下、「第2の加算信号」という)を入力する。
信号分離部1090は、第1の加算器1088からの第1の加算信号と、第2の加算器1089からの第2の加算信号と、重み演算部1083からの部分行列H2×2314に基づいて、信号分離を行う。
重み演算部1083は、チャネル行列生成部1082からのチャネル行列Hから、チャネル行列H´を生成する。重み演算部1083は、チャネル行列H´をQR分解し、Q行列の列ベクトルに含まれる重みw11、w12、w21、w22を抽出する。第1のフィルタ1084−第4のフィルタ1087は、イコライザの重みとして、それぞれ重みw11、w12、w21、w22を使用する。第1の加算器1088からの出力信号を「v1´」とし、第2の加算器1089からの出力信号を「v2´」とすると、信号分離部1090に入力される信号v´は、式(6)のように表される。
Figure 0006015372
式(6)において、v1、v2は列ベクトルであり、v1´、v2´はスカラ値である。つまり、v´は要素が2の列ベクトルである。
また、重み演算部1083から、信号分離部1090に、部分行列H2×2が入力される。部分行列H2×2がイコライザも含めた伝搬路とされる。
信号分離部1090は、第1の加算信号v1´と、第2の加算信号v2´と、部分行列H2×2とを用いて、MLD処理を行う。信号処理部1090は、送信信号レプリカs´から求めた受信信号レプリカH2×2s´と、v´との間の二乗ユークリッド距離e(s´)が最小となるs´を選択する。s´は、大きさが2の列ベクトルであり、式(7)のように表される。
Figure 0006015372
式(7)において、s1´、s2´は各送信アンテナの送信信号レプリカである。また、e(s´)は、式(8)のように表される。
Figure 0006015372
無線通信装置100の一実施例によれば、伝搬チャネルの列ベクトルHのうち、復調したいタイミングのチャネルを行列の右側に寄せてからQR分解する。QR分解により得られるQ行列の一部の列を等化重みとして、受信信号を等化する。このようにすることにより、復調したいタイミングの信号を含む信号を生成できる。MIMOの場合、復調したいタイミングの信号を含む信号には複数の信号が含まれる。このため、MIMOの伝搬路として、R行列の部分行列である部分行列H2×2を使用して、MLDを行なうことにより、アンテナ間の干渉を低減する。
部分行列H2×2314は、R行列より抜き出したものである。図3より、部分行列H2×2314の左側の成分が全て零であることが分かる。左側の成分が全て零であることにより、直交変換後の信号はマルチパス干渉を含んでいないことが分かる。このため、マルチパスを気にすることなく効率的にMLDを行うことができる。
また、Q行列により等化する際には、Q行列の特定の列ベクトルを用いて重み付し、加算されるため、イコライザの重みとして、w11、w12、w21、w22を用いることができる。
<変形例(その1)>
無線通信装置100の一変形例は、図1と略同一である。
<復調回路108>
図5は、復調回路108の一変形例を示す。図5には、2本のアンテナを備える無線通信装置100の一変形例を示す。無線通信装置100は、2本のアンテナを備える無線通信装置からの信号を受信する。無線通信装置100が3本以上のアンテナを備え、3本以上のアンテナを備える無線通信装置からの信号を受信する場合でも同様である。
復調回路108は、図2に示される復調回路に、雑音推定部1091を備える。
雑音推定部1091の機能は、ハードウェア(デジタル回路)、又はDSP(Digital Signal Processor)等のプロセッサにより実現される。また、雑音推定部1091の機能をソフトウェアにより実現するようにしてもよい。
雑音推定部1091は、A/Dコンバータ106と接続される。雑音推定部1091は、A/Dコンバータ106からのデジタル信号に基づいて、雑音電力を推定する。雑音推定部1091は、雑音電力の推定値の平方根(以下、「雑音電力推定値σ」という)を算出する。雑音推定部1091は、重み推定部1083に、雑音電力推定値σを入力する。
重み演算部1083は、雑音推定部1091、チャネル行列生成部1082と接続される。重み演算部1083は、チャネル行列生成部1082からのチャネル行列Hと、雑音推定部1091からの雑音電力推定値σに基づいて、第1のフィルタ1084−第4のフィルタ1087の各フィルタに使用する重みを演算する。
図6は、重み演算部1083の処理の一変形例を示す。無線通信装置100の一変形例では、重み演算部1083は、MMSE拡張QR分解(例えば、非特許文献1参照)により、第1のフィルタ1084−第4のフィルタ1087の各フィルタに使用する重みを演算する。重み演算部1083は、チャネル行列H´を生成する。重み演算部1083は、チャネル行列H´をQR分解する際に、チャネル行列H´にσI(Iは単位行列)を付加し、QR分解する。図6に示される例では、3行3列のチャネル行列H´が得られ、該チャネル行列H´に、3行3列の単位行列に雑音電力推定値σを乗算した行列を付加した行列(図6では、チャネル行列H´´により表される)をQR分解する。
無線通信装置100の一変形例によれば、MMSE拡張QR分解を用いることにより、誤り率特性を改善できる。
<変形例(その2)>
無線通信装置100の一変形例は、図1と略同一である。
<復調回路108>
図7は、復調回路108の一変形例を示す。図7には、2本のアンテナを備える無線通信装置100の一変形例を示す。無線通信装置100は、2本のアンテナを備える無線通信装置からの信号を受信する。無線通信装置100が3本以上のアンテナを備え、3本以上のアンテナを備える無線通信装置からの信号を受信する場合でも同様である。
復調回路108は、図5に示される復調回路に、雑音補正部1092を備える。
雑音補正部1092の機能は、ハードウェア(デジタル回路)、又はDSP(Digital Signal Processor)等のプロセッサにより実現される。また、雑音補正部1092の機能をソフトウェアにより実現するようにしてもよい。
チャネル推定部1081は、雑音補正部1092に、チャネル推定値の精度を入力する。例えば、チャネル推定値の精度は、パイロットの平均数等から推定できる。チャネル推定部1081は、雑音補正部1092に、パイロットの平均数等を入力するようにしてもよい。
雑音推定部1091は、A/Dコンバータ106と接続される。雑音推定部1091は、A/Dコンバータ106からの信号に基づいて、雑音電力を推定する。雑音推定部1091は、雑音電力推定値σを算出する。雑音推定部1091は、雑音補正部1092に、雑音電力推定値σを入力する。
雑音補正部1092は、チャネル推定部1081と、雑音推定部1091と接続される。雑音補正部1092は、チャネル推定部1081からのチャネル推定値の精度に基づいて、雑音推定部1091からの雑音電力推定値σを補正する。MMSE拡張型のQR分解を用いる場合で、且つチャネル推定値の誤差が大きい場合には、雑音電力推定値σを大きい値に補正することにより、よい特性が得られる場合がある。雑音補正部1092は、チャネル推定部1081からのチャネル推定値の精度が所定の閾値より低い場合に、雑音電力推定値σを大きい値に補正する。例えば、雑音補正部1092は、√2から2倍程度に、雑音電力推定値σを補正するようにしてもよい。複数の閾値を有するようにして、段階的に雑音電力推定値σを大きい値に補正するようにしてもよい。雑音補正部1092は、重み推定部1083に、補正した雑音電力推定値(以下、「雑音電力推定値σ´」という)を入力する。
重み演算部1083は、雑音補正部1092と、チャネル行列生成部1082と接続される。重み演算部1083は、チャネル行列生成部1082からのチャネル行列Hと、雑音補正部1092からの雑音電力推定値σ´に基づいて、第1のフィルタ1084−第4のフィルタ1087の各フィルタに使用する重みを演算する。
無線通信装置100の一変形例では、重み演算部1083は、MMSE拡張QR分解(例えば、非特許文献1参照)により、第1のフィルタ1084−第4のフィルタ1087の各フィルタに使用する重みを演算する。重み演算部1083は、チャネル行列H´を生成する。重み演算部1083は、チャネル行列H´をQR分解する際に、チャネル行列H´にσ´I(Iは単位行列)を付加し、QR分解する。例えば、3行3列のチャネル行列H´が得られた場合、該チャネル行列H´に、3行3列の単位行列に雑音電力推定値σ´を乗算した行列を付加してQR分解する。
無線通信装置100の一変形例によれば、補正した雑音電力推定値を用いることにより、誤り率特性を改善できる。
<変形例(その3)>
無線通信装置100の一変形例は、図1と略同一である。
<復調回路108>
復調回路108の一変形例は、図2、図5、図7と略同一である。
重み演算部1083は、チャネル行列H´又はチャネル行列H´´の列方向の成分より、行方向の成分の方が多い場合、列方向の成分の数で、QR分解を終了する。
図8は、重み演算部1083の処理の一変形例を示す。図8には、一例として、チャネル行例H´が示されるが、チャネル行列H´´についても同様である。
図8では、チャネル行列H´の行方向の成分の数を「n」で表し、列方向の成分の数を「m」で表す。n>mの場合、Q行列の全ての成分を求める必要はない。例えば、重み演算部1083は、Q行列のm番目まで算出し、終了する。直交化処理にグラムシュミット直交化を用いている場合、Q行列は1列目から順番に求めるが、m番目までが求められれば、それ以降の列は求めなくても誤り率特性への影響はない。
無線通信装置100の一変形例によれば、一部の成分について、QR分解を実行することにより、復調回路108の演算処理量を低減できる。
<変形例(その4)>
無線通信装置100の一変形例は、図1と略同一である。
<復調回路108>
図9は、復調回路108の一変形例を示す。復調回路108の一変形例は、図2を参照して説明した復調回路の重み演算部1083の代わりに、雑音推定部1091と、MMSE重み算出部1093と、直交化部1094と、部分行列算出部1095とを備える。
雑音推定部1091、MMSE重み算出部1093、直交化部1094、部分行列算出部1095の機能は、それぞれ、ハードウェア(デジタル回路)、又はDSP(Digital Signal Processor)等のプロセッサにより実現される。また、雑音推定部1091、MMSE重み算出部1093、直交化部1094、部分行列算出部1095の機能をソフトウェアにより実現するようにしてもよい。
雑音推定部1091は、A/Dコンバータ106と接続される。雑音推定部1091は、A/Dコンバータ106からの信号に基づいて、雑音電力を推定する。雑音推定部1091は、雑音電力推定値σを算出する。雑音推定部1091は、MMSE重み算出部1093に、雑音電力推定値σを入力する。
MMSE重み算出部1093は、チャネル行列生成部1082と、雑音推定部1091と接続される。MMSE重み算出部1093は、雑音推定部1091からの雑音電力推定値σと、チャネル行列生成部1082からのチャネル行列に基づいて、重み係数を算出する。例えば、重み係数wを式(9)により算出するようにしてもよい。例えば、重み係数wは、2列の行列により表され、hはHより復調したいタイミングに相当する2列を抜き出した行列になる。
w=(HH+σI)−1h (9)
MMSE重み算出部1093は、直交化部1094に、重み係数を入力する。
直交化部1094は、MMSE重み算出部1093と、第1のフィルタ1084−第4のフィルタ1087と接続される。直交化部1094は、MMSE算出部1093からの重み係数をQR分解する。直交化部1094は、QR分解することにより得られるQ行列から重みを抽出する。直交化部1094は、第1のフィルタ1084−第4のフィルタ1087へ、それぞれ重みを入力する。また、直交化部1094は、部分行列算出部1095へ、重みを入力する。
部分行列算出部1095は、チャネル行列生成部1082と、直交化部1094と、信号分離部1090と接続される。部分行列算出部1095は、チャネル行列生成部1082からのチャネル行列と、直交化部1094からの重みに基づいて部分行列を算出する。部分行列算出部1095は、信号分離部1090に、部分行列H2×2を入力する。
上述した実施例−変形例(その3)では、チャネル行列H´、又はチャネル行列H´´をQR分解することによりイコライザ重みを求める場合について説明した。ここで、Q行列が直交行列であることから、イコライザ重みをQR分解しても同様に、重みを得ることができる。
無線通信装置100は、イコライザ重みをQR分解することで、直交した重みを求める。無線通信装置100は、イコライザの重みとして、直交した重みを使用する。
<変形例(その5)>
無線通信装置100の一変形例は、図1と略同一である。
<復調回路108>
図10は、復調回路108の一変形例を示す。
復調回路108は、FFT1096及び1097と、チャネル推定部1081と、雑音推定部1091と、MMSE重み算出部1093と、直交化部1094と、周波数領域等化部1098と、IFFT1099、1100及び1101と、部分行列算出部1095と、信号分離部1090とを備える。
FFT1096及び1097、チャネル推定部1081、雑音推定部1091、MMSE重み算出部1093、直交化部1094、周波数領域等化部1098、IFFT1099、1100及び1101、部分行列算出部1095、信号分離部1090の機能は、それぞれ、ハードウェア(デジタル回路)、又はDSP(Digital Signal Processor)等のプロセッサにより実現される。また、FFT1096及び1097、チャネル推定部1081、雑音推定部1091、MMSE重み算出部1093、直交化部1094、周波数領域等化部1098、IFFT1099、1100及び1101、部分行列算出部1095、信号分離部1090の機能をソフトウェアにより実現するようにしてもよい。
FFT1096及び1097は、A/Dコンバータ106と接続される。FFT1096及び1097は、A/Dコンバータ106からの各アンテナからの信号を高速フーリエ変換する。FFT1096及び1097により高速フーリエ変換された信号は、チャネル推定部1081、雑音推定部1091、及び周波数領域等化部1098に入力される。
チャネル推定部1081は、FFT1096及び1097と接続される。チャネル推定部1081は、FFT1096及び1097からの信号に基づいて、サブキャリア信号毎に、送信アンテナと、受信アンテナとの間の伝送路の特性を表すチャネル推定を行う。チャネル推定部1081は、MMSE重み算出部1093へ、チャネル推定値を入力する。
雑音推定部1091は、FFT1096及び1097と接続される。雑音推定部1091は、FFT1096及び1097からの信号に基づいて、雑音電力を推定する。雑音推定部1091は、雑音電力推定値σを算出する。雑音推定部1091は、MMSE重み算出部1093へ、雑音電力推定値σを入力する。
MMSE重み算出部1093は、チャネル推定部1081と、雑音推定部1091と接続される。MMSE重み算出部1093は、チャネル推定部1081からのチャネル推定値と、雑音推定部1091からの雑音電力推定値σとに基づいて、重み係数を算出する。例えば、重み係数wを式(9)により算出するようにしてもよい。例えば、重み係数wは、2列の行列により表される。MMSE重み算出部1093は、直交化部1094に、重み係数を入力する。
直交化部1094は、MMSE重み算出部1093と接続される。直交化部1094は、MMSE算出部1093からの重み係数をQR分解する。直交化部1094は、QR分解することにより得られるQ行列から重みを抽出する。直交化部1094は、周波数領域等化部1098へ、重みwを入力する。また、直交化部1094は、IFFT1101へ、重みを入力する。
IFFT1101は、直交化部1094と接続される。IFFT1101は、直交化部1094からの重みを逆高速フーリエ変換する。IFFT1101は、部分行列算出部1095へ、逆高速フーリエ変換した重みを入力する。
部分行列算出部1095は、IFFT1101と接続される。部分行列算出部1095は、IFFT1101からの逆高速フーリエ変換した重みに基づいて部分行列H2×2を算出する。部分行列算出部1095は、信号分離部1090に、部分行列H2×2を入力する。
部分行列算出部1095は、MMSE重みw´ijを求める。例えば、部分行列算出部1095は、式(10)によりMMSE重みw´ijを求める。
Figure 0006015372
式(10)において、Rは、図3に示されるH行列から求められる相関行列であり、式(11)により表される。
R=HH+σI (11)
式(10)において、hijは復調するシンボルのチャネルである。
図11は、復調回路の処理の一変形例を示す。図11には、hijを求める処理が示される。hijは、H行列から一部の成分を抜き出した列ベクトルである。
ijが列ベクトルであることにより、式(10)から、MMSE重みw´ijも列ベクトルになる。
部分行列算出部1095は、式(10)の左辺をQR分解する。部分行列算出部1095は、Q行列の左から2列を抜き出すことにより直交化重みwijを求める。
図12は、復調回路の処理の一変形例を示す。図12には、直交化重みを求める処理が示される。
部分行列算出部1095は、列ベクトルである式(10)の左辺をQR分解し、Q行列の左から2列を抜き出し、左側に移動させる。
部分行列算出部1095は、wijとhijから、H2×2を算出する。例えば、部分行列算出部1095は、式(12)によりH2×2を算出する。式(12)に示される例では、H2×2は、2×2行列となる。
Figure 0006015372
周波数領域等化部1098は、FFT1096及び1097と接続される。周波数領域等化部1098は、直交化部1094からの重みwで、FFT1096及び1097からの信号を重み付けし、等化処理を行う。周波数領域等化部1098は、IFFT1099へ、等化処理したFFT1096からの信号を入力する。周波数領域等化部1098は、IFFT1100へ、等化処理したFFT1097からの信号を入力する。
IFFT1099は、周波数領域等化部1098からの信号を逆高速フーリエ変換する。IFFT1099は、信号分離部1090へ、逆高速フーリエ変換した信号を入力する。
IFFT1100は、周波数領域等化部1098からの信号を逆高速フーリエ変換する。IFFT1100は、信号分離部1090へ、逆高速フーリエ変換した信号を入力する。
信号分離部1090は、IFFT1099からの信号と、IFFT1100からの信号と、部分行列算出部1095からの部分行列H2×2に基づいて、信号分離を行う。
上述した実施例−変形例(その4)では、時間領域の信号をイコライザへ適用する場合について示した。変形例(その5)では、周波数領域の信号をイコライザへ適用する。具体的には、受信信号をFFTすることにより周波数領域の信号に変換する。該周波数領域の信号から、周波数領域のMMSEイコライザ重みを算出する。直交化した重みを周波数領域のイコライザの重みとして使用する。
等化された信号は、IFFTすることにより時間領域の信号に変換され、MLD処理が行われる。ここで、伝搬路行列H2×2は、直交化された周波数領域重みをIFFTすることにより得られる値から求める。
<誤り率特性>
図13は、誤り率特性の一例を示す。図13において、横軸はS/N[dB]であり、縦軸は誤り率である。
図13には、無線通信システムの一変形例(その1)により得られる誤り率特性(QR−Eq−MLD)と、MMSEが適用された場合の誤り率特性(MMSE)、MMSEとMLDとが併用された場合の誤り率特性(MMSE+MLD)が示される。
図13によれば、S/Nに拘わらず、無線通信システムの一変形例(その1)により得られる誤り率特性は、他の特性よりもよいことが分かる。従って、本実施例、変形例により、誤り率特性を向上させることができる。
図14は、誤り率特性の一例を示す。図14において、横軸はS/N[dB]であり、縦軸は誤り率である。
図14に示される誤り率特性は、誤り率を求める際に、チャネルに誤差を付加したものである。
図14には、無線通信システムの一変形例(その1)により得られる誤り率特性(QR−Eq−MLD)と、MMSEが適用された場合の誤り率特性(MMSE)、MMSEとMLDとが併用された場合の誤り率特性(MMSE+MLD)が示される。
図14によれば、S/Nに拘わらず、無線通信システムの一変形例(その1)により得られる誤り率特性は、他の特性よりもよいことが分かる。従って、本実施例、変形例により、誤り率特性を向上させることができる。
各実施例、変形例は単なる例示に過ぎず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。説明の便宜上、実施例に従った装置は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウエアで又はそれらの組み合わせで実現されてもよい。
以上、実施例、変形例を用いて、MIMO復調処理を詳細に説明したが、当業者にとっては、本明細書中に説明した実施例に限定されるものではないということは明らかである。特許請求の範囲の記載により定まる趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
以上の実施例を含む実施形態に関し、更に以下の付記を開示する。
(付記1)
複数のアンテナを介して、複数のアンテナを有する送信装置からの信号を受信する無線部と、
前記無線部からの受信信号に基づいて生成されるチャネル行列をQR分解し、Q行列から復調するシンボルに対応する重み係数を抽出し、該重み係数により重み付けされた前記受信信号をフィルタリングし、R行列の部分行列に基づいて、前記フィルタリングされた前記受信信号を分離する復調部と
を備える、無線通信装置。
(付記2)
前記復調部は、前記受信信号に基づいて推定される雑音電力を用いて、前記チャネル行列をMMSE拡張QR分解する、付記1に記載の無線通信装置。
(付記3)
前記復調部は、チャネル推定精度に応じて、前記受信信号に基づいて推定される雑音電力を補正し、該補正された雑音電力を用いて、前記チャネル行列をMMSE拡張QR分解する、付記1に記載の無線通信装置。
(付記4)
前記復調部は、前記無線部からの受信信号に基づいて生成されるチャネル行列から、復調するシンボルに対応する列成分を、右側に移動させ、QR分解する、付記1に記載の無線通信装置。
(付記5)
複数のアンテナを介して、複数のアンテナを有する送信装置からの信号を受信する無線部と、
前記無線部からの受信信号に基づいて生成されるチャネル行列に基づいて、重みを算出し、該重みを直交化し、直交化した重みにより重み付けされた前記受信信号をフィルタリングし、前記直交化した重みと、前記チャネル行列に基づいて生成される部分行列に基づいて、前記フィルタリングされた前記受信信号を分離する復調部と
を備える、無線通信装置。
(付記6)
複数のアンテナを介して、複数のアンテナを有する送信装置からの信号を受信する無線部と、
前記無線部からの受信信号に基づいて生成されるチャネル推定値に基づいて、重みを算出し、該重みを直交化し、直交化した重みに基づいて前記受信信号を等化処理し、前記直交化した重みに基づいて生成される部分行列に基づいて、前記等化処理された前記受信信号を分離する復調部と
を備える、無線通信装置。
(付記7)
複数のアンテナを介して、複数のアンテナを有する送信装置からの信号を受信し、
前記送信装置からの受信信号に基づいて生成されるチャネル行列をQR分解し、
Q行列から復調するシンボルに対応する重み係数を抽出し、
該重み係数により重み付けされた前記受信信号をフィルタリングし、
R行列の部分行列に基づいて、前記フィルタリングされた前記受信信号を分離する、無線通信方法。
(付記8)
前記復調部は、MLD法により、前記フィルタリングされた前記受信信号を分離する、付記1ないし6のいずれか1項に記載の無線通信装置。
(付記9)
前記復調部は、前記チャネル行列をQR分解する際に、前記チャネル行列の列方向の成分より、行方向の成分の方が多い場合、列方向の成分の数で、QR分解を終了する、付記1ないし6のいずれか1項に記載の無線通信装置。
(付記10)
受信信号に基づいて生成されるチャネル行列をQR分解し、Q行列から復調するシンボルに対応する重み係数を抽出し、該重み係数により重み付けされた前記受信信号をフィルタリングし、R行列の部分行列に基づいて、前記フィルタリングされた前記受信信号を分離する復調部を備える、ベースバンド処理LSI。
100 無線通信装置
102 アンテナ
104 AGCアンプ
106 A/Dコンバータ
108 復調回路
110 復号部
112 デジタル信号処理回路

Claims (7)

  1. 複数のアンテナを介して、複数のアンテナを有する送信装置からの信号を受信する無線部と、
    前記無線部からの受信信号に基づいて生成されるチャネル行列をQR分解し、Q行列から復調するシンボルに対応する重み係数を抽出し、該重み係数により重み付けされた前記受信信号をフィルタリングし、R行列の部分行列に基づいて、前記フィルタリングされた前記受信信号を分離する復調部と
    を備える、無線通信装置。
  2. 前記復調部は、前記受信信号に基づいて推定される雑音電力を用いて、前記チャネル行列をMMSE拡張QR分解する、請求項1に記載の無線通信装置。
  3. 前記復調部は、チャネル推定精度に応じて、前記受信信号に基づいて推定される雑音電力を補正し、該補正された雑音電力を用いて、前記チャネル行列をMMSE拡張QR分解する、請求項1に記載の無線通信装置。
  4. 前記復調部は、前記無線部からの受信信号に基づいて生成されるチャネル行列から、復調するシンボルに対応する列成分を、右側に移動させ、QR分解する、請求項1に記載の無線通信装置。
  5. 複数のアンテナを介して、複数のアンテナを有する送信装置からの信号を受信する無線部と、
    前記無線部からの受信信号に基づいて生成されるチャネル行列と、前記受信信号から推定した雑音電力とに基づいて重みを算出し、該重みをQR分解し、Q行列から復調するシンボルに対応する重み係数を抽出し、該重み係数により重み付けされた前記受信信号をフィルタリングし、前記抽出した重み係数と前記チャネル行列に基づいて生成される部分行列に基づいて、前記フィルタリングされた前記受信信号を分離する復調部と
    を備える、無線通信装置。
  6. 複数のアンテナを介して、複数のアンテナを有する送信装置からの信号を受信する無線部と、
    前記無線部からの受信信号を変換した周波数領域の信号に基づいて生成されるチャネル行列と、前記受信信号を変換した周波数領域の信号から推定した雑音電力とに基づいて重みを算出し、該重みをQR分解し、Q行列から復調するシンボルに対応する重み係数を抽出し、該重み係数に基づいて前記受信信号を周波数領域で等化処理し、前記抽出した重み係数を逆変換した時間領域の重み係数に基づいて生成される部分行列に基づいて、前記周波数領域で等化処理され信号を逆変換した時間領域の信号を分離する復調部と
    を備える、無線通信装置。
  7. 複数のアンテナを介して、複数のアンテナを有する送信装置からの信号を受信し、
    前記送信装置からの受信信号に基づいて生成されるチャネル行列をQR分解し、
    Q行列から復調するシンボルに対応する重み係数を抽出し、
    該重み係数により重み付けされた前記受信信号をフィルタリングし、
    R行列の部分行列に基づいて、前記フィルタリングされた前記受信信号を分離する、無線通信方法。
JP2012251702A 2012-11-15 2012-11-15 無線通信装置、及び無線通信方法 Expired - Fee Related JP6015372B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012251702A JP6015372B2 (ja) 2012-11-15 2012-11-15 無線通信装置、及び無線通信方法
EP13180702.6A EP2733865A1 (en) 2012-11-15 2013-08-16 Wireless communication apparatus and wireless communication method
US13/972,005 US9178729B2 (en) 2012-11-15 2013-08-21 Wireless communication apparatus and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251702A JP6015372B2 (ja) 2012-11-15 2012-11-15 無線通信装置、及び無線通信方法

Publications (2)

Publication Number Publication Date
JP2014099815A JP2014099815A (ja) 2014-05-29
JP6015372B2 true JP6015372B2 (ja) 2016-10-26

Family

ID=48986019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251702A Expired - Fee Related JP6015372B2 (ja) 2012-11-15 2012-11-15 無線通信装置、及び無線通信方法

Country Status (3)

Country Link
US (1) US9178729B2 (ja)
EP (1) EP2733865A1 (ja)
JP (1) JP6015372B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638541B (zh) * 2013-05-28 2018-10-11 新力股份有限公司 通信裝置、通信系統及通信方法
GB2580648A (en) * 2019-01-18 2020-07-29 Sony Corp Receiver circuitry, infrastructure equipment and methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4308159B2 (ja) * 2005-02-10 2009-08-05 日本電信電話株式会社 空間多重信号検出回路
JP4666150B2 (ja) * 2005-05-31 2011-04-06 日本電気株式会社 Mimo受信装置、受信方法、および無線通信システム
JP4854378B2 (ja) * 2006-05-01 2012-01-18 ソフトバンクBb株式会社 無線伝送システムおよび無線伝送方法
US20070291882A1 (en) * 2006-06-15 2007-12-20 Samsung Electronics Co., Ltd. Apparatus and method for detecting signal in multi-input multi-output system
JP2008258899A (ja) 2007-04-04 2008-10-23 Samsung Electronics Co Ltd 受信装置および受信方法
JP2008283393A (ja) * 2007-05-09 2008-11-20 Nec Corp Mmse等化回路、受信装置、及び通信システム、並びにその方法及びプログラム
WO2009016741A1 (ja) * 2007-07-31 2009-02-05 Fujitsu Limited Mimo復号方法及びmimo復号装置並びにmimo受信機
US8094708B2 (en) 2007-11-21 2012-01-10 Samsung Electronics Co., Ltd. Receiver with multiple antennas and method of receiving signals
JP5143533B2 (ja) 2007-11-21 2013-02-13 三星電子株式会社 受信装置、及び信号処理方法
US8107518B2 (en) * 2008-08-04 2012-01-31 Redpine Signals, Inc, Stream weight estimation and compensation in SIMO/MIMO OFDM receivers
US8779979B2 (en) 2008-11-13 2014-07-15 Samsung Electronics Co., Ltd. Multi-antenna signal receiving device processing multi-path interference
JP5241437B2 (ja) * 2008-11-13 2013-07-17 三星電子株式会社 受信装置、及び信号処理方法
WO2010103647A1 (ja) * 2009-03-12 2010-09-16 株式会社日立製作所 Mimo受信方法
CA2758533C (en) * 2009-04-27 2017-01-31 Research In Motion Limited Hybrid-qrd-sic and imbalanced mcs system and method for mimo
JP5446959B2 (ja) * 2010-02-12 2014-03-19 富士通株式会社 信号分離装置及び信号分離方法
JP5691245B2 (ja) * 2010-05-27 2015-04-01 富士通株式会社 受信装置、及び受信方法

Also Published As

Publication number Publication date
EP2733865A1 (en) 2014-05-21
US9178729B2 (en) 2015-11-03
US20140133541A1 (en) 2014-05-15
JP2014099815A (ja) 2014-05-29

Similar Documents

Publication Publication Date Title
JP5646583B2 (ja) ワイヤレス通信システムにおける強化されたチャネル推定のためのシステムおよび方法
JP2008017143A (ja) 無線受信装置および方法
US9768844B2 (en) Double iterative MIMO receiver
KR101062049B1 (ko) 수신 장치 및 수신 방법
US10270624B2 (en) Channel estimation method and apparatus for use in wireless communication system
JP2008205697A (ja) Mimo受信装置および受信方法
JP5093343B2 (ja) Mimo受信装置および方法
US8363756B2 (en) Wireless reception device, wireless communication system and wireless communication method
US8942325B2 (en) Wireless communication apparatus and communication method
WO2013018555A1 (ja) 無線受信装置およびプログラム
JP6015372B2 (ja) 無線通信装置、及び無線通信方法
CN102685060B (zh) 一种正交频分复用***中多用户mimo接收方法和装置
KR101433852B1 (ko) 다중 안테나 수신기 및 신호 수신 방법
US9374249B2 (en) Receiving apparatus and equalization processing method
US8724746B2 (en) System and method for signaling and detecting in wireless communications systems
JP5475276B2 (ja) 受信装置、及び信号検出方法
JP2011188107A (ja) Mimo受信装置および受信方法
US9525456B2 (en) Receiving device and receiving process method
JP6727005B2 (ja) Mimo−ofdm信号受信装置
Karjalainen Effects of linear preprocessing on receiver complexity-performance trade-off in single-carrier MIMO systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees