JP7467198B2 - Antibacterial fiber-reinforced resin composite molding and its manufacturing method - Google Patents

Antibacterial fiber-reinforced resin composite molding and its manufacturing method Download PDF

Info

Publication number
JP7467198B2
JP7467198B2 JP2020059957A JP2020059957A JP7467198B2 JP 7467198 B2 JP7467198 B2 JP 7467198B2 JP 2020059957 A JP2020059957 A JP 2020059957A JP 2020059957 A JP2020059957 A JP 2020059957A JP 7467198 B2 JP7467198 B2 JP 7467198B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
antibacterial
antibacterial agent
foam
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020059957A
Other languages
Japanese (ja)
Other versions
JP2021154696A (en
Inventor
尚幸 田辺
好典 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2020059957A priority Critical patent/JP7467198B2/en
Priority to CN202080061111.7A priority patent/CN114375252A/en
Priority to US17/638,199 priority patent/US20220402238A1/en
Priority to PCT/JP2020/031851 priority patent/WO2021039722A1/en
Priority to EP20858902.8A priority patent/EP4023427A4/en
Priority to TW109129237A priority patent/TW202116557A/en
Publication of JP2021154696A publication Critical patent/JP2021154696A/en
Application granted granted Critical
Publication of JP7467198B2 publication Critical patent/JP7467198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、基材層と抗菌性発泡体層が積層一体化した抗菌性繊維強化樹脂複合成形体とその製造方法に関する。 The present invention relates to an antibacterial fiber-reinforced resin composite molded body in which a base layer and an antibacterial foam layer are laminated together, and a method for producing the same.

従来、繊維強化樹脂成形体は、高強度且つ高剛性であるという点から、スポーツ、レジャー、航空機などの幅広い産業分野で使用されている。
繊維強化樹脂成形体は、強化繊維に熱硬化性樹脂を含浸したプリプレグやシートモールディングコンパウンド(SMC)などの繊維強化樹脂材を、加熱・圧縮することにより製造されている。特に、繊維強化樹脂成形体にリブやボスなどの複雑形状が要求される場合、成形の容易性からシートモールディングコンパウンドが使用されることが多い。
2. Description of the Related Art Fiber-reinforced resin molded articles have been used in a wide range of industrial fields, such as sports, leisure, and aviation, due to their high strength and high rigidity.
Fiber-reinforced plastic molded products are manufactured by heating and compressing fiber-reinforced plastic materials such as prepregs in which reinforcing fibers are impregnated with thermosetting resins, and sheet molding compounds (SMCs). In particular, when the fiber-reinforced plastic molded product is required to have complex shapes such as ribs or bosses, sheet molding compounds are often used because of their ease of molding.

近年、繊維強化樹脂成形体においても、抗菌性が要求される用途が増加している。繊維強化樹脂成形体に抗菌性を付与する方法として、プリプレグやシートモールディングコンパウンドなどのマトリックス樹脂(熱硬化性樹脂)に抗菌剤を添加して成形する方法が一般的である。しかし、マトリックス樹脂に抗菌剤を添加した場合、添加した抗菌剤の一部が成形体の表面に現れるだけであって、添加した抗菌剤の殆どが成形体の内部に存在するため、成形体の表面では抗菌効果が小さくなる。その結果、表面の抗菌性を高めるには、多量の抗菌剤を添加する必要があり、その場合は抗菌剤がマトリックス樹脂に均一に混合されなかったり、成形性が低下したり、コストアップになったりする問題がある。 In recent years, applications requiring antibacterial properties are increasing even for fiber-reinforced resin molded bodies. A common method for imparting antibacterial properties to fiber-reinforced resin molded bodies is to add an antibacterial agent to a matrix resin (thermosetting resin) such as a prepreg or sheet molding compound and then mold the body. However, when an antibacterial agent is added to a matrix resin, only a part of the added antibacterial agent appears on the surface of the molded body, and most of the added antibacterial agent is present inside the molded body, so the antibacterial effect is small on the surface of the molded body. As a result, in order to increase the antibacterial properties of the surface, it is necessary to add a large amount of antibacterial agent, which can cause problems such as the antibacterial agent not being mixed uniformly into the matrix resin, reduced moldability, and increased costs.

また、成形後の繊維強化樹脂成形体の表面に、抗菌コート剤をコーティングする方法(特許文献1)や、抗菌性を付与したシート状硬化樹脂粒子集合体からなる表面材を、金型内に正確に位置決めして配置し、その上にシートモールディングコンパウンド等の成形材料を配置して成形する方法(特許文献2)がある。 There is also a method in which an antibacterial coating agent is applied to the surface of a fiber-reinforced resin molding after molding (Patent Document 1), and a method in which a surface material consisting of an aggregate of sheet-shaped cured resin particles to which antibacterial properties have been imparted is precisely positioned and placed in a mold, and then a molding material such as a sheet molding compound is placed on top of it and molded (Patent Document 2).

特開平11-228908号公報Japanese Patent Application Laid-Open No. 11-228908 特開2003-12707号公報JP 2003-12707 A

しかし、成形後の繊維強化樹脂成形体の表面に、抗菌コート剤を塗布する方法では、成形体の成形後に、後工程としてコーティング工程と抗菌コート剤の硬化工程が必要になり、コストアップの要因になる。
また、抗菌性を付与したシート状硬化樹脂粒子集合体からなる表面材を金型内に正確に位置決めして配置し、その上にシートモールディングコンパウンド等の成形材料を配置して成形する方法では、金型内での成形材料の流動長が長い場合、成形材料の流動によってシート状硬化樹脂粒子集合体からなる表面材が破れることがあり、良好な表面外観及び抗菌性が得られなくなる。
However, the method of applying an antibacterial coating agent to the surface of a molded fiber-reinforced resin body requires a coating step and a curing step of the antibacterial coating agent as post-processing steps after molding of the body, which is a factor in increasing costs.
Furthermore, in a method in which a surface material made of an aggregate of sheet-like cured resin particles to which antibacterial properties have been imparted is accurately positioned and placed in a mold, and then a molding material such as a sheet molding compound is placed on top of it to mold it, if the flow length of the molding material in the mold is long, the surface material made of the aggregate of sheet-like cured resin particles may be torn by the flow of the molding material, and good surface appearance and antibacterial properties may not be obtained.

本発明は、前記の点に鑑みなされたものであり、表面外観が良好で抗菌性能が高い抗菌性繊維強化樹脂複合成形体と、その製造方法の提供を目的とする。 The present invention has been made in consideration of the above points, and aims to provide an antibacterial fiber-reinforced resin composite molding that has a good surface appearance and high antibacterial performance, and a method for producing the same.

請求項1の発明は、繊維と第1の熱硬化性樹脂とよりなる賦形用コンパウンドから形成された基材層と、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体から形成された抗菌性発泡体層と、を有し、前記抗菌剤含有第2の熱硬化性樹脂の抗菌剤濃度は0.2~2.0wt%であり、前記基材層と前記抗菌性発泡体層は、前記賦形用コンパウンドと、前記抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体が、積層状態で加熱圧縮により一体化したものであることを特徴とする抗菌性繊維強化樹脂複合成形体である。 The invention of claim 1 is an antibacterial fiber-reinforced resin composite molding comprising a base layer formed from a shaping compound made of fibers and a first thermosetting resin, and an antibacterial foam layer formed from a thermosetting resin foam impregnated with an antibacterial agent-containing second thermosetting resin, the antibacterial agent concentration of the antibacterial agent-containing second thermosetting resin being 0.2 to 2.0 wt %, and the base layer and the antibacterial foam layer being integrated by heating and compressing the shaping compound and the thermosetting resin foam impregnated with the antibacterial agent-containing second thermosetting resin in a laminated state.

請求項2の発明は、請求項1において、前記抗菌剤は、硝子に銀イオンを担持させたものであることを特徴とする。 The invention of claim 2 is the same as in claim 1, except that the antibacterial agent is glass carrying silver ions.

請求項3の発明は、請求項1または2において、前記賦形用コンパウンドに硬化剤を含み、前記抗菌剤含有第2の熱硬化性樹脂には硬化剤を含まないことを特徴とする。 The invention of claim 3 is characterized in that in claim 1 or 2, the excipient compound contains a hardener, and the antibacterial agent-containing second thermosetting resin does not contain a hardener.

請求項4の発明は、請求項1から3の何れか一項において、前記第2の熱硬化性樹脂は、前記第1の熱硬化性樹脂と反応可能なラジカル重合樹脂であることを特徴とする。 The invention of claim 4 is characterized in that in any one of claims 1 to 3, the second thermosetting resin is a radical polymerization resin capable of reacting with the first thermosetting resin.

請求項5の発明は、繊維と第1の熱硬化性樹脂とよりなる賦形用コンパウンドから形成された基材層と、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体から形成された抗菌性発泡体層とよりなる抗菌性繊維強化樹脂複合成形体の製造方法において、前記賦形用コンパウンドと、前記抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体を重ね、加熱圧縮成形により、前記賦形用コンパウンドと、前記抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体を、圧縮した状態で前記第1の熱硬化性樹脂と前記第2の熱硬化性樹脂を硬化させ、前記基材層と前記抗菌性発泡体層を積層一体形成することを特徴とする。 The invention of claim 5 is a method for producing an antibacterial fiber-reinforced resin composite molded body comprising a base layer formed from a shaping compound made of fibers and a first thermosetting resin, and an antibacterial foam layer formed from a thermosetting resin foam impregnated with an antibacterial agent-containing second thermosetting resin, characterized in that the shaping compound and the thermosetting resin foam impregnated with the antibacterial agent-containing second thermosetting resin are layered together, and the shaping compound and the thermosetting resin foam impregnated with the antibacterial agent-containing second thermosetting resin are compressed by heat compression molding to harden the first thermosetting resin and the second thermosetting resin, thereby integrally laminating the base layer and the antibacterial foam layer.

請求項6の発明は、請求項5において、前記抗菌剤は、硝子に銀イオンを担持させたものであることを特徴とする。 The invention of claim 6 is the same as claim 5, in which the antibacterial agent is glass carrying silver ions.

請求項7の発明は、請求項5または6において、前記賦形用コンパウンドに硬化剤を含み、前記抗菌剤含有第2の熱硬化性樹脂には硬化剤を含まないことを特徴とする。
The invention of claim 7 is characterized in that in the invention of claim 5 or 6, the excipient compound contains a curing agent, and the antibacterial agent-containing second thermosetting resin does not contain a curing agent.

請求項8の発明は、請求項5から7の何れか一項において、前記第2の熱硬化性樹脂は、前記第1の熱硬化性樹脂と反応可能なラジカル重合樹脂であることを特徴とする。 The invention of claim 8 is characterized in that in any one of claims 5 to 7, the second thermosetting resin is a radical polymerization resin capable of reacting with the first thermosetting resin.

本発明によれば、抗菌性繊維強化樹脂複合成形体は、基材層に積層された抗菌性発泡体層によって表面外観が良好になり、かつ抗菌性発泡体層に含浸している抗菌剤含有第2の熱硬化性樹脂によって抗菌性能の高いものになる。 According to the present invention, the antibacterial fiber-reinforced resin composite molding has a good surface appearance due to the antibacterial foam layer laminated on the base layer, and has high antibacterial performance due to the antibacterial agent-containing second thermosetting resin impregnated into the antibacterial foam layer.

また、本発明によれば、抗菌性繊維強化樹脂複合成形体の製造に際し、繊維と第1の熱硬化性樹脂とよりなる賦形用コンパウンドと、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体を重ね、加熱圧縮成形により基材層と抗菌性発泡体層を積層一体形成するため、製造作業を効率化することができる。 In addition, according to the present invention, when manufacturing an antibacterial fiber-reinforced resin composite molding, a shaping compound consisting of fibers and a first thermosetting resin is layered on a thermosetting resin foam impregnated with an antibacterial agent-containing second thermosetting resin, and the base layer and the antibacterial foam layer are integrally laminated by heat compression molding, thereby making it possible to streamline the manufacturing process.

本発明における抗菌性繊維強化樹脂複合成形体の一実施形態の断面図である。1 is a cross-sectional view of one embodiment of an antibacterial fiber-reinforced resin composite molded article according to the present invention. 本発明における抗菌性繊維強化樹脂複合成形体の製造時の加熱圧縮を示す断面図である。FIG. 2 is a cross-sectional view showing the heating and compression during the production of the antibacterial fiber-reinforced resin composite molded article of the present invention. 各実施例各比較例の構成と抗菌性能を示す表である。1 is a table showing the configuration and antibacterial performance of each example and comparative example.

以下、本発明の抗菌性繊維強化樹脂複合成形体及びその製造方法について説明する。
図1に示す抗菌性繊維強化樹脂複合成形体10は、基材層11とその一面側に形成された抗菌性発泡体層21とよりなり、加熱圧縮成形によって前記基材層11と抗菌性発泡体層21が積層一体形成されたものである。なお、本発明の抗菌性繊維強化樹脂複合成形体10における表面形状は、抗菌性繊維強化樹脂複合成形体10の用途に応じた形状にされ、複雑な凹凸形状にも対応することができる。
The antibacterial fiber-reinforced resin composite molded article and the method for producing the same of the present invention will be described below.
The antibacterial fiber-reinforced resin composite molded product 10 shown in Fig. 1 comprises a base material layer 11 and an antibacterial foam layer 21 formed on one side thereof, and the base material layer 11 and the antibacterial foam layer 21 are integrally laminated by hot compression molding. The surface shape of the antibacterial fiber-reinforced resin composite molded product 10 of the present invention is determined according to the application of the antibacterial fiber-reinforced resin composite molded product 10, and can also accommodate complex uneven shapes.

基材層11は、繊維と第1の熱硬化性樹脂とよりなる賦形用コンパウンドから加熱圧縮成形により形成されたものである。基材層11の厚みは、抗菌性繊維強化樹脂複合成形体10の用途に応じて異なるが、例として0.7~5.0mm程度を挙げる。 The base layer 11 is formed by hot compression molding of a shaping compound consisting of fibers and a first thermosetting resin. The thickness of the base layer 11 varies depending on the application of the antibacterial fiber-reinforced resin composite molding 10, but is, for example, approximately 0.7 to 5.0 mm.

繊維は、ガラス繊維や炭素繊維などの短繊維のものが挙げられる。
第1の熱硬化性樹脂は、不飽和ポリエステル樹脂、ビニルエステル樹脂、ウレタン(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂、ポリエーテル(メタ)アクリレート樹脂などのラジカル重合樹脂が好ましい。
賦形用コンパウンドとしては、シートモールディングコンパウンド(以下SMCと記す)が好ましい。SMCは、前記第1の熱硬化性樹脂に充填材や硬化剤などを含んだコンパウンドを、ガラス繊維や炭素繊維などの繊維材に含浸させたシート状の成形材料をいう。加熱圧縮前のSMCの厚みは、1.0~3.0mmが好ましい。
The fibers include short fibers such as glass fibers and carbon fibers.
The first thermosetting resin is preferably a radical polymerization resin such as an unsaturated polyester resin, a vinyl ester resin, a urethane (meth)acrylate resin, a polyester (meth)acrylate resin, or a polyether (meth)acrylate resin.
The molding compound is preferably a sheet molding compound (hereinafter referred to as SMC). SMC refers to a sheet-shaped molding material in which a compound containing a filler, a curing agent, etc. in the first thermosetting resin is impregnated into a fiber material such as glass fiber or carbon fiber. The thickness of the SMC before heating and compression is preferably 1.0 to 3.0 mm.

賦形用コンパウンドに含まれる硬化剤としては、メチルエチルケトンパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート等が挙げられる。 Examples of hardeners contained in excipient compounds include methyl ethyl ketone peroxide, dicumyl peroxide, benzoyl peroxide, and t-butyl peroxybenzoate.

抗菌性発泡体層21は、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体から加熱圧縮成形によって形成されたものである。抗菌性発泡体層21の厚みは、適宜決定されるが、例として0.3~3mm程度を挙げる。 The antibacterial foam layer 21 is formed by hot compression molding of a thermosetting resin foam impregnated with an antibacterial agent-containing second thermosetting resin. The thickness of the antibacterial foam layer 21 is determined appropriately, but an example is about 0.3 to 3 mm.

抗菌剤含有第2の熱硬化性樹脂は、抗菌剤を第2の熱硬化性樹脂に所定濃度で混合したものである。
抗菌剤としては、無機系抗菌剤と有機系抗菌剤が存在するが、無機系抗菌剤は有機系抗菌剤よりも一般的に安全性が高く、耐久性、耐熱性に優れるため、好ましいものである。無機系抗菌剤は、無機系担持体に抗菌性金属イオンを担持させたものである。無機系担持体としては、ゼオライト、粘土鉱物、硝子、シリカゲル、アルミナ、リン酸ジルコニウム、リン酸カルシウム等が挙げられる。抗菌性金属イオンとしては、銀イオン、銅イオン、亜鉛イオン等が挙げられる。特に、硝子に銀イオンを担持させた抗菌剤は、樹脂に分散した時の液の透明性が高く、成形品の外観が良好になる。更には、抗菌性含有第2の熱硬化性樹脂を賦形用コンパウンドに直接付着した場合は、肉眼では分からないが、抗菌性繊維強化樹脂複合成形体10にX線を通して確認すると抗菌剤の分散不良に起因すると思われる斑点が見られる場合があるのに対し、抗菌性含有第2の熱硬化性樹脂を発泡体に含浸して賦形用コンパウンドに付着した場合には抗菌性繊維強化樹脂複合成形体10にX線を通して確認しても斑点は見られず、良好な抗菌剤の分散が得られる。そのため、X線を透過させる用途には好適なものである。
The antibacterial agent-containing second thermosetting resin is obtained by mixing an antibacterial agent in a second thermosetting resin at a predetermined concentration.
Antibacterial agents include inorganic antibacterial agents and organic antibacterial agents, and inorganic antibacterial agents are generally safer than organic antibacterial agents and are more durable and heat resistant, so they are preferred. Inorganic antibacterial agents are antibacterial metal ions supported on an inorganic support. Examples of inorganic supports include zeolite, clay minerals, glass, silica gel, alumina, zirconium phosphate, calcium phosphate, and the like. Examples of antibacterial metal ions include silver ions, copper ions, zinc ions, and the like. In particular, antibacterial agents in which silver ions are supported on glass have high liquid transparency when dispersed in resin, and the appearance of the molded product is good. Furthermore, when the antibacterial-containing second thermosetting resin is directly attached to the excipient compound, spots that are not visible to the naked eye but are thought to be due to poor dispersion of the antibacterial agent may be seen when the antibacterial fiber-reinforced resin composite molding 10 is examined through an X-ray, whereas when the antibacterial-containing second thermosetting resin is impregnated into a foam and attached to the excipient compound, no spots are seen when the antibacterial fiber-reinforced resin composite molding 10 is examined through an X-ray, and good dispersion of the antibacterial agent is obtained. Therefore, it is suitable for applications that allow X-rays to pass through.

抗菌剤含有第2の熱硬化性樹脂における抗菌剤の濃度は、0.2~2.0wt%が好ましい。抗菌剤の濃度が低すぎると抗菌作用が低くなり、その逆に抗菌剤の濃度が高すぎると、コストが嵩むようになる。 The concentration of the antibacterial agent in the antibacterial-containing second thermosetting resin is preferably 0.2 to 2.0 wt %. If the concentration of the antibacterial agent is too low, the antibacterial effect will be reduced, and conversely, if the concentration of the antibacterial agent is too high, the cost will increase.

第2の熱硬化性樹脂としては、賦形用コンパウンドの第1の熱硬化性樹脂と反応可能なラジカル重合樹脂が好ましい。第1の熱硬化性樹脂と第2の熱硬化性樹脂を互いに反応可能なラジカル重合樹脂とすることにより、基材層11と抗菌性発泡体層21を形成する際の加熱圧縮時に、基材層11と抗菌発泡体層21の接着一体化を良好なものにできる。第2の熱硬化性樹脂用のラジカル重合樹脂は、前記第1の熱硬化性樹脂用のラジカル樹脂と同様の樹脂を挙げる。また、第1の熱硬化性樹脂と第2の熱硬化性樹脂は、同一種類でもよく、あるいは異なる種類でもよい。 As the second thermosetting resin, a radical polymerization resin capable of reacting with the first thermosetting resin of the shaping compound is preferable. By using radical polymerization resins capable of reacting with each other as the first thermosetting resin and the second thermosetting resin, the substrate layer 11 and the antibacterial foam layer 21 can be well bonded and integrated during the heating and compression for forming the substrate layer 11 and the antibacterial foam layer 21. The radical polymerization resin for the second thermosetting resin may be the same as the radical resin for the first thermosetting resin. In addition, the first thermosetting resin and the second thermosetting resin may be the same type or different types.

抗菌剤含有第2の熱硬化性樹脂には、必要に応じて、硬化剤、分散剤、難燃剤、UV吸収剤等を添加してもよい。硬化剤については、抗菌剤含有第2の熱硬化性樹脂に含まないようにするのが好ましい。抗菌剤含有第2の熱硬化性樹脂に硬化剤を含まなくても、基材層11と抗菌性発泡体層21を形成する際の加熱圧縮時に、賦形用コンパウンドに含まれる硬化剤と抗菌剤含有第2の熱硬化性樹脂が混ざり合い、それによって第2の熱硬化性樹脂が硬化することができる。その場合、第2の熱硬化性樹脂は、賦形用コンパウンドに含まれる硬化剤によって硬化する樹脂が使用される。抗菌剤含有第2の熱硬化性樹脂は、硬化剤を含まないことにより、使用するまでの間に硬化反応が進行するポットライフの問題が無くなり、安定した性能が得られる。第2の熱硬化性樹脂に対する硬化剤は、賦形用コンパウンドについて記載したものと同様のものが使用可能である。 The antibacterial agent-containing second thermosetting resin may contain a curing agent, a dispersing agent, a flame retardant, a UV absorber, etc., as necessary. It is preferable that the antibacterial agent-containing second thermosetting resin does not contain a curing agent. Even if the antibacterial agent-containing second thermosetting resin does not contain a curing agent, the curing agent contained in the excipient compound and the antibacterial agent-containing second thermosetting resin are mixed during the heating and compression process for forming the base layer 11 and the antibacterial foam layer 21, thereby allowing the second thermosetting resin to harden. In that case, the second thermosetting resin is a resin that is hardened by the curing agent contained in the excipient compound. Since the antibacterial agent-containing second thermosetting resin does not contain a curing agent, the pot life problem of the curing reaction progressing before use is eliminated, and stable performance is obtained. The curing agent for the second thermosetting resin can be the same as that described for the excipient compound.

熱硬化性樹脂発泡体は、抗菌剤含有第2の熱硬化性樹脂の含浸を良好にすると共に、加熱圧縮成形時に樹脂が流動して発泡体の破れを抑制することができるため、連続気泡構造の発泡体が好ましい。連続気泡構造の発泡体としては、ウレタン樹脂発泡体、メラミン樹脂発泡体等を挙げることができる。さらに、連続気泡構造の発泡体は、公知のセル膜除去処理によってセル膜が除去されたものが、抗菌剤含有第2の熱硬化性樹脂の含浸、及び加熱圧縮成形等の点で、より好ましい。セル膜除去処理としては、溶解法、爆発法などがある。 Thermosetting resin foam is preferably an open-cell foam, since it allows for good impregnation with the antibacterial agent-containing second thermosetting resin and prevents the resin from flowing during heat compression molding, thereby preventing the foam from breaking. Examples of open-cell foam include urethane resin foam and melamine resin foam. Furthermore, open-cell foams from which the cell membrane has been removed by a known cell membrane removal process are more preferable in terms of impregnation with the antibacterial agent-containing second thermosetting resin and heat compression molding. Examples of cell membrane removal processes include a dissolution method and an explosion method.

熱硬化性樹脂発泡体の見掛け密度(JIS K 7222)は30~75kg/m、セル数(JIS K 6400-1)は8~80個/25mm、厚みは0.4~3.0mmが好ましい。
熱硬化性樹脂発泡体のセル数が少なすぎると、均一な樹脂の含浸が難しくなり、その逆にセル数が多すぎると、圧縮成形時に抗菌性発泡体層21が潰れにくくなり、その結果成形体の表面にセル模様が残ってしまい、抗菌性繊維強化樹脂複合成形体10の外観が悪くなる。
また、熱硬化性樹脂発泡体の厚みが薄すぎると、圧縮成形時に破れの原因になり、その逆に厚すぎると、圧縮成形時に抗菌性発泡体層21が潰れにくくなり、その結果成形体の表面にセル模様が残ってしまい、抗菌性繊維強化樹脂複合成形体10の外観が悪くなる。
熱硬化性樹脂発泡体に対する抗菌剤含有第2の熱硬化性樹脂の含浸量は、抗菌剤の濃度や熱硬化性樹脂発泡体の厚みによって異なるが、例えば熱硬化性樹脂発泡体の1m当たり250~500g程度が好ましい。含浸量が少ないと抗菌作用が低くなり、その逆に含浸量が多いと、コストが嵩むようになる。
The thermosetting resin foam preferably has an apparent density (JIS K 7222) of 30 to 75 kg/m 3 , a cell number (JIS K 6400-1) of 8 to 80 cells/25 mm, and a thickness of 0.4 to 3.0 mm.
If the number of cells in the thermosetting resin foam is too small, uniform resin impregnation becomes difficult, and conversely, if the number of cells is too large, the antibacterial foam layer 21 becomes difficult to crush during compression molding, resulting in a cell pattern remaining on the surface of the molded body and a poor appearance of the antibacterial fiber-reinforced resin composite molded body 10.
Furthermore, if the thickness of the thermosetting resin foam is too thin, it may break during compression molding, and conversely, if it is too thick, the antibacterial foam layer 21 will be difficult to crush during compression molding, resulting in a cellular pattern remaining on the surface of the molded body and deteriorating the appearance of the antibacterial fiber-reinforced resin composite molded body 10.
The amount of the antibacterial agent-containing second thermosetting resin impregnated into the thermosetting resin foam varies depending on the concentration of the antibacterial agent and the thickness of the thermosetting resin foam, but is preferably about 250 to 500 g per m2 of the thermosetting resin foam. If the amount is small, the antibacterial effect will be low, and conversely, if the amount is large, the cost will increase.

抗菌性繊維強化樹脂複合成形体10の製造方法について説明する。
抗菌性繊維強化樹脂複合成形体10の製造方法は、含浸工程、加熱圧縮成形工程とよりなる。
A method for producing the antibacterial fiber-reinforced resin composite molding 10 will be described.
The method for producing the antibacterial fiber-reinforced resin composite molding 10 includes an impregnation step and a heat compression molding step.

含浸工程では、まず、抗菌剤と第2の熱硬化性樹脂を、必要に応じて添加する硬化剤、分散剤、難燃剤、UV吸収剤等と共に撹拌混合し、抗菌剤含有第2の熱硬化性樹脂を作製する。
抗菌剤、第2の熱硬化性樹脂、硬化剤等は、前記のとおりである。また、抗菌剤濃度は、熱硬化性樹脂に対して0.2~2.0wt%が好ましい。
所定濃度で作製した抗菌剤含有第2の熱硬化性樹脂を、熱硬化性樹脂発泡体に含浸させる。熱硬化性樹脂発泡体は、前記のとおりである。
抗菌剤含有第2の熱硬化性樹脂を、熱硬化性樹脂発泡体に含浸させる方法は、公知の方法でよく、浸漬(ディッピング)、刷毛塗り、ローラ塗り、スプレー塗り等を挙げる。例えば、浸漬法の場合、容器等に収容した抗菌剤含有第2の熱硬化性樹脂に、熱硬化性樹脂発泡体を浸漬して抗菌剤含有第2の熱硬化性樹脂を熱硬化性樹脂に含浸させ、その後取り出して、ローラなどを用いる圧縮によって、余剰の抗菌剤含有第2の熱硬化性樹脂を、熱硬化性樹脂発泡体から除去する。
In the impregnation process, first, the antibacterial agent and the second thermosetting resin are stirred and mixed together with a curing agent, a dispersant, a flame retardant, a UV absorber, etc., which are added as necessary, to prepare an antibacterial agent-containing second thermosetting resin.
The antibacterial agent, the second thermosetting resin, the hardener, etc. are as described above. The concentration of the antibacterial agent is preferably 0.2 to 2.0 wt % relative to the thermosetting resin.
The antibacterial agent-containing second thermosetting resin prepared at a predetermined concentration is impregnated into the thermosetting resin foam. The thermosetting resin foam is as described above.
The method for impregnating the antibacterial agent-containing second thermosetting resin into the thermosetting resin foam may be a known method, such as dipping, brush coating, roller coating, spray coating, etc. For example, in the case of the dipping method, the thermosetting resin foam is dipped into the antibacterial agent-containing second thermosetting resin contained in a container or the like to impregnate the antibacterial agent-containing second thermosetting resin into the thermosetting resin, and then the thermosetting resin foam is taken out and compressed using a roller or the like to remove excess antibacterial agent-containing second thermosetting resin from the thermosetting resin foam.

加熱圧縮成形工程では、賦形用コンパウンドと、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体を重ね、加熱圧縮する。
賦形用コンパウンドは、前記のように繊維と第1の熱硬化性樹脂とよりなるものであり、SMCが好ましい。
加熱圧縮の一実施形態を、図2の(2-1)に示す成形金型50を用いる場合について説明する。成形金型50は、上型51と下型53とで構成される。上型51と下型53の型面は、抗菌性繊維強化樹脂複合成形体10の表面に応じた凹凸形状あるいは平面形状等からなり、本実施形態では平面形状からなる。
In the heat compression molding step, the shaping compound and the thermosetting resin foam impregnated with the antibacterial agent-containing second thermosetting resin are layered and then heated and compressed.
The shaping compound is comprised of fibers and a first thermosetting resin as described above, and is preferably SMC.
An embodiment of the heat compression will be described using a molding die 50 shown in Fig. 2 (2-1). The molding die 50 is composed of an upper die 51 and a lower die 53. The mold surfaces of the upper die 51 and the lower die 53 have an uneven shape or a flat shape corresponding to the surface of the antibacterial fiber-reinforced resin composite molded body 10, and in this embodiment, they have a flat shape.

成形金型50は、予め加熱炉に入れることにより、あるいは成形金型50に設けた加熱手段(例えば電熱ヒータ等)によって所定温度に加熱される。加熱温度は、第1の熱硬化性樹脂及び第2の熱硬化性樹脂が硬化する温度に設定される。 The molding die 50 is heated to a predetermined temperature by placing it in a heating furnace in advance or by a heating means (e.g., an electric heater) provided on the molding die 50. The heating temperature is set to a temperature at which the first thermosetting resin and the second thermosetting resin are cured.

成形金型50を開いた状態にして、図2の(2-1)に示すように、下型53の型面に賦形用コンパウンド11Aと、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体21Aを重ねて配置する。賦形用コンパウンド11Aと、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体21Aは、何れを上側あるいは下側としてもよい。なお、上型51及び下型53の型面には、予め離型剤を塗布しておくのが好ましい。 With the molding die 50 open, as shown in FIG. 2 (2-1), the shaping compound 11A and the thermosetting resin foam 21A impregnated with the antibacterial agent-containing second thermosetting resin are placed one on top of the other on the mold surface of the lower die 53. Either the shaping compound 11A or the thermosetting resin foam 21A impregnated with the antibacterial agent-containing second thermosetting resin may be placed on the upper or lower side. It is preferable to apply a mold release agent to the mold surfaces of the upper die 51 and the lower die 53 in advance.

賦形用コンパウンド11Aと、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体21Aを、重ねて配置した後、図2の(2-2)に示すように上型51を下型53に被せ、賦形用コンパウンド11Aと抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体21Aを、第1の熱硬化性樹脂及び第2の熱硬化性樹脂が硬化する温度で加熱圧縮する。 After the shaping compound 11A and the thermosetting resin foam 21A impregnated with the antibacterial agent-containing second thermosetting resin are stacked, the upper mold 51 is placed over the lower mold 53 as shown in FIG. 2 (2-2), and the shaping compound 11A and the thermosetting resin foam 21A impregnated with the antibacterial agent-containing second thermosetting resin are heated and compressed at a temperature at which the first thermosetting resin and the second thermosetting resin are cured.

加熱圧縮により、賦形用コンパウンド11Aと、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体21Aは、平面形状が広がる。それと共に、賦形用コンパウンド11Aから、第1の熱硬化性樹脂及び硬化剤等が滲出し、一方、抗菌剤含有第2の熱硬化性が含浸した熱硬化性樹脂21Aからは、第2の熱硬化性樹脂が滲出し、それらが賦形用コンパウンド11Aと、抗菌剤含有第2の熱硬化性が含浸した熱硬化性樹脂21Aとの境界面で接触して混ざりあう。
それによって、第1の熱硬化性樹脂と第2の熱硬化性樹脂が硬化し、賦形用コンパウンド11Aから基材層11が形成され、また、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体21Aから抗菌発泡体層21が形成され、それらが積層一体化した抗菌性繊維強化樹脂成形体10が得られる。
なお、抗菌剤含有第2の熱硬化性に硬化剤が含まれてなくても、賦形用コンパウンド11Aに硬化剤が含まれていれば、圧縮によって賦形用コンパウンド11Aから滲出した硬化剤と第2の熱硬化性樹脂が混ざり合って硬化することができる。
また、基材層11と抗菌性発泡体層21の一体化は、賦形用コンパウンド11Aから滲出した第1の熱硬化性樹脂と、抗菌剤含有第2の熱硬化性が含浸した熱硬化性樹脂21Aから滲出した第2の熱硬化性樹脂が、賦形用コンパウンド11Aと抗菌剤含有第2の熱硬化性が含浸した熱硬化性樹脂21Aとの境界面で接触し、あるいは相手側に侵入して硬化することにより行われる。
By the heating and compression, the thermosetting resin foam 21A impregnated with the shaping compound 11A and the antibacterial agent-containing second thermosetting resin expands in planar shape. At the same time, the first thermosetting resin and the curing agent exude from the shaping compound 11A, while the second thermosetting resin exudes from the antibacterial agent-containing second thermosetting resin-impregnated thermosetting resin 21A, and they come into contact with each other at the interface between the shaping compound 11A and the antibacterial agent-containing second thermosetting resin-impregnated thermosetting resin 21A and mix with each other.
As a result, the first thermosetting resin and the second thermosetting resin harden, a base layer 11 is formed from the shaping compound 11A, and an antibacterial foam layer 21 is formed from the thermosetting resin foam 21A impregnated with the antibacterial agent-containing second thermosetting resin, and an antibacterial fiber-reinforced resin molding 10 is obtained by stacking these together.
In addition, even if the antibacterial agent-containing second thermosetting resin does not contain a curing agent, if the molding compound 11A contains a curing agent, the curing agent that seeps out from the molding compound 11A by compression can mix with the second thermosetting resin and harden.
In addition, the integration of the base material layer 11 and the antibacterial foam layer 21 is achieved by the first thermosetting resin seeping out from the shaping compound 11A and the second thermosetting resin seeping out from the thermosetting resin 21A impregnated with the antibacterial agent-containing second thermosetting material coming into contact at the interface between the shaping compound 11A and the thermosetting resin 21A impregnated with the antibacterial agent-containing second thermosetting material, or penetrating into the other side and hardening.

・実施例1
ビニルエステル樹脂(昭和電工株式会社社製、品名:リポキシR-806)の980gに、硝子に銀イオンを担持させた銀系抗菌剤(株式会社シナネンゼオミック社製、品名:IM10D-L)を20g添加し、攪拌機(アズワン株式会社製、品名:高速撹拌機ST-200)を用いて回転数1000rpmで5分間撹拌し、抗菌剤濃度が2.0wt%の抗菌剤含有第2の熱硬化性樹脂A(硬化剤含まず)を作製した。
Example 1
20 g of a silver-based antibacterial agent (manufactured by Showa Denko K.K., product name: Lipoxy R-806) in which silver ions are supported on glass (manufactured by Sinanen Zeomic Co., Ltd., product name: IM10D-L) was added to 980 g of vinyl ester resin (manufactured by Showa Denko K.K.), and the mixture was stirred for 5 minutes at 1000 rpm using a stirrer (manufactured by AS ONE Corporation, product name: High Speed Stirrer ST-200) to produce an antibacterial-containing second thermosetting resin A (not including a curing agent) with an antibacterial agent concentration of 2.0 wt %.

熱硬化性樹脂発泡体(セル膜除去処理済みのウレタン樹脂発泡体(連続気泡構造)、株式会社イノアックコーポレーション製、品名:MF-50、見掛け密度(JIS K 7222)30kg/m、セル数(JIS K 6400-1)50個/25mm、空隙率97.1%、厚み0.4mm)を150×200mmに切り出し、抗菌剤含有第2の熱硬化性樹脂A(硬化剤含まず)に浸漬した後、含浸量が12gとなるように、ローラにより絞り工程を行い、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体を作製した。空隙率の計算式は次の通りである。空隙率=(ウレタン樹脂の真比重-見掛け密度)/ウレタン樹脂の真比重×100
なお、ウレタン樹脂の真比重は、1.05である。
A thermosetting resin foam (urethane resin foam (open cell structure) from which cell membranes had been removed, manufactured by Inoac Corporation, product name: MF-50, apparent density (JIS K 7222) 30 kg/m 3 , cell count (JIS K 6400-1) 50 cells/25 mm, porosity 97.1%, thickness 0.4 mm) was cut to a size of 150 x 200 mm and immersed in antibacterial agent-containing second thermosetting resin A (without curing agent), after which a squeezing process was carried out with a roller so that the amount of impregnation was 12 g, thereby producing a thermosetting resin foam impregnated with the antibacterial agent-containing second thermosetting resin. The formula for calculating porosity is as follows: porosity = (true specific gravity of urethane resin - apparent density) / true specific gravity of urethane resin x 100
The true specific gravity of the urethane resin is 1.05.

成形金型を130℃に加熱し、その成形金型を開いて型面に離型剤を塗布した後、下型の型面(200×300mm)の中央に、150×200mmの大きさ(重量90g)に切り出した賦形用コンパウンド(SMC、三菱ケミカル株式会社製、品名:STR120N131、厚み2mm、繊維含有率53%)と、抗菌剤含有第2の熱硬化性樹脂Aが含浸した熱硬化性樹脂発泡体を重ねて配置した。そして、成形金型を閉じ、10MPaの圧力で10分間、加熱圧縮を行った後、成形金型50を開き、実施例1の成形体を取り出した。実施例1の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。 The molding die was heated to 130°C, the molding die was opened, and a release agent was applied to the mold surface. Then, a shaping compound (SMC, manufactured by Mitsubishi Chemical Corporation, product name: STR120N131, thickness 2 mm, fiber content 53%) cut to a size of 150 x 200 mm (weight 90 g) was placed in the center of the mold surface (200 x 300 mm) of the lower die, and a thermosetting resin foam impregnated with the antibacterial agent-containing second thermosetting resin A was placed on top of each other. The molding die was then closed, and heat compression was performed at a pressure of 10 MPa for 10 minutes. The molding die 50 was then opened, and the molded body of Example 1 was removed. The molded body of Example 1 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm and the thickness was 1.0 mm.

・実施例2
実施例1の熱硬化性樹脂発泡体の厚みを0.6mmにした以外、実施例1と同様にして実施例2の成形体を作製した。実施例2の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Example 2
A molded body of Example 2 was produced in the same manner as in Example 1, except that the thickness of the thermosetting resin foam of Example 1 was 0.6 mm. The molded body of Example 2 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm and the thickness was 1.0 mm.

・実施例3
実施例1の熱硬化性樹脂発泡体の厚みを1.0mmにした以外、実施例1と同様にして実施例3の成形体を作製した。実施例3の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Example 3
A molded body of Example 3 was produced in the same manner as in Example 1, except that the thickness of the thermosetting resin foam of Example 1 was 1.0 mm. The molded body of Example 3 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm and the thickness was 1.0 mm.

・実施例4
抗菌剤含有第2の熱硬化性樹脂について、不飽和ポリエステル樹脂(昭和電工株式会社社製、品名:RIGOLAC T-543TPAを用い、その他を抗菌剤含有第2の熱硬化性樹脂Aの作製と同様にして、抗菌剤濃度が2.0wt%の抗菌剤含有第2の熱硬化性樹脂B(硬化剤含まず)を作製し、その抗菌剤含有第2の熱硬化性樹脂B(硬化剤含まず)を用いた以外、実施例3と同様にして実施例4の成形体を作製した。実施例4の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Example 4
For the antibacterial agent-containing second thermosetting resin, an unsaturated polyester resin (manufactured by Showa Denko K.K., product name: RIGOLAC T-543TPA) was used, and the rest was prepared in the same manner as in the preparation of the antibacterial agent-containing second thermosetting resin A to prepare an antibacterial agent-containing second thermosetting resin B (containing no curing agent) having an antibacterial agent concentration of 2.0 wt %. Except for using this antibacterial agent-containing second thermosetting resin B (containing no curing agent), the molded body of Example 4 was prepared in the same manner as in Example 3. The molded body of Example 4 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm, and the thickness was 1.0 mm.

・実施例5
抗菌剤含有第2の熱硬化性樹脂について、ビニルエステル樹脂(昭和電工株式会社社製、品名:リポキシR-806)を970gとし、硬化剤(日油株式会社製、品名:パーキュアHI)を10g添加し、その他を抗菌剤含有第2の熱硬化性樹脂Aの作製と同様にして抗菌剤濃度が2.0wt%の抗菌剤含有第2の熱硬化性樹脂C(硬化剤含む)を作製し、その抗菌剤含有第2の熱硬化性樹脂C(硬化剤含む)を用いた以外、を実施例3と同様にして実施例5の成形体を作製した。実施例5の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Example 5
For the antibacterial agent-containing second thermosetting resin, 970 g of vinyl ester resin (manufactured by Showa Denko K.K., product name: Lipoxy R-806) was used, 10 g of hardener (manufactured by NOF Corporation, product name: Percure HI) was added, and the other parts were prepared in the same manner as in the preparation of the antibacterial agent-containing second thermosetting resin A to prepare an antibacterial agent-containing second thermosetting resin C (including a hardener) having an antibacterial agent concentration of 2.0 wt %, and the molded body of Example 5 was prepared in the same manner as in Example 3, except that the antibacterial agent-containing second thermosetting resin C (including a hardener) was used. The molded body of Example 5 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm and the thickness was 1.0 mm.

・実施例6
実施例1の熱硬化性樹脂発泡体の厚みを2.0mmにした以外、実施例1と同様にして実施例6の成形体を作製した。実施例6の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.1mmであった。
Example 6
A molded body of Example 6 was produced in the same manner as in Example 1, except that the thickness of the thermosetting resin foam of Example 1 was 2.0 mm. The molded body of Example 6 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm and the thickness was 1.1 mm.

・実施例7
実施例1の熱硬化性樹脂発泡体の厚みを3.0mmにした以外、実施例1と同様にして実施例7の成形体を作製した。実施例7の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.2mmであった。
Example 7
A molded body of Example 7 was produced in the same manner as in Example 1, except that the thickness of the thermosetting resin foam of Example 1 was 3.0 mm. The molded body of Example 7 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm and the thickness was 1.2 mm.

・実施例8
実施例1の熱硬化性樹脂発泡体に代えて、セル数(JIS K 6400-1)80個/25mm、空隙率95.2%、見掛け密度(JIS K 7222)75kg/m、厚み1.0mmのセル膜除去処理済みウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名:MF-80A、連続気泡構造)を用いた以外、実施例1と同様にして実施例8の成形体を作製した。実施例8の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.1mmであった。
Example 8
A molded body of Example 8 was produced in the same manner as in Example 1, except that a urethane resin foam (manufactured by Inoac Corporation, product name: MF-80A, open cell structure) having a cell count (JIS K 6400-1) of 80/25 mm, a porosity of 95.2%, an apparent density (JIS K 7222) of 75 kg/m 3 , and a thickness of 1.0 mm, which had been subjected to a cell membrane removal treatment, was used instead of the thermosetting resin foam of Example 1. The molded body of Example 8 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200×300 mm, and the thickness was 1.1 mm.

・実施例9
実施例1の熱硬化性樹脂発泡体に代えて、セル数(JIS K 6400-1)10個/25mm、空隙率97.3%、見掛け密度(JIS K 7222)30kg/m、厚み1.0mmのセル膜除去処理済みウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名:MF-10、連続気泡構造)を用いた以外、実施例1と同様にして実施例9の成形体を作製した。実施例9の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Example 9
A molded body of Example 9 was produced in the same manner as in Example 1, except that a urethane resin foam (manufactured by INOAC Corporation, product name: MF-10, open cell structure) having a cell count (JIS K 6400-1) of 10/25 mm, a porosity of 97.3%, an apparent density (JIS K 7222) of 30 kg/m 3 , and a thickness of 1.0 mm, which had been subjected to a cell membrane removal treatment, was used instead of the thermosetting resin foam of Example 1. The molded body of Example 9 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200×300 mm, and the thickness was 1.0 mm.

・実施例10
実施例1の熱硬化性樹脂発泡体に代えて、セル数(JIS K 6400-1)8個/25mm、空隙率97.4%、見掛け密度(JIS K 7222)30kg/m、厚み1.0mmのセル膜除去処理済みウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名:MF-8、連続気泡構造)を用いた以外、実施例1と同様にして実施例10の成形体を作製した。実施例10の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Example 10
A molded body of Example 10 was produced in the same manner as in Example 1, except that a urethane resin foam (manufactured by Inoac Corporation, product name: MF-8, open cell structure) having a cell count (JIS K 6400-1) of 8/25 mm, a porosity of 97.4%, an apparent density (JIS K 7222) of 30 kg/m 3 , and a thickness of 1.0 mm, which had been subjected to a cell membrane removal treatment, was used instead of the thermosetting resin foam of Example 1. The molded body of Example 10 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200×300 mm, and the thickness was 1.0 mm.

・実施例11
実施例1の熱硬化性樹脂発泡体に代えて、セル数(JIS K 6400-1)50個/25mm、空隙率97.0%、見掛け密度(JIS K 7222)30kg/m、厚み1.0mm、セル膜除去処理無しのウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名:MF-50、連通気泡構造)を用いた以外、実施例1と同様にして実施例11の成形体を作製した。実施例6の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Example 11
A molded body of Example 11 was produced in the same manner as in Example 1, except that a urethane resin foam (manufactured by INOAC Corporation, product name: MF-50, open cell structure) having a cell count (JIS K 6400-1) of 50/25 mm, a porosity of 97.0%, an apparent density (JIS K 7222) of 30 kg/m 3 , a thickness of 1.0 mm, and no cell membrane removal treatment was used instead of the thermosetting resin foam of Example 1. The molded body of Example 6 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200×300 mm, and a thickness of 1.0 mm.

・実施例12
抗菌剤含有第2の熱硬化性樹脂について、ビニルエステル樹脂(昭和電工株式会社社製、品名:リポキシR-806)の998gに、硝子に銀イオンを担持させた銀系抗菌剤(株式会社シナネンゼオミック社製、品名:IM10D-L)を2g添加し、攪拌機(アズワン株式会社製、品名:高速撹拌機ST-200)を用いて回転数1000rpmで5分間撹拌し、抗菌剤濃度が0.2wt%の抗菌剤含有第2の熱硬化性樹脂D(硬化剤含まず)を作製し、その抗菌剤含有第2の熱硬化性樹脂D(硬化剤含まず)を用いた以外、実施例1と同様にして実施例12の成形体を作製した。実施例12の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Example 12
For the antibacterial agent-containing second thermosetting resin, 2 g of a silver-based antibacterial agent (manufactured by Sinanen Zeomic Co., Ltd., product name: IM10D-L) in which silver ions are supported on glass was added to 998 g of vinyl ester resin (manufactured by Showa Denko K.K., product name: Lipoxy R-806), and the mixture was stirred for 5 minutes at a rotation speed of 1000 rpm using a stirrer (manufactured by AS ONE Corporation, product name: high-speed stirrer ST-200) to prepare an antibacterial agent-containing second thermosetting resin D (without curing agent) having an antibacterial agent concentration of 0.2 wt%, and the molded body of Example 12 was produced in the same manner as in Example 1, except that the antibacterial agent-containing second thermosetting resin D (without curing agent) was used. The molded body of Example 12 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm and a thickness of 1.0 mm.

・比較例1
SMC材の表面に、抗菌剤含有第2の熱硬化性樹脂A(硬化剤含まず)の12gを直接塗布し、熱硬化性樹脂発泡体を用いなかった以外、実施例1と同様にして比較例1の成形体を作製した。比較例1の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Comparative Example 1
A molded body of Comparative Example 1 was produced in the same manner as in Example 1, except that 12 g of the antibacterial agent-containing second thermosetting resin A (without a curing agent) was directly applied to the surface of the SMC material and no thermosetting resin foam was used. The molded body of Comparative Example 1 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm and the thickness was 1.0 mm.

・比較例2
抗菌剤含有第2の熱硬化性樹脂について、ビニルエステル樹脂(昭和電工株式会社社製、品名:リポキシR-806)の999gに、硝子に銀イオンを担持させた銀系抗菌剤(株式会社シナネンゼオミック社製、品名:IM10D-L)を1g添加し、攪拌機(アズワン株式会社製、品名:高速撹拌機ST-200)を用いて回転数1000rpmで5分間撹拌し、抗菌剤濃度が0.1wt%の抗菌剤含有第2の熱硬化性樹脂E(硬化剤含まず)作製し、その抗菌剤含有第2の熱硬化性樹脂E(硬化剤含まず)を用いた以外、実施例3と同様にして比較例2の成形体を作製した。比較例2の成形体は、表面のべたつきがなく、問題なく脱型することができた。成形体のサイズは、200×300mm、厚み1.0mmであった。
Comparative Example 2
For the antibacterial agent-containing second thermosetting resin, 1 g of a silver-based antibacterial agent (manufactured by Sinanen Zeomic Co., Ltd., product name: IM10D-L) in which silver ions are supported on glass was added to 999 g of vinyl ester resin (manufactured by Showa Denko K.K., product name: Lipoxy R-806), and the mixture was stirred for 5 minutes at a rotation speed of 1000 rpm using a stirrer (manufactured by AS ONE Corporation, product name: high-speed stirrer ST-200) to produce an antibacterial agent-containing second thermosetting resin E (without hardener) having an antibacterial agent concentration of 0.1 wt%, and the molded body of Comparative Example 2 was produced in the same manner as in Example 3, except that the antibacterial agent-containing second thermosetting resin E (without hardener) was used. The molded body of Comparative Example 2 had no stickiness on the surface and could be demolded without any problems. The size of the molded body was 200 x 300 mm and the thickness was 1.0 mm.

各実施例及び各比較例の成形体に対し、成形体の外観、X線による抗菌剤分散性確認、抗菌性能(抗菌活性値)について、次のようにして判断あるいは測定した。 The appearance of the molded bodies, the antibacterial agent dispersion confirmation by X-ray, and the antibacterial performance (antibacterial activity value) of the molded bodies of each Example and Comparative Example were judged or measured as follows.

成形体の外観は、成形体の表面を目視で観察し、SMC材のみで成形したものの表面と比較し、変化が見られない場合を「◎」、僅かに白濁が見られる場合を「〇」、明らかに白濁が見られる場合を「×」とした。なお、成形体は、外観部品用途の場合、白濁の無いものが好ましい。 The appearance of the molded product was evaluated by visually observing the surface of the molded product and comparing it with the surface of a product molded using only SMC material. If no change was observed, it was rated as "◎", if slight cloudiness was observed, it was rated as "◯", and if obvious cloudiness was observed, it was rated as "X". Note that for use in external appearance parts, molded products without cloudiness are preferable.

X線による抗菌剤分散性確認は、成形体をX線検査装置(松定プレシジョン株式会社製、品名:μRay8000を用い、管電圧:60kV、出力:6Wにて抗菌剤の分散性を評価した。熱硬化性樹脂発泡体に抗菌剤が均一に分散している場合は、成形体全体が均一な画像になるのに対し、不均一に分散している場合は、部分的に斑点が存在する画像になるため、均一な画像の場合を「〇」、部分的に斑点が存在する画像の場合を「×」とした。 To confirm the dispersion of the antibacterial agent using X-rays, the molded product was examined using an X-ray inspection device (manufactured by Matsusada Precision Co., Ltd., product name: μRay8000) with a tube voltage of 60 kV and output of 6 W to evaluate the dispersion of the antibacterial agent. If the antibacterial agent is uniformly dispersed in the thermosetting resin foam, the entire molded product will appear as a uniform image, whereas if it is unevenly dispersed, the image will have spots in parts. Therefore, a uniform image was marked as "good" and an image with spots in parts was marked as "bad."

抗菌性能の試験は、成形体の四隅と中央から、50×50mmの抗菌性試験片を合計5枚切り出し、その抗菌性試験片を用い、JIS Z2801:2012「抗菌加工製品―抗菌性試験方法・抗菌効果」5試験方法にしたがい、大腸菌と黄色ブドウ球菌に対して測定した。抗菌性能の評価は、抗菌活性値が2.0以上の場合に抗菌効果があると判断した。 For the antibacterial performance test, a total of five 50 x 50 mm antibacterial test pieces were cut out from the four corners and the center of the molded product, and these antibacterial test pieces were used to measure against Escherichia coli and Staphylococcus aureus in accordance with the five test methods in JIS Z2801:2012 "Antibacterial processed products - Antibacterial test methods and antibacterial effects." The antibacterial performance was evaluated as having an antibacterial effect when the antibacterial activity value was 2.0 or higher.

各実施例及び各比較例の構成及び結果を図3の表に示す。
実施例1~12は、抗菌剤含有第2の熱硬化性樹脂の抗菌剤濃度が0.2wt%または2.0wt%であり、成形体の外観が「◎」または「〇」であり、X線による分散性確認が「〇」であった。また、実施例1~12の何れも、抗菌性能については、大腸菌に対する抗菌活性値が6.0以上、黄色ブドウ球菌に対する抗菌活性値が4.8以上であり、抗菌効果が良好であった。
The configurations and results of each of the examples and comparative examples are shown in the table of FIG.
In Examples 1 to 12, the antibacterial concentration of the antibacterial-containing second thermosetting resin was 0.2 wt % or 2.0 wt %, the appearance of the molded body was rated as "◎" or "◯", and the dispersibility confirmed by X-ray was rated as "◯". In addition, in each of Examples 1 to 12, the antibacterial activity value against Escherichia coli was 6.0 or more and the antibacterial activity value against Staphylococcus aureus was 4.8 or more, and the antibacterial effect was good.

比較例1は、抗菌剤含有第2の熱硬化性樹脂をSMC材の表面に直接塗布した例であり、成形体の外観が「◎」であり、X線による分散性確認が「×」であった。また、抗菌性能については、大腸菌に対する抗菌活性値が6.0以上、黄色ブドウ球菌に対する抗菌活性値が4.8以上であり、良好な抗菌効果があった。比較例1は、熱硬化性樹脂発泡体を積層しないでSMC材表面に抗菌剤含有第2の熱硬化性樹脂を直接塗布したため、抗菌剤が均一に分散しなかった。 Comparative Example 1 is an example in which the antibacterial agent-containing second thermosetting resin was applied directly to the surface of the SMC material, and the appearance of the molded body was rated as "◎", and the dispersibility confirmed by X-ray was rated as "×". In addition, the antibacterial activity value against Escherichia coli was 6.0 or more, and the antibacterial activity value against Staphylococcus aureus was 4.8 or more, indicating a good antibacterial effect. In Comparative Example 1, the antibacterial agent-containing second thermosetting resin was applied directly to the surface of the SMC material without laminating a thermosetting resin foam, and therefore the antibacterial agent was not uniformly dispersed.

比較例2は、抗菌剤含有第2の熱硬化性樹脂の抗菌剤濃度を0.1%にした例であり、成形体の外観が「◎」であり、X線による分散性確認が「〇」であった。また、抗菌性能については、大腸菌に対する抗菌活性値が0.1、黄色ブドウ球菌に対する抗菌活性値が1.2であり、抗菌効果がなかった。比較例2は、抗菌剤含有第2の熱硬化性樹脂の抗菌剤濃度が0.1%と低いため、抗菌効果が得られなかった。 Comparative Example 2 is an example in which the antibacterial concentration of the antibacterial-containing second thermosetting resin is 0.1%, and the appearance of the molded body is "◎", and the dispersibility confirmed by X-ray is "◯". In addition, the antibacterial activity value against Escherichia coli is 0.1, and the antibacterial activity value against Staphylococcus aureus is 1.2, and there is no antibacterial effect. In Comparative Example 2, the antibacterial concentration of the antibacterial-containing second thermosetting resin is low at 0.1%, so no antibacterial effect was obtained.

このように、本発明によれば、抗菌性繊維強化樹脂複合成形体は、基材層に積層された抗菌性発泡体層によって表面外観が良好になり、かつ抗菌性発泡体層に含浸している抗菌剤含有第2の熱硬化性樹脂によって抗菌剤の分散が均一になり、抗菌性能の高いものになる。また、本発明によって得られる抗菌性繊維強化樹脂複合成形体は、賦形用コンパウンドから基材層が形成されているため、基材層を複雑な形状に賦形することができ、複雑形状が要求される用途にも好適である。 Thus, according to the present invention, the antibacterial fiber-reinforced resin composite molded product has a good surface appearance due to the antibacterial foam layer laminated on the base layer, and the antibacterial agent is uniformly dispersed due to the antibacterial foam layer impregnated with the antibacterial agent-containing second thermosetting resin, resulting in high antibacterial performance. In addition, since the base layer of the antibacterial fiber-reinforced resin composite molded product obtained by the present invention is formed from a molding compound, the base layer can be molded into a complex shape, making it suitable for applications requiring complex shapes.

10 抗菌性繊維強化樹脂複合成形体
11 基材層
11A 賦形用コンパウンド
21 抗菌性発泡体層
21A 抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体
50 成形金型
51 上型
53 下型
REFERENCE SIGNS LIST 10 Antibacterial fiber-reinforced resin composite molded body 11 Base material layer 11A Molding compound 21 Antibacterial foam layer 21A Thermosetting resin foam impregnated with antibacterial agent-containing second thermosetting resin 50 Molding die 51 Upper die 53 Lower die

Claims (6)

繊維と第1の熱硬化性樹脂とよりなる賦形用コンパウンドからなる基材層と、抗菌剤と第2の熱硬化性樹脂とを含む抗菌剤含有第2の熱硬化性樹脂が含浸した抗菌性発泡体層と、を有し、
前記抗菌剤濃度は前記抗菌剤含有第2の熱硬化性樹脂に対して0.2~2.0wt%であり、
前記基材層と前記抗菌性発泡体層は、積層状態で一体化したものであり、前記第1の熱硬化性樹脂と前記第2の熱硬化性樹脂との硬化物を含むことを特徴とする抗菌性繊維強化樹脂複合成形体。
The antibacterial foam layer has a base material layer made of a shaping compound including fibers and a first thermosetting resin, and an antibacterial foam layer impregnated with an antibacterial-containing second thermosetting resin including an antibacterial agent and a second thermosetting resin,
The concentration of the antibacterial agent is 0.2 to 2.0 wt % with respect to the antibacterial agent-containing second thermosetting resin ;
The base material layer and the antibacterial foam layer are integrated in a laminated state , and the antibacterial fiber-reinforced resin composite molding is characterized in that it contains a cured product of the first thermosetting resin and the second thermosetting resin .
前記抗菌剤は、硝子に銀イオンを担持させたものであることを特徴とする請求項1に記載の抗菌性繊維強化樹脂複合成形体。 An antibacterial fiber-reinforced resin composite molding according to claim 1, characterized in that the antibacterial agent is glass carrying silver ions. 前記抗菌性発泡体層は、前記抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体を用いて得られた抗菌性発泡体層であり、前記熱硬化性樹脂発泡体は、セル数(JIS K 6400-1)が8~80個/25mmであり、厚みが0.4~3.0mmであることを特徴とする請求項1または2に記載の抗菌性繊維強化樹脂複合成形体。The antibacterial fiber-reinforced resin composite molded product according to claim 1 or 2, characterized in that the antibacterial foam layer is an antibacterial foam layer obtained by using a thermosetting resin foam impregnated with the antibacterial agent-containing second thermosetting resin, and the thermosetting resin foam has a cell count (JIS K 6400-1) of 8 to 80 cells/25 mm and a thickness of 0.4 to 3.0 mm. 繊維と第1の熱硬化性樹脂とよりなる賦形用コンパウンドから形成された基材層と、抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体から形成された抗菌性発泡体層とよりなる抗菌性繊維強化樹脂複合成形体の製造方法において、
前記賦形用コンパウンドと、前記抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体を重ね、加熱圧縮成形により、前記賦形用コンパウンドと、前記抗菌剤含有第2の熱硬化性樹脂が含浸した熱硬化性樹脂発泡体を、圧縮した状態で前記第1の熱硬化性樹脂と前記第2の熱硬化性樹脂を硬化させ、前記基材層と前記抗菌性発泡体層を積層一体形成することを特徴とする抗菌性繊維強化樹脂複合成形体の製造方法。
A method for producing an antibacterial fiber-reinforced resin composite molding comprising a base layer formed from a shaping compound comprising fibers and a first thermosetting resin, and an antibacterial foam layer formed from a thermosetting resin foam impregnated with an antibacterial agent-containing second thermosetting resin,
A method for producing an antibacterial fiber-reinforced resin composite molded product, characterized in that the shaping compound and a thermosetting resin foam impregnated with the antibacterial agent-containing second thermosetting resin are layered together, and the shaping compound and the thermosetting resin foam impregnated with the antibacterial agent-containing second thermosetting resin are compressed by heat compression molding to harden the first thermosetting resin and the second thermosetting resin, thereby integrally forming the base material layer and the antibacterial foam layer.
前記抗菌剤は、硝子に銀イオンを担持させたものであることを特徴とする請求項に記載の抗菌性繊維強化樹脂複合成形体の製造方法。 5. The method for producing an antibacterial fiber-reinforced resin composite molding according to claim 4 , wherein the antibacterial agent is glass carrying silver ions. 前記熱硬化性樹脂発泡体は、セル数(JIS K 6400-1)が8~80個/25mmであり、厚みが0.4~3.0mmである請求項4または5に記載の抗菌性繊維強化樹脂複合成形体の製造方法。The method for producing an antibacterial fiber-reinforced resin composite molded body according to claim 4 or 5, wherein the thermosetting resin foam has a cell number (JIS K 6400-1) of 8 to 80 cells/25 mm and a thickness of 0.4 to 3.0 mm.
JP2020059957A 2019-08-27 2020-03-30 Antibacterial fiber-reinforced resin composite molding and its manufacturing method Active JP7467198B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020059957A JP7467198B2 (en) 2020-03-30 2020-03-30 Antibacterial fiber-reinforced resin composite molding and its manufacturing method
CN202080061111.7A CN114375252A (en) 2019-08-27 2020-08-24 Fiber-reinforced resin composite molded article and method for producing same, antibacterial fiber-reinforced resin composite molded article and method for producing same, and fiber-reinforced resin laminate molded article and method for producing same
US17/638,199 US20220402238A1 (en) 2019-08-27 2020-08-24 Fiber-reinforced-resin composite molded article and method for producing same, antibacterial composite molded article and method for producing same, antibacterial fiber-reinforced resin composite molded article and method for producing same, and fiber-reinforced-resin laminated molded article and method for producing same
PCT/JP2020/031851 WO2021039722A1 (en) 2019-08-27 2020-08-24 Fiber-reinforced-resin composite molded article and method for producing same, antibacterial composite molded article and method for producing same, antibacterial fiber-reinforced-resin composite molded article and method for producing same, and fiber-reinforced-resin laminated molded article and method for producing same
EP20858902.8A EP4023427A4 (en) 2019-08-27 2020-08-24 Fiber-reinforced-resin composite molded article and method for producing same, antibacterial composite molded article and method for producing same, antibacterial fiber-reinforced-resin composite molded article and method for producing same, and fiber-reinforced-resin laminated molded article and method for producing same
TW109129237A TW202116557A (en) 2019-08-27 2020-08-27 Fiber-reinforced-resin composite molded article and method for producing same, antibacterial composite molded article and method for producing same, antibacterial fiber-reinforced-resin composite molded article and method for producing same, and fiber-reinforced-resin laminated molded article and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020059957A JP7467198B2 (en) 2020-03-30 2020-03-30 Antibacterial fiber-reinforced resin composite molding and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021154696A JP2021154696A (en) 2021-10-07
JP7467198B2 true JP7467198B2 (en) 2024-04-15

Family

ID=77919361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020059957A Active JP7467198B2 (en) 2019-08-27 2020-03-30 Antibacterial fiber-reinforced resin composite molding and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7467198B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025144A (en) 1998-07-14 2000-01-25 Mitsubishi Plastics Ind Ltd Fiber-reinforced resin unit plate
JP2002219775A (en) 2001-01-26 2002-08-06 Yamaha Livingtec Corp Frp molding
JP2010540293A (en) 2007-10-03 2010-12-24 エイセル グループ リミテッド Composite product
JP2013072055A (en) 2011-09-29 2013-04-22 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced resin structure
JP2019043143A (en) 2018-11-20 2019-03-22 株式会社イノアックコーポレーション Carbon fiber composite material and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025144A (en) 1998-07-14 2000-01-25 Mitsubishi Plastics Ind Ltd Fiber-reinforced resin unit plate
JP2002219775A (en) 2001-01-26 2002-08-06 Yamaha Livingtec Corp Frp molding
JP2010540293A (en) 2007-10-03 2010-12-24 エイセル グループ リミテッド Composite product
JP2013072055A (en) 2011-09-29 2013-04-22 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced resin structure
JP2019043143A (en) 2018-11-20 2019-03-22 株式会社イノアックコーポレーション Carbon fiber composite material and production method thereof

Also Published As

Publication number Publication date
JP2021154696A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
TWI379768B (en)
EP2647486B1 (en) Method for producing metal composite, and chassis for electronic equipment
TWI697408B (en) Manufacturing method of fiber-reinforced composite material, resin base material and preform
CN108349116B (en) Substrate laminate and method for producing fiber-reinforced plastic
EP2612754A1 (en) Fiber reinforced molded article and manufacturing method therefor
TWI697398B (en) Manufacturing method of structure
JP6784327B2 (en) Manufacturing method of sheet molding compound and carbon fiber composite material molded product
JP7404486B2 (en) Carbon fiber reinforced molded body
JP2022164772A (en) Method for producing sheet molding compound and molded product
WO2018193908A1 (en) Fiber-reinforced composite material molded article and method for producing same
JP7467198B2 (en) Antibacterial fiber-reinforced resin composite molding and its manufacturing method
JP2023054044A (en) Antibacterial composite molding and method for producing the same
JP7283382B2 (en) Articles and methods of manufacturing articles
KR102007608B1 (en) Electro Magnetic Shielding Materials Using Metal Foil and Process for Producing The Same
JP2014193539A (en) Method of producing composite molding
WO2021039722A1 (en) Fiber-reinforced-resin composite molded article and method for producing same, antibacterial composite molded article and method for producing same, antibacterial fiber-reinforced-resin composite molded article and method for producing same, and fiber-reinforced-resin laminated molded article and method for producing same
WO2016178400A1 (en) Method for producing frp precursor and device for producing same
JP7229818B2 (en) Fiber reinforced molding
JP6231313B2 (en) Composite molded body
JP2020163584A (en) Manufacturing method of sandwich molded product
JP7419291B2 (en) Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
KR950014108B1 (en) Conductive plastic flat type material manufactural method
WO2023053834A1 (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, composite structure, impact-resistant member, and damping member
TW202337982A (en) Prepreg, preform, and fiber-reinforced resin molded article
JPH03416B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220928

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240403

R150 Certificate of patent or registration of utility model

Ref document number: 7467198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150