JP5950149B2 - A method for producing a fiber-reinforced resin structure. - Google Patents

A method for producing a fiber-reinforced resin structure. Download PDF

Info

Publication number
JP5950149B2
JP5950149B2 JP2011213974A JP2011213974A JP5950149B2 JP 5950149 B2 JP5950149 B2 JP 5950149B2 JP 2011213974 A JP2011213974 A JP 2011213974A JP 2011213974 A JP2011213974 A JP 2011213974A JP 5950149 B2 JP5950149 B2 JP 5950149B2
Authority
JP
Japan
Prior art keywords
prepreg
smc
resin composition
fiber
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011213974A
Other languages
Japanese (ja)
Other versions
JP2013072055A (en
Inventor
祐二 風早
祐二 風早
浩一 秋山
浩一 秋山
真一郎 古屋
真一郎 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48476817&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5950149(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2011213974A priority Critical patent/JP5950149B2/en
Publication of JP2013072055A publication Critical patent/JP2013072055A/en
Application granted granted Critical
Publication of JP5950149B2 publication Critical patent/JP5950149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、繊維強化樹脂製構造体の製造方法に関する。   The present invention relates to a method for manufacturing a fiber-reinforced resin structure.

繊維強化樹脂製の構造体は、高強度かつ高剛性であるという点から、スポーツやレジャー用途、航空機等の産業用途といった幅広い分野で利用されている。また、このような繊維強化樹脂製構造体は、圧縮成形により製造する方法が広く行われている。成形材料としては、強化繊維に熱硬化性樹脂組成物を含浸したプリプレグや、シートモールディングコンパウンド(以下、SMCという)等が用いられている。   A structure made of fiber reinforced resin is used in a wide range of fields such as sports and leisure applications, and industrial applications such as aircraft, because it has high strength and high rigidity. In addition, such a fiber-reinforced resin structure is widely manufactured by compression molding. As the molding material, a prepreg in which a reinforcing fiber is impregnated with a thermosetting resin composition, a sheet molding compound (hereinafter referred to as SMC), or the like is used.

SMCは繊維長が短いため、一般にプリプレグに比べて繊維強化樹脂製構造体の強度が低くなるものの、凸条等の複雑な形状を形成するのに好適である。SMCを用いた繊維強化樹脂製構造体の製造では、例えば、図2に示すような、上型21と、凸条を形成する凸条用キャビティ23、24が設けられた下型22とを備える圧縮成形用金型20を用いる。まず、SMCをそれぞれの凸条用キャビティ23、24に充填する量ごとに細かく切断し、それらをそれぞれの凸条用キャビティ23、24の部分に必要に応じて積層して配置する。その後、そのSMC上に基板を形成するプリプレグをさらに配置し、圧縮成形用金型20内でSMCとプリプレグとを加熱、加圧して圧縮成形する(たとえば特許文献1)。   Since SMC has a short fiber length, the strength of a fiber reinforced resin structure is generally lower than that of a prepreg, but it is suitable for forming a complicated shape such as a ridge. In the manufacture of a fiber reinforced resin structure using SMC, for example, as shown in FIG. 2, an upper die 21 and a lower die 22 provided with ridge cavities 23 and 24 for forming ridges are provided. A compression mold 20 is used. First, the SMC is finely cut for each amount to fill the respective ridge cavities 23 and 24, and these are stacked and disposed in the portions of the respective ridge cavities 23 and 24 as necessary. Thereafter, a prepreg for forming a substrate is further arranged on the SMC, and the SMC and the prepreg are heated and pressed in the compression molding die 20 for compression molding (for example, Patent Document 1).

特開2004−339778号公報JP 2004-339778 A

しかし、特許文献1に記載されたような方法ではSMCで形成されている凸条部分にプリプレグの樹脂が流入し、表面に薄膜を形成して外観が悪くなってしまう。また、薄膜が粉状となり、精密機器などの電気部品にショートを生じる懸念があった。   However, in the method as described in Patent Document 1, the resin of the prepreg flows into the ridge portion formed of SMC, and a thin film is formed on the surface to deteriorate the appearance. In addition, there is a concern that the thin film becomes powdery and short-circuits in electrical parts such as precision instruments.

そこで、本発明では、2つ以上のプリプレグから形成される繊維強化樹脂製構造体を高い生産効率で安定して、高品質に製造する方法提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing a fiber-reinforced resin structure formed from two or more prepregs stably with high production efficiency and with high quality.

本発明の繊維強化樹脂製構造体の製造方法は、強化繊維と熱硬化性樹脂組成物とを含むプリプレグ(A)の表面の一部に、
強化繊維と熱硬化性樹脂組成物とを含む、凸条を形成するSMC(B)を凸条を形成する部位に配置して、複合材料を一体成形する複合材料の製造方法において、
CTaを、前記プリプレグ(A)のキュアタイム、CTbを、前記SMC(B)のキュアタイムとしたとき、
次の式(1)を満たすプリプレグ(A)、SMC(B)を用いる複合材料の製造方法。ただし、前記プリプレグ(A)に含まれる熱硬化性樹脂組成物と前記SMC(B)に含まれる熱硬化性樹脂組成物が同一である場合を除く。
0.8≦(CTb/CTa)≦1.3・・・・・・(1)
In the method for producing a fiber-reinforced resin structure of the present invention, a part of the surface of the prepreg (A) containing the reinforcing fiber and the thermosetting resin composition,
In the method for producing a composite material, comprising a reinforcing fiber and a thermosetting resin composition, SMC (B) for forming a ridge is disposed at a portion for forming the ridge, and the composite material is integrally molded.
When CTa is the cure time of the prepreg (A) and CTb is the cure time of the SMC (B),
The manufacturing method of the composite material using the prepreg (A) and SMC (B) which satisfy | fill following formula (1). However, the case where the thermosetting resin composition contained in the prepreg (A) and the thermosetting resin composition contained in the SMC (B) are the same is excluded.
0.8 ≦ (CTb / CTa) ≦ 1.3 (1)

本発明の製造方法によれば、強化繊維と熱硬化性樹脂組成物とを含むプリプレグ(A)の表面の一部に、強化繊維と熱硬化性樹脂組成物とを含む、凸条を形成するSMC(B)を凸条を形成する部位に配置して、複合材料を一体成形する複合材料の製造する際に生じる、薄膜の形成を防止することで、高強度で品質の良好な、繊維強化樹脂製構造体を高い生産効率で安定して製造できる。 According to the production method of the present invention, the ridges containing the reinforcing fibers and the thermosetting resin composition are formed on a part of the surface of the prepreg (A) containing the reinforcing fibers and the thermosetting resin composition. SMC (B) is placed in the area where the ridges are formed to prevent the formation of a thin film that occurs when producing a composite material that integrally molds the composite material, thereby strengthening the fiber with high strength and good quality. Resin structures can be manufactured stably with high production efficiency.

本発明の製造方法で製造される一体成形された複合材料の一例である。第1実施形態の製造方法により製造された繊維強化樹脂製構造体を示した斜視図である。It is an example of the integrally molded composite material manufactured with the manufacturing method of this invention. It is the perspective view which showed the structure made from fiber reinforced resin manufactured by the manufacturing method of 1st Embodiment. 本発明の製造方法で用いることができる金型の一例である。第1実施形態の製造方法に用いる圧縮成形用金型を示した断面図である。It is an example of the metal mold | die which can be used with the manufacturing method of this invention. It is sectional drawing which showed the metal mold | die for compression molding used for the manufacturing method of 1st Embodiment.

以下、本発明について、詳細に説明する。
「繊維強化樹脂含浸体」
本発明の製造方法に使用できる繊維強化樹脂含浸体は、強化繊維に熱硬化性樹脂組成物が含浸されてなる繊維強化複合材料である。かかる繊維強化複合材料としては、たとえば、実質的に連続した強化繊維に熱硬化性樹脂組成物を含浸したもの(プリプレグ)、短繊維状の強化繊維に熱硬化性樹脂組成物を含浸したもの(SMC)が挙げられる。なかでも、繊維強化樹脂製構造体の強度向上に優れることから、プリプレグが好ましい。プリプレグの形態は、特に限定されず、たとえば、強化繊維を一方向に引き揃えたUDプリプレグ、強化繊維を製織した織物プリプレグ等が挙げられる。また、繊維強化樹脂製構造体の意匠性を高めるために、繊維強化樹脂製構造体の表面は織物プリプレグとし、繊維強化樹脂製構造体の内部はUDプリプレグとする等、複数のプリプレグを併用することもできる。一方、SMCは繊維長が短いため一般にプリプレグに比べて繊維強化樹脂製構造体の強度が低くなるものの、凸条等の複雑な形状を形成するのに好適である。本発明の繊維強化樹脂製構造体の製造方法では、繊維強化樹脂含浸体(A)に強度向上に優れる連続した強化繊維に熱硬化性樹脂組成物を含浸したプリプレグと、繊維強化樹脂含浸体(B)に凸条等の複雑な形状の形成に優れる短繊維状の強化繊維に熱硬化性樹脂組成物を含浸したSMCを併用することが好ましい。
Hereinafter, the present invention will be described in detail.
"Fiber-reinforced resin impregnated body"
The fiber reinforced resin impregnated body that can be used in the production method of the present invention is a fiber reinforced composite material in which a reinforced fiber is impregnated with a thermosetting resin composition. Examples of such fiber-reinforced composite materials include substantially continuous reinforcing fibers impregnated with a thermosetting resin composition (prepreg), short fibrous reinforcing fibers impregnated with a thermosetting resin composition ( SMC). Especially, since it is excellent in the intensity | strength improvement of the structure made from a fiber reinforced resin, a prepreg is preferable. The form of the prepreg is not particularly limited, and examples thereof include a UD prepreg in which reinforcing fibers are aligned in one direction, and a woven prepreg in which reinforcing fibers are woven. In order to enhance the design of the fiber reinforced resin structure, a plurality of prepregs are used in combination, such as a woven prepreg on the surface of the fiber reinforced resin structure and a UD prepreg inside the fiber reinforced resin structure. You can also. On the other hand, SMC is suitable for forming a complicated shape such as a ridge although the fiber length is short and generally the strength of the fiber reinforced resin structure is lower than that of the prepreg. In the method for producing a fiber-reinforced resin structure according to the present invention, a prepreg obtained by impregnating a continuous reinforcing fiber excellent in strength improvement into a fiber-reinforced resin impregnated body (A) with a thermosetting resin composition, and a fiber-reinforced resin impregnated body ( It is preferable to use together SMC impregnated with a thermosetting resin composition in short fiber-like reinforcing fibers excellent in the formation of complex shapes such as ridges in B).

「強化繊維」
本発明の製造方法に使用できるプリプレグやSMCに含まれる強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、炭化珪素繊維、高強度ポリエチレン、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ナイロン繊維、ステンレススチール繊維等が挙げられ、なかでも軽量で剛性が高いことから炭素繊維が好ましい。また、強化繊維としては、長繊維及び短繊維が挙げられ、SMCに含まれる強化繊維では通常長さが25mm程度の短繊維が用いられる。また、プリプレグでは、剛性の点から長繊維が好ましい。長繊維の形態としては、一方向に揃えられたもの、長繊維からなる織物等が挙げられる。
"Reinforcing fiber"
Examples of the reinforcing fiber contained in the prepreg or SMC that can be used in the production method of the present invention include carbon fiber, glass fiber, aramid fiber, boron fiber, silicon carbide fiber, high-strength polyethylene, and polyparaphenylene benzobisoxazole (PBO). Examples thereof include fiber, nylon fiber, and stainless steel fiber. Among these, carbon fiber is preferable because it is lightweight and has high rigidity. The reinforcing fibers include long fibers and short fibers, and the reinforcing fibers included in the SMC are usually short fibers having a length of about 25 mm. In the prepreg, long fibers are preferable from the viewpoint of rigidity. Examples of the form of the long fiber include one aligned in one direction, a woven fabric made of long fibers, and the like.

「熱硬化性樹脂」
本発明の製造方法に使用できるプリプレグやSMCに含まれる熱硬化性樹脂組成物としては、例えば、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、マレイミド樹脂、フェノール樹脂等が挙げられる。強化繊維として炭素繊維を用いる場合は、炭素繊維との接着性の点からエポキシ樹脂やビニルエステル樹脂が望ましい。エポキシ樹脂組成としては、エポキシ樹脂成分、硬化剤成分以外に、エラストマー成分を含有することが更に好ましい。エラストマー成分としてはCarboxy-Terminated Butadiene Acrylonitrile Copolymer(CTBN)等が挙げられる。
また、プリプレグに用いられる熱硬化性樹脂と、SMCに用いられる熱硬化性樹脂とは、同じであっても異なっていても良いが、一般に硬化後の強度を高くできることからプリプレグにはエポキシ樹脂が好ましく、SMCには硬化を早くできることからビニルエステル樹脂が好ましい。
"Thermosetting resin"
Examples of the thermosetting resin composition contained in the prepreg and SMC that can be used in the production method of the present invention include epoxy resins, vinyl ester resins, unsaturated polyester resins, polyimide resins, maleimide resins, and phenol resins. When carbon fibers are used as the reinforcing fibers, epoxy resins and vinyl ester resins are desirable from the viewpoint of adhesiveness with carbon fibers. As an epoxy resin composition, it is more preferable to contain an elastomer component in addition to the epoxy resin component and the curing agent component. Examples of the elastomer component include carboxylic-terminated butadiene acrylonitrile polymer (CTBN).
In addition, the thermosetting resin used for the prepreg and the thermosetting resin used for the SMC may be the same or different. However, since the strength after curing can generally be increased, an epoxy resin is used for the prepreg. Preferably, vinyl ester resin is preferable for SMC because it can be cured quickly.

「複合材料の製造方法」
複雑な形状の複合材料を得るために、その形状に合わせて複数の繊維強化樹脂含浸体を積層したり、組み合わせたりすることが行われている。特に強化繊維と熱硬化性樹脂組成物とを含むプリプレグ(A)の表面の一部に、強化繊維と熱硬化性樹脂組成物とを含むSMC(B)を配置して、複合材料を一体成形する複合材料の製造方法については、例えば、プリプレグ(A)を複雑な形状に成形し、その表面の一部に、SMC(B)を配置して、補強したり、さらに複雑な形状としたりすることが行われる。
"Production method of composite materials"
In order to obtain a composite material having a complicated shape, a plurality of fiber reinforced resin impregnated bodies are laminated or combined in accordance with the shape. In particular, SMC (B) containing reinforcing fiber and thermosetting resin composition is arranged on a part of the surface of prepreg (A) containing reinforcing fiber and thermosetting resin composition, and the composite material is integrally formed. As for the manufacturing method of the composite material, for example, the prepreg (A) is formed into a complicated shape, and SMC (B) is arranged on a part of the surface to be reinforced or made into a more complicated shape. Is done.

強化繊維と熱硬化性樹脂組成物とを含むプリプレグ(A)の表面の一部に、強化繊維と熱硬化性樹脂組成物とを含む、凸条を形成するSMC(B)を凸条を形成する部位に配置して、複合材料を一体成形する複合材料の製造方法において、前記プリプレグ(A)のキュアタイム(以下、CTという)をCTa、前記SMC(B)のCTをCTbとしたとき、(CTb/CTa)が、0.8〜1.3の範囲であると、前記SMC(B)で形成されている部分にプリプレグ(A)の樹脂が流入し、薄膜を形成することがなく好ましい。1.3を超えると前記SMC(B)で形成されている部分の硬化が不十分になることがあるが、高い生産効率で繊維強化樹脂製構造体を得られないこともないので好ましい。さらに好ましいのは、0.8〜1.2の範囲である。 SMC (B) is formed on a part of the surface of the prepreg (A) containing the reinforcing fiber and the thermosetting resin composition, and the reinforcing fiber and the thermosetting resin composition are formed on the surface of the prepreg (A). In the method for producing a composite material in which the composite material is integrally formed by placing the composite material in a site to be cured, when the cure time (hereinafter referred to as CT) of the prepreg (A) is CTa and the CT of the SMC (B) is CTb, When (CTb / CTa) is in the range of 0.8 to 1.3, the resin of the prepreg (A) flows into the portion formed of the SMC (B), which is preferable without forming a thin film. . If it exceeds 1.3, curing of the portion formed with the SMC (B) may be insufficient, but it is preferable because a fiber-reinforced resin structure cannot be obtained with high production efficiency. More preferred is a range of 0.8 to 1.2.

(CTの測定方法)
前記プリプレグ(A)のCT:CTa、前記SMC(B)のCT:CTbはそれぞれ次の方法で求めた。
まず、CTは厚さ2mm、長さ100mm、幅100mmのキャビティを持ち成形板の中央の温度が測定可能な金型を用いて、金型温度140℃、成形圧力8MPaとし、所定量のサンプルを金型の中央にチャージし、素早く型を閉じ、サンプルの温度変化を記録し発熱ピークが観測されたら、測定を終了する。CTは90℃から発熱ピークまでの時間(sec)を読み取る。
(CT measurement method)
CT: CTa of the prepreg (A) and CT: CTb of the SMC (B) were determined by the following methods, respectively.
First, CT uses a mold that has a cavity with a thickness of 2 mm, a length of 100 mm, and a width of 100 mm, and can measure the temperature at the center of the molding plate. The mold temperature is 140 ° C. and the molding pressure is 8 MPa. Charge the center of the mold, quickly close the mold, record the temperature change of the sample, and when the exothermic peak is observed, stop the measurement. CT reads the time (sec) from 90 ° C. to the exothermic peak.

[第1実施形態]
以下、本発明の製造方法の第1実施形態として、図1に例示する繊維強化樹脂製構造体10(以下、構造体10という)を製造する方法について説明する。
[First Embodiment]
Hereinafter, as a first embodiment of the manufacturing method of the present invention, a method for manufacturing a structure 10 made of fiber reinforced resin (hereinafter referred to as structure 10) illustrated in FIG. 1 will be described.

(繊維強化樹脂製構造体)
構造体10は、図1に示すように、長尺の平板状の基板11(以下、基板11という)と、基板11の片面(同一面)の幅方向の両側に該基板11の長手方向に沿って形成された断面三角状の凸条12、13とからなる。
(Fiber-reinforced resin structure)
As shown in FIG. 1, the structure 10 includes a long flat substrate 11 (hereinafter referred to as a substrate 11) and one side (same surface) of the substrate 11 on both sides of the width direction in the longitudinal direction of the substrate 11. Consists of ridges 12 and 13 having a triangular cross section formed along.

(圧縮成形用金型)
構造体10を製造する圧縮成形用金型20は、図2に示すように、相対移動が可能な上型21及び下型22を備えている。下型22には、構造体10の凸条12、13を成形する凸条用キャビティ23、24が設けられている。また、上型21と下型22とを近接させることにより、上型21と下型22との間に基板11を成形する平板用キャビティ25が形成される。
(Mold for compression molding)
As shown in FIG. 2, the compression mold 20 for manufacturing the structure 10 includes an upper mold 21 and a lower mold 22 that can be moved relative to each other. The lower mold 22 is provided with ridge cavities 23 and 24 for forming the ridges 12 and 13 of the structure 10. Further, by bringing the upper mold 21 and the lower mold 22 close to each other, a flat plate cavity 25 for forming the substrate 11 is formed between the upper mold 21 and the lower mold 22.

(製造方法)
本実施形態例の製造方法は、成形材料としてSMC及びプリプレグを使用し、圧縮成形用金型20の内部に、凸条12、13を形成するSMCを配置する工程(1)と、基板11を形成するプリプレグを配置する工程(2)と、圧縮成形用金型20内でSMCとプリプレグを加熱、加圧して圧縮成形する工程(3)とを含む。
(Production method)
In the manufacturing method of the present embodiment, SMC and prepreg are used as the molding material, and the SMC for forming the ridges 12 and 13 is placed inside the compression molding die 20 and the substrate 11 is disposed. A step (2) of arranging the prepreg to be formed, and a step (3) of heating and pressurizing and compressing the SMC and the prepreg in the compression mold 20.

工程(1)と工程(2)の順序は特に限定されず、下型凸条用キャビティ23、24上にSMCを配置し(工程(1))、その後、配置したSMC上に、必要な量のプリプレグを積層してプリプレグを配置する(工程(2))方法が考えられる。
特に好ましい方法は、圧縮成形用金型20の外で、必要な量のプリプレグを積層したプリプレグと、圧縮成形用金型20内に配置した際に凸条用キャビティ23と凸条用キャビティ24上に位置するように、プリプレグ上に積層されたSMCとを用意し、その後に、SMCが下型凸条用キャビティ23、24に接するようにSMCとプリプレグとを同時に圧縮成形用金型20内に配置する方法である(工程(1)と工程(2)を同時に行う)。この方法によれば、圧縮成形用金型20を予め圧縮成形時の温度まで加熱しておくことができるため、生産効率が高くなる。
The order of the step (1) and the step (2) is not particularly limited, and the SMC is arranged on the lower mold cavities 23 and 24 (step (1)), and then the necessary amount is placed on the arranged SMC. A method of arranging the prepregs and arranging the prepregs (step (2)) is conceivable.
Particularly preferable methods include a prepreg in which a necessary amount of prepregs are laminated outside the compression molding die 20, and on the protrusion cavities 23 and the ridge cavities 24 when placed in the compression molding die 20. SMC laminated on the prepreg so as to be positioned at the same time, and thereafter, the SMC and the prepreg are simultaneously placed in the compression mold 20 so that the SMC contacts the lower mold ridge cavities 23, 24. This is a method of arranging (step (1) and step (2) are performed simultaneously). According to this method, since the compression molding die 20 can be heated in advance to the temperature at the time of compression molding, the production efficiency is increased.

本実施形態の製造方法は、このように基板11の同一面の凸条12、13を形成する凸条用キャビティ23と凸条用キャビティ24上に、凸条12、13を形成するSMCを配置することを特徴とする。
配置されるSMCは、基板11に用いるプリプレグに対するCTの比率を0.8〜1.2とすることが特に好ましい。SMCのCTをプリプレグと同程度とすれば、良好な品質の構造体10をより安定に製造することができる。
In the manufacturing method of this embodiment, the SMC for forming the ridges 12 and 13 is arranged on the ridge cavities 23 and the ridge cavities 24 for forming the ridges 12 and 13 on the same surface of the substrate 11 as described above. It is characterized by doing.
As for SMC arrange | positioned, it is especially preferable that the ratio of CT with respect to the prepreg used for the board | substrate 11 shall be 0.8-1.2. If the CT of SMC is set to the same level as that of the prepreg, the structure 10 having good quality can be manufactured more stably.

SMCの使用量は、圧縮成形の際に圧縮成形用金型20の凸条用キャビティ23と凸条用キャビティ24にSMCが十分充填する事を考慮して、凸条12、13の成形に必要な量に設定することが好ましい。   The amount of SMC used is necessary for forming the ridges 12 and 13 in consideration of the sufficient filling of SMC into the ridge cavities 23 and the ridge cavities 24 of the compression mold 20 during compression molding. It is preferable to set to an appropriate amount.

以上説明した本実施形態の製造方法では、SMCで形成されている凸条部分にプリプレグの樹脂組成物が流入し、表面に薄膜を形成することが無いので、良好な品質の構造体10を安定して高い生産効率で製造する事が出来る。
また、成形材料としてSMCだけでなくプリプレグを用いているため、SMCのみで製造した繊維強化樹脂製構造体に比べて強度が高い。
In the manufacturing method of the present embodiment described above, the resin composition of the prepreg flows into the ridge portion formed of SMC, and a thin film is not formed on the surface. And can be manufactured with high production efficiency.
Moreover, since not only SMC but also a prepreg is used as a molding material, the strength is higher than that of a fiber reinforced resin structure manufactured only with SMC.

また、本発明の製造方法により製造する繊維強化樹脂製構造体の形状は、図示したものには限定されない。例えば、同一面に形成する凸条の数は4つ以上であってもよい。また、基板の凸条を形成する面は片面に限定されず、例えば、基板の両面に凸条を有する繊維強化樹脂製構造体であってもよい。この場合には、圧縮用金型内の下型にSMCを配置し、その上にプリプレグを配置し、さらにその上にSMCを配置するようにすればよく、SMCを配置する方法については第1実施形態と同じようにすればよい。また、凸条の形状は、断面三角状、断面矩形状、断面台形状のいずれであってもよく、それ以外の形状であってもよい。
また、基板の形状は、図示例のような平板状には限定されず、例えば、アーチ状の基板であってもよい。
Moreover, the shape of the fiber reinforced resin structure manufactured by the manufacturing method of the present invention is not limited to the illustrated one. For example, the number of ridges formed on the same surface may be four or more. Moreover, the surface which forms the protruding item | line of a board | substrate is not limited to one side, For example, the structure made from a fiber reinforced resin which has a protruding item | line on both surfaces of a board | substrate may be sufficient. In this case, the SMC may be disposed in the lower mold in the compression mold, the prepreg may be disposed thereon, and the SMC may be disposed thereon. What is necessary is just to carry out similarly to embodiment. Further, the shape of the ridges may be any of a triangular cross-section, a rectangular cross-section, and a trapezoidal cross-section, or other shapes.
Further, the shape of the substrate is not limited to a flat plate shape as shown in the drawing, and may be an arched substrate, for example.

以下、実施例及び比較例を示して本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。本実施例では、図2に例示した圧縮成形用金型20を用いて、図1に例示した構造体10の製造を行った。
(凸条部分の薄膜評価)
各例で得られた繊維強化樹脂製構造体の凸条部分の薄膜を目視により下記基準で評価した。
×:凸条部分に繊維強化樹脂含浸体の樹脂組成物が流入し薄膜を形成した。
○:凸条部分に繊維強化樹脂含浸体の樹脂組成物は流入しないで薄膜は形成しなかった。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited by the following description. In this example, the structure 10 illustrated in FIG. 1 was manufactured using the compression molding die 20 illustrated in FIG. 2.
(Evaluation of thin film on ridges)
The thin film of the protruding portion of the fiber reinforced resin structure obtained in each example was evaluated visually according to the following criteria.
X: The resin composition of the fiber reinforced resin impregnated body flowed into the ridge portion to form a thin film.
○: The resin composition of the fiber-reinforced resin impregnated body did not flow into the ridges, and no thin film was formed.

[実施例1]
プリプレグとして、TR391E250S(三菱レイヨン社製)を用意した。このプリプレグは、引張弾性率240GPa、引張強度4900MPaの炭素繊維を、目付けが250g/m となるように一方向に引き揃え、エポキシ樹脂組成物を含有量が30質量%となるように含浸させてなる一方向(UD)プリプレグである。ついで、このプリプレグを基板11(70mm×900mm)の投影形状に対して全周2.5mmずつ小さくなるように切り出し、これらを順次繊維方向が0°/90°/0°/90°/0°となるように5枚積層し、プリプレグ積層体を準備した。
また、凸条12、13を形成するのに必要な量のSMCを用意した。このSMCは、TR391E250Sに対するCT(キュアタイム)の比率が1.17で、1インチに切断した炭素繊維(CF)を、ビニルエステル樹脂組成物に含有量が53質量%となるように分散させたCF−SMCである。
[Example 1]
As a prepreg, TR391E250S (manufactured by Mitsubishi Rayon Co., Ltd.) was prepared. In this prepreg, carbon fibers having a tensile elastic modulus of 240 GPa and a tensile strength of 4900 MPa are aligned in one direction so that the basis weight is 250 g / m 2, and impregnated with an epoxy resin composition so that the content is 30% by mass. Is a unidirectional (UD) prepreg. Next, this prepreg is cut out so that the entire circumference is reduced by 2.5 mm with respect to the projected shape of the substrate 11 (70 mm × 900 mm), and the fiber direction is sequentially 0 ° / 90 ° / 0 ° / 90 ° / 0 °. Then, 5 sheets were laminated so that a prepreg laminate was prepared.
In addition, an amount of SMC necessary for forming the ridges 12 and 13 was prepared. In this SMC, the ratio of CT (cure time) to TR391E250S was 1.17, and carbon fibers (CF) cut into 1 inch were dispersed in the vinyl ester resin composition so that the content was 53% by mass. CF-SMC.

ついで、圧縮成形用金型20内に配置した際、下型内面22a上の、凸条用キャビティ23と凸条用キャビティ24上に位置するように、前記SMCを前記プリプレグ積層体上に積層した後、SMCが、下型内面22a上の、凸条用キャビティ23と凸条用キャビティ24上に、SMCとプリプレグとの積層体を下型内面22a上へ配置した。ついで、上型21と下型22を近接させて、SMCとプリプレグを加圧しながら圧縮成形用金型20内で140℃、5分間加熱し、繊維強化樹脂製構造体10を得た。   Next, the SMC was laminated on the prepreg laminate so as to be positioned on the ridge cavities 23 and the ridge cavities 24 on the inner surface 22a of the lower mold when placed in the compression mold 20. After that, the SMC placed a laminate of SMC and prepreg on the lower mold inner surface 22 a on the convex cavity 23 and the convex cavity 24 on the lower mold inner surface 22 a. Next, the upper mold 21 and the lower mold 22 were brought close to each other and heated in a compression molding mold 20 at 140 ° C. for 5 minutes while applying pressure to the SMC and the prepreg to obtain a fiber reinforced resin structure 10.

[実施例2〜3]
表1に示す、TR391E250Sに対するSMCのCTの比率とした以外は、実施例1と同様に繊維強化樹脂製構造体10を得た。
[Examples 2-3]
A fiber-reinforced resin structure 10 was obtained in the same manner as in Example 1 except that the ratio of CT of SMC to TR391E250S shown in Table 1 was used.

[比較例1〜4]
表1に示す、TR391E250Sに対するSMCのCTの比率とした以外は、実施例1と同様に繊維強化樹脂製構造体10を得た。
[Comparative Examples 1-4]
A fiber-reinforced resin structure 10 was obtained in the same manner as in Example 1 except that the ratio of CT of SMC to TR391E250S shown in Table 1 was used.

表1に示すように、基板11に用いるプリプレグ(TR391E250S)に対するCTの比率が0.8〜1.2のSMCを凸条部分に使用した実施例1〜3の製造方法では、凸条部分にプリプレグの樹脂組成物の薄膜を形成しない、良好な品質の繊維強化樹脂製構造体を安定して高い生産効率で得る事が出来た。一方、基板11に用いるプリプレグ(TR391E250S)に対するCTの比率が0.8未満のSMCを凸条部分に使用した比較例1〜4の製造方法では、高い生産効率で繊維強化樹脂製構造体が得られたものの、凸条部分にプリプレグの樹脂組成物の薄膜が形成し、良好な品質の繊維強化樹脂製構造体を安定して得る事が出来なかった。   As shown in Table 1, in the manufacturing methods of Examples 1 to 3 in which SMC having a CT ratio of 0.8 to 1.2 with respect to the prepreg (TR391E250S) used for the substrate 11 is used for the ridge portion, A good quality fiber reinforced resin structure which does not form a thin film of the resin composition of the prepreg could be stably obtained with high production efficiency. On the other hand, in the manufacturing methods of Comparative Examples 1 to 4 in which SMC having a CT ratio of less than 0.8 for the prepreg (TR391E250S) used for the substrate 11 is used for the protruding strip portion, a fiber-reinforced resin structure is obtained with high production efficiency. However, a thin film of a prepreg resin composition was formed on the ridge portion, and a fiber-reinforced resin structure having good quality could not be stably obtained.

10:繊維強化樹脂製構造体
11:基板
12:凸条
13:凸条
20:圧縮成形用金型
21:上型
22:下型
22a:下型内面
23:凸条用キャビティ
24:凸条用キャビティ
25:平板用キャビティ
10: fiber reinforced resin structure 11: substrate 12: ridge 13: ridge 20: compression mold 21: upper mold 22: lower mold 22a: lower mold inner surface 23: ridge cavity 24: ridge Cavity 25: Flat plate cavity

Claims (6)

強化繊維と熱硬化性樹脂組成物とを含むプリプレグ(A)の表面の一部に、強化繊維と熱硬化性樹脂組成物とを含む、凸条を形成するSMC(B)を凸条を形成する部位に配置して、複合材料を一体成形する複合材料の製造方法において、
CTaを、前記プリプレグ(A)のキュアタイム、CTbを、前記SMC(B)のキュアタイムとしたとき、
次の式(1)を満たすプリプレグ(A)、SMC(B)を用いる複合材料の製造方法。
ただし、前記プリプレグ(A)に含まれる熱硬化性樹脂組成物と前記SMC(B)に含まれる熱硬化性樹脂組成物が同一である場合を除く。
0.8≦(CTb/CTa)≦1.3・・・・・・(1)
SMC (B) is formed on a part of the surface of the prepreg (A) containing the reinforcing fiber and the thermosetting resin composition, and the reinforcing fiber and the thermosetting resin composition are formed on the surface of the prepreg (A). In a method for producing a composite material, which is disposed at a site to be integrally molded with a composite material,
When CTa is the cure time of the prepreg (A) and CTb is the cure time of the SMC (B),
The manufacturing method of the composite material using the prepreg (A) and SMC (B) which satisfy | fill following formula (1).
However, the case where the thermosetting resin composition contained in the prepreg (A) and the thermosetting resin composition contained in the SMC (B) are the same is excluded.
0.8 ≦ (CTb / CTa) ≦ 1.3 (1)
前記プリプレグ(A)に含まれる熱硬化性樹脂組成物(a)がエポキシ樹脂を含む熱硬化性樹脂組成物である請求項1に記載の複合材料の製造方法。 The method for producing a composite material according to claim 1, wherein the thermosetting resin composition (a) contained in the prepreg (A) is a thermosetting resin composition containing an epoxy resin. 前記SMC(B)に含まれる熱硬化性樹脂組成物(b)がビニルエステル樹脂を含む熱硬化性樹脂組成物である請求項1または2に記載の複合材料の製造方法。 The method for producing a composite material according to claim 1 or 2, wherein the thermosetting resin composition (b) contained in the SMC (B) is a thermosetting resin composition containing a vinyl ester resin. 前記プリプレグ(A)を構成する強化繊維が長繊維である請求項1から3のいずれかに記載の複合材料の製造方法。 The method for producing a composite material according to any one of claims 1 to 3, wherein the reinforcing fibers constituting the prepreg (A) are long fibers. 前記SMC(B)が強化繊維短繊維と熱硬化性樹脂組成物(b)からなるシートモールディングコンパウンドである請求項1から4のいずれかに記載の複合材料の製造方法。 The method for producing a composite material according to any one of claims 1 to 4, wherein the SMC (B) is a sheet molding compound comprising reinforcing fiber short fibers and a thermosetting resin composition (b). 前記プリプレグ(A)の表面の一部に、前記SMC(B)を配置して、金型を閉じ、加熱加圧して圧縮成形する工程を含む、請求項1から5のいずれかに記載の複合材料の製造方法。 The composite according to any one of claims 1 to 5, further comprising a step of disposing the SMC (B) on a part of the surface of the prepreg (A), closing the mold, and performing compression molding by heating and pressing. Material manufacturing method.
JP2011213974A 2011-09-29 2011-09-29 A method for producing a fiber-reinforced resin structure. Active JP5950149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011213974A JP5950149B2 (en) 2011-09-29 2011-09-29 A method for producing a fiber-reinforced resin structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011213974A JP5950149B2 (en) 2011-09-29 2011-09-29 A method for producing a fiber-reinforced resin structure.

Publications (2)

Publication Number Publication Date
JP2013072055A JP2013072055A (en) 2013-04-22
JP5950149B2 true JP5950149B2 (en) 2016-07-13

Family

ID=48476817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011213974A Active JP5950149B2 (en) 2011-09-29 2011-09-29 A method for producing a fiber-reinforced resin structure.

Country Status (1)

Country Link
JP (1) JP5950149B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192464A1 (en) 2020-03-24 2021-09-30 東レ株式会社 Preform and method for producing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965547B2 (en) * 2017-03-31 2021-11-10 東レ株式会社 Manufacturing method of fiber reinforced composite material
KR102548477B1 (en) * 2018-07-16 2023-06-28 현대자동차주식회사 Center floor of composite material
JP7146519B2 (en) 2018-08-08 2022-10-04 株式会社イノアックコーポレーション Fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article
US20220402238A1 (en) * 2019-08-27 2022-12-22 Inoac Corporation Fiber-reinforced-resin composite molded article and method for producing same, antibacterial composite molded article and method for producing same, antibacterial fiber-reinforced resin composite molded article and method for producing same, and fiber-reinforced-resin laminated molded article and method for producing same
JP7139296B2 (en) * 2019-09-11 2022-09-20 株式会社イノアックコーポレーション Fiber-reinforced resin composite molding and method for producing the same
JP7467198B2 (en) 2020-03-30 2024-04-15 株式会社イノアックコーポレーション Antibacterial fiber-reinforced resin composite molding and its manufacturing method
JP7220004B2 (en) * 2019-08-27 2023-02-09 株式会社イノアックコーポレーション Fiber-reinforced resin composite molding and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2958036B2 (en) * 1990-02-14 1999-10-06 住友ベークライト株式会社 Penetration resistant composite molding
JPH08319356A (en) * 1995-05-29 1996-12-03 Okura Ind Co Ltd Production of molded product having three-dimensional pattern formed thereon
JPH09169862A (en) * 1995-08-11 1997-06-30 Takeda Chem Ind Ltd Prepreg sheet and molded item obtained therefrom
JPH09241313A (en) * 1996-03-12 1997-09-16 Kayaku Akzo Kk Peroxy ester composition
JP2000025144A (en) * 1998-07-14 2000-01-25 Mitsubishi Plastics Ind Ltd Fiber-reinforced resin unit plate
JP2000334757A (en) * 1999-05-31 2000-12-05 Bridgestone Corp Method for molding decorative resin molding
JP4240004B2 (en) * 2005-05-26 2009-03-18 パナソニック電工株式会社 Thermosetting resin composition, production method thereof, molding method thereof and molded article
JP5424549B2 (en) * 2007-10-03 2014-02-26 三菱レイヨン株式会社 Manufacturing method of fiber reinforced resin structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192464A1 (en) 2020-03-24 2021-09-30 東レ株式会社 Preform and method for producing same

Also Published As

Publication number Publication date
JP2013072055A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5950149B2 (en) A method for producing a fiber-reinforced resin structure.
JP5644496B2 (en) Fiber reinforced thermoplastic resin molding
US8101262B2 (en) Fiber-reinforced plastic and process for production thereof
JP6407057B2 (en) Method for producing molded thermoplastic resin
WO2020071417A1 (en) Composite component for aircraft and manufacturing method therefor
WO2011052243A1 (en) Fiber-reinforced molded product and method for producing same
JP4732103B2 (en) Manufacturing method of tubular member made of fiber reinforced resin
US11926111B2 (en) Manufacturing method for fiber-reinforced plastic composite
JP2020062893A (en) Fiber-reinforced resin molded product and method for producing fiber-reinforced resin molded product
KR20160079326A (en) Method for manufacturing hybrid composite material comprising glass fiber reinforced plastic and aluminum and hybrid composite material
JP6389654B2 (en) Method for producing carbon fiber composite material
KR20190107681A (en) Fiber reinforced resin sheet
JP5424549B2 (en) Manufacturing method of fiber reinforced resin structure
JP6749012B2 (en) Fiber-reinforced resin member and method for manufacturing the same
KR101932635B1 (en) Composite material article manufacturing method
JPH0668594B2 (en) Carbon fiber reinforced thermosetting resin camera shutter blades
JP2009019089A (en) Fiber-reinforced plastic and reinforced heat-insulating composite material using the same
JP7473416B2 (en) Method for producing fiber-reinforced composite material
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2018172474A (en) Method for manufacturing fiber-reinforced composite material
KR20120051146A (en) Long fiber thermoplastic complex material having high strength and high hardness and method for manufacturing the same
JP7139296B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JPH025979A (en) Golf club
JP7466248B1 (en) Press molding member, its manufacturing method, and manufacturing method of battery case using press molding member
JP5273978B2 (en) Fiber reinforced resin hollow body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160525

R151 Written notification of patent or utility model registration

Ref document number: 5950149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250