JP5966734B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP5966734B2
JP5966734B2 JP2012169783A JP2012169783A JP5966734B2 JP 5966734 B2 JP5966734 B2 JP 5966734B2 JP 2012169783 A JP2012169783 A JP 2012169783A JP 2012169783 A JP2012169783 A JP 2012169783A JP 5966734 B2 JP5966734 B2 JP 5966734B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
active material
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012169783A
Other languages
Japanese (ja)
Other versions
JP2014029791A (en
Inventor
田辺 順志
順志 田辺
繁田 徳彦
徳彦 繁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012169783A priority Critical patent/JP5966734B2/en
Publication of JP2014029791A publication Critical patent/JP2014029791A/en
Application granted granted Critical
Publication of JP5966734B2 publication Critical patent/JP5966734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

リチウムイオン二次電池はその高容量化や高性能化を図るため、正極と負極、電解質等の構成要素の改良が進められている。例えば、高容量化に対しては負極活物質にケイ素を用いることが提案されている(特許文献1)。しかしながら、このケイ素負極活物質は充放電時に結晶構造の変化を伴うため体積の膨張収縮が大きく、充電時の体積が放電状態の4倍にまで膨張してしまう。このため、ケイ素負極活物質が負極集電体から剥離してしまい、充放電のサイクルにより容量の劣化(サイクル劣化)が生じるという問題があった。このようなサイクル劣化の問題に対しては、集電体の一部に空隙構造を設けて負極活物質の膨張時の体積緩衝の機能をもつ層(特許文献2)や、比較的膨張収縮の少ない黒鉛とケイ素を負極活物質として共存させる負極合剤(特許文献3)が提案されている。   In order to increase the capacity and performance of a lithium ion secondary battery, improvements in components such as a positive electrode, a negative electrode, and an electrolyte are being promoted. For example, for increasing the capacity, it has been proposed to use silicon as the negative electrode active material (Patent Document 1). However, since this silicon negative electrode active material is accompanied by a change in the crystal structure during charging and discharging, the volume expansion and contraction is large, and the volume during charging expands to four times that in the discharged state. For this reason, there existed a problem that a silicon negative electrode active material will peel from a negative electrode electrical power collector, and capacity | capacitance deterioration (cycle deterioration) will arise by the cycle of charging / discharging. In order to solve such a problem of cycle deterioration, a layer (Patent Document 2) having a function of volume buffering when the negative electrode active material is expanded by providing a gap structure in a part of the current collector, A negative electrode mixture (Patent Document 3) in which a small amount of graphite and silicon coexist as negative electrode active materials has been proposed.

一方で、リチウムイオン二次電池の安全性を向上させるため、電解質に固体電解質を用いたリチウムイオン二次電池が提案されている。この固体電解質を用いたリチウムイオン二次電池の高容量化に対しても、負極にケイ素負極活物質を用いることが試みられている。さらにサイクル劣化の対策として、ケイ素負極活物質を堅い材料で被覆することが提案されている(特許文献4)。   On the other hand, in order to improve the safety of a lithium ion secondary battery, a lithium ion secondary battery using a solid electrolyte as an electrolyte has been proposed. In order to increase the capacity of a lithium ion secondary battery using this solid electrolyte, attempts have been made to use a silicon negative electrode active material for the negative electrode. Further, as a countermeasure against cycle deterioration, it has been proposed to coat a silicon negative electrode active material with a hard material (Patent Document 4).

特開2002−083594号公報Japanese Patent Laid-Open No. 2002-083594 WO2008/026595号公報WO2008 / 026595 特開2010−212228号公報JP 2010-212228 A 特開1999−007942号公報JP 1999-007942 A

しかしながら、特許文献2〜3のような集電体の一部に空隙を設けたり、黒鉛とケイ素負極活物質とを負極合剤として設けたりすることは、リチウムイオン二次電池において負極活物質の量が減ることとなる。そして、特許文献4においても、ケイ素負極活物質を被覆する材料を用いており、このため負極活物質の量が減ることとなる。つまり、リチウム二次電池での活物質の量が減るため、サイクル劣化の改善に効果があるものの、容量が不十分になってしまうという課題がある。   However, providing a gap in a part of the current collector as in Patent Documents 2 to 3 or providing a graphite and a silicon negative electrode active material as a negative electrode mixture is not possible in a lithium ion secondary battery. The amount will be reduced. And also in patent document 4, the material which coat | covers a silicon negative electrode active material is used, For this reason, the quantity of a negative electrode active material will reduce. That is, since the amount of the active material in the lithium secondary battery is reduced, there is a problem that the capacity becomes insufficient although it is effective in improving cycle deterioration.

さらに、固体電解質を用いたリチウムイオン二次電池の場合では、電解液を用いたリチウムイオン二次電池と比較して、負極活物質や正極活物質の膨張収縮に伴い固体電解質との界面で空隙が生じやすく、サイクル劣化はより顕著になる。   Furthermore, in the case of a lithium ion secondary battery using a solid electrolyte, compared to a lithium ion secondary battery using an electrolytic solution, there is a gap at the interface with the solid electrolyte as the negative electrode active material and the positive electrode active material expand and contract. Is likely to occur, and the cycle deterioration becomes more remarkable.

上記を鑑み、本発明は、サイクル特性に優れ、高容量が得られるリチウムイオン二次電池を提供することを目的とする。   In view of the above, an object of the present invention is to provide a lithium ion secondary battery that is excellent in cycle characteristics and has a high capacity.

上記の課題を解決するため本発明のリチウムイオン二次電池は、1Fdの充電で5〜15cm膨張する負極活物質と、1Fdの充電で5〜15cm収縮する正極活物質と、固体電解質とを含むことを特徴とする。これにより、サイクル特性に優れ、高容量が得られるリチウムイオン二次電池を提供することができる。 In order to solve the above problems, a lithium ion secondary battery of the present invention includes a negative electrode active material that expands by 5 to 15 cm 3 when charged with 1 Fd, a positive electrode active material that contracts by 5 to 15 cm 3 when charged with 1 Fd, a solid electrolyte, It is characterized by including. Thereby, the lithium ion secondary battery which is excellent in cycling characteristics and can obtain a high capacity can be provided.

前記正極活物質として、硫化リチウムを含むことが好ましい。これにより、より高容量のリチウムイオン二次電池が得られる。   The positive electrode active material preferably contains lithium sulfide. Thereby, a higher capacity lithium ion secondary battery is obtained.

前記固体電解質として、無機固体電解質を含むことが好ましい。無機固体電解質は耐電圧が高く、充放電で劣化しにくい、このためより高いサイクル特性が得られる。   The solid electrolyte preferably contains an inorganic solid electrolyte. Inorganic solid electrolytes have a high withstand voltage and are not easily deteriorated by charge and discharge, and therefore higher cycle characteristics can be obtained.

前記固体電解質として、硫化物を含むことが好ましい。硫化物は通常のセラミックと比較して硬くてもろい性質を有していない。これにより、リチウムイオン二次電池の充放電の際に、固体電解質にクラックが入ることを抑制でき、より優れたサイクル特性を有するリチウムイオン二次電池が得られる。   The solid electrolyte preferably contains a sulfide. Sulfides are not hard and brittle compared to conventional ceramics. Thereby, it is possible to suppress cracking of the solid electrolyte during charging / discharging of the lithium ion secondary battery, and a lithium ion secondary battery having more excellent cycle characteristics can be obtained.

前記負極活物質として、ケイ素、スズ、アンチモンのいずれか一以上、またはいずれか一以上の合金、またはいずれか一以上の酸化物を含有することが好ましい。これにより、より高容量のリチウムイオン二次電池が得られる。   The negative electrode active material preferably contains at least one of silicon, tin, and antimony, at least one alloy, or at least one oxide. Thereby, a higher capacity lithium ion secondary battery is obtained.

前記固体電解質として、グリースを含むことが好ましい。これにより、固体電解質が可動(つまり、充放電時の負極活物質と正極活物質の膨張収縮により固体電解質の動き)がしやすくなりなる。このため、より優れたサイクル特性が得られる。また、グリースの持つ耐水性によって、リチウムイオン二次電池の耐湿性も向上する。   The solid electrolyte preferably includes grease. This facilitates the movement of the solid electrolyte (that is, the movement of the solid electrolyte due to expansion and contraction of the negative electrode active material and the positive electrode active material during charge / discharge). For this reason, more excellent cycle characteristics can be obtained. Further, the moisture resistance of the lithium ion secondary battery is improved by the water resistance of the grease.

本発明によれば、サイクル特性に優れた高容量のリチウムイオン二次電池を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the high capacity | capacitance lithium ion secondary battery excellent in cycling characteristics can be obtained.

本発明の一実施形態に係るリチウムイオン二次電池の断面を示した説明図である。It is explanatory drawing which showed the cross section of the lithium ion secondary battery which concerns on one Embodiment of this invention.

本発明を実施するための形態につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は適宜組み合わせることが可能である。   Embodiments for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

本発明者らは、上記目的を達成すべく種々検討したところ、リチウムイオン二次電池は、負極の膨張と正極の収縮とのバランスを最適化することにより、リチウムイオン二次電池の全体での体積変化を小さくすることができる。さらに、負極と正極が同時に膨張と収縮するため、これらの膨張収縮のストレスに起因する容量の低下、つまりサイクル劣化を抑制することができる。その結果、高容量で優れた充放電サイクル特性を示す固体電解質を用いたリチウムイオン二次電池を得ることに有効であることを見出し、本発明を完成するに至った。   The inventors of the present invention have made various studies to achieve the above object. As a result, the lithium ion secondary battery is optimized for the balance between the expansion of the negative electrode and the contraction of the positive electrode. Volume change can be reduced. Furthermore, since the negative electrode and the positive electrode expand and contract at the same time, it is possible to suppress a decrease in capacity resulting from the expansion and contraction stress, that is, cycle deterioration. As a result, the present inventors have found that it is effective for obtaining a lithium ion secondary battery using a solid electrolyte having a high capacity and excellent charge / discharge cycle characteristics, and have completed the present invention.

図1は、本発明の好適な一実施形態であるリチウム二次電池の模式断面図である。リチウム二次電池10は、円筒状の絶縁パッキング6の中に、固体電解質3が配置され、それを挟むように正極合剤2と負極合剤4、さらにそれらを挟むように正極集電体1と負極集電体5が配置される。   FIG. 1 is a schematic cross-sectional view of a lithium secondary battery which is a preferred embodiment of the present invention. In the lithium secondary battery 10, the solid electrolyte 3 is disposed in a cylindrical insulating packing 6, and the positive electrode mixture 2 and the negative electrode mixture 4 are sandwiched therebetween, and the positive electrode current collector 1 is disposed so as to sandwich them. And the negative electrode current collector 5 are disposed.

(負極合剤)
本実施形態の負極合剤4は、負極活物質として充電時に膨張する材料を含む。ここで、充電時に膨張するとは、1Fdの充電、すなわち1molのLiイオンの移動、すなわち96485クーロンの充電で、5〜15cm膨張することである。このとき、負極合剤4としても5〜15cm膨張する関係にある。
(Negative electrode mixture)
The negative electrode mixture 4 of the present embodiment includes a material that expands during charging as a negative electrode active material. Here, the term “expands at the time of charging” means that it expands by 5 to 15 cm 3 by 1 Fd charge, that is, movement of 1 mol of Li ions, that is, 96485 coulombs. At this time, the negative electrode mixture 4 also has a relationship of expanding 5 to 15 cm 3 .

このような負極活物質としては、アルミニウム(Al)、ケイ素(Si)、亜鉛(Zn)、ガリウム(Ga)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、アンチモン(Sb)、鉛(Pb)、ビスマス(Bi)、ゲルマニウム(Ge)、銀(Ag)、リチウム(Li)が挙げられる。また、これら活物質は単体で用いてもよく、その複合材料を用いてもよい。そのような複合材料は、MgGe、SbSn、InSb、CoSb、AgSb、NiMnSbなどのSb系合金、Sn−Mn、Sn−Fe、Sn−Co,Sn−Ni、Sn−Cu、Sn−Zn、VSn、CeSn、MgSn、LaSn、LaCoSn、CuSn/Sn、AgSn/2SnなどSn系合金、SiO、SnO、SnOなどの酸化物、Li2.6Co0.4Nなどの窒化物などが挙げられる。なかでも、負極活物質はケイ素(Si)、スズ(Sn)、アンチモン(Sb)のいずれか一以上、またはいずれか一以上の合金、またはいずれか一以上の酸化物を含むことが好ましい。これらは体積変化が大きいが、単位体積あたりの理論容量が大きいからである。これら負極活物質は、Liイオンを脱離挿入した状態をとってもよい。 As such a negative electrode active material, aluminum (Al), silicon (Si), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), germanium (Ge), silver (Ag), and lithium (Li). These active materials may be used alone or in combination. Such composite materials include Sb-based alloys such as Mg 2 Ge, SbSn, InSb, CoSb 3 , Ag 3 Sb, Ni 2 MnSb, Sn—Mn, Sn—Fe, Sn—Co, Sn—Ni, Sn—Cu. , Sn-Zn, V 2 Sn 3, CeSn 2, Mg 2 Sn, LaSn 3, La 3 Co 2 Sn 7, Cu 6 Sn 5 / Sn, Ag 3 Sn / 2Sn such Sn-based alloy, SiO, SnO, SnO 2 And oxides such as Li 2.6 Co 0.4 N. Especially, it is preferable that a negative electrode active material contains any one or more of silicon (Si), tin (Sn), and antimony (Sb), any one or more alloys, or any one or more oxides. This is because the volume change is large, but the theoretical capacity per unit volume is large. These negative electrode active materials may take a state in which Li ions are desorbed and inserted.

負極合剤4の膨張は次の方法で測定することができる。図1で示したように作成したリチウムイオン二次電池10は、膨張は高さ方向(正極集電体1から負極集電体5の方向)のみに制限される。このため、このリチウムイオン二次電池10へ充放電を行い、そのときの正極集電体1から負極集電体5の高さをマイクロメーターなどで測定することで、膨張を直接測定することができる。この方法では、正極合剤2の収縮を含んだ体積変化量を測定してしまうが、正極合剤2と負極合剤4の組み合わせを変更することで、負極合剤4単独の膨張を求めることができる。さらに、作成したリチウムイオン二次電池をアルミラミネートしたものであっても、3次元形状測定システム等で画像処理することで体積変化量を測定することもできる。   The expansion of the negative electrode mixture 4 can be measured by the following method. Expansion of the lithium ion secondary battery 10 produced as shown in FIG. 1 is limited only in the height direction (the direction from the positive electrode current collector 1 to the negative electrode current collector 5). For this reason, it is possible to directly measure the expansion by charging / discharging the lithium ion secondary battery 10 and measuring the height of the negative electrode current collector 5 from the positive electrode current collector 1 at that time with a micrometer or the like. it can. In this method, the volume change amount including the shrinkage of the positive electrode mixture 2 is measured, but the expansion of the negative electrode mixture 4 alone is obtained by changing the combination of the positive electrode mixture 2 and the negative electrode mixture 4. Can do. Furthermore, even if the produced lithium ion secondary battery is aluminum laminated, the volume change amount can be measured by image processing with a three-dimensional shape measurement system or the like.

また、負極合剤4の膨張は、負極活物質の膨張の計算によっても求めることができる。1Fdの充電、すなわち1molのLiイオンの移動、すなわち96485クーロンの充電で、完全放電状態から満充電状態になったと仮定し、分子量とそれぞれの密度から体積の膨張量を求めることができる。例えば、負極合剤4の負極活物質としてケイ素(Si)を用いた場合、完全放電状態であるSiから満充電状態であるLi22Siに充電したときの体積膨張量を、充放電時に負極内で移動するLiイオン1mol当たりの体積で示す。Siの密度2.33g/cmから、Li22Siの密度1.18g/cmへの変化をLiイオン1mol当たりに換算すると、8.6(cm/Fd)の膨張量として算出することができる。これは、一般的なリチウムイオン二次電池の負極合剤の負極活物質で用いられるグラファイトの体積膨張量3.9(cm/Fd)に対して、非常に大きい膨張であることがわかる。 The expansion of the negative electrode mixture 4 can also be obtained by calculating the expansion of the negative electrode active material. Assuming that the fully discharged state has been changed to the fully charged state by charging 1 Fd, that is, transferring 1 mol of Li ions, that is, charging 96485 coulombs, the volume expansion amount can be obtained from the molecular weight and the respective densities. For example, when silicon (Si) is used as the negative electrode active material of the negative electrode mixture 4, the volume expansion amount when the fully charged state of Li 22 Si 5 is charged from the fully discharged state of Si to the fully charged state of Li 22 Si 5 It shows by the volume per 1 mol of Li ions moving inside. When the change from the Si density of 2.33 g / cm 3 to the Li 22 Si 5 density of 1.18 g / cm 3 is converted per 1 mol of Li ions, it is calculated as an expansion amount of 8.6 (cm 3 / Fd). be able to. This shows that the expansion is very large with respect to the volume expansion amount 3.9 (cm 3 / Fd) of graphite used in the negative electrode active material of the negative electrode mixture of a general lithium ion secondary battery.

同様に、負極合剤4の負極活物質としての材料のそれぞれの完全放電状態と満充電状態の構造とのそれぞれの充電時の体積膨張量を、充放電時に負極内で移動するLiイオン1mol当たりの体積(cm/Fd)として算出し表1に例示する。 Similarly, the volume expansion amount at the time of charging of each of the materials as the negative electrode active material of the negative electrode mixture 4 in the fully discharged state and the fully charged state is calculated per 1 mol of Li ions moving in the negative electrode at the time of charging and discharging. The volume (cm 3 / Fd) is calculated and exemplified in Table 1.

Figure 0005966734
Figure 0005966734

本実施形態の負極合剤4は、負極活物質を20質量%〜100質量%含むことが好ましい。負極活物質が20質量%未満の場合は高容量が得られにくい。なお、本実施形態に用いる負極活物質が導電性を持つもの(たとえば金属)の場合は、略単一組成の板材ないし箔として用いてもよい。   The negative electrode mixture 4 of the present embodiment preferably contains 20% by mass to 100% by mass of the negative electrode active material. When the negative electrode active material is less than 20% by mass, it is difficult to obtain a high capacity. In addition, when the negative electrode active material used for this embodiment is what has electroconductivity (for example, metal), you may use as a board | plate material thru | or foil of a substantially single composition.

本実施形態の負極合剤4は、後述する固体電解質を含んでもよい。これにより、負極活物質と固体電解質3との界面の面積を増加させることができるため、充放電時の電流密度が向上する。負極合剤4における固体電解質の量は、多すぎると負極合剤4中の活物質割合が減少して電極機能が低下してしまう。そのため、固体電解質は負極合剤4中に0〜80質量%添加することが好ましく、10〜40質量%添加することがより好ましい。負極合剤4中に含まれる固体電解質は、後述する固体電解質3と同一の組成であっても異なる組成であってもよい。   The negative electrode mixture 4 of the present embodiment may include a solid electrolyte described later. Thereby, since the area of the interface of a negative electrode active material and the solid electrolyte 3 can be increased, the current density at the time of charging / discharging improves. If the amount of the solid electrolyte in the negative electrode mixture 4 is too large, the proportion of the active material in the negative electrode mixture 4 is reduced, and the electrode function is lowered. Therefore, the solid electrolyte is preferably added to the negative electrode mixture 4 in an amount of 0 to 80% by mass, and more preferably 10 to 40% by mass. The solid electrolyte contained in the negative electrode mixture 4 may have the same composition as the solid electrolyte 3 described later or a different composition.

本実施形態の負極合剤4は、さらに導電助剤を含んでいてもよい。導電助剤には、電池性能に悪影響を及ぼさない電子伝導性材料を適宜用いることができる。例えば、天然黒鉛(鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維や導電性セラミックス材料等の導電性材料を1種またはそれらの混合物を含ませることができる。負極合剤4への導電助剤の添加量は、少なすぎると導電性付与の効果が発揮されず、多すぎると負極活物質の容量を損なってしまう。そのため、負極合剤4への導電助剤の添加量は30質量%以下が好ましく、特に10質量%以下が好ましい。   The negative electrode mixture 4 of the present embodiment may further contain a conductive aid. As the conductive assistant, an electron conductive material that does not adversely affect battery performance can be used as appropriate. For example, one or a mixture of conductive materials such as natural graphite (eg, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber and conductive ceramic material Can be included. If the amount of the conductive additive added to the negative electrode mixture 4 is too small, the effect of imparting conductivity is not exhibited, and if it is too large, the capacity of the negative electrode active material is impaired. Therefore, the addition amount of the conductive additive to the negative electrode mixture 4 is preferably 30% by mass or less, and particularly preferably 10% by mass or less.

(正極合剤)
本実施形態の正極合剤2は、正極活物質として充電時に収縮する材料を含む。ここで、充電時に収縮する材料とは、1Fdの充電、すなわち1molのLiイオンの移動、すなわち96485クーロンの充電で、5〜15cm収縮する材料である。このとき、正極合剤2としても5〜15cm膨張する関係にある。
(Positive electrode mixture)
The positive electrode mixture 2 of the present embodiment includes a material that contracts during charging as a positive electrode active material. Here, the material that contracts during charging is a material that contracts by 5 to 15 cm 3 when charged with 1 Fd, that is, when 1 mol of Li ions migrates, that is, when charged with 96485 coulombs. At this time, the positive electrode mixture 2 also has a relationship of expanding 5 to 15 cm 3 .

このような正極活物質としては有機ジスルフィド化合物、カーボンスルフィド化合物、硫化リチウム等が挙げられる。有機ジスルフィド化合物は、複素環等を骨格としてジスルフィド結合で重合させたもので、複素環等としてはチアジアゾール、トリアジン、エチレンジアミン、アニリン、エトキシエーテルなどが挙げられる。カーボンスルフィド化合物は、炭素原子と硫黄原子からなる複素環化合物や、炭素原子と硫黄原子とが結合した骨格を高分子量化したポリカーボンスルフィドや、炭素原子が共役二重結合になったポリカーボンスルフィドが挙げられる。なかでも、正極活物質は硫化リチウムを含むことが好ましい。硫化リチウムは体積変化も大きいが、単位体積あたりの理論容量が大きいからである。これら正極活物質は、充放電の途中でLiイオンを脱離挿入した状態をとってもよい。特に硫化リチウムは、LiSだけでなく、Li、Li、LiなどLiイオンを脱離挿入した状態をとってもよい。 Examples of such positive electrode active materials include organic disulfide compounds, carbon sulfide compounds, and lithium sulfide. The organic disulfide compound is a polymer obtained by polymerizing a heterocycle or the like with a disulfide bond as a skeleton, and examples of the heterocycle include thiadiazole, triazine, ethylenediamine, aniline, and ethoxy ether. Carbon sulfide compounds include heterocyclic compounds composed of carbon atoms and sulfur atoms, polycarbon sulfides with a high molecular weight skeleton in which carbon atoms and sulfur atoms are bonded, and polycarbon sulfides in which carbon atoms are conjugated double bonds. Is mentioned. Especially, it is preferable that a positive electrode active material contains lithium sulfide. This is because lithium sulfide has a large volume change but has a large theoretical capacity per unit volume. These positive electrode active materials may take a state in which Li ions are desorbed and inserted during charging and discharging. In particular lithium sulfide, Li 2 S as well, Li 2 S 8, Li 2 S 4, Li 2 S 2 may take a state in which the desorption inserting Li ions like.

正極合剤2の収縮は次の方法で測定することができる。図1で示したように作成したリチウムイオン二次電池10であれば、収縮は高さ方向(正極集電体1から負極集電体5の方向)のみに制限される。よって、充放電を行い、そのときの正極集電体1から負極集電体5の高さをマイクロメーターなどで測定することで、収縮を直接測定することができる。この方法では、負極合剤4の膨張を含んだ体積変化量を測定してしまうが、正極合剤2と負極合剤4の組み合わせを変更することで、正極合剤2単独の収縮を求めることができる。さらに、作成したリチウムイオン二次電池をアルミラミネートしたものであっても、3次元形状測定システム等で画像処理することで体積変化量を測定することもできる。   The shrinkage of the positive electrode mixture 2 can be measured by the following method. In the lithium ion secondary battery 10 produced as shown in FIG. 1, the shrinkage is limited only in the height direction (the direction from the positive electrode current collector 1 to the negative electrode current collector 5). Therefore, it is possible to directly measure the shrinkage by charging and discharging and measuring the height of the negative electrode current collector 5 from the positive electrode current collector 1 at that time with a micrometer or the like. In this method, the volume change amount including the expansion of the negative electrode mixture 4 is measured, but the contraction of the positive electrode mixture 2 alone is obtained by changing the combination of the positive electrode mixture 2 and the negative electrode mixture 4. Can do. Furthermore, even if the produced lithium ion secondary battery is aluminum laminated, the volume change amount can be measured by image processing with a three-dimensional shape measurement system or the like.

また、正極合剤2の収縮は、正極活物質の収縮の計算によっても求めることができる。1Fdの充電、すなわち1molのLiイオンの移動、すなわち96485クーロンの充電で、完全放電状態から満充電状態になったと仮定し、分子量とそれぞれの密度から体積の収縮量を求めることができる。つまり正極活物質において、充放電時の正極内でのLiイオンの移動が全て生じたとする状態を仮定する。例えば、正極合剤2の正極活物質として硫黄(S)を用いた場合、完全放電状態であるLiSから満充電状態へ充電しSになったとき(充電時に電極内のLiイオンが全て充電に費やされ正極活物質が、LiSからSに変化したとき)の体積収縮量を、充放電時に正極内で移動するLiイオン1mol当たりの体積で示す。これは、LiSの密度1.66g/cmから、Sの密度2.07g/cmへの変化をLiイオン1mol当たりに換算すると、6.1(cm/Fd)の体積収縮量として算出することができる。これは、一般的にリチウムイオン二次電池の正極合剤の正極活物質で使用されるコバルト酸リチウムの体積収縮量0.7(cm/Fd)に対して、非常に大きい収縮であることがわかる。 The shrinkage of the positive electrode mixture 2 can also be obtained by calculating the shrinkage of the positive electrode active material. Assuming that the fully discharged state has been changed to the fully charged state by charging 1 Fd, that is, transferring 1 mol of Li ions, that is, charging 96485 coulombs, the contraction amount of the volume can be obtained from the molecular weight and the respective densities. That is, it is assumed that in the positive electrode active material, all the movement of Li ions in the positive electrode during charge / discharge has occurred. For example, when sulfur (S) is used as the positive electrode active material of the positive electrode mixture 2, when Li 2 S in a fully discharged state is charged to a fully charged state and becomes S (all Li ions in the electrode are charged during charging). The volume contraction amount of the positive electrode active material consumed for charging (changed from Li 2 S to S) is represented by the volume per 1 mol of Li ions that move in the positive electrode during charging and discharging. When the change from the density of Li 2 S of 1.66 g / cm 3 to the density of S of 2.07 g / cm 3 is converted per 1 mol of Li ions, the volume shrinkage is 6.1 (cm 3 / Fd). Can be calculated as This is a very large shrinkage with respect to the volume shrinkage amount 0.7 (cm 3 / Fd) of lithium cobaltate generally used in the positive electrode active material of the positive electrode mixture of the lithium ion secondary battery. I understand.

同様に、正極合剤2の正極活物質としての材料と、それぞれの充電時の体積収縮量を、充放電時に正極内で移動するLiイオン1mol当たりの体積(cm/Fd)として算出し表2に例示する。 Similarly, the material as the positive electrode active material of the positive electrode mixture 2 and the volume shrinkage amount at the time of each charge are calculated as the volume (cm 3 / Fd) per mol of Li ions moving within the positive electrode at the time of charge and discharge. This is illustrated in 2.

Figure 0005966734
Figure 0005966734

本実施形態の正極合剤2は、正極活物質を10質量%〜90質量%含むことが好ましい。正極活物質が90質量%を超えた場合は固体電解質や導電助剤が少なくなるため十分な電子伝導性が得られない。正極活物質が10質量%未満の場合は十分な高容量が得られない。   The positive electrode mixture 2 of the present embodiment preferably contains 10% by mass to 90% by mass of the positive electrode active material. When the positive electrode active material exceeds 90% by mass, the solid electrolyte and the conductive auxiliary agent are reduced, so that sufficient electronic conductivity cannot be obtained. When the positive electrode active material is less than 10% by mass, a sufficiently high capacity cannot be obtained.

本実施形態の正極合剤2は、後述する固体電解質を含んでもよい。これにより、正極活物質と固体電解質3との界面の面積を増加させることができるため、充放電時の電流密度が向上する。正極合剤2における固体電解質の量は、少なすぎるとその効果がなくなるが、多すぎても正極合剤2中の活物質割合が減少して電極機能が低下してしまう。そのため、固体電解質は正極合剤2中に10〜80質量%添加することが好ましく、10〜40質量%添加することがより好ましい。正極合剤2中に含まれる固体電解質は、後述する固体電解質3と同一の組成であっても異なる組成であってもよい。   The positive electrode mixture 2 of the present embodiment may include a solid electrolyte described later. Thereby, since the area of the interface of a positive electrode active material and the solid electrolyte 3 can be increased, the current density at the time of charging / discharging improves. If the amount of the solid electrolyte in the positive electrode mixture 2 is too small, the effect is lost. However, if the amount is too large, the active material ratio in the positive electrode mixture 2 is reduced and the electrode function is deteriorated. Therefore, the solid electrolyte is preferably added to the positive electrode mixture 2 in an amount of 10 to 80% by mass, and more preferably 10 to 40% by mass. The solid electrolyte contained in the positive electrode mixture 2 may have the same composition as the solid electrolyte 3 described later or a different composition.

本実施形態の正極合剤2は、導電助剤を含むことが好ましい。導電助剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば適宜用いることができる。通常、天然黒鉛(鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維や導電性セラミックス材料等の導電性材料を1種またはそれらの混合物を含ませることができる。少なすぎるとその効果がほとんどなく、多すぎると正極活物質の高容量を損なってしまうため、その添加量は0.1〜40質量%が好ましく、1〜20質量%がより好ましい。   The positive electrode mixture 2 of the present embodiment preferably contains a conductive auxiliary. As the conductive auxiliary agent, any electronic conductive material that does not adversely affect battery performance can be used as appropriate. Usually, one or a mixture of conductive materials such as natural graphite (flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber and conductive ceramic material Can be included. If the amount is too small, the effect is hardly obtained. If the amount is too large, the high capacity of the positive electrode active material is impaired.

本実施形態の正極合剤2における正極活物質の配合量と、負極合剤4における負極活物質の配合量との、配合量比を調整することによって、正極合剤2と負極合剤4との充放電状態を調整することができる。これにより、負極合剤4の充電時の体積膨張量と、正極合剤2の充電時の体積収縮量との差を調整することができる。負極合剤4が充電時に膨張する体積膨張量と、正極合剤2が充電時に収縮する体積収縮量との差は、10cm/Fd以下の範囲であることが好ましく、5cm/Fd以下の範囲であることがより好ましい。リチウムイオン二次電池全体の体積変化量を小さくすることで、リチウムイオン二次電池内部での圧力を緩和できるため、優れたサイクル特性が得られやすくなる。 The positive electrode mixture 2 and the negative electrode mixture 4 are obtained by adjusting the mixing amount ratio between the mixing amount of the positive electrode active material in the positive electrode mixture 2 and the negative electrode active material in the negative electrode mixture 4 of the present embodiment. The charge / discharge state can be adjusted. Thereby, the difference of the volume expansion amount at the time of charge of the negative mix 4 and the volume shrinkage at the time of charge of the positive mix 2 can be adjusted. The difference between the volume expansion amount at which the negative electrode mixture 4 expands during charging and the volume expansion amount at which the positive electrode mixture 2 contracts during charging is preferably in the range of 10 cm 3 / Fd or less, and is 5 cm 3 / Fd or less. A range is more preferable. By reducing the volume change amount of the entire lithium ion secondary battery, the pressure inside the lithium ion secondary battery can be relieved, so that excellent cycle characteristics can be easily obtained.

(集電体)
本実施形態では、正極合剤2に接触する正極集電体1、負極合剤4に接触する負極集電体5を用いてもよい。集電体には、電池の特性に影響を及ぼさない各種電子伝導体を選択して用いることができる。正極集電体1としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウム等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極集電体5としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。
(Current collector)
In the present embodiment, a positive electrode current collector 1 in contact with the positive electrode mixture 2 and a negative electrode current collector 5 in contact with the negative electrode mixture 4 may be used. As the current collector, various electronic conductors that do not affect the characteristics of the battery can be selected and used. In addition to aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., the positive electrode current collector 1 is made of aluminum or the like for the purpose of improving adhesiveness, conductivity, and oxidation resistance. A material whose surface is treated with carbon, nickel, titanium, silver, or the like can be used. In addition to copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al—Cd alloy, etc., the negative electrode current collector 5 is improved in adhesion, conductivity, and oxidation resistance. For this purpose, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. The surface of these materials can be oxidized.

本実施形態における集電体の形状は、フォイル状、フィルム状、シート状、ネット状、パンチ、エキスパンドされた形状、ラス体、多孔質体、発砲体、繊維群の形成体等、さまざまな形態を選択することができる。   The shape of the current collector in the present embodiment can be various forms such as a foil shape, a film shape, a sheet shape, a net shape, a punched shape, an expanded shape, a lath body, a porous body, a foamed body, and a fiber group formed body. Can be selected.

(固体電解質)
本実施形態におけるリチウムイオン二次電池10は、正極合剤2および負極合剤4と固体電解質3との間で接触を保っている。固体電解質3は、負極合剤4が膨張する際、負極合剤4の膨張によって正極合剤2の方向へ押され、移動する。これにより、固体電解質3は収縮する正極合剤2に押し付けられることとなり、正極合剤2および負極合剤4と固体電解質3との間での接触が保たれ、リチウムイオン二次電池内部に空隙が生じにくくする。この結果、本実施形態におけるリチウムイオン二次電池10は、負極集電体5から負極合剤4の剥離することの抑制、負極活物質の微粉の滑落の抑制、負極合剤4から固体電解質3の剥離の抑制という3つの効果を得ることができる。また、電解質に電解液を用いる場合では、この電解液に溶解してしまうため、正極活物質に硫化リチウムを用いることが出来ないが、本実施形態のように固体電解質3の場合では、つまり電解質が固体の場合は硫化リチウムを正極活物質として使用することができる。
(Solid electrolyte)
The lithium ion secondary battery 10 in this embodiment maintains contact between the positive electrode mixture 2 and the negative electrode mixture 4 and the solid electrolyte 3. When the negative electrode mixture 4 expands, the solid electrolyte 3 is pushed and moved in the direction of the positive electrode mixture 2 due to the expansion of the negative electrode mixture 4. As a result, the solid electrolyte 3 is pressed against the shrinking positive electrode mixture 2, and the contact between the positive electrode mixture 2 and the negative electrode mixture 4 and the solid electrolyte 3 is maintained, and a void is formed inside the lithium ion secondary battery. Is less likely to occur. As a result, the lithium ion secondary battery 10 according to the present embodiment suppresses the peeling of the negative electrode mixture 4 from the negative electrode current collector 5, suppresses the sliding of fine powder of the negative electrode active material, and converts the negative electrode mixture 4 to the solid electrolyte 3. Three effects of suppressing the peeling of the film can be obtained. Further, when an electrolyte is used as the electrolyte, lithium sulfide cannot be used as the positive electrode active material because it is dissolved in the electrolyte. However, in the case of the solid electrolyte 3 as in this embodiment, that is, the electrolyte. When is solid, lithium sulfide can be used as the positive electrode active material.

本実施形態における固体電解質3には、無機固体電解質、有機固体電解質が挙げられ、これらの混合であってもよい。中でも無機固体電解質が好ましい。無機固体電解質としては、硫化物固体電解質、酸化物固体電解質が挙げられる。   The solid electrolyte 3 in the present embodiment includes an inorganic solid electrolyte and an organic solid electrolyte, and may be a mixture thereof. Of these, inorganic solid electrolytes are preferred. Examples of inorganic solid electrolytes include sulfide solid electrolytes and oxide solid electrolytes.

硫化物固体電解質は、硫黄(S)を含有し、かつ、リチウムイオン伝導性を有し、かつ、電子絶縁性を有するものであれば特に限定されるものではない。例えばLiSと、第13族〜第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。具体的には、LiS−P、LiS−GeS、LiS−GeS−ZnS、LiS−Ga、LiS−GeS−Ga、LiS−GeS−P、LiS−GeS−Sb、LiS−GeS−Al、LiS−SiS、LS−Al、LiS−SiS−Al、LiS−SiS−P、LiS−SiS−LiI、LiS−SiS−LiSiO、LiS−SiS−LiPOなどが挙げられる。その中でも、LiS−P、LiS−GeS−Ga、LiS−GeS−P、LiS−SiS−P、LiS−SiS−LiSiO、LiS−SiS−LiPOからなる結晶質およびまたは非晶質の原料組成物が高いリチウムイオン伝導性を有するので好ましい。このような原料組成物を用いて硫化物固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法および溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 The sulfide solid electrolyte is not particularly limited as long as it contains sulfur (S), has lithium ion conductivity, and has electronic insulating properties. For example can be mentioned and Li 2 S, those obtained by using a raw material composition containing a sulfide of group 13 to group 15 element. Specifically, Li 2 S-P 2 S 5, Li 2 S-GeS 2, Li 2 S-GeS 2 -ZnS, Li 2 S-Ga 2 S 3, Li 2 S-GeS 2 -Ga 2 S 3 , Li 2 S-GeS 2 -P 2 S 5, Li 2 S-GeS 2 -Sb 2 S 5, Li 2 S-GeS 2 -Al 2 S 3, Li 2 S-SiS 2, L 2 S-Al 2 S 3, Li 2 S-SiS 2 -Al 2 S 3, Li 2 S-SiS 2 -P 2 S 5, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -Li 4 SiO 4, Li 2 such as S-SiS 2 -Li 3 PO 4 and the like. Among them, Li 2 S—P 2 S 5 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 S-SiS 2 -Li 4 SiO 4 , Li 2 S-SiS 2 -Li 3 or have a crystalline and or amorphous material composition is higher lithium ion conductivity comprised of PO 4 preferred. Examples of a method for synthesizing a sulfide solid electrolyte material using such a raw material composition include an amorphization method. Examples of the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified.

酸化物固体電解質は、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+x+y(Al,Ga)(Ti,Ge)2−xSi3−y12(ただし、0≦x≦1、0≦y≦1)、ガーネット型結晶構造を有するLiLaZr12等が挙げられる。その中でも、Li1+x+y(Al,Ga)(Ti,Ge)2−xSi3−y12(ただし、0≦x≦1、0≦y≦1)は、高いリチウムイオン伝導性を有し、化学的に安定して取り扱いが容易であり好ましい。 The oxide solid electrolyte is composed of Li 3.5 Zn 0.25 GeO 4 having a LISICON (Lithium super ionic conductor) type crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite type crystal structure, and NASICON (Natium super). LiTi 2 P 3 O 12 having an ionic conductor) type crystal structure, Li 1 + x + y (Al, Ga) x (Ti, Ge) 2-x Si y P 3-y O 12 (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1), and Li 7 La 3 Zr 2 O 12 having a garnet-type crystal structure. Among them, Li 1 + x + y (Al, Ga) x (Ti, Ge) 2−x Si y P 3−y O 12 (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) has high lithium ion conductivity. It is preferable because it is chemically stable and easy to handle.

有機固体電解質は、イオン伝導性を示す高分子であれば、特に限定されず、たとえば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、これらの共重合体などが挙げられる。有機固体電解質は、イオン伝導性を確保するための支持塩(リチウム塩)を含んでいてもよい。支持塩としては、LiBF、LiPF、LiN(SOCF、LiN(SO、もしくはこれらの混合物等を使用することができる。また、溶液電解液との共存であるゲル電解質を用いてもよい。 The organic solid electrolyte is not particularly limited as long as it is a polymer exhibiting ionic conductivity, and examples thereof include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. The organic solid electrolyte may contain a supporting salt (lithium salt) for ensuring ionic conductivity. As the supporting salt, LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , or a mixture thereof can be used. Moreover, you may use the gel electrolyte which is coexistence with solution electrolyte solution.

本実施形態の固体電解質3としては、特に硫化物固体電解質が好ましい。本実施形態において、充電時に収縮する正極と接触しても、元素の拡散が起こりにくく、充放電における高いサイクル特性を有するからである。また、酸化物固体電解質に比べてより柔軟な材料であり、可動する際に割れてしまう恐れが低いため、充放電における高いサイクル特性が得られる。   As the solid electrolyte 3 of the present embodiment, a sulfide solid electrolyte is particularly preferable. In this embodiment, even if it contacts with the positive electrode which shrink | contracts at the time of charge, it is because the diffusion of an element does not occur easily and it has the high cycle characteristic in charging / discharging. Moreover, since it is a more flexible material than an oxide solid electrolyte and has a low risk of cracking when moving, high cycle characteristics in charge and discharge can be obtained.

本実施形態における固体電解質3は、さらにグリースを含むことが好ましい。固体電解質がグリースを含むと、その潤滑作用によって、固体電解質3が正極合剤2および負極合剤4の動的な変化に追随しやすい。また、固体電解質3およびリチウムイオン二次電池全体の耐水性を付与することができる。   The solid electrolyte 3 in the present embodiment preferably further contains grease. When the solid electrolyte contains grease, the solid electrolyte 3 easily follows the dynamic change of the positive electrode mixture 2 and the negative electrode mixture 4 due to the lubricating action. Moreover, the water resistance of the solid electrolyte 3 and the whole lithium ion secondary battery can be provided.

グリースは、潤滑油と増ちょう剤を含む半固体または固体状の潤滑剤である。潤滑油単独に比べて、少量で可能・密封しやすく長期間の耐水性に優れるといった利点を持つ。グリースに含まれる潤滑油は鉱物油、合成油、シリコーン、ヒマシ油、菜種油、ワックスなどが挙げられる。グリースに含まれる増ちょう剤は脂肪酸とアルカリ金属塩からなる石けん系、ウレア、PTFE(polytetrafluoroethyleneポリテトラフルオロエチレン)、テレフタラメートなどの有機系、有機化ベントナイト、シリカゲルなどの無機系がある。なかでも、脂肪酸と他の有機酸とリチウムイオンからなるリチウム石けん系であるリチウムコンプレックスが好ましい。石けん系の万能型として耐水性、耐熱性、安定性に優れるだけでなく、リチウムイオン伝導を補うことができるからである。   Grease is a semi-solid or solid lubricant containing lubricating oil and thickener. Compared to lubricating oil alone, it can be used in a small amount, has the advantage of being easy to seal and excellent in long-term water resistance. The lubricating oil contained in the grease includes mineral oil, synthetic oil, silicone, castor oil, rapeseed oil, wax and the like. Thickeners contained in the grease include soaps composed of fatty acids and alkali metal salts, ureas, PTFE (polytetrafluoroethylene polytetrafluoroethylene), organic systems such as terephthalamates, and inorganic systems such as organic bentonite and silica gel. Among these, a lithium complex which is a lithium soap system composed of a fatty acid, another organic acid, and lithium ions is preferable. This is because the soap-type universal type not only has excellent water resistance, heat resistance, and stability, but can supplement lithium ion conduction.

本実施形態のリチウムイオン二次電池は、ラミネート型プラスチックフィルムやコイン型金属などの外装体に密封状態で収納されることが好ましい。リチウムイオン二次電池が外気から遮断されるので、固体電解質および負極活物質および正極活物質の分解を抑制でき、電池性能の低下を防止することができる。また、リチウムイオン二次電池が外装体によって収納されるので、取扱い性及び安全性を向上させることができる。   The lithium ion secondary battery of this embodiment is preferably stored in a sealed state in an exterior body such as a laminate-type plastic film or a coin-type metal. Since the lithium ion secondary battery is cut off from the outside air, the decomposition of the solid electrolyte, the negative electrode active material, and the positive electrode active material can be suppressed, and the battery performance can be prevented from deteriorating. Moreover, since a lithium ion secondary battery is accommodated by an exterior body, a handleability and safety | security can be improved.

以上、本発明の活物質及び活物質の製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。技術的思想として同一なリチウムイオン二次電池の形態は本発明に含まれる。   As mentioned above, although one suitable embodiment of the active material of this invention and the manufacturing method of an active material was described in detail, this invention is not limited to the said embodiment. The form of the same lithium ion secondary battery as a technical idea is included in the present invention.

また、本発明のリチウムイオン二次電池の技術的特徴は、リチウムイオン二次電池以外の電気化学素子にも用いることができる。このような電気化学素子には電気化学キャパシタ等が挙げられる。本発明の技術的特徴を有する電気化学素子は、自走式のマイクロマシン、ICカードなどの電源、プリント基板上又はプリント基板内に配置される分散電源、あるいは高分子アクチュエーター等の用途に使用することができる。   The technical features of the lithium ion secondary battery of the present invention can also be used for electrochemical elements other than lithium ion secondary batteries. Such electrochemical elements include electrochemical capacitors. The electrochemical device having the technical features of the present invention is used for applications such as a self-propelled micromachine, a power source such as an IC card, a distributed power source disposed on or in a printed circuit board, or a polymer actuator. Can do.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
実施形態で図1に示すイオンリチウム二次電池と同じ構造の試料を作成し、その特性の評価を行った。
固体電解質には、硫化リチウム(フルウチ化学社製)1.06gと、硫化リン(Aldrich製)1.54gを遊星型ボールミルで370rpmで20時間混合粉砕した。その後、220℃で1時間焼成することで粉末を得た。
Example 1
In the embodiment, a sample having the same structure as that of the ion lithium secondary battery shown in FIG. 1 was prepared, and its characteristics were evaluated.
As the solid electrolyte, 1.06 g of lithium sulfide (manufactured by Furuuchi Chemical Co., Ltd.) and 1.54 g of phosphorus sulfide (manufactured by Aldrich) were mixed and ground at 370 rpm for 20 hours by a planetary ball mill. Then, the powder was obtained by baking at 220 degreeC for 1 hour.

負極合剤には、負極活物質であるシリコン粉末(Aldrich社製)63.8mgと、導電助剤であるアセチレンブラック(電気化学工業社製)1.9mgと、固体電解質28.2mgを遊星型ボールミルで370rpmで5時間混合粉砕し粉末を得た。   In the negative electrode mixture, 63.8 mg of silicon powder (made by Aldrich) as a negative electrode active material, 1.9 mg of acetylene black (made by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent, and 28.2 mg of solid electrolyte are planetary type The mixture was pulverized with a ball mill at 370 rpm for 5 hours to obtain a powder.

正極合剤には、正極活物質である硫化リチウム229.8mgと、導電助剤であるアセチレンブラック4.7mgと、固体電解質70.7mgを遊星型ボールミルで370rpmで5時間混合粉砕し粉末を得た。   As the positive electrode mixture, 229.8 mg of lithium sulfide as a positive electrode active material, 4.7 mg of acetylene black as a conductive auxiliary agent, and 70.7 mg of a solid electrolyte were mixed and ground in a planetary ball mill at 370 rpm for 5 hours to obtain a powder. It was.

そして、不活性ガスを満たしたドライボックス中にて、これらの得られた粉末をそれぞれ負極合剤の粉末9.4mgと固体電解質の粉末70mg、正極合剤の粉末30.5mgを、凸型の負極集電体によって閉じられているΦ10mmの内径を有する円筒状の絶縁パッキング内に順番に投入し、凸型の正極集電体をさらに用い油圧プレスで、粉体に370MPa圧をかけペレットに加工し実施例1のリチウムイオン二次電池とした。なお、正極活物質と負極活物質は、0.1molのリチウムイオンの脱離挿入状態を取るように量を調整している。   Then, in a dry box filled with an inert gas, 9.4 mg of the negative electrode mixture powder, 70 mg of the solid electrolyte powder, and 30.5 mg of the positive electrode mixture powder were obtained in a convex shape. It is put into a cylindrical insulating packing having an inner diameter of Φ10 mm closed by a negative electrode current collector, and is further processed into pellets by applying a pressure of 370 MPa to the powder with a hydraulic press using a convex positive current collector. The lithium ion secondary battery of Example 1 was obtained. Note that the amounts of the positive electrode active material and the negative electrode active material are adjusted so that 0.1 mol of lithium ions are desorbed and inserted.

(実施例2)
実施例2は、負極活物質にアルミニウム粉末(高純度化学社製)269.8mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 2)
In Example 2, a lithium ion battery was obtained in the same manner as in Example 1 except that 269.8 mg of aluminum powder (manufactured by Koyo Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例3)
実施例3は、負極活物質に銀粉末(高純度化学社製)674.2mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 3)
In Example 3, a lithium ion battery was obtained in the same manner as in Example 1 except that 674.2 mg of silver powder (manufactured by High Purity Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例4)
実施例4は、負極活物質にリチウム粉末(高純度化学社製)69.4mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
Example 4
In Example 4, a lithium ion battery was obtained in the same manner as in Example 1 except that 69.4 mg of lithium powder (manufactured by Koyo Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例5)
実施例5は、負極活物質にインジウム粉末(高純度化学社製)765.5mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 5)
In Example 5, a lithium ion battery was obtained in the same manner as in Example 1 except that 765.5 mg of indium powder (manufactured by Kojun Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例6)
実施例6は、負極活物質にビスマス粉末(高純度化学社製)696.6mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 6)
In Example 6, a lithium ion battery was obtained in the same manner as in Example 1 except that 696.6 mg of bismuth powder (manufactured by High Purity Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例7)
実施例7は、負極活物質にSn粉末(高純度化学社製)269.8mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 7)
In Example 7, a lithium ion battery was obtained in the same manner as in Example 1 except that 269.8 mg of Sn powder (manufactured by Koyo Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例8)
実施例8は、負極活物質に酸化ニッケル粉末(高純度化学社製)373.5mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 8)
In Example 8, a lithium ion battery was obtained in the same manner as in Example 1 except that 373.5 mg of nickel oxide powder (manufactured by Koyo Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例9)
実施例9は、負極活物質にSb粉末(高純度化学社製)405.9mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
Example 9
In Example 9, a lithium ion battery was obtained in the same manner as in Example 1 except that 405.9 mg of Sb powder (manufactured by Koyo Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例10)
実施例10は、負極活物質にSn−Sb合金粉末(高純度化学社製)325.0mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 10)
In Example 10, a lithium ion battery was obtained in the same manner as in Example 1 except that 325.0 mg of Sn—Sb alloy powder (manufactured by High Purity Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例11)
実施例11は、負極活物質にCu−Sn合金粉末(高純度化学社製)443.1mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 11)
In Example 11, a lithium ion battery was obtained in the same manner as in Example 1 except that 443.1 mg of Cu—Sn alloy powder (manufactured by High Purity Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例12)
実施例12は、負極活物質にSi−SiO粉末(アルドリッチ社製)102.5mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 12)
In Example 12, a lithium ion battery was obtained in the same manner as in Example 1 except that 102.5 mg of Si—SiO 2 powder (manufactured by Aldrich) was used as the negative electrode active material.

(実施例13)
実施例13は、負極活物質にSn−SnO粉末(高純度化学社製)210.5mgを用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 13)
In Example 13, a lithium ion battery was obtained in the same manner as in Example 1 except that 210.5 mg of Sn—SnO 2 powder (manufactured by Kojundo Chemical Co., Ltd.) was used as the negative electrode active material.

(実施例14)
実施例14は、固体電解質にさらにグリース(JX日鉱日石エネルギー社製)10mgをさらに加えた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 14)
In Example 14, a lithium ion battery was obtained in the same manner as in Example 1, except that 10 mg of grease (manufactured by JX Nippon Oil & Energy Corporation) was further added to the solid electrolyte.

(実施例15)
実施例15は、固体電解質にエチレンオキシド(80mol%)と2−(2−メトキシエトキシ)エチルグリシジルエーテル(20mol%)のコポリマー1.0g、LiBFを0.11g、トルエン6g、エチレングリコールモノエチルエーテル6gを混合し、コーティングマシンで離型紙上にコーティングし、厚さ40μmのポリマー電解質の膜を有機固体電解質として作成し用いた。その他は実施例1と同様にしてリチウムイオン電池を得た。
(Example 15)
In Example 15, 1.0 g of a copolymer of ethylene oxide (80 mol%) and 2- (2-methoxyethoxy) ethyl glycidyl ether (20 mol%) was used as the solid electrolyte, 0.11 g of LiBF 4 , 6 g of toluene, and ethylene glycol monoethyl ether. 6 g was mixed and coated on release paper with a coating machine, and a polymer electrolyte membrane having a thickness of 40 μm was prepared and used as an organic solid electrolyte. Otherwise, a lithium ion battery was obtained in the same manner as in Example 1.

(実施例16)
実施例16は、正極活物質にビスムチオール(東京化成社製)のチオール基の水素イオンをリチウムイオンにカチオン交換したDMcTLi810.6mgを用いた以外は、実施例15と同様にしてリチウムイオン電池を得た。
(Example 16)
Example 16 was the same as in Example 15 except that 810.6 mg of DMcTLi 2 obtained by cation exchange of hydrogen ions of a thiol group of bismuthiol (manufactured by Tokyo Chemical Industry Co., Ltd.) into lithium ions was used as the positive electrode active material. Got.

(実施例17)
実施例17は、正極活物質にチオシアヌル酸(東京化成社製)のチオール基の水素イオンをリチウムイオンにカチオン交換したTCyALi975.3mgを用いた以外は、実施例15と同様にしてリチウムイオン電池を得た。
(Example 17)
In Example 17, lithium ion was used in the same manner as in Example 15 except that 975.3 mg of TCyALi 3 obtained by cation exchange of the thiol group hydrogen ion of thiocyanuric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) into lithium ion was used as the positive electrode active material. A battery was obtained.

(実施例18)
実施例18は、固体電解質にガラスセラミックス粉体(酸化物)を用いた以外は、実施例1と同様にしてリチウムイオン電池を得た。
(Example 18)
In Example 18, a lithium ion battery was obtained in the same manner as in Example 1 except that glass ceramic powder (oxide) was used as the solid electrolyte.

このガラスセラミックス粉体(酸化物)は、酸化物換算のmol%でPを35.0%、Alを7.5%、LiOを15.0%、TiOを38.0%、SiOを4.5%といった組成になるように、原料としてNHPO、Al(PO、LiCO、SiO、TiOを秤量して均一に混合した。その後、白金ポットで1500℃にて撹拌しながら2時間加熱熔解しガラス融液を作成した。そして、そのガラス融液を水中に直接キャストし母ガラスとした。さらに、この母ガラスを950℃で12時間の熱処理を行い、ガラスセラミックスを得た。次にこのガラスセラミックスを、遊星ボールミルを用いて粉砕し、平均粒径7μmに分級を行ないリチウムイオン伝導性のガラスセラミックス粉体(酸化物)を得た。ポリビニリデンフルオライド(PVdF)とヘキサフルオロプロピレン(HFP)および上記リチウムイオン伝導性ガラスセラミックスのそれぞれの粉体を35:40:25の質量比でアセトンに20質量%投入し、アセトン懸濁液を調製した。この液をキャスティング法により成膜した後、真空乾燥させて厚さ50μmのシート状ガラスセラミックス複合媒体を作製した。 This glass ceramic powder (oxide) is 35.0% P 2 O 5 , 7.5% Al 2 O 3 , 15.0% Li 2 O, and TiO 2 in mol% in terms of oxide. NH 4 H 2 PO 4 , Al (PO 3 ) 3 , Li 2 CO 3 , SiO 2 , and TiO 2 are weighed uniformly as raw materials so as to have a composition of 38.0% and SiO 2 4.5%. Mixed. Then, it melted by heating for 2 hours, stirring at 1500 degreeC with a platinum pot, and created the glass melt. The glass melt was directly cast into water to obtain a mother glass. Furthermore, this mother glass was heat-treated at 950 ° C. for 12 hours to obtain glass ceramics. Next, this glass ceramic was pulverized using a planetary ball mill and classified to an average particle diameter of 7 μm to obtain a lithium ion conductive glass ceramic powder (oxide). 20% by mass of polyvinylidene fluoride (PVdF), hexafluoropropylene (HFP) and lithium ion conductive glass ceramics in a mass ratio of 35:40:25 was added to acetone, and an acetone suspension was obtained. Prepared. This liquid was formed into a film by a casting method and then vacuum-dried to produce a sheet-like glass ceramic composite medium having a thickness of 50 μm.

(比較例1〜7)
比較例1〜3は、負極合剤を表1に示すようにC、CoO、FeOに変えた以外は、実施例1と同様にして得た。そして、比較例4〜7は、正極合剤を表1に示すように、LiCoO、LiNi0.6Co0.2Mn0.2、LiTiS、LiCuSに変えた以外は、実施例1と同様にして得た。
(Comparative Examples 1-7)
Comparative Examples 1 to 3 were obtained in the same manner as in Example 1 except that the negative electrode mixture was changed to C, CoO, and FeO as shown in Table 1. In Comparative Examples 4 to 7, the positive electrode mixture was changed to LiCoO 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiTiS 2 , and LiCuS as shown in Table 1. 1 and obtained in the same manner.

(比較例8)
比較例8は、シリコン粉末90.0g、PVdF7.0g、アセチレンブラック3.0gをN−メチルピロリドンでペースト化し、Cu箔に塗布・乾燥させて負極合剤シートを作成した。また、LiS90.0g、PVdF7.0g、アセチレンブラック3.0gをN−メチルピロリドンでペースト化し、Al箔に塗布・乾燥させて正極合剤シートを作成した。さらに、固体電解質のかわりに、LiPF(1.0M)、エチレンカーボネート/ジエチルカーボネート=30/70(体積%)の電解液を用いた。負極合剤シート、電解液を滴下したセパレータ(日東電工社製)、正極合剤シートを、凸型の負極集電体によって閉じられているΦ10mmの内径を有する円筒状の絶縁パッキング内に順番に投入し、凸型の正極集電体をさらに用いて、比較例8のリチウムイオン二次電池とした。
(Comparative Example 8)
In Comparative Example 8, 90.0 g of silicon powder, 7.0 g of PVdF, and 3.0 g of acetylene black were pasted with N-methylpyrrolidone, and applied to a Cu foil and dried to prepare a negative electrode mixture sheet. Further, Li 2 S90.0g, PVdF7.0g, acetylene black 3.0g a paste with N- methylpyrrolidone to prepare a positive electrode mixture sheet by coating and drying the Al foil. Furthermore, instead of the solid electrolyte, an electrolytic solution of LiPF 6 (1.0 M) and ethylene carbonate / diethyl carbonate = 30/70 (volume%) was used. A negative electrode mixture sheet, a separator (manufactured by Nitto Denko Corporation) into which an electrolytic solution is dropped, and a positive electrode mixture sheet are sequentially placed in a cylindrical insulating packing having an inner diameter of Φ10 mm that is closed by a convex negative electrode current collector. The lithium ion secondary battery of Comparative Example 8 was obtained by further using the convex positive electrode current collector.

(充放電評価)
得られたリチウムイオン二次電池を用いて充放電試験は、測定温度は25℃で実施した。充放電は(CC−CV)充電−CC放電で3.41mAcm−2(0.1C)で行った。充電電圧は、上限を2.4V、下限を0.9Vを目標に行ったが、各実施例や比較例の充電電圧の上限と下限電圧は、出現するプラトーに応じて変更した。また、充電は、正極の電圧が上限の充電電圧に達し、充電電流が0.34mAcm−2(0.01C)に減衰するまで行った。
(Charge / discharge evaluation)
Using the obtained lithium ion secondary battery, the charge / discharge test was performed at a measurement temperature of 25 ° C. Charging / discharging was performed by (CC-CV) charge-CC discharge at 3.41 mAcm- 2 (0.1 C). The charging voltage was set with an upper limit of 2.4 V and a lower limit of 0.9 V as targets, but the upper and lower limits of the charging voltage in each example and comparative example were changed according to the plateau that appeared. The charging was performed until the positive electrode voltage reached the upper limit charging voltage and the charging current was attenuated to 0.34 mAcm −2 (0.01 C).

得られたリチウムイオン二次電池各電池について、充放電試験1サイクル後の負極活物質の単位体積当たりの放電容量と、100サイクル後における放電容量の負極活物質の単位体積あたりの放電容量を測定した。その結果を表1に合わせ示す。さらに、正極集電体と負極集電体の距離をマイクロメーターで測定し、正極合剤と負極合剤のそれぞれの体積変化量とその差を表1に合わせ示す。   For each obtained lithium ion secondary battery, the discharge capacity per unit volume of the negative electrode active material after one cycle of the charge / discharge test and the discharge capacity per unit volume of the negative electrode active material after 100 cycles were measured. did. The results are also shown in Table 1. Further, the distance between the positive electrode current collector and the negative electrode current collector was measured with a micrometer, and the respective volume change amounts of the positive electrode mixture and the negative electrode mixture and the differences thereof are shown in Table 1.

実施例1、7、9〜14は、100サイクル後における放電容量の単位体積あたり(の放電容量が2300mAhcm−3を超える結果が得られた。充電で負極活物質が膨張する体積の変化量が大きく、かつ正極活物質が収縮する体積の変化量が大きい場合に、特に高容量で優れたサイクル特性を有するリチウムイオン二次電池を得ることができた。 In Examples 1, 7, and 9 to 14, results were obtained in which the discharge capacity per unit volume of the discharge capacity after 100 cycles exceeded 2300 mAhcm −3 . When the volume of the positive electrode active material is large and the amount of change in volume by which the positive electrode active material contracts is large, a lithium ion secondary battery having particularly high capacity and excellent cycle characteristics could be obtained.

Figure 0005966734
Figure 0005966734

比較例2、3では、1サイクル後の容量はやや大きいが100サイクル後における放電容量の単位体積あたりの容量は150mAhcm−3以下であった。正極に通常使用される酸化物を用いた比較例4、5では、1サイクル後の容量はやや大きいが100サイクル後における放電容量の単位体積あたりの容量は90mAhcm−3未満であった。正極に硫化物を用いた比較例6、7では、100サイクル後における放電容量の単位体積あたりの容量は170mAhcm−3未満であった。さらに、電解液を使用した比較例8では1サイクル後の容量、100サイクル後の容量ともに小さかった。これは、正極活物質の硫化リチウムが一部溶解してしまったためと考えている。 In Comparative Examples 2 and 3, the capacity after one cycle was slightly large, but the capacity per unit volume of the discharge capacity after 100 cycles was 150 mAhcm −3 or less. In Comparative Examples 4 and 5 using oxides usually used for the positive electrode, the capacity after one cycle was slightly large, but the capacity per unit volume of the discharge capacity after 100 cycles was less than 90 mAhcm −3 . In Comparative Examples 6 and 7 using sulfide for the positive electrode, the capacity per unit volume of the discharge capacity after 100 cycles was less than 170 mAhcm −3 . Furthermore, in Comparative Example 8 using the electrolytic solution, the capacity after 1 cycle and the capacity after 100 cycles were both small. This is thought to be due to the partial dissolution of the positive electrode active material lithium sulfide.

本発明によれば、サイクル特性に優れた固体電解質を用いたリチウムイオン二次電池が得られることから、本発明は産業上の利用可能性を有する。   According to the present invention, since a lithium ion secondary battery using a solid electrolyte having excellent cycle characteristics is obtained, the present invention has industrial applicability.

1 正極集電体
2 正極合剤
3 固体電解質
4 負極合剤
5 負極集電体
6 絶縁パッキング
10 リチウムイオン二次電池


DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode mixture 3 Solid electrolyte 4 Negative electrode mixture 5 Negative electrode collector 6 Insulation packing 10 Lithium ion secondary battery


Claims (5)

1Fdの充電で5〜15cm膨張する負極活物質と、
1Fdの充電で5〜15cm収縮する正極活物質と、
固体電解質を含み、前記固体電解質がグリースを含むことを特徴とするリチウムイオン二次電池。
A negative electrode active material that expands 5 to 15 cm 3 by charging 1 Fd;
A positive electrode active material that contracts 5 to 15 cm 3 by charging 1 Fd;
A lithium ion secondary battery comprising a solid electrolyte, wherein the solid electrolyte contains grease .
前記正極活物質として、硫化リチウムを含むことを特徴とする請求項1記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the positive electrode active material includes lithium sulfide. 前記固体電解質として、無機固体電解質を含むことを特徴とする請求項1または2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the solid electrolyte includes an inorganic solid electrolyte. 前記固体電解質として、硫化物を含むことを特徴とする請求項1〜3のうちの一項に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the solid electrolyte includes a sulfide. 前記負極活物質として、ケイ素、スズ、アンチモンのいずれか一以上、またはいずれか一以上の合金、またはいずれか一以上の酸化物を含むことを特徴とする請求項1〜4のうちの一項に記載のリチウムイオン二次電池。   The negative electrode active material includes any one or more of silicon, tin, and antimony, or any one or more alloys, or any one or more oxides. The lithium ion secondary battery described in 1.
JP2012169783A 2012-07-31 2012-07-31 Lithium ion secondary battery Active JP5966734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169783A JP5966734B2 (en) 2012-07-31 2012-07-31 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169783A JP5966734B2 (en) 2012-07-31 2012-07-31 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014029791A JP2014029791A (en) 2014-02-13
JP5966734B2 true JP5966734B2 (en) 2016-08-10

Family

ID=50202242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169783A Active JP5966734B2 (en) 2012-07-31 2012-07-31 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5966734B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115933B2 (en) * 2012-09-05 2017-04-19 出光興産株式会社 Negative electrode mixture, negative electrode and lithium ion battery
JP6140631B2 (en) 2014-03-28 2017-05-31 富士フイルム株式会社 All-solid secondary battery, solid electrolyte composition and battery electrode sheet used therefor, and method for producing all-solid secondary battery
JP6589315B2 (en) * 2015-03-20 2019-10-16 コニカミノルタ株式会社 Positive electrode material for battery, method for producing positive electrode using the same, and all solid lithium ion battery
JP6488183B2 (en) * 2015-04-30 2019-03-20 富士フイルム株式会社 All-solid secondary battery, electrode sheet for all-solid secondary battery, and method for producing all-solid secondary battery
JP6759051B2 (en) * 2016-10-25 2020-09-23 日立造船株式会社 All-solid-state lithium-ion secondary battery
JP6597701B2 (en) * 2017-04-18 2019-10-30 トヨタ自動車株式会社 Negative electrode mixture, negative electrode including the negative electrode mixture, and all-solid-state lithium ion secondary battery including the negative electrode
JP6642555B2 (en) * 2017-11-17 2020-02-05 株式会社村田製作所 Batteries and electronics

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275313A (en) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd Lithium battery
JP4859007B2 (en) * 2001-07-06 2012-01-18 独立行政法人物質・材料研究機構 Method for producing lithium ion conductive solid electrolyte molded body
JP2003208897A (en) * 2002-01-16 2003-07-25 Matsushita Electric Ind Co Ltd Lithium battery and manufacturing method thereof
JP2004095243A (en) * 2002-08-30 2004-03-25 Shinya Machida Lithium secondary battery using sulfur as positive electrode active material
JP2009009905A (en) * 2007-06-29 2009-01-15 Sumitomo Electric Ind Ltd Thin film lithium secondary battery and manufacturing method therefor
JP2009117168A (en) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd All solid battery, and manufacturing method thereof
JP5841384B2 (en) * 2011-09-20 2016-01-13 出光興産株式会社 Negative electrode composite and all solid lithium ion battery using the same
JP5912493B2 (en) * 2011-12-15 2016-04-27 出光興産株式会社 Composition comprising lithium particles, electrode and battery
JP2013222530A (en) * 2012-04-13 2013-10-28 Idemitsu Kosan Co Ltd All solid state battery and method for charging/discharging all solid state battery

Also Published As

Publication number Publication date
JP2014029791A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5966734B2 (en) Lithium ion secondary battery
JP6246816B2 (en) All solid battery
EP2907179B1 (en) Solid-state battery electrodes
Jiang et al. Reducing the interfacial resistance in all‐solid‐state lithium batteries based on oxide ceramic electrolytes
JP5516755B2 (en) Electrode body and all-solid battery
KR101587375B1 (en) Battery system, method for manufacturing battery system, and battery control apparatus
JP5970284B2 (en) All solid battery
JP5348607B2 (en) All-solid lithium secondary battery
US9397365B2 (en) Solid electrolyte material and all solid-state lithium secondary battery
JP6432113B2 (en) Lithium secondary battery
US9640835B2 (en) Ion conducting glass-ceramics, method for manufacturing same and all-solid-state secondary battery including same
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
US10483586B2 (en) All-solid-state battery using sodium ion intercalation cathode with Li/Na exchanging layer
KR20140021072A (en) Solid secondary battery and battery system
CN104488131A (en) Hybrid energy storage devices having sodium
JP2014041732A (en) Positive electrode active material, and secondary battery
JP6673056B2 (en) Sulfide solid battery
JP2022545706A (en) Manufacturing method of lithium metal unit cell for all-solid-state battery and unit cell manufactured by the same
US11489157B2 (en) One-dimensional structure pre-calciated materials as positive electrode for rechargeable calcium batteries and cell comprising the same
JP2011129316A (en) Lithium ion secondary battery
JP6225859B2 (en) All-solid-state lithium ion battery
JP2019129096A (en) All-solid battery and method for manufacturing the same
KR102641690B1 (en) Tragacanth gum(TGC)-based aqueous binder and manufacturing method of battery electrode using the same
JP7147708B2 (en) positive electrode mixture
JP7147709B2 (en) positive electrode mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5966734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150