JP6965547B2 - Manufacturing method of fiber reinforced composite material - Google Patents

Manufacturing method of fiber reinforced composite material Download PDF

Info

Publication number
JP6965547B2
JP6965547B2 JP2017070364A JP2017070364A JP6965547B2 JP 6965547 B2 JP6965547 B2 JP 6965547B2 JP 2017070364 A JP2017070364 A JP 2017070364A JP 2017070364 A JP2017070364 A JP 2017070364A JP 6965547 B2 JP6965547 B2 JP 6965547B2
Authority
JP
Japan
Prior art keywords
fiber
base material
resin composition
reinforced
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017070364A
Other languages
Japanese (ja)
Other versions
JP2018172474A (en
Inventor
智麻 佐藤
貴史 橋本
哲也 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017070364A priority Critical patent/JP6965547B2/en
Publication of JP2018172474A publication Critical patent/JP2018172474A/en
Application granted granted Critical
Publication of JP6965547B2 publication Critical patent/JP6965547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

本発明は、繊維強化複合材料の製造方法に関する。 The present invention relates to a method for producing a fiber-reinforced composite material.

繊維強化樹脂製の複合材料は、高強度かつ高剛性であるという点から、スポーツやレジャー用途、航空機等の産業用といった幅広い分野で利用されている。また、このような繊維強化複合材料は、圧縮成形により製造する方法が広く行われている。成形材料としては、強化繊維に熱硬化性樹脂組成物を含浸したプリプレグや、シートモールディングコンパウンド(以下、SMCという)等が用いられている。 Composite materials made of fiber reinforced plastic are used in a wide range of fields such as sports, leisure applications, and industrial applications such as aircraft because of their high strength and high rigidity. Further, such a fiber-reinforced composite material is widely manufactured by compression molding. As the molding material, a prepreg obtained by impregnating reinforcing fibers with a thermosetting resin composition, a sheet molding compound (hereinafter referred to as SMC), or the like is used.

SMCは繊維長が短いため、一般にプリプレグに比べて繊維強化複合材料の強度が低くなるものの、凸条等の複雑な形状を形成するのに好適である。SMCを用いた繊維強化複合材料の製造では、たとえば、特許5950149号広報において、凸条等の複雑な形状を形成する際に、2つの材料のキュアタイムの差を規定することで外観品質の良い基材を成形できることが述べられている。 Since SMC has a short fiber length, the strength of the fiber-reinforced composite material is generally lower than that of the prepreg, but it is suitable for forming a complicated shape such as a ridge. In the production of fiber-reinforced composite materials using SMC, for example, in the public relations of Patent No. 5950149, when forming a complicated shape such as a ridge, the difference in cure time between the two materials is specified to improve the appearance quality. It is stated that the substrate can be molded.

また、特開2001−96573号公報、特開平7−276560号広報、特許第3617807号等において熱硬化性樹脂組成物を接着剤や皮膜剤として用い、加熱時間を制御することによってその外観やせん断剥離強度の制御が可能であると述べられている。 Further, in Japanese Patent Application Laid-Open No. 2001-966573, Japanese Patent Application Laid-Open No. 7-276560, Japanese Patent No. 3617807, etc., a thermosetting resin composition is used as an adhesive or a film agent, and its appearance and shear are controlled by controlling the heating time. It is stated that the peel strength can be controlled.

特許5950149号公報Japanese Patent No. 5950149 特開2001−96573号公報Japanese Unexamined Patent Publication No. 2001-96573 特開平7−276560号公報Japanese Unexamined Patent Publication No. 7-276560 特許第3617807号Patent No. 3617807 特公昭61−46295号Tokukousho 61-46295

強化繊維と熱硬化性樹脂組成物とを含む繊維強化樹脂シート状基材を2種用いたハイブリッド成形において、用いる基材のキュアタイムの差を規定することにより高外観品質の繊維強化を成形できることが先行技術にて分かっている。しかし、成形機に2つの含浸体を同時に投入する上で、キュアタイムの差が大きすぎる場合にはキュアタイムの長い熱硬化性樹脂組成物を用いた基材が未硬化となり、外観が悪化することが分かっていた。 In hybrid molding using two types of fiber-reinforced resin sheet-like base materials containing reinforcing fibers and a thermosetting resin composition, high-quality fiber reinforcement can be molded by specifying the difference in cure time of the base materials used. Is known by the advanced technology. However, when the two impregnated bodies are charged into the molding machine at the same time, if the difference in cure time is too large, the base material using the thermosetting resin composition having a long cure time becomes uncured and the appearance deteriorates. I knew that.

そこで、本発明では強化繊維と熱硬化性樹脂組成物とを含む繊維強化樹脂シート状基材を複数積層して圧縮成形するハイブリッド成形において、用いる基材の硬化特性に大きな差がある場合でも外観が悪化することなく、高い力学特性を発現する複合材料を製造する方法を提供することを目的とする。 Therefore, in the present invention, in the hybrid molding in which a plurality of fiber-reinforced resin sheet-like base materials containing the reinforcing fibers and the thermosetting resin composition are laminated and compression-molded, the appearance even if there is a large difference in the curing characteristics of the base materials used. It is an object of the present invention to provide a method for producing a composite material which exhibits high mechanical properties without deterioration.

上記の課題を解決するために、本発明における繊維強化複合材料の製造方法は、少なくとも強化繊維と熱硬化性樹脂組成物とを含む繊維強化樹脂シート状基材を複数積層して圧縮成形する繊維強化複合材料の製造方法であって、熱硬化性樹脂組成物のゲル化時間が異なる繊維強化樹脂シート状基材のうち、ゲル化時間の最も長い繊維強化樹脂シート状基材を金型に投入し、さらに時間差を設けて前記ゲル化時間の次に長い繊維強化樹脂シート状基材を金型に投入することを繰り返した後、圧縮成形することを特徴とする。 In order to solve the above problems, the method for producing a fiber-reinforced composite material in the present invention is a fiber in which a plurality of fiber-reinforced resin sheet-like substrates containing at least a reinforcing fiber and a thermosetting resin composition are laminated and compression-molded. Among the fiber-reinforced resin sheet-like base materials having different gelation times of thermosetting resin compositions, which is a method for producing a reinforced composite material, the fiber-reinforced resin sheet-like base material having the longest gelation time is put into a mold. Further, the fiber-reinforced resin sheet-like base material having the next longest gelling time is repeatedly put into the mold with a time difference, and then compression molding is performed.

上記本発明における基材の投入方法においては、熱硬化性樹脂組成物のうちゲル化時間の長いものからA1、A2・・・A(n)、A(n+1)とし、
熱硬化性樹脂組成物のゲル化時間をそれぞれTg1、Tg2・・・Tg(n)、Tg(n+1)とした場合において、
熱硬化性樹脂組成物A(n)を含む繊維強化樹脂シート状基材を投入してから熱硬化性樹脂組成物A(n+1)を含む繊維強化樹脂シート状基材を投入するまでの時間をTh(s)としたとき、
Th(s)が下記式(1)〜(3)の少なくともいずれかを満たしていれば基材の密着性が上がり、より高い機械特性を発現することが可能になる。
・t≧300(s)のとき、t−t/8≦Th≦t+t/8 ・・・式(1)
・300(s)>t≧30(s)のとき、t−30(s)Th≦t+30(s) ・・・式(2)
・30(s)>t0(s)のとき、0(s)Th≦t+5(s) ・・・式(3)
ここでt(s)は、熱硬化性樹脂組成物A(n)を含む繊維強化樹脂シート状基材のゲル化時間Tg(n)と、熱硬化性樹脂組成物A(n+1)を含む繊維強化樹脂シート状基材のゲル化時間Tg(n+1)との差(t=Tg(n)−Tg(n+1))である。
In the method for adding the base material in the present invention, the thermosetting resin compositions having the longest gelation time are A1, A2 ... A (n), A (n + 1).
When the gelation time of the thermosetting resin composition is Tg1, Tg2 ... Tg (n), Tg (n + 1), respectively.
The time from the charging of the fiber-reinforced resin sheet-like base material containing the thermosetting resin composition A (n) to the charging of the fiber-reinforced resin sheet-like base material containing the thermosetting resin composition A (n + 1) When it is set to Th (s)
If Th (s) satisfies at least one of the following formulas (1) to (3), the adhesion of the base material is improved, and higher mechanical properties can be exhibited.
When t ≧ 300 (s), t−t / 8 ≦ Th ≦ t + t / 8 ・ ・ ・ Equation (1)
When 300 (s)> t ≧ 30 (s), t-30 (s) < Th ≦ t + 30 (s) ・ ・ ・ Equation (2)
When 30 (s)> t > 0 (s), 0 (s) < Th ≤ t + 5 (s) ... Equation (3)
Here, t (s) is a fiber containing the gelation time Tg (n) of the fiber-reinforced resin sheet-like base material containing the thermosetting resin composition A (n) and the thermosetting resin composition A (n + 1). It is the difference (t = Tg (n) -Tg (n + 1)) from the gelation time Tg (n + 1) of the reinforced resin sheet-like base material.

この時Thが上記式の範囲のうち上限を上回ると、先に投入した基材が硬化して時間差を設けて投入した基材との密着性が下がってしまい、上記式の範囲のうち下限を下回ると投入時間の差が少ないためにゲル化時間の長い熱硬化性樹脂組成物を用いた基材の硬化が遅れて硬化不良や外観不良を引き起こす傾向にある。 At this time, if Th exceeds the upper limit of the range of the above formula, the previously charged base material is cured and the adhesion to the charged base material is lowered with a time lag, so that the lower limit of the above formula range is set. If it is less than that, the difference in the charging time is small, so that the curing of the base material using the thermosetting resin composition having a long gelation time is delayed, which tends to cause curing failure and appearance failure.

また、上記本発明において係る繊維強化樹脂シート状基材の形態は、一方向配列シート、織物、不織布、ランダムマットのいずれかであることが好ましい。中でも織物とランダムマットのように流動性の異なる基材を用いた際に、通常織物基材の表面にランダムマット基材の流動の影響を受けた目崩れが起こる傾向にあるが、これを本発明においては抑制することかできることから上記基材の形態全ての組み合わせにおいて外観、機械特性に優れた繊維強化複合材料を得ることが可能となる。 Further, the form of the fiber-reinforced resin sheet-like base material according to the present invention is preferably any one of a unidirectional array sheet, a woven fabric, a non-woven fabric, and a random mat. Above all, when woven fabrics and base materials with different fluidity such as random mats are used, the surface of the woven fabric base material usually tends to collapse due to the influence of the flow of the random mat base material. Since it can be suppressed in the present invention, it is possible to obtain a fiber-reinforced composite material having excellent appearance and mechanical properties in all combinations of the above-mentioned forms of the base material.

上記本発明において係る熱硬化性樹脂組成物はビニルエステル樹脂またはエポキシ樹脂のいずれかであることが好ましい。一般的にビニルエステル樹脂に比べ、エポキシ樹脂の方がゲル化時間が長い傾向にあるため、両樹脂を用いる際にはエポキシ樹脂を先に投入して成形することが好ましい。また、エポキシ樹脂同士、ビニルエステル樹脂同士においても構造や添加物によってゲル化時間に差がある場合も上記の通り投入順序、投入時間差を設けて成形することによって機械特性、外観の優れた繊維強化複合材を得ることが可能となる。 The thermosetting resin composition according to the present invention is preferably either a vinyl ester resin or an epoxy resin. In general, the epoxy resin tends to have a longer gelling time than the vinyl ester resin. Therefore, when using both resins, it is preferable to add the epoxy resin first for molding. In addition, even if there is a difference in gelation time between epoxy resins and vinyl ester resins due to the structure and additives, fiber reinforcement with excellent mechanical properties and appearance can be achieved by molding with the addition order and addition time difference as described above. It becomes possible to obtain a composite material.

本発明の製造方法により、熱硬化性樹脂組成物のゲル化時間の異なる複数の基材を用いた場合でも、前記熱硬化性樹脂組成物のゲル化時間の差に関わらず基材間の密着性を上げることができるため、界面を起点にした破壊を抑制でき、高い力学特性を発現するコンポジットを成形できる。 According to the production method of the present invention, even when a plurality of substrates having different gelation times of the thermosetting resin composition are used, adhesion between the substrates does not occur regardless of the difference in gelation time of the thermosetting resin composition. Since the properties can be improved, the fracture starting from the interface can be suppressed, and a composite exhibiting high mechanical properties can be formed.

本発明の製造方法で製造されるハイブリッド成形された複合材料の一例である。This is an example of a hybrid-molded composite material produced by the production method of the present invention. 本発明の製造方法に用いられる金型の一例とその製造方法の模式図である。It is an example of the mold used in the manufacturing method of this invention, and the schematic diagram of the manufacturing method.

以下、本発明について、詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の製造方法に使用できる繊維強化樹脂シート状基材は、強化繊維に熱硬化性樹脂組成物が含浸されてなる繊維強化複合材料である。係る繊維強化複合材料としては、たとえば、実質的に連続した強化繊維に熱硬化性樹脂組成物を含浸したもの(プリプレグ)や、短繊維の強化繊維に熱硬化性樹脂組成物を含浸したもの(SMC)が挙げられる。プリプレグの形態は、特に限定されず、たとえば、強化繊維を一方向に引き揃えた一方向配列シートプリプレグ、強化繊維を製織した織物プリプレグ等が挙げられる。また、繊維強化複合材料の意匠性を高めるために、繊維強化複合材料の表面は織物プリプレグとし、繊維強化複合材料の内部は一方向配列シートプリプレグとする等、複数のプリプレグを併用することもできる。 The fiber-reinforced resin sheet-like base material that can be used in the production method of the present invention is a fiber-reinforced composite material obtained by impregnating reinforcing fibers with a thermosetting resin composition. Examples of the fiber-reinforced composite material include those in which substantially continuous reinforcing fibers are impregnated with a thermosetting resin composition (prepreg) and those in which short fiber reinforcing fibers are impregnated with a thermosetting resin composition (prepreg). SMC). The form of the prepreg is not particularly limited, and examples thereof include a unidirectionally arranged sheet prepreg in which reinforcing fibers are aligned in one direction, a woven prepreg in which reinforcing fibers are woven, and the like. Further, in order to enhance the design of the fiber-reinforced composite material, a plurality of prepregs can be used in combination, such as a woven prepreg on the surface of the fiber-reinforced composite material and a unidirectionally arranged sheet prepreg on the inside of the fiber-reinforced composite material. ..

一方、SMCは繊維長が5〜40mm程度の短繊維が用いられるため、一般にプリプレグに比べて繊維強化複合材料の強度が低くなるものの、凸条等の複雑な形状を形成するのに好適である。本発明の繊維強化複合材料の製造方法では、繊維強化樹脂シート状基材(A)に強度向上に優れる連続した強化繊維に熱硬化性樹脂組成物を含浸したプリプレグと、繊維強化樹脂シート状基材(B)に凸条等の複雑な形状の形成に優れる短繊維状の強化繊維に熱硬化性樹脂組成物を含浸したSMCを併用することが好ましい。 On the other hand, since SMC uses short fibers having a fiber length of about 5 to 40 mm, the strength of the fiber-reinforced composite material is generally lower than that of the prepreg, but it is suitable for forming a complicated shape such as ridges. .. In the method for producing a fiber-reinforced composite material of the present invention, a fiber-reinforced resin sheet-like base material (A) is impregnated with a thermosetting resin composition in continuous reinforcing fibers having excellent strength improvement, and a fiber-reinforced resin sheet-like group. It is preferable to use SMC in which the material (B) is impregnated with a thermosetting resin composition into short fibrous reinforcing fibers that are excellent in forming complex shapes such as ridges.

本発明の製造方法に使用できるプリプレグやSMCに含まれる強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、炭化珪素繊維、高強度ポリエチレン、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ナイロン繊維、ステンレススチール繊維等が挙げられ、なかでも軽量で剛性が高いことから炭素繊維が好ましい。また、強化繊維としては、長繊維及び短繊維が挙げられ、SMCに含まれる強化繊維では通常長さが5〜40mm程度の短繊維が用いられる。また、プリプレグでは、剛性の点から長繊維が好ましい。長繊維の形態としては、一方向に揃えられたもの、長繊維からなる織物等が挙げられる。 Examples of the reinforcing fibers contained in the prepreg and SMC that can be used in the production method of the present invention include carbon fibers, glass fibers, aramid fibers, boron fibers, silicon carbide fibers, high-strength polyethylene, and polyparaphenylene benzobisoxazole (PBO). Examples thereof include fibers, nylon fibers, and stainless steel fibers. Among them, carbon fibers are preferable because they are lightweight and have high rigidity. Examples of the reinforcing fibers include long fibers and short fibers, and short fibers having a length of about 5 to 40 mm are usually used as the reinforcing fibers contained in SMC. Further, in the prepreg, long fibers are preferable from the viewpoint of rigidity. Examples of the form of the long fibers include those aligned in one direction, woven fabrics made of long fibers, and the like.

本発明の製造方法に使用できるプリプレグやSMCに含まれる熱硬化性樹脂組成物としては、例えば、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、マレイミド樹脂、フェノール樹脂等が挙げられる。強化繊維として炭素繊維を用いる場合、繊維強化複合材料の機械特性や耐熱性を上げるために連続した強化繊維を含むプリプレグを用い、複雑な形状の形成を可能にするために短繊維を含むSMCを用いてハイブリッド成形を行うことで優良な繊維強化複合材料を得られることから、本発明に置いては炭素繊維を含むプリプレグに汎用的に使われているエポキシ樹脂と、同じく炭素繊維を含むSMCに汎用的に使われているビニルエステル樹脂との組み合わせにて成形を行うことが好ましい。さらに、エポキシ樹脂については特にこの限りではないが、樹脂の物理性状や硬化物物性を制御しやすいことから基本骨格としてビスフェノールA型、ノボラック型を用いることが好ましく、ハイサイクルでの成形を可能とすることから硬化時間が15分未満の速硬化タイプのものを使用することが好ましい。また前記ビニルエステル樹脂については特にこの限りではないが、繊維強化複合材料成形体を高機械特性とするために基本骨格としてビスフェノールA型のものを用いることが望ましい。 Examples of the thermosetting resin composition contained in the prepreg and SMC that can be used in the production method of the present invention include epoxy resin, vinyl ester resin, unsaturated polyester resin, polyimide resin, maleimide resin, and phenol resin. When carbon fiber is used as the reinforcing fiber, a prepreg containing continuous reinforcing fiber is used to improve the mechanical properties and heat resistance of the fiber-reinforced composite material, and an SMC containing short fiber is used to enable the formation of a complicated shape. Since an excellent fiber-reinforced composite material can be obtained by performing hybrid molding using the epoxy resin, the epoxy resin generally used for prepregs containing carbon fibers and the SMC also containing carbon fibers are used in the present invention. It is preferable to perform molding in combination with a vinyl ester resin that is generally used. Further, although the epoxy resin is not particularly limited, it is preferable to use the bisphenol A type and the novolac type as the basic skeleton because it is easy to control the physical properties and the cured physical properties of the resin, and it is possible to mold in a high cycle. Therefore, it is preferable to use a fast-curing type having a curing time of less than 15 minutes. The vinyl ester resin is not particularly limited, but it is desirable to use a bisphenol A type as the basic skeleton in order to make the fiber-reinforced composite material molded body have high mechanical properties.

「繊維強化複合材料の製造方法」
複雑な形状の複合材料を得るためや、低コストでありながら高強度を持つ材料を得るために、その形状・用途に合わせて複数の繊維強化樹脂シート状基材を積層したり、組み合わせた成形を行う際に、ゲル化時間の差によって基材の硬化挙動が大きく異なってしまい、基材間の密着性が下がり、機械特性の低下や外観の悪化が起こることがある。このような機械特性の低下や外観の悪化を防ぐことを目的として、本発明では基材に含まれる熱硬化性樹脂組成物のゲル化時間の長いものから時間差を設けて金型に投入することで硬化のタイミングを揃え、基材間の接着性が高く機械特性と外観の優良な繊維強化複合材料を得ることを可能にしている。
"Manufacturing method of fiber reinforced composite material"
In order to obtain a composite material with a complicated shape or to obtain a material with high strength at low cost, a plurality of fiber-reinforced resin sheet-like base materials are laminated or combined according to the shape and application. When this is performed, the curing behavior of the base materials differs greatly due to the difference in gelation time, the adhesion between the base materials is lowered, and the mechanical properties and the appearance may be deteriorated. In order to prevent such deterioration of mechanical properties and appearance, in the present invention, the thermosetting resin composition contained in the base material is charged into the mold with a time lag from the one having the longest gelation time. It is possible to obtain a fiber-reinforced composite material with high adhesiveness between substrates and excellent mechanical properties and appearance by aligning the curing timing.

本発明における繊維強化複合材料の具体的な製造方法としては、例えば、熱硬化性樹脂組成物(A1)に対し、熱硬化性樹脂組成物(A2)のゲル化時間が短いとき、熱硬化性樹脂組成物(A1)を含む繊維強化樹脂シート状基材(B1)を先に金型内に投入し、熱硬化性樹脂組成物(A2)を含む繊維強化樹脂シート状基材(B2)を時間差を設けて金型へと投入し、一度に圧縮して複合材料を一体成形する製造方法とすることが好ましい。繊維強化樹脂シート状基材(B1)に含まれる熱硬化性樹脂組成物(A1)のゲル化時間をTg1(s)、繊維強化樹脂シート状基材(B2)に含まれる熱硬化性樹脂組成物のゲル化時間をTg2(s)とし、その時間差Tg1−Tg2(s)をt(s)とした場合、熱硬化性樹脂組成物A1を含む繊維強化樹脂シート状基材(B1)を投入してから、熱硬化性樹脂組成物A2を含む繊維強化樹脂シート状基材(B2)を投入するまでの時間をTh(s)とした時、加熱時間の差Th(s)が下記(1)〜(3)式の範囲であると基材間の密着性が向上するため好ましい。
・t≧300(s)のとき、t−t/8≦Th≦t+t/8 …式(1)
・300(s)>t≧30(s)のとき、t−30(s)Th≦t+30(s)・・・式(2)
・30(s)>t0(s)のとき、0(s)Th≦t+5(s)・・・式(3)
As a specific method for producing the fiber-reinforced composite material in the present invention, for example, when the gelation time of the thermosetting resin composition (A2) is shorter than that of the thermosetting resin composition (A1), the thermosetting resin composition (A2) is thermosetting. The fiber-reinforced resin sheet-like base material (B1) containing the resin composition (A1) is first put into the mold, and the fiber-reinforced resin sheet-like base material (B2) containing the thermosetting resin composition (A2) is added. It is preferable to use a manufacturing method in which the composite material is integrally molded by being charged into the mold with a time lag and being compressed at once. The gelation time of the thermosetting resin composition (A1) contained in the fiber-reinforced resin sheet-like base material (B1) is Tg1 (s), and the thermosetting resin composition contained in the fiber-reinforced resin sheet-like base material (B2) is set. When the gelation time of the product is Tg2 (s) and the time difference Tg1-Tg2 (s) is t (s), the fiber-reinforced resin sheet-like base material (B1) containing the thermosetting resin composition A1 is charged. When the time from that time until the fiber-reinforced resin sheet-like base material (B2) containing the thermosetting resin composition A2 is charged is Th (s), the difference in heating time Th (s) is as follows (1). ) To (3) is preferable because the adhesion between the base materials is improved.
When t ≧ 300 (s), t−t / 8 ≦ Th ≦ t + t / 8 ... Equation (1)
When 300 (s)> t ≧ 30 (s), t-30 (s) < Th ≦ t + 30 (s) ... Expression (2)
When 30 (s)> t > 0 (s), 0 (s) < Th ≤ t + 5 (s) ... Equation (3)

上記(1)〜(3)式のようにt(s)の値によってTh(s)の範囲を変えなければならない理由としては、熱硬化性樹脂組成物にはゲル化時間が数十分を越える部材から数十秒のものまで存在することが挙げられる。 The reason why the range of Th (s) must be changed depending on the value of t (s) as in the above equations (1) to (3) is that the thermosetting resin composition has a gelation time of several tens of minutes. It can be mentioned that there are members that exceed and those that last for several tens of seconds.

例えば、複数基材のゲル化時間の差t(s)が40秒のものは式(2)の範囲となり、投入時間の差を10秒から70秒間とすることで機械特性、並びに外観品質の良い成形体が得られるが、同じ式(2)の範囲でゲル化時間の差が40分である複数基材の成形を行うとすると49.5分から40.5分の間にて成形を行わなければ良品が得られないということになる。実際には後者ではゲル化時間に余裕があることからTh(分)が40分±5分程度の範囲にて良品の成形が可能であるため、式(1)のように範囲を分けて規定している。また、複数基材のゲル化時間の差t(s)が30秒未満の場合は短時間にて基材の状態が変化するため、有効範囲であるTh(s)の範囲は狭くなり、式(3)のように規定している。 For example, if the gelation time difference t (s) of the plurality of substrates is 40 seconds, it falls within the range of the formula (2), and by setting the injection time difference from 10 seconds to 70 seconds, the mechanical properties and appearance quality can be improved. A good molded product can be obtained, but if molding of a plurality of substrates having a gelation time difference of 40 minutes within the range of the same formula (2) is performed, molding is performed between 49.5 minutes and 40.5 minutes. Without it, good products cannot be obtained. Actually, in the latter case, since there is a margin in gelation time, it is possible to mold a non-defective product within a range of Th (minute) of about 40 minutes ± 5 minutes. doing. Further, when the difference t (s) in the gelation time of the plurality of substrates is less than 30 seconds, the state of the substrates changes in a short time, so that the effective range of Th (s) becomes narrower. It is stipulated as (3).

また、2つの基材だけでなく複数基材を積層させる場合、本発明においては最もゲル化時間の長い基材を下型に接する形で投入し、順を追ってゲル化時間の長い順にその他基材を積層していくことが好ましい。 Further, in the case of laminating not only two base materials but also a plurality of base materials, in the present invention, the base material having the longest gelation time is put in contact with the lower mold, and the other base materials are added in order of longest gelation time. It is preferable to stack the materials.

「硬化時間」
本発明における硬化時間とは、プレス成形時に型を締め切ってから脱型可能な硬度になるまでに必要とする時間とする。
"Curing time"
The curing time in the present invention is the time required from the closing of the mold to the hardness at which the mold can be removed during press molding.

「ゲル化時間の測定方法」
本発明では、対象となる材料をALPHA(ALPHA TECHNOLOGIES製、ATD 1000)を用いて150℃条件下にて硬化挙動を測定し、トルク値が急激に上昇する最初の変極点をゲル化時間とする。
"Measuring method of gelation time"
In the present invention, the curing behavior of the target material is measured under 150 ° C. conditions using ALPHA (manufactured by ALPHA TECHNOLOGIES, ATD 1000), and the first pole at which the torque value rapidly increases is set as the gelation time. ..

[繊維強化複合材料]
前述したとおり、複数の繊維強化樹脂シート状基材を積層したり、組み合わせて繊維強化複合材料10を成形することができる。一例として、図1に示すように、片面にプリプレグ面11を、他の片面にSMC面12を配置した平板状の繊維強化複合材料10(基板)とすることができる。
[Fiber reinforced composite material]
As described above, the fiber-reinforced composite material 10 can be formed by laminating or combining a plurality of fiber-reinforced resin sheet-like substrates. As an example, as shown in FIG. 1, a flat plate-shaped fiber-reinforced composite material 10 (substrate) in which a prepreg surface 11 is arranged on one side and an SMC surface 12 is arranged on the other side can be used.

[圧縮成形用金型]
金型20は上型21と下型22からなり、両型とも表面は平滑面を備えたものである。上型21と下型22を近接させることにより、繊維強化複合材料10を成形するための平板用キャビティが形成される。
[Compression molding mold]
The mold 20 is composed of an upper mold 21 and a lower mold 22, and both molds have a smooth surface. By bringing the upper mold 21 and the lower mold 22 close to each other, a flat plate cavity for forming the fiber-reinforced composite material 10 is formed.

以下、実施例及び比較例を示して本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。まず、実施例で用いた、プリプレグ、SMCの原料と作製方法、両材料を用いた繊維強化複合材料の製造方法、評価方法を記す。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following description. First, the raw materials and production methods of prepreg and SMC used in the examples, the production method of the fiber-reinforced composite material using both materials, and the evaluation method will be described.

(1)原料
織物プリプレグ:繊維径7μm、引張弾性率230GPa、単糸数3,000本の連続した炭素繊維束(東レ(株)製、“トレカ(登録商標)”T300−3K−50E)を綾織にしたマットに、ゲル化時間が60秒のエポキシ樹脂組成物を繊維重量割合(W)=60%になるよう含浸させたものを用いた。またこのプリプレグの150℃における硬化時間は8分であった。
(1) Raw material woven fabric prepreg: A twill weave of continuous carbon fiber bundles (manufactured by Toray Industries, Inc., "Treca (registered trademark)" T300-3K-50E) with a fiber diameter of 7 μm, a tensile elastic modulus of 230 GPa, and a single yarn count of 3,000. The mat was impregnated with an epoxy resin composition having a gelation time of 60 seconds so that the fiber weight ratio (W f ) = 60%. The curing time of this prepreg at 150 ° C. was 8 minutes.

SMC基材:繊維径7.2μm、引張弾性率240GPa、単糸数50,000本の連続した炭素繊維束(ZOLTEK社製、“Panex35(登録商標)”)をと、ビニルエステル樹脂(ダウ・ケミカル(株)製、“デラケン(登録商標)790”)を100重量部、硬化剤としてtert−ブチルパーオキシベンゾエート(日本油脂(株)製、“パーブチル(登録商標)Z”)を1重両部、増粘剤として酸化マグネシウム(協和化学工業(株)製、MgO#40)を4重量部、内部離型剤としてステアリン酸亜鉛(堺化学工業(株)製、SZ−2000)を2重量部を、十分に混合・攪拌して得られた樹脂組成物を用いた。この樹脂組成物のゲル化時間は30秒、150℃における硬化時間は3分であった。 SMC base material: Fiber diameter 7.2 μm, tensile elasticity 240 GPa, continuous carbon fiber bundle of 50,000 single yarns (manufactured by ZOLTEK, “Panex35 (registered trademark)”) and vinyl ester resin (Dow Chemical). 100 parts by weight of "Deraken (registered trademark) 790" manufactured by Nippon Oil & Fat Co., Ltd., and single and double parts of tert-butyl peroxybenzoate (manufactured by Nippon Oil & Fats Co., Ltd., "Perbutyl (registered trademark) Z") as a curing agent. , Magnesium oxide (MgO # 40, manufactured by Kyowa Chemical Industry Co., Ltd.) as a thickener, 4 parts by weight, and zinc stearate (SZ-2000, manufactured by Sakai Chemical Industry Co., Ltd.) as an internal mold release agent, 2 parts by weight. Was thoroughly mixed and stirred to obtain a resin composition. The gelation time of this resin composition was 30 seconds, and the curing time at 150 ° C. was 3 minutes.

(2)製造方法
織物プリプレグを幅300mm、長さ300mmに切り出し、SMC基材を200mm角に2枚切り出した後、SMC基材のみを2層に積層して準備した。上下金型21、22を150℃に加熱し、まず織物プリプレグ23を下型22に投入した。その後、一定時間(Th(s))型を空けたまま待機し、2層積層したSMC基材24を織物プリプレグ23上に投入し、上型21を下ろして型締めし、10分間150℃で温度を保持したまま15MPaにて加圧した。一定時間経過後、金型20から繊維強化複合材料10を脱型した。
(2) Manufacturing Method A woven prepreg was cut into a width of 300 mm and a length of 300 mm, two SMC base materials were cut into 200 mm square pieces, and then only the SMC base material was laminated into two layers to prepare. The upper and lower dies 21 and 22 were heated to 150 ° C., and the woven prepreg 23 was first put into the lower die 22. After that, the mold is left open for a certain period of time (Th (s)), and the two-layer laminated SMC base material 24 is put on the woven prepreg 23, the upper mold 21 is lowered and the mold is fixed, and the temperature is 150 ° C. for 10 minutes. The pressure was increased at 15 MPa while maintaining the temperature. After a lapse of a certain period of time, the fiber-reinforced composite material 10 was removed from the mold 20.

(3)評価方法
(基材シート間の密着性評価)
JIS K7074に準拠して曲げ試験を行い、破断面の観察にて下記判定基準に基づき評価した。本発明においては3以上を合格とした。
1:破断部全体にてプリプレグの繊維破断が起こることなく、織物プリプレグとSMC基材の界面剥離が起きた。
2:破断部の一部にてプリプレグの繊維破断が見られるが、織物プリプレグとSMC基材の界面剥離が起きた。
3:破断部では繊維破断が起きているが、試験片内に界面剥離が見られた。
4:繊維破断による破壊が起こり、界面剥離は見られなかった。
(3) Evaluation method (evaluation of adhesion between base sheets)
A bending test was conducted in accordance with JIS K7074, and evaluation was made based on the following criteria by observing the fracture surface. In the present invention, 3 or more was regarded as acceptable.
1: The interface between the woven prepreg and the SMC base material was peeled off without breaking the fibers of the prepreg in the entire broken portion.
2: Fiber breakage of the prepreg was observed in a part of the broken portion, but interface peeling between the woven prepreg and the SMC base material occurred.
3: Fiber fracture occurred at the fractured part, but interfacial peeling was observed in the test piece.
4: Fracture due to fiber breakage occurred, and no interfacial peeling was observed.

(外観評価)
成形後の繊維強化複合材をプリプレグ側から観察し、SMC基材の流動に伴う織物プリプレグの目ずれの度合いを下記判定基準に基づき評価し、本発明においては4以上を合格とした。
1:成形板全体に目ずれが起きた。
2:SMC基材のチャージ部分の端部と金型端部に目ずれが起きた。
3:SMC基材のチャージ部分の端部に沿って数箇所で糸の蛇行が起きた。
4:SMC基材のチャージ部分の端部うち1辺のみに糸の蛇行が起きた。
5:織物プリプレグの目ずれは全く起きなかった。
(Appearance evaluation)
The fiber-reinforced composite material after molding was observed from the prepreg side, and the degree of misalignment of the woven fabric prepreg due to the flow of the SMC base material was evaluated based on the following criteria, and 4 or more was passed in the present invention.
1: Misalignment occurred in the entire molded plate.
2: Misalignment occurred between the end of the charged portion of the SMC base material and the end of the mold.
3: Thread meandering occurred at several points along the end of the charged portion of the SMC base material.
4: Thread meandering occurred only on one side of the end of the charged portion of the SMC base material.
5: No misalignment of the woven prepreg occurred.

[実施例1]
織物プリプレグとSMC基材を用いて前述した製造方法に従って繊維強化複合材料を成形し、前述した評価方法にて評価した。この時、投入時間の差Thを30秒とした。
[Example 1]
A fiber-reinforced composite material was formed using the woven prepreg and the SMC base material according to the above-mentioned production method, and evaluated by the above-mentioned evaluation method. At this time, the difference Th of the input time was set to 30 seconds.

[実施例2、3]
実施例1と同様に原料の準備を行い、前述した製造方法に従って繊維強化複合材料を成形し、前述した評価方法にて評価した。この時、投入時間の差Thをそれぞれ60秒、100秒とした。
[Examples 2 and 3]
The raw materials were prepared in the same manner as in Example 1, the fiber-reinforced composite material was molded according to the above-mentioned production method, and evaluated by the above-mentioned evaluation method. At this time, the difference Th of the input time was set to 60 seconds and 100 seconds, respectively.

[比較例1]
実施例1と同様に原料を準備し、織物プリプレグを幅300mm、長さ300mmに切り出し、SMC基材を200mm角に2枚切り出した後、織物プリプレグの中心部にSMC基材が配置されるよう2枚とも積層し、3層の積層体を準備した。上下金型21、22を150℃に加熱し、織物プリプレグが下型に当たるよう投入し、直ちに上型21を下ろして型締めし、10分間150℃で温度を保持したまま15MPaにて加圧した。一定時間の経過後、金型20から繊維強化複合材料10を脱型した。得られた繊維強化複合材料を、前術の評価方法にて評価した。
[Comparative Example 1]
The raw material is prepared in the same manner as in Example 1, the woven fabric prepreg is cut out to a width of 300 mm and a length of 300 mm, two SMC base materials are cut out into 200 mm squares, and then the SMC base material is arranged in the center of the woven fabric prepreg. Both of them were laminated to prepare a three-layer laminated body. The upper and lower dies 21 and 22 were heated to 150 ° C., the woven prepreg was put in so as to hit the lower mold, the upper mold 21 was immediately lowered and the mold was fastened, and the pressure was increased at 15 MPa while maintaining the temperature at 150 ° C. for 10 minutes. .. After a lapse of a certain period of time, the fiber-reinforced composite material 10 was removed from the mold 20. The obtained fiber-reinforced composite material was evaluated by the evaluation method of the previous technique.

[比較例2]
実施例1と同様に原料を準備し、上下金型21、22を150℃に加熱した後、まず2層積層したSMC基材24を下型22に投入した。30秒間型を空けたまま待機した後、織物プリプレグ23をSMC基材24上に投入し、上型21を下ろして型締めし、10分間150℃で温度を保持したまま15MPaにて加圧した。一定時間経過後、金型20から繊維強化複合材料10を脱型した。
[Comparative Example 2]
The raw materials were prepared in the same manner as in Example 1, and the upper and lower molds 21 and 22 were heated to 150 ° C., and then the SMC base material 24 having two layers laminated was first put into the lower mold 22. After waiting for 30 seconds with the mold open, the woven prepreg 23 was put on the SMC base material 24, the upper mold 21 was lowered and the mold was fastened, and the pressure was increased at 15 MPa while maintaining the temperature at 150 ° C. for 10 minutes. .. After a lapse of a certain period of time, the fiber-reinforced composite material 10 was removed from the mold 20.

Figure 0006965547
Figure 0006965547

Figure 0006965547
Figure 0006965547

表1から分かるように、織物プリプレグとのゲル化時間の差tが30秒であるSMC基材の場合、織物プリプレグを投入してからSMC基材を投入するまでの時間差Thが30秒(実施例1)のとき基材シート間の密着性も良く、プリプレグ面から見た外観に目ずれも少ない良質な繊維強化複合材料を得ることが出来た。実施例2、3ではそれぞれ投入時間差Thを60秒、100秒として同様に成形を行い、評価したところプリプレグの目ずれは見られず、密着性が実施例1に比べてやや劣る繊維強化複合材料を得ることが出来た。 As can be seen from Table 1, in the case of the SMC base material having a gelation time difference t of 30 seconds from the woven fabric prepreg, the time difference Th from the addition of the woven fabric prepreg to the addition of the SMC base material is 30 seconds (implementation). In the case of Example 1), it was possible to obtain a high-quality fiber-reinforced composite material having good adhesion between the base sheets and having little misalignment in appearance when viewed from the prepreg surface. In Examples 2 and 3, molding was performed in the same manner with the injection time difference Th being 60 seconds and 100 seconds, respectively, and when evaluated, no misalignment of the prepreg was observed, and the adhesion was slightly inferior to that of Example 1. I was able to get.

一方、表2に示す通り、比較例1では2つの基材を同時に投入して成形を行い、評価した結果、SMC基材が先に硬化してしまうことで界面の密着性が下がり、プリプレグの目ずれも大きくなった。比較例2ではSMC基材を織物プリプレグに対し、30秒先に投入したところ、SMC基材が十分に流動せずプリプレグ面の外観は大きく目ずれを起こした。 On the other hand, as shown in Table 2, in Comparative Example 1, two base materials were simultaneously charged and molded, and as a result of evaluation, the SMC base material was cured first, so that the adhesion of the interface was lowered and the prepreg was formed. The misalignment has also increased. In Comparative Example 2, when the SMC base material was put into the woven prepreg 30 seconds ahead, the SMC base material did not flow sufficiently and the appearance of the prepreg surface was greatly distorted.

本発明により、繊維強化樹脂シート状基材を用いた材料のハイブリッド成形において、高力学特性のコンポジットを得ることが可能となることから、自動車分野などで今後見込まれる他強化繊維や他マトリックスを用いたハイブリッド成形品の需要に応えることが出来るが、その応用範囲がこれらに限られるものではない。 INDUSTRIAL APPLICABILITY According to the present invention, in hybrid molding of a material using a fiber-reinforced resin sheet-like base material, it is possible to obtain a composite having high mechanical properties. It is possible to meet the demand for hybrid molded products, but its application range is not limited to these.

10:繊維強化複合材料
11:プリプレグ面
12:SMC面
20:金型
21:上型
22:下型
23:24よりゲル化時間の長い繊維強化樹脂シート状基材
24:23よりゲル化時間の短い繊維強化樹脂シート状基材
10: Fiber reinforced composite material 11: Prepreg surface 12: SMC surface 20: Mold 21: Upper mold 22: Lower mold 23:24 The gelation time is longer than that of the fiber reinforced resin sheet-like base material 24:23. Short fiber reinforced resin sheet-like base material

Claims (3)

少なくとも強化繊維と熱硬化性樹脂組成物とを含む繊維強化樹脂シート状基材を複数積層して圧縮成形する繊維強化複合材料の製造方法であって、前記熱硬化性樹脂組成物のゲル化時間が異なる繊維強化樹脂シート状基材のうち、前記ゲル化時間の最も長い繊維強化樹脂シート状基材を金型に投入し、さらに時間差を設けて前記ゲル化時間の次に長い繊維強化樹脂シート状基材を金型に投入することを繰り返した後、圧縮成形することを特徴とする繊維強化複合材料の製造方法。
ここで、基材の投入方法においては、前記熱硬化性樹脂組成物のうちゲル化時間の長いものからA1、A2…A(n)、A(n+1)とし、
該熱硬化性樹脂組成物のゲル化時間をそれぞれTg1、Tg2・・・Tg(n)、Tg(n+1)とした場合において、
前記熱硬化性樹脂組成物A(n)を含む前記繊維強化樹脂シート状基材を投入してから前記熱硬化性樹脂組成物A(n+1)を含む繊維強化樹脂シート状基材を投入するまでの時間をTh(s)としたとき、
Th(s)が下記式(1)〜(3)の少なくともいずれかを満たすものである。
・t≧300(s)のとき、t−t/8≦Th≦t+t/8 ・・・式(1)
・300(s)>t≧30(s)のとき、t−30(s)<Th≦t+30(s) ・・・式(2)
・30(s)>t>0(s)のとき、0(s)<Th≦t+5(s) ・・・式(3)
ここでt(s)は、前記熱硬化性樹脂組成物A(n)を含む前記繊維強化樹脂シート状基材のゲル化時間Tg(n)と、前記熱硬化性樹脂組成物A(n+1)を含む繊維強化樹脂シート状基材のゲル化時間Tg(n+1)との差(t=Tg(n)−Tg(n+1))である。
A method for producing a fiber-reinforced composite material in which a plurality of fiber-reinforced resin sheet-like substrates containing at least a reinforcing fiber and a thermosetting resin composition are laminated and compression-molded, and the gelation time of the thermosetting resin composition. Among the fiber-reinforced resin sheet-like base materials having different gelation times, the fiber-reinforced resin sheet-like base material having the longest gelation time is put into a mold, and a time difference is provided to provide a fiber-reinforced resin sheet having the next longest gelation time. A method for producing a fiber-reinforced composite material, which comprises repeatedly putting a plastic base material into a mold and then compression molding.
Here, in the method of adding the base material, A1, A2 ... A (n), A (n + 1) are selected from the thermosetting resin compositions having the longest gelation time.
When the gelation time of the thermosetting resin composition is Tg1, Tg2 ... Tg (n), Tg (n + 1), respectively.
From the charging of the fiber-reinforced resin sheet-like base material containing the thermosetting resin composition A (n) to the charging of the fiber-reinforced resin sheet-like base material containing the thermosetting resin composition A (n + 1). When the time of
Th (s) satisfies at least one of the following formulas (1) to (3).
When t ≧ 300 (s), t−t / 8 ≦ Th ≦ t + t / 8 ・ ・ ・ Equation (1)
When 300 (s)> t ≧ 30 (s), t-30 (s) <Th ≦ t + 30 (s) ... Expression (2)
When 30 (s)>t> 0 (s), 0 (s) <Th ≦ t + 5 (s) ... Expression (3)
Here, t (s) is the gelation time Tg (n) of the fiber-reinforced resin sheet-like base material containing the thermosetting resin composition A (n) and the thermosetting resin composition A (n + 1). It is a difference (t = Tg (n) -Tg (n + 1)) from the gelation time Tg (n + 1) of the fiber-reinforced resin sheet-like base material containing.
前記繊維強化樹脂シート状基材の形態が、一方向配列シート、織物、不織布、ランダムマットのいずれかであることを特徴とする請求項1に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to claim 1, wherein the form of the fiber-reinforced resin sheet-like base material is any one of a unidirectional array sheet, a woven fabric, a non-woven fabric, and a random mat. 前記熱硬化性樹脂組成物が、ビニルエステル樹脂またはエポキシ樹脂のいずれかであることを特徴とする請求項1または2に記載の繊維強化複合材料の製造方法。
The method for producing a fiber-reinforced composite material according to claim 1 or 2 , wherein the thermosetting resin composition is either a vinyl ester resin or an epoxy resin.
JP2017070364A 2017-03-31 2017-03-31 Manufacturing method of fiber reinforced composite material Active JP6965547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017070364A JP6965547B2 (en) 2017-03-31 2017-03-31 Manufacturing method of fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017070364A JP6965547B2 (en) 2017-03-31 2017-03-31 Manufacturing method of fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2018172474A JP2018172474A (en) 2018-11-08
JP6965547B2 true JP6965547B2 (en) 2021-11-10

Family

ID=64108379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017070364A Active JP6965547B2 (en) 2017-03-31 2017-03-31 Manufacturing method of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP6965547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198094B2 (en) 2019-01-29 2022-12-28 株式会社Subaru Composite manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025144A (en) * 1998-07-14 2000-01-25 Mitsubishi Plastics Ind Ltd Fiber-reinforced resin unit plate
JP2008266530A (en) * 2007-04-24 2008-11-06 Matsushita Denko Bath & Life Kk Sheet molding compound and method for molding the same
JP5424549B2 (en) * 2007-10-03 2014-02-26 三菱レイヨン株式会社 Manufacturing method of fiber reinforced resin structure
JP5950149B2 (en) * 2011-09-29 2016-07-13 三菱レイヨン株式会社 A method for producing a fiber-reinforced resin structure.

Also Published As

Publication number Publication date
JP2018172474A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US11135825B2 (en) Metal/fiber-reinforced resin material composite body and method for producing same
JP6731987B2 (en) Fiber reinforced plastic molding
JP6555360B2 (en) Prepreg, prepreg laminate, and fiber reinforced composite material
TWI431031B (en) Fabricating method of fiber reinforced composition and heat-resistant die and heat-resistant structural material using fiber reinforced composition
JP6562153B2 (en) FIBER-REINFORCED COMPOSITE MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
JP5950149B2 (en) A method for producing a fiber-reinforced resin structure.
KR20160079326A (en) Method for manufacturing hybrid composite material comprising glass fiber reinforced plastic and aluminum and hybrid composite material
Xiao et al. Hybrid laminated composites molded by spray lay-up process
JP2009235182A (en) Base material for preform and method for manufacturing the same
KR20160074296A (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
JP7047755B2 (en) Fiber reinforced plastic sheet
JP5712944B2 (en) Method for producing metal composite
JP6965547B2 (en) Manufacturing method of fiber reinforced composite material
US20220097345A1 (en) Metal-fiber reinforced plastic composite material
JPH0232843A (en) Intermediate body of molded product and molded product
JP5138506B2 (en) Epoxy resin composition and prepreg
JP2018187862A (en) Method for manufacturing carbon fiber reinforced composite material molding
JP2005161852A (en) Metal/fiber-reinforced plastic composite material, and its production method
KR101639982B1 (en) Process Of Producing HighTenacity Hybrid UniDirection Prepreg
CN109703113A (en) A kind of the composite fiber laminated Reinforced structure and method leading based on fiber
WO2019003824A1 (en) Preform for fiber-reinforced composite material, thermosetting resin composition, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
TWI779294B (en) Carbon fiber reinforced plastic sheet and method for producing carbon fiber reinforced plastic sheet
JP6012653B2 (en) Manufacturing method of fiber reinforced plastic molding
JPWO2020100513A1 (en) Epoxy resin compositions and cured epoxy resins for fiber-reinforced composites, preforms and fiber-reinforced composites
JPH05293919A (en) Carbon fiber reinforced resin composite material and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6965547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151