JP2009009905A - Thin film lithium secondary battery and manufacturing method therefor - Google Patents

Thin film lithium secondary battery and manufacturing method therefor Download PDF

Info

Publication number
JP2009009905A
JP2009009905A JP2007172557A JP2007172557A JP2009009905A JP 2009009905 A JP2009009905 A JP 2009009905A JP 2007172557 A JP2007172557 A JP 2007172557A JP 2007172557 A JP2007172557 A JP 2007172557A JP 2009009905 A JP2009009905 A JP 2009009905A
Authority
JP
Japan
Prior art keywords
electrode layer
sulfide
lithium
positive electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007172557A
Other languages
Japanese (ja)
Inventor
Yukihiro Ota
進啓 太田
Mitsuyasu Ogawa
光靖 小川
Taku Kamimura
卓 上村
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007172557A priority Critical patent/JP2009009905A/en
Publication of JP2009009905A publication Critical patent/JP2009009905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an entirely solid thin film lithium secondary battery in which a current density and a battery capacity density per electrode unit area are both sufficiently high, and to provide a manufacturing method for the lithium secondary battery. <P>SOLUTION: In a bath 51 in which an atmosphere can be controlled, a first sulfide being a lithium sulfide 61, a second sulfide being a nonmetal sulfide 62, sulfur 63, a nonlithium metal 64 forming a sulfur, and lithium 65 are arranged as vapor depositing agents. Evaporated materials from the lithium sulfide 61, second sulfide, sulfur, and nonlitimum metal are deposited on a board 1 to form a positive electrode layer. Subsequently, a solid electrolyte layer is formed on the positive electrode layer, on which a lithium negative electrode layer is then formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、薄膜リチウム二次電池およびその製造方法に関し、より具体的には、電池容量密度を向上した全固体の薄膜リチウム二次電池およびその製造方法に関するものである。   The present invention relates to a thin film lithium secondary battery and a method for manufacturing the same, and more specifically to an all-solid thin film lithium secondary battery having an improved battery capacity density and a method for manufacturing the same.

携帯用の電子機器に多様な電池が搭載される時代にあって、電池には、常に軽量化、小型化または高エネルギー密度化が求められ、充放電電圧などの電池特性の改善が図られている。このなかで全固体のリチウム二次電池は、高い信頼性を有するので、用途が拡大する傾向にあり、多くの研究開発がなされている。たとえば、硫黄に銅、鉄、またはセリウム金属を混合し、メカニカルミリング処理して硫黄粒子表面に、上記金属の硫化物を生成させながら、硫黄を正極活物質とする全固体リチウム二次電池が開示されている(特許文献1)。硫黄表面の金属硫化物は触媒として働き、リチウムイオンと硫黄との反応を促進させる。その結果、安定した充放電により、1000mAh/g以上の容量密度を得ることができる。   In an era when a variety of batteries are mounted on portable electronic devices, batteries are always required to be lighter, smaller, or have higher energy density, and battery characteristics such as charge / discharge voltage are improved. Yes. Of these, all-solid lithium secondary batteries have high reliability, and therefore their applications tend to expand, and many researches and developments have been made. For example, an all-solid lithium secondary battery that uses sulfur as a positive electrode active material while mixing copper, iron, or cerium metal with sulfur and mechanically milling to produce sulfides of the above metal on the surface of sulfur particles is disclosed. (Patent Document 1). The metal sulfide on the sulfur surface acts as a catalyst and promotes the reaction between lithium ions and sulfur. As a result, a capacity density of 1000 mAh / g or more can be obtained by stable charge and discharge.

また硫化銅等の銅カルコゲン化合物を正極に用い、リチウムイオンと銅カルコゲン化合物との酸化還元反応によって充放電を生じるリチウム二次電池が開示されている(特許文献2)。この構成によって1mA/cmの電流密度で、5mAh(10mm径)という高い容量を得ることができる。この場合、Cuが還元されることによってSとLiとが反応してLiSになって放電され、逆にCuが酸化されることによって、LiSがSとLiに分解して充電される。
特開2004−95243号公報 特開平6−275312号公報
Further, a lithium secondary battery that uses a copper chalcogen compound such as copper sulfide as a positive electrode and causes charge and discharge by an oxidation-reduction reaction between lithium ions and a copper chalcogen compound is disclosed (Patent Document 2). With this configuration, a high capacity of 5 mAh (10 mm diameter) can be obtained at a current density of 1 mA / cm 2 . In this case, when Cu + is reduced, S and Li + react to form Li 2 S to be discharged, and conversely, Cu is oxidized to decompose Li 2 S into S and Li +. Is charged.
JP 2004-95243 A Japanese Patent Laid-Open No. 6-275212

上記の硫黄を正極にして金属硫化物を触媒に用いるリチウム二次電池では、電流密度が数十μA/cm程度であり、実用化されているリチウム二次電池の標準的な電流密度3mA/cm以上と比べて、100分の1程度しか得られない。この理由は、メカニカルミリング処理した硫黄粉末を正極とした場合、粒径が数μm〜数十μm程度と粗大であり、粒子内部へのリチウムの拡散が律速過程となり、大きな電流を流すことができないからである。 In the lithium secondary battery using the above-mentioned sulfur as a positive electrode and a metal sulfide as a catalyst, the current density is about several tens of μA / cm 2 , and the standard current density of 3 mA / cm2 of a practical lithium secondary battery is used. Compared to cm 2 or more, only about 1/100 is obtained. The reason for this is that when the mechanically milled sulfur powder is used as the positive electrode, the particle size is as coarse as several μm to several tens of μm, and the diffusion of lithium into the particle becomes the rate-limiting process, and a large current cannot be passed. Because.

また容量密度については、特許文献1に開示のリチウム二次電池および特許文献2に開示のリチウム二次電池の両方に問題がある。すなわち、硫黄正極の場合(特許文献1)、硫黄正極1g当たりの容量は1000mAh/gであり、理論値1675mAh/gに届いていない。また、銅カルコゲン化合物を正極とする場合(特許文献2)、硫化銅の正極1g当たりの容量は実施例1より37mAh/gと算出され、理論容量の560mAh/gの10分の1以下となっている。このように容量密度が低いのは次の理由による。(1)いずれのリチウム二次電池も粉末正極であり、粒径が数μm〜数十μm程度と大きいため、粒子中心部まで活物質として利用されていない。(2)粉末を成形した組織であるため、粒子間に隙間があり、接触抵抗が大きくなり、電流密度を高めることができず、また電圧降下が大きく、このため電流密度が低い。(3)上記のような粉末硫黄正極の場合、触媒作用を得るために、多量のCuSを含有する必要がある。   Regarding the capacity density, there are problems in both the lithium secondary battery disclosed in Patent Document 1 and the lithium secondary battery disclosed in Patent Document 2. That is, in the case of a sulfur positive electrode (Patent Document 1), the capacity per 1 g of the sulfur positive electrode is 1000 mAh / g, which does not reach the theoretical value of 1675 mAh / g. In addition, when a copper chalcogen compound is used as the positive electrode (Patent Document 2), the capacity per 1 g of the positive electrode of copper sulfide is calculated as 37 mAh / g from Example 1 and is one tenth or less of the theoretical capacity of 560 mAh / g. ing. The reason for the low capacity density is as follows. (1) Any lithium secondary battery is a powdered positive electrode and has a large particle size of about several μm to several tens of μm, so that it is not used as an active material up to the particle center. (2) Since it is the structure | tissue which shape | molded the powder, there exists a clearance gap between particle | grains, contact resistance becomes large, a current density cannot be raised, and a voltage drop is large, Therefore, a current density is low. (3) In the case of the powdered sulfur positive electrode as described above, it is necessary to contain a large amount of CuS in order to obtain catalytic action.

本発明は、電極単位面積当たりの電流密度、および正極単位重量当たりの電池容量(電池容量密度)が、共に十分高い全固体の薄膜リチウム二次電池およびその製造方法を提供することを目的とする。   An object of the present invention is to provide an all-solid-state thin-film lithium secondary battery having a sufficiently high current density per unit area of electrode and battery capacity per unit weight of positive electrode (battery capacity density) and a method for manufacturing the same. .

本発明の薄膜リチウム二次電池の製造方法は、気相法によって基板上に、順に、正極層、固体電解質層および負極層を形成する製造方法である。この製造方法では、雰囲気制御可能な槽内に、第1の硫化物である硫化リチウム、第2硫化物である非金属硫化物、硫黄、硫化物を形成する非リチウム金属、およびリチウムの各蒸着材を配置する。そして、基板上に、硫化リチウム、第2硫化物、硫黄および非リチウム金属からの蒸発物を蒸着して正極層を形成し、次に、硫化リチウムおよび第2硫化物からの蒸発物を、正極層上に蒸着して、固体電解質層を形成し、次いで、リチウムからの蒸発物を、固体電解質層上に蒸着して、負極層を形成することを特徴とする。   The manufacturing method of the thin film lithium secondary battery of the present invention is a manufacturing method in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are sequentially formed on a substrate by a vapor phase method. In this manufacturing method, each vapor deposition of lithium sulfide as the first sulfide, non-metal sulfide as the second sulfide, sulfur, non-lithium metal forming sulfide, and lithium in a tank whose atmosphere can be controlled. Arrange the material. Then, a positive electrode layer is formed on the substrate by evaporating evaporates from lithium sulfide, second sulfide, sulfur and non-lithium metal, and then evaporating the lithium sulfide and second sulfide from the positive electrode. A solid electrolyte layer is formed by vapor deposition on the layer, and then an evaporate from lithium is vapor deposited on the solid electrolyte layer to form a negative electrode layer.

上記の気相法によって、気相状態(蒸発物)を経由させて蒸着して正極層を形成するので、正極層において正極(正極活物質)となる硫黄粒子は径が1μm以下の微細粒子となる。このため正極の硫黄粒子の内部へのリチウム拡散が、電流密度の律速過程になることはなく、十分高い電流密度を確保することができる。この十分高い電流密度の確保には、雰囲気制御可能な槽内に保持して外部に出すことなく継続して各層を形成することによる酸化物密度の減少→内部抵抗の減少も寄与している。   Since the positive electrode layer is formed by vapor deposition via the vapor phase state (evaporated material) by the gas phase method, the sulfur particles that become the positive electrode (positive electrode active material) in the positive electrode layer are fine particles having a diameter of 1 μm or less. Become. For this reason, lithium diffusion into the positive electrode sulfur particles does not become a rate-limiting process of the current density, and a sufficiently high current density can be ensured. In order to secure this sufficiently high current density, the reduction of the oxide density → the reduction of the internal resistance by continuously forming each layer without holding it in the atmosphere-controllable tank and releasing it also contributes.

また、上記の硫黄粒子、触媒作用を奏する非リチウム金属硫化物粒子、固体電解質(硫化リチウムおよび非金属硫化物)の粒子は、すべて気相状態経由で蒸着するため微細となり、中心部まで活用することができる。また、気相状態経由で蒸着するため緻密な蒸着物となり、隙間が抑制され、接触抵抗を十分低くすることができる。この結果、電池容量密度および電流密度を向上させることができる。なお、リチウムは、リチウム合金も含むこととし、リチウムの蒸着材には、純リチウムの蒸着材またはリチウム合金の蒸着材が含まれる。   In addition, the above-mentioned sulfur particles, non-lithium metal sulfide particles having catalytic action, and solid electrolyte particles (lithium sulfide and non-metal sulfide) are all finely deposited because they are vapor-deposited via the gas phase, and are utilized to the center. be able to. Moreover, since it vapor-deposits via a gaseous-phase state, it becomes a dense deposit, a clearance gap is suppressed and contact resistance can fully be made low. As a result, battery capacity density and current density can be improved. Note that lithium includes a lithium alloy, and the lithium vapor deposition material includes a pure lithium vapor deposition material or a lithium alloy vapor deposition material.

上記の第1の硫化物の硫化リチウムの蒸着材を、硫黄の蒸着材およびリチウムの蒸着材により置き換え、また第2の硫化物の非金属硫化物の蒸着材を、その非金属硫化物を構成する非金属の蒸着材および硫黄の蒸着材により置き換え、正極層の形成においては硫黄、リチウム、非金属、および非リチウム金属の蒸着材を用い、固体電解質層の形成においてはリチウム、非金属、および硫黄の蒸着材を用い、負極層の形成においてはリチウムの蒸着材を用いることができる。これによって、蒸着材を5種類から4種類に減らすことができ、蒸着材の種類を抑制して成膜することができる。   The first sulfide lithium sulfide vapor deposition material is replaced with a sulfur vapor deposition material and a lithium vapor deposition material, and the second sulfide non-metal sulfide vapor deposition material constitutes the non-metal sulfide. Non-metallic vapor deposition material and sulfur vapor deposition material are used, sulfur, lithium, non-metal, and non-lithium metal vapor deposition materials are used in the formation of the positive electrode layer, and lithium, non-metal, and in the formation of the solid electrolyte layer. A sulfur vapor deposition material is used, and a lithium vapor deposition material can be used in forming the negative electrode layer. Accordingly, the number of vapor deposition materials can be reduced from five to four, and the types of vapor deposition materials can be suppressed to form a film.

上記の雰囲気制御可能な槽を、基板を移動できる構造にしながら少なくとも3つの部分槽に分け、第1の部分槽には正極層を形成するために用いる蒸着材を配置し、第2の部分槽には固体電解質槽を形成するために用いる蒸着材を配置し、第3の部分槽には負極層を形成するために用いる蒸着材を配置する。そして、基板を第1部分槽から第2部分槽を経て第3部分槽に移動させながら、第1の部分槽では基板上に正極層を形成し、第2の部分槽では正極層上に固体電解質槽を形成し、第3の部分槽では負極層を形成することができる。この方法によって薄膜リチウム二次電池の量産化を容易にすることができる。薄膜リチウム二次電池の正極層が微細な構成物で緻密になること、酸化物生成が少ないための内部抵抗が低いこと等の作用は、上述の部分槽に分けない場合と同様である。   The above-described atmosphere-controllable tank is divided into at least three partial tanks while having a structure capable of moving the substrate, and a vapor deposition material used for forming a positive electrode layer is disposed in the first partial tank, and the second partial tank Is provided with a vapor deposition material used for forming the solid electrolyte tank, and a vapor deposition material used for forming the negative electrode layer is arranged in the third partial tank. Then, while moving the substrate from the first partial tank to the third partial tank through the second partial tank, the positive electrode layer is formed on the substrate in the first partial tank, and the solid is formed on the positive electrode layer in the second partial tank. An electrolyte tank can be formed, and a negative electrode layer can be formed in the third partial tank. By this method, mass production of a thin film lithium secondary battery can be facilitated. The actions such as the fact that the positive electrode layer of the thin film lithium secondary battery becomes dense with a fine structure and the low internal resistance due to less oxide generation are the same as in the case where the partial cell is not divided.

上記の第1〜第3の部分槽は、該部分槽の間に配置され、基板が移動の際に通る天井側があいた壁により区分けすることができる。この方法により、比較的に簡単な装置により、基板の移動をしながら各部分槽での層の形成を実現することができる。   Said 1st-3rd partial tank is arrange | positioned between this partial tank, and can be divided by the wall with the ceiling side which a board | substrate passes in the case of a movement. By this method, it is possible to realize formation of layers in each partial tank while moving the substrate with a relatively simple apparatus.

本発明の薄膜リチウム二次電池は、薄膜の正極層、薄膜の固体電解質層および薄膜の負極層を備える電池である。この薄膜リチウム二次電池は、正極となる硫黄、非リチウム金属硫化物、および(リチウム硫化物−非金属硫化物)の硫化物系固体電解質を有する正極層と、正極層上に位置する、(リチウム硫化物−非金属硫化物)の固体電解質層と、固体電解質層上に位置する、リチウムの負極層とを備える。そして、正極層において、少なくとも硫黄粒子は、粒径1μm以下であり、均一に分散していることを特徴とする。   The thin film lithium secondary battery of the present invention is a battery including a thin film positive electrode layer, a thin film solid electrolyte layer, and a thin film negative electrode layer. The thin-film lithium secondary battery is located on the positive electrode layer having a positive electrode layer having sulfur as a positive electrode, a non-lithium metal sulfide, and a (lithium sulfide-nonmetal sulfide) sulfide-based solid electrolyte, (Lithium sulfide-nonmetal sulfide) solid electrolyte layer, and a lithium negative electrode layer located on the solid electrolyte layer. In the positive electrode layer, at least the sulfur particles have a particle size of 1 μm or less and are uniformly dispersed.

上記の構成によれば、正極層の正極の硫黄粒子は、十分微細なので中心にリチウムが拡散することが電流密度の律速過程とならず、電流密度を十分高くすることができる。また正極層を構成する部分も微細で緻密に均一分散しており、接触抵抗は抑制されるので、電池容量密度および電流密度を十分高くすることができる。   According to the above configuration, since the sulfur particles of the positive electrode of the positive electrode layer are sufficiently fine, the diffusion of lithium into the center does not become the rate-limiting process of the current density, and the current density can be sufficiently increased. Further, the portion constituting the positive electrode layer is finely and densely dispersed uniformly and the contact resistance is suppressed, so that the battery capacity density and the current density can be sufficiently increased.

また、正極層と固体電化質層との界面、および固体電化質層と負極層との界面の少なくとも一方において、組成が連続的に変化する厚み範囲を持つことができる。これによって、正極層、固体電解質層および負極層を、基板を移動させながら連続成膜することができ、量産化が容易となる。   In addition, at least one of the interface between the positive electrode layer and the solid electrolyte layer and the interface between the solid electrolyte layer and the negative electrode layer can have a thickness range in which the composition changes continuously. Accordingly, the positive electrode layer, the solid electrolyte layer, and the negative electrode layer can be continuously formed while moving the substrate, and mass production is facilitated.

本発明の薄膜リチウム二次電池およびその製造方法によれば、電池容量密度および電流密度の両方を十分高くすることができる。   According to the thin film lithium secondary battery and the manufacturing method thereof of the present invention, both the battery capacity density and the current density can be sufficiently increased.

(実施の形態1)
図1は、本発明の実施の形態1における全固体の薄膜リチウム二次電池の本体部10を示す断面図である。この薄膜リチウム二次電池の薄膜積層体は、(基板1/正極層2/固体電解質層3/負極層4)の構成からなる。基板1は、集電体を兼ねており、導電金属、たとえばアルミニウム、銅、ステンレス鋼などを用いることができる。とくに銅箔などを好適に用いることができる。また絶縁性セラミックス、絶縁性樹脂などの電気絶縁体や、上記導電金属上に、白金、白金/パラジウム、金、銀、アルミニウム、銅、ITO(インジウム−錫酸化膜)、炭素材料などを被覆したものであってもよい。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a main body 10 of an all-solid-state thin film lithium secondary battery according to Embodiment 1 of the present invention. The thin film laminate of the thin film lithium secondary battery has a configuration of (substrate 1 / positive electrode layer 2 / solid electrolyte layer 3 / negative electrode layer 4). The substrate 1 also serves as a current collector, and a conductive metal such as aluminum, copper, stainless steel, or the like can be used. In particular, a copper foil or the like can be suitably used. Moreover, platinum, platinum / palladium, gold, silver, aluminum, copper, ITO (indium-tin oxide film), carbon material, etc. were coated on an electrical insulator such as insulating ceramics or insulating resin, or the conductive metal. It may be a thing.

正極層2は、正極活物質2aの硫黄粒子と、触媒作用を奏する金属硫化物2bのCuS粒子と、固体電解質2cのLiS−Pの3種類が緻密に、かつ均一に混ざり合っている。図1では、これらの微細構成物を区別して示していない。触媒作用をする金属硫化物2bの金属は、Cuの代わりに、Fe、Ti、Co、Niのいずれか、またはCuを含めたこれら任意の組み合わせであってもよい。また、固体電解質2cのLiS−Pは、LiS−SiSまたはLiS−Bにより置き換えてもよいし、またはLiS−Pを含めたこれら任意の組み合わせで置き換えてもよい。また固体電解質2cは、上記のLiS−Pおよびすべての変形例について、酸素を含んでもよい。 In the positive electrode layer 2, the sulfur particles of the positive electrode active material 2a, the CuS particles of the metal sulfide 2b having a catalytic action, and Li 2 S—P 2 S 5 of the solid electrolyte 2c are densely and uniformly mixed. Matching. In FIG. 1, these fine structures are not shown separately. The metal of the metal sulfide 2b having a catalytic action may be any of Fe, Ti, Co, Ni, or any combination thereof including Cu instead of Cu. Further, Li 2 S-P 2 S 5 of the solid electrolyte 2c may be replaced by Li 2 S-SiS 2, or Li 2 S-B 2 S 3 , or including Li 2 S-P 2 S 5 You may replace with these arbitrary combinations. The solid electrolyte 2c, for the Li 2 S-P 2 S 5 and all modifications above, may contain oxygen.

固体電解質層3はLiS−Pで形成される。この固体電解質層3は、正極層2内の固体電解質2cと同様に、LiS−SiSまたはLiS−Bにより置き換えてもよいし、またはLiS−Pを含めたこれら任意の組み合わせで置き換えてもよい。また固体電解質層3は、上記のLiS−Pおよびすべての変形例について、酸素を含んでもよい。 The solid electrolyte layer 3 is formed of Li 2 S—P 2 S 5 . This solid electrolyte layer 3 may be replaced by Li 2 S—SiS 2 or Li 2 S—B 2 S 3 , or Li 2 S—P 2 S 5 , similarly to the solid electrolyte 2 c in the positive electrode layer 2. It may be replaced by any combination including these. The solid electrolyte layer 3, for the Li 2 S-P 2 S 5 and all modifications above, may contain oxygen.

負極層4はLiで形成される。また負極層4は、Liの代わりに、上述のようにLi合金でもよく、たとえばLi−Al合金、Li−Si合金、Li−Sn合金およびLi−In合金のいずれかで置き換えてもよい。また、上記Li合金を構成する任意の金属元素を組み合わせた複合のLi合金であってもよい。   The negative electrode layer 4 is made of Li. Further, the negative electrode layer 4 may be a Li alloy as described above instead of Li, and may be replaced with any one of a Li—Al alloy, a Li—Si alloy, a Li—Sn alloy, and a Li—In alloy, for example. Moreover, the composite Li alloy which combined the arbitrary metal elements which comprise the said Li alloy may be sufficient.

上記の薄膜の全固体リチウム二次電池は、とくに正極層2における組織形態に特徴を有し、本体部分10も含めて、それは次のように要約される。
(1)正極層2の粒子、とくに正極活物質の硫黄粒子の粒径は平均的に1μm以下であり、微細であり、各組成物は、緻密に、隙間なく、正極層2を形成する。他のCuS粒子および/または固体電解質粒子が、平均的に1μm以下となる場合もある。
(2)正極層2内で、硫黄2aおよび触媒の金属硫化物2bは、均一に分散している。また、硫化物固体電解質2cの(LiS−P)は、均一に分散している。
(3)全固体の薄膜リチウム二次電池の本体部分10において、正極層2、固体電解質層3および負極層4が一体の膜状となっている。
上記の組織上の特徴を備えるため、正極層2では、各粒子を中心部まで活用することができる。また、各層2,3,4の間の接触抵抗および各層内の構成物間の接触抵抗を十分低くすることができる。この結果、電池容量密度および電流密度を向上させることができる。
The thin-film all-solid lithium secondary battery is particularly characterized in the structure of the positive electrode layer 2, including the main body portion 10, which is summarized as follows.
(1) The particle size of the positive electrode layer 2, particularly the sulfur particle of the positive electrode active material is 1 μm or less on average and is fine, and each composition forms the positive electrode layer 2 densely and without gaps. Other CuS particles and / or solid electrolyte particles may be 1 μm or less on average.
(2) In the positive electrode layer 2, the sulfur 2a and the catalyst metal sulfide 2b are uniformly dispersed. In addition, (Li 2 S—P 2 S 5 ) of the sulfide solid electrolyte 2c is uniformly dispersed.
(3) In the main body portion 10 of the all-solid-state thin film lithium secondary battery, the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are formed into an integral film.
In order to have the above structural features, in the positive electrode layer 2, each particle can be utilized up to the center. Moreover, the contact resistance between each layer 2, 3, and 4 and the contact resistance between the components in each layer can be made low enough. As a result, battery capacity density and current density can be improved.

次に、上記の薄膜リチウム二次電池の製造方法について説明する。図2は、各層2,3,4の成膜に用いた装置50を示す図である。この製造方法では、雰囲気制御可能な1つの槽51内で、途中で外部雰囲気にさらすことなく、気相法で上記の正極層2、固体電解質層3および負極層4を形成する。蒸着法による成膜に用いる蒸着材(蒸着原料または蒸着源)として、蒸着材61、P蒸着材62、S蒸着材63、Cu蒸着材64およびLi蒸着材65の5種類の蒸着源を、上記槽51内に配置する。 Next, the manufacturing method of said thin film lithium secondary battery is demonstrated. FIG. 2 is a diagram showing an apparatus 50 used for forming the layers 2, 3, and 4. In this manufacturing method, the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are formed by a vapor phase method without being exposed to an external atmosphere in the middle of one tank 51 that can control the atmosphere. As vapor deposition materials (vapor deposition raw materials or vapor deposition sources) used for film formation by the vapor deposition method, five types of vapor deposition sources of vapor deposition material 61, P 2 S 5 vapor deposition material 62, S vapor deposition material 63, Cu vapor deposition material 64, and Li vapor deposition material 65 are used. Is placed in the tank 51.

まず、基板取付部に取り付けた基板1と蒸着材61〜65との間を遮断するシャッタ52を閉じた状態で、硫化リチウム(LiS)61、五硫化二リン(P)62、硫黄(S)63および銅64の蒸着材を加熱して各原料を蒸発させ、安定するまで待機する。各蒸着材からの蒸発状態が安定した後、シャッタ52を開いて基板1上に正極層2を形成する。 First, lithium sulfide (Li 2 S) 61 and diphosphorus pentasulfide (P 2 S 5 ) 62 in a state in which the shutter 52 that blocks between the substrate 1 attached to the substrate attachment portion and the vapor deposition materials 61 to 65 is closed. Then, the vapor deposition material of sulfur (S) 63 and copper 64 is heated to evaporate each raw material and wait until it is stabilized. After the evaporation state from each vapor deposition material is stabilized, the shutter 52 is opened to form the positive electrode layer 2 on the substrate 1.

次に、硫黄63および銅64の蒸発を停止して、硫化リチウム61および五硫化二リン62からのみ蒸発させて固体電解質層3を形成する。このあと、硫化リチウム61および五硫化二リン62の蒸発を停止して、リチウム65からのみ蒸発させて、固体電解質層4上にリチウムの負極層4を形成する。   Next, the evaporation of the sulfur 63 and the copper 64 is stopped, and the solid electrolyte layer 3 is formed by evaporating only from the lithium sulfide 61 and the phosphorous pentasulfide 62. Thereafter, the evaporation of lithium sulfide 61 and phosphorous pentasulfide 62 is stopped and evaporated only from lithium 65 to form lithium negative electrode layer 4 on solid electrolyte layer 4.

上記の実施の形態1における製造方法では、全固体薄膜リチウム二次電池の本体部10を、図2に示すように5種類の蒸着源を用いて形成するが、蒸着源の種類を4種類に減らして蒸着する方法もある。図3は、上述の5元蒸着源の各蒸着源と、4元蒸着の蒸着源とを対比させて示す図である。結局のところ、5元の蒸着源の場合、正極層2および固体電解質層3の成膜に蒸着源61〜64の4種類を、負極層4の成膜に蒸着源65を用いるのに対し、4元蒸着では、正極層2および固体電解質層3の成膜に蒸着源63〜66の4種類を、そして負極層4の成膜にその中の蒸着源65を用いる。   In the manufacturing method in the first embodiment, the main body 10 of the all-solid-state thin film lithium secondary battery is formed using five kinds of vapor deposition sources as shown in FIG. There is also a method of reducing the vapor deposition. FIG. 3 is a diagram showing the above-described five-source deposition sources in comparison with the four-source deposition sources. After all, in the case of a five-source deposition source, four types of deposition sources 61 to 64 are used for forming the positive electrode layer 2 and the solid electrolyte layer 3, and the deposition source 65 is used for forming the negative electrode layer 4. In the quaternary vapor deposition, four types of vapor deposition sources 63 to 66 are used for forming the positive electrode layer 2 and the solid electrolyte layer 3, and the vapor deposition source 65 therein is used for forming the negative electrode layer 4.

図2に示す上記の製造方法に準じて説明する(図2に示す蒸着源61〜65を、図3に示すように蒸着源63〜66に置き換える)。蒸着源として、硫黄63、銅64、リチウム65およびリン66を、槽51内に配置する。まず、シャッタ52を閉じた状態で、蒸発源63〜66の4種類をすべて加熱して各原料を蒸発させる。次いで各原料の蒸発が安定した後に、シャッタ52を開いて基板1の銅箔上に正極層2を形成する。このとき、各蒸着材の蒸発量が、相互の蒸発材との割合において、S単独の正極活物質、触媒作用を奏するCuSおよび(LiS−P)固体電解質が、それぞれ所定比率で生成するようにする。この正極層2の形成の後、銅64の蒸発を停止して、硫黄63、リチウム65およびリン66の蒸発が(LiS−P)となるように温度等を調整して、固体電解質層3を形成する。この固体電解質層3の形成の後、硫黄63およびリン66の蒸発を停止して、リチウム65の蒸発により、リチウム負極層4を形成する。 2 will be described in accordance with the above manufacturing method shown in FIG. 2 (deposition sources 61 to 65 shown in FIG. 2 are replaced with evaporation sources 63 to 66 as shown in FIG. 3). Sulfur 63, copper 64, lithium 65, and phosphorus 66 are disposed in the tank 51 as a vapor deposition source. First, with the shutter 52 closed, all four types of evaporation sources 63 to 66 are heated to evaporate each raw material. Next, after the evaporation of each raw material is stabilized, the shutter 52 is opened to form the positive electrode layer 2 on the copper foil of the substrate 1. At this time, the evaporation amount of each vapor deposition material is a predetermined ratio of the S positive electrode active material, the catalytic CuS and the (Li 2 S—P 2 S 5 ) solid electrolyte, respectively, in the ratio of the evaporation materials to each other. To generate. After the formation of the positive electrode layer 2, the evaporation of the copper 64 is stopped, and the temperature and the like are adjusted so that the evaporation of the sulfur 63, the lithium 65, and the phosphorus 66 becomes (Li 2 S—P 2 S 5 ), The solid electrolyte layer 3 is formed. After the formation of the solid electrolyte layer 3, the evaporation of sulfur 63 and phosphorus 66 is stopped, and the lithium negative electrode layer 4 is formed by evaporation of lithium 65.

上記の4元蒸着源によれば、蒸着源を1つ減らしながら、図1に示す全固体薄膜リチウム二次電池の本体部10と、同じものを得ることができる。したがって電流密度および電池容量密度の両方が十分高い、全固体薄膜二次電池を得ることができる。   According to the quaternary vapor deposition source, the same one as the main body 10 of the all-solid-state thin film lithium secondary battery shown in FIG. 1 can be obtained while reducing the vapor deposition source by one. Therefore, it is possible to obtain an all-solid-state thin film secondary battery in which both current density and battery capacity density are sufficiently high.

(実施の形態2)
図4は、本発明の実施の形態2における全固体の薄膜リチウム二次電池の本体部10を示す断面図である。この薄膜リチウム二次電池の薄膜積層体は、(基板1/正極層2/固体電解質層3/負極層4)の構成からなる。しかし、正極層2と固体電解質層3との間に、正極層2と固体電解質層3の組成が混在して、正極層2から固体電解質層3の組成へと傾斜する範囲Zがある点で、図1と相違する。図4には、固体電解質層3と負極層4との間に、上記と同様な傾斜範囲を明記していないが、固体電解質層3と負極層4との間には、傾斜範囲はあっても、またなくてもよい。
(Embodiment 2)
FIG. 4 is a cross-sectional view showing main body 10 of the all-solid-state thin film lithium secondary battery according to Embodiment 2 of the present invention. The thin film laminate of the thin film lithium secondary battery has a configuration of (substrate 1 / positive electrode layer 2 / solid electrolyte layer 3 / negative electrode layer 4). However, the composition of the positive electrode layer 2 and the solid electrolyte layer 3 is mixed between the positive electrode layer 2 and the solid electrolyte layer 3, and there is a range Z that is inclined from the positive electrode layer 2 to the composition of the solid electrolyte layer 3. This is different from FIG. In FIG. 4, the same inclination range as described above is not clearly defined between the solid electrolyte layer 3 and the negative electrode layer 4, but there is an inclination range between the solid electrolyte layer 3 and the negative electrode layer 4. However, it is not necessary.

基板1は、集電体を兼ねており、導電金属、たとえばアルミニウム、銅、ステンレス鋼などを用いることができる。とくに銅箔などを好適に用いることができる。また絶縁性セラミックス、絶縁性樹脂などの電気絶縁体や、上記導電金属上に、白金、白金/パラジウム、金、銀、アルミニウム、銅、ITO(インジウム−錫酸化膜)、炭素材料などを被覆したものであってもよい。   The substrate 1 also serves as a current collector, and a conductive metal such as aluminum, copper, stainless steel, or the like can be used. In particular, a copper foil or the like can be suitably used. Moreover, platinum, platinum / palladium, gold, silver, aluminum, copper, ITO (indium-tin oxide film), carbon material, etc. were coated on an electrical insulator such as insulating ceramics or insulating resin, or the conductive metal. It may be a thing.

正極層2は、正極活物質2aの硫黄粒子と、触媒作用を奏する金属硫化物2bのCuSと、固体電解質2cのLiS−Pの3種類が緻密に、かつ均一に混ざり合っている。図1では、これらの微細構成物を区別して示していない。触媒作用をする金属硫化物2bの金属は、Cuの代わりに、Fe、Ti、Co、Niのいずれか、またはCuを含めたこれら任意の組み合わせであってもよい。また、固体電解質2cのLiS−Pは、LiS−SiSまたはLiS−Bにより置き換えてもよいし、またはLiS−Pを含めたこれら任意の組み合わせで置き換えてもよい。また固体電解質2cは、上記のLiS−Pおよびすべての変形例について、酸素を含んでもよい。 In the positive electrode layer 2, three kinds of sulfur particles of the positive electrode active material 2a, CuS of the metal sulfide 2b having a catalytic action, and Li 2 S—P 2 S 5 of the solid electrolyte 2c are densely and uniformly mixed. ing. In FIG. 1, these fine structures are not shown separately. The metal of the metal sulfide 2b having a catalytic action may be any of Fe, Ti, Co, Ni, or any combination thereof including Cu instead of Cu. Further, Li 2 S-P 2 S 5 of the solid electrolyte 2c may be replaced by Li 2 S-SiS 2, or Li 2 S-B 2 S 3 , or including Li 2 S-P 2 S 5 You may replace with these arbitrary combinations. The solid electrolyte 2c, for the Li 2 S-P 2 S 5 and all modifications above, may contain oxygen.

固体電解質層3はLiS−Pで形成される。この固体電解質層3は、正極層2内の固体電解質2cと同様に、LiS−SiSまたはLiS−Bにより置き換えてもよいし、またはLiS−Pを含めたこれら任意の組み合わせで置き換えてもよい。また固体電解質層3は、上記のLiS−Pおよびすべての変形例について、酸素を含んでもよい。 The solid electrolyte layer 3 is formed of Li 2 S—P 2 S 5 . This solid electrolyte layer 3 may be replaced by Li 2 S—SiS 2 or Li 2 S—B 2 S 3 , or Li 2 S—P 2 S 5 , similarly to the solid electrolyte 2 c in the positive electrode layer 2. It may be replaced by any combination including these. The solid electrolyte layer 3, for the Li 2 S-P 2 S 5 and all modifications above, may contain oxygen.

負極層4はLiで形成される。また負極層4は、Liの代わりに、上述のようにLi合金でもよく、たとえばLi−Al合金、Li−Si合金、Li−Sn合金およびLi−In合金のいずれかで置き換えてもよい。また、上記Li合金を構成する任意の金属元素を組み合わせた複合のLi合金であってもよい。   The negative electrode layer 4 is made of Li. Further, the negative electrode layer 4 may be a Li alloy as described above instead of Li, and may be replaced with any one of a Li—Al alloy, a Li—Si alloy, a Li—Sn alloy, and a Li—In alloy, for example. Moreover, the composite Li alloy which combined the arbitrary metal elements which comprise the said Li alloy may be sufficient.

上記の薄膜の全固体リチウム二次電池は、とくに正極層2における組織形態に特徴を有し、本体部分10も含めて、それは次のように要約される。
(1)少なくとも正極層2と固体電解質層3との間に、組成がこれら2層間で傾斜する傾斜範囲Zがある。固体電解質層3と負極層4との間には、上記のような傾斜範囲はあってもよいし、無くてもよい。
(2)正極層2の、少なくとも硫黄粒子の粒径は、平均的に1μm以下であり、微細であり、他の構成物も微細である。そして各構成物は、緻密に、隙間なく、正極層2を形成する。
(3)正極層2内で、硫黄2aおよび触媒の金属硫化物2bは、均一に分散している。また、硫化物固体電解質2cの(LiS−P)は、均一に分散している。
(4)全固体の薄膜リチウム二次電池の本体部分10において、正極層2、固体電解質層3および負極層4が一体の膜状となっている。
上記の組織上の特徴を備えるため、正極層2では、各構成物を中心部まで活用することができる。また、各層2,3,4の間の接触抵抗および各層内の構成物間の接触抵抗を十分低くすることができる。この結果、電池容量密度および電流密度を向上させることができる。
The thin-film all-solid lithium secondary battery is particularly characterized in the structure of the positive electrode layer 2, including the main body portion 10, which is summarized as follows.
(1) Between at least the positive electrode layer 2 and the solid electrolyte layer 3, there is an inclination range Z in which the composition is inclined between these two layers. The inclination range as described above may or may not exist between the solid electrolyte layer 3 and the negative electrode layer 4.
(2) The particle size of at least sulfur particles in the positive electrode layer 2 is 1 μm or less on average and is fine, and other components are also fine. Each component forms the positive electrode layer 2 densely and without gaps.
(3) In the positive electrode layer 2, the sulfur 2a and the catalyst metal sulfide 2b are uniformly dispersed. In addition, (Li 2 S—P 2 S 5 ) of the sulfide solid electrolyte 2c is uniformly dispersed.
(4) In the main body portion 10 of the all-solid-state thin film lithium secondary battery, the positive electrode layer 2, the solid electrolyte layer 3, and the negative electrode layer 4 are formed as an integral film.
In order to have the above structural features, each component can be utilized up to the center in the positive electrode layer 2. Moreover, the contact resistance between each layer 2, 3, and 4 and the contact resistance between the components in each layer can be made low enough. As a result, battery capacity density and current density can be improved.

次に、上記の薄膜リチウム二次電池の製造方法について説明する。図5は、各層2,3,4の成膜に用いた装置50を示す図である。この製造方法では、雰囲気制御可能な1つの槽51が、3つの部分槽51a,51b,51cに分かれている。各部分槽の間には天井側があいた壁55が設けられている。なお「部分槽」と「槽」とは、とくに区別があるわけではなく、上記の部分槽を、単に槽と記してもよく、したがって図5の成膜装置50は、3つの槽51a,51b,51cが雰囲気制御の途切れなく配置されている、とみることができる。   Next, the manufacturing method of said thin film lithium secondary battery is demonstrated. FIG. 5 is a diagram showing an apparatus 50 used for forming the layers 2, 3, and 4. In this manufacturing method, one tank 51 whose atmosphere can be controlled is divided into three partial tanks 51a, 51b, 51c. A wall 55 having a ceiling side is provided between the partial tanks. The “partial tank” and the “tank” are not particularly distinguished from each other, and the above partial tank may be simply referred to as a tank. Therefore, the film forming apparatus 50 of FIG. 5 includes three tanks 51a and 51b. , 51c can be regarded as being arranged without interruption of the atmosphere control.

基板1が部分槽を移動する際、途中で外部雰囲気にさらされることはない。最初の第1部分槽51aには、LiS61、P62、硫黄63、銅64の各蒸着材を配置する。また第2部分槽51bには、LiS61、P62の蒸着材を、さらに第3部分槽51cには、Li65の蒸着材を配置する。上記の各蒸着材からの蒸発物は、各槽において排気可能としておく。各蒸着源からの蒸発を開始して、蒸発が十分安定した後、基板1を第1部分槽51aに搬入し、第2部分槽51bに移動させながら、正極活物質の硫黄2a、触媒作用を奏する硫化銅2b、固体電解質(LiS−P)2cの各微粒子が緻密に充填された正極層2を形成する。移動速度は、形成される正極層2の厚みに合わせて調整する。 When the substrate 1 moves through the partial tank, it is not exposed to the external atmosphere on the way. In the first first partial tank 51a, vapor deposition materials of Li 2 S61, P 2 S 5 62, sulfur 63, and copper 64 are arranged. In addition, a vapor deposition material of Li 2 S61 and P 2 S 5 62 is disposed in the second partial tank 51b, and a vapor deposition material of Li65 is disposed in the third partial tank 51c. Evaporated material from each of the above-mentioned vapor deposition materials can be exhausted in each tank. After evaporation from each vapor deposition source is started and the evaporation is sufficiently stabilized, the substrate 1 is carried into the first partial tank 51a and moved to the second partial tank 51b. A positive electrode layer 2 in which fine particles of copper sulfide 2b and solid electrolyte (Li 2 S—P 2 S 5 ) 2c are densely packed is formed. The moving speed is adjusted according to the thickness of the positive electrode layer 2 to be formed.

第2部分槽51bに移動してきた基板1の正極層2の上には、固体電解質層(LiS−P)3が形成される。その際、第1部分槽51aと第2部分槽51bとの間に立つ壁55の高さに応じて、正極層2と負極層3との間に、上述の傾斜範囲Zが形成される。傾斜範囲Zの厚みは、壁55の高さが低いほど厚くなりやすい。次いで、第3部分槽51cに移動して、固体電解質層3上にリチウムの負極層が形成される。通常、第2部分槽51bと第3部分槽51cとの間の壁55は、高くして、傾斜範囲が生じないようにするが、生じてもかまわない。なお、図5に示す成膜装置50を用いる場合、いずれかの層間界面に傾斜範囲Zが生じるように説明したが、図5から分かるように、壁55の高さを高くすると、各部分槽からの蒸発物が隣接する部分槽に照射される可能性は小さくなる。このため、実質的に傾斜範囲Zが認められない場合が生じてもよい。 A solid electrolyte layer (Li 2 S—P 2 S 5 ) 3 is formed on the positive electrode layer 2 of the substrate 1 that has moved to the second partial tank 51b. In that case, the above-mentioned inclination range Z is formed between the positive electrode layer 2 and the negative electrode layer 3 according to the height of the wall 55 standing between the first partial tank 51a and the second partial tank 51b. The thickness of the inclined range Z tends to increase as the height of the wall 55 decreases. Next, the third partial tank 51 c is moved to form a lithium negative electrode layer on the solid electrolyte layer 3. Usually, the wall 55 between the second partial tank 51b and the third partial tank 51c is raised so as not to cause an inclined range, but it may be generated. In the case where the film forming apparatus 50 shown in FIG. 5 is used, it has been described that the inclined range Z is generated at any interlayer interface. However, as can be seen from FIG. The possibility that the evaporate from is irradiated to the adjacent partial tank is reduced. For this reason, the case where the inclination range Z is not substantially recognized may arise.

図5のような成膜装置50を用いることによって、全固体の薄膜リチウム二次電池を量産ベースで製造することが容易となる。また、傾斜範囲Zの生成によって、特有の作用効果、たとえば正極層3と固体電解質層4との接触抵抗を非常に低くできるなど、を得ることができる。   By using the film forming apparatus 50 as shown in FIG. 5, it becomes easy to manufacture an all-solid-state thin film lithium secondary battery on a mass production basis. In addition, by generating the tilt range Z, it is possible to obtain specific operational effects, for example, the contact resistance between the positive electrode layer 3 and the solid electrolyte layer 4 can be very low.

なお、実施の形態1および2に共通して、気相法としては、蒸着法にてプラズマを生成させるイオンプレーティング法のほか、スパッタ法、レーザアブレーション法のいずれかによって、成膜することができる。その際に、ターゲットの調整等を適宜行うこととする。   In addition, in common with the first and second embodiments, as a vapor phase method, a film can be formed by any one of a sputtering method and a laser ablation method in addition to an ion plating method in which plasma is generated by an evaporation method. it can. At that time, target adjustment and the like are performed as appropriate.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の正極、薄膜リチウム二次電池およびその製造方法によれば、その正極層における微細で緻密な組織に基づき、また各層の間の密着性が保たれ、かつ酸化物密度が低いので、電極単位重量当たりの電池容量を十分大きくし、かつ電流密度も高くすることができる。   According to the positive electrode, the thin film lithium secondary battery and the manufacturing method thereof of the present invention, the electrode is based on the fine and dense structure in the positive electrode layer, the adhesion between the layers is maintained, and the oxide density is low. The battery capacity per unit weight can be increased sufficiently and the current density can be increased.

本発明の実施の形態1における薄膜二次電池の本体部を示す図である。It is a figure which shows the main-body part of the thin film secondary battery in Embodiment 1 of this invention. 図1の薄膜リチウム二次電池の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the thin film lithium secondary battery of FIG. 図2の製造方法における蒸着源の種類を減らす方法を説明するための図である。It is a figure for demonstrating the method to reduce the kind of vapor deposition source in the manufacturing method of FIG. 本発明の実施の形態2における薄膜二次電池の本体部を示す図である。It is a figure which shows the main-body part of the thin film secondary battery in Embodiment 2 of this invention. 図4の薄膜リチウム二次電池の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the thin film lithium secondary battery of FIG.

符号の説明Explanation of symbols

1 基板(集電体)、2 正極層、2a 正極活物質粒子、2b 金属硫化物粒子(触媒)、2c 固体電解質粒子、3 固体電解質層、4 負極層、10 全固体電池または電池本体部、50 成膜装置、51 槽、51a〜51c 部分槽、55 壁、61 蒸着源LiS、62 蒸着源P、63 蒸着源硫黄、64 蒸着源銅、65 蒸着源リチウム、66 蒸着源リン、Z 傾斜範囲。 1 substrate (current collector), 2 positive electrode layer, 2a positive electrode active material particle, 2b metal sulfide particle (catalyst), 2c solid electrolyte particle, 3 solid electrolyte layer, 4 negative electrode layer, 10 all solid battery or battery body, 50 Deposition source, 51 tank, 51 a to 51 c Partial tank, 55 Wall, 61 Deposition source Li 2 S, 62 Deposition source P 2 S 5 , 63 Deposition source sulfur, 64 Deposition source copper, 65 Deposition source lithium, 66 Deposition source Phosphorus, Z tilt range.

Claims (6)

気相法によって基板上に、順に、正極層、固体電解質層および負極層を形成する薄膜リチウム二次電池の製造方法であって、
雰囲気制御可能な槽内に、第1の硫化物である硫化リチウム、第2硫化物である非金属硫化物、硫黄、硫化物を形成する非リチウム金属、およびリチウムの各蒸着材を配置し、
前記基板上に、前記硫化リチウム、第2硫化物、硫黄および非リチウム金属からの蒸発物を蒸着して正極層を形成し、
次に、硫化リチウムおよび第2硫化物からの蒸発物を、前記正極層上に蒸着して、固体電解質層を形成し、
次いで、前記リチウムからの蒸発物を、前記固体電解質層上に蒸着して、負極層を形成することを特徴とする、薄膜リチウム二次電池の製造方法。
A method for producing a thin film lithium secondary battery, in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are sequentially formed on a substrate by a vapor phase method,
In a tank capable of controlling the atmosphere, each of the vapor deposition materials of lithium sulfide as the first sulfide, nonmetal sulfide as the second sulfide, sulfur, non-lithium metal forming sulfide, and lithium is disposed.
A positive electrode layer is formed on the substrate by evaporating evaporates from the lithium sulfide, the second sulfide, sulfur, and a non-lithium metal;
Next, evaporates from lithium sulfide and second sulfide are deposited on the positive electrode layer to form a solid electrolyte layer,
Next, a method for producing a thin film lithium secondary battery, wherein an evaporant from the lithium is deposited on the solid electrolyte layer to form a negative electrode layer.
前記第1の硫化物の硫化リチウムの蒸着材を、前記硫黄の蒸着材および前記リチウムの蒸着材により置き換え、また前記第2の硫化物の非金属硫化物の蒸着材を、その非金属硫化物を構成する非金属の蒸着材および前記硫黄の蒸着材により置き換え、前記正極層の形成においては前記硫黄、前記リチウム、前記非金属、および前記非リチウム金属の蒸着材を用い、前記固体電解質層の形成においては前記リチウム、前記非金属、および前記硫黄の蒸着材を用い、前記負極層の形成においては前記リチウムの蒸着材を用いることを特徴とする、請求項1に記載の薄膜リチウム二次電池の製造方法。   The first sulfide lithium sulfide vapor deposition material is replaced with the sulfur vapor deposition material and the lithium vapor deposition material, and the second sulfide non-metal sulfide vapor deposition material is replaced with the non-metal sulfide. In the formation of the positive electrode layer, the sulfur, the lithium, the non-metal, and the non-lithium metal vapor-depositing material are used to form the solid electrolyte layer. 2. The thin film lithium secondary battery according to claim 1, wherein the lithium, the non-metal, and the sulfur vapor deposition material are used for forming, and the lithium vapor deposition material is used for forming the negative electrode layer. 3. Manufacturing method. 前記雰囲気制御可能な槽を、前記基板を移動できる構造にしながら少なくとも3つの部分槽に分け、第1の部分槽には前記正極層を形成するために用いる蒸着材を配置し、第2の部分槽には前記固体電解質槽を形成するために用いる蒸着材を配置し、第3の部分槽には前記負極層を形成するために用いる蒸着材を配置して、前記基板を前記第1部分槽から第2部分槽を経て第3部分槽に移動させながら、前記第1の部分槽では前記基板上に前記正極層を形成し、前記第2の部分槽では前記正極層上に前記固体電解質槽を形成し、前記第3の部分槽では前記負極層を形成することを特徴とする、請求項1または2に記載の薄膜リチウム二次電池の製造方法。   The atmosphere-controllable tank is divided into at least three partial tanks with a structure capable of moving the substrate, and a vapor deposition material used for forming the positive electrode layer is disposed in the first partial tank, and the second part A vapor deposition material used for forming the solid electrolyte tank is disposed in the tank, a vapor deposition material used for forming the negative electrode layer is disposed in the third partial tank, and the substrate is disposed in the first partial tank. The positive electrode layer is formed on the substrate in the first partial tank, and the solid electrolyte tank is formed on the positive electrode layer in the second partial tank while being moved from the second partial tank to the third partial tank. The method for manufacturing a thin film lithium secondary battery according to claim 1, wherein the negative electrode layer is formed in the third partial tank. 前記第1〜第3の部分槽は、該部分槽の間に配置され、前記基板が移動の際に通る天井側があいた壁により区分けされていることを特徴とする、請求項3に記載の薄膜リチウム二次電池の製造方法。   4. The thin film according to claim 3, wherein the first to third partial tanks are arranged between the partial tanks, and are divided by a wall having a ceiling side through which the substrate passes during movement. A method for producing a lithium secondary battery. 薄膜の正極層、薄膜の固体電解質層および薄膜の負極層を備える薄膜リチウム二次電池であって、
正極となる硫黄、非リチウム金属硫化物、および(リチウム硫化物−非金属硫化物)の硫化物系固体電解質を有する正極層と、
前記正極層上に位置する、(リチウム硫化物−非金属硫化物)の固体電解質層と、
前記固体電解質層上に位置する、リチウムの負極層とを備え、
前記正極層において、少なくとも硫黄粒子は、粒径1μm以下であり、均一に分散していることを特徴とする、薄膜リチウム二次電池。
A thin film lithium secondary battery comprising a thin film positive electrode layer, a thin film solid electrolyte layer, and a thin film negative electrode layer,
A positive electrode layer having sulfur as a positive electrode, a non-lithium metal sulfide, and a sulfide-based solid electrolyte of (lithium sulfide-nonmetal sulfide);
A solid electrolyte layer of (lithium sulfide-nonmetal sulfide) located on the positive electrode layer;
A lithium negative electrode layer located on the solid electrolyte layer;
The thin film lithium secondary battery, wherein in the positive electrode layer, at least sulfur particles have a particle diameter of 1 μm or less and are uniformly dispersed.
前記正極層と前記固体電化質層との界面、および前記固体電化質層と前記負極層との界面の少なくとも一方において、組成が連続的に変化する厚み範囲があることを特徴とする、請求項5に記載の薄膜リチウム二次電池。   The at least one of the interface between the positive electrode layer and the solid electrolyte layer and the interface between the solid electrolyte layer and the negative electrode layer has a thickness range in which the composition continuously changes. 5. The thin film lithium secondary battery according to 5.
JP2007172557A 2007-06-29 2007-06-29 Thin film lithium secondary battery and manufacturing method therefor Pending JP2009009905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007172557A JP2009009905A (en) 2007-06-29 2007-06-29 Thin film lithium secondary battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007172557A JP2009009905A (en) 2007-06-29 2007-06-29 Thin film lithium secondary battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2009009905A true JP2009009905A (en) 2009-01-15

Family

ID=40324771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007172557A Pending JP2009009905A (en) 2007-06-29 2007-06-29 Thin film lithium secondary battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2009009905A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035602A1 (en) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
JP2010232085A (en) * 2009-03-27 2010-10-14 Daihatsu Motor Co Ltd Electrode active material, secondary battery and manufacturing method of electrode active material
JP2010245024A (en) * 2009-03-16 2010-10-28 Toyota Motor Corp All solid-state secondary battery
WO2011064842A1 (en) * 2009-11-25 2011-06-03 トヨタ自動車株式会社 Process for producing electrode laminate and electrode laminate
JP2014029791A (en) * 2012-07-31 2014-02-13 Tdk Corp Lithium ion secondary battery
JP2014170655A (en) * 2013-03-04 2014-09-18 Hitachi Zosen Corp Electrode for all-solid-state battery and all-solid-state battery
US20170146001A1 (en) * 2014-06-27 2017-05-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas compression device
KR20200016090A (en) * 2018-08-06 2020-02-14 한국기술교육대학교 산학협력단 Lithium-sulfur battery comprising sulfur-deposited seperator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244960A (en) * 1985-08-22 1987-02-26 Mitsubishi Electric Corp Thin film secondary battery manufacturing equipment
JPH06275313A (en) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd Lithium battery
JPH06275322A (en) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd Lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244960A (en) * 1985-08-22 1987-02-26 Mitsubishi Electric Corp Thin film secondary battery manufacturing equipment
JPH06275313A (en) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd Lithium battery
JPH06275322A (en) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd Lithium battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035602A1 (en) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
US9337476B2 (en) 2008-09-24 2016-05-10 National Institute Of Advanced Industrial Science And Technology Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
JP2010245024A (en) * 2009-03-16 2010-10-28 Toyota Motor Corp All solid-state secondary battery
JP2010232085A (en) * 2009-03-27 2010-10-14 Daihatsu Motor Co Ltd Electrode active material, secondary battery and manufacturing method of electrode active material
WO2011064842A1 (en) * 2009-11-25 2011-06-03 トヨタ自動車株式会社 Process for producing electrode laminate and electrode laminate
CN102187500A (en) * 2009-11-25 2011-09-14 丰田自动车株式会社 Process for producing electrode laminate and electrode laminate
US8524393B2 (en) 2009-11-25 2013-09-03 Toyota Jidosha Kabushiki Kaisha Method for producing electrode laminate and electrode laminate
JP2014029791A (en) * 2012-07-31 2014-02-13 Tdk Corp Lithium ion secondary battery
JP2014170655A (en) * 2013-03-04 2014-09-18 Hitachi Zosen Corp Electrode for all-solid-state battery and all-solid-state battery
US20170146001A1 (en) * 2014-06-27 2017-05-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas compression device
KR20200016090A (en) * 2018-08-06 2020-02-14 한국기술교육대학교 산학협력단 Lithium-sulfur battery comprising sulfur-deposited seperator
KR102136680B1 (en) * 2018-08-06 2020-07-22 한국기술교육대학교 산학협력단 Lithium-sulfur battery comprising sulfur-deposited seperator

Similar Documents

Publication Publication Date Title
JP2009009905A (en) Thin film lithium secondary battery and manufacturing method therefor
Wu et al. Lithiophilic Cu‐CuO‐Ni hybrid structure: advanced current collectors toward stable lithium metal anodes
Lin et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism
US11078565B2 (en) Thermal evaporation process for manufacture of solid state battery devices
Li et al. A material perspective of rechargeable metallic lithium anodes
Kazyak et al. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments
US8784512B2 (en) Thin film battery synthesis by directed vapor deposition
JP5151692B2 (en) Lithium battery
Ping et al. Printable, high-performance solid-state electrolyte films
JP2017152324A (en) All-solid-state battery
JP2012512505A (en) 3D battery with hybrid nanocarbon layer
JP2008152925A (en) Battery structure and lithium secondary battery using the same
US11111576B2 (en) Method for producing nanostructured layers
Liu et al. Toward 3D solid-state batteries via atomic layer deposition approach
JP2009277381A (en) Lithium battery
Liang et al. Research progress of all solid-state thin film lithium Battery
Shen et al. Ultrafast Electrochemical Growth of Lithiophilic Nano‐Flake Arrays for Stable Lithium Metal Anode
Meng et al. High‐Performance High‐Loading Lithium–Sulfur Batteries by Low Temperature Atomic Layer Deposition of Aluminum Oxide on Nanophase S Cathodes
WO2015146315A1 (en) All-solid battery
Zheng et al. Ag x Zn y Protective Coatings with Selective Zn2+/H+ Binding Enable Reversible Zn Anodes
Zheng et al. Microstructure Engineered Silicon Alloy Anodes for Lithium‐Ion Batteries: Advances and Challenges
Polat et al. Multi-layered Cu/Si nanorods and its use for lithium ion batteries
Ding et al. Review on nanomaterials for next‐generation batteries with lithium metal anodes
JP2019091686A (en) Electrode material and battery using the same
Keles et al. Superlattice-structured films by magnetron sputtering as new era electrodes for advanced lithium-ion batteries

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904