JP5945889B2 - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP5945889B2
JP5945889B2 JP2012162756A JP2012162756A JP5945889B2 JP 5945889 B2 JP5945889 B2 JP 5945889B2 JP 2012162756 A JP2012162756 A JP 2012162756A JP 2012162756 A JP2012162756 A JP 2012162756A JP 5945889 B2 JP5945889 B2 JP 5945889B2
Authority
JP
Japan
Prior art keywords
response
inertial mass
seismic isolation
model
mass damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012162756A
Other languages
Japanese (ja)
Other versions
JP2014020534A (en
Inventor
杉本 浩一
浩一 杉本
福喜多 輝
輝 福喜多
磯田 和彦
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2012162756A priority Critical patent/JP5945889B2/en
Publication of JP2014020534A publication Critical patent/JP2014020534A/en
Application granted granted Critical
Publication of JP5945889B2 publication Critical patent/JP5945889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、建物などの上部構造物の地震時応答を低減させるための免震構造に関する。   The present invention relates to a seismic isolation structure for reducing an earthquake response of an upper structure such as a building.

従来から、建物などの上部構造物と地盤(固定端)の間の免震層に免震構造を設け、この免震構造によって上部構造物の地震時応答を低減させるようにした免震建物が広く知られている。この一方で、巨大地震が発生し、また、長周期地震動が作用し、免震層の変形が過大となって、上部構造物が擁壁等に衝突したり、免震構造を構成する積層ゴム(構造体バネ)に破損が生じることなどが懸念されている。   Conventionally, there has been a seismic isolation building that has a seismic isolation structure in the seismic isolation layer between the upper structure such as a building and the ground (fixed end), and this seismic isolation structure reduces the response of the upper structure during an earthquake. Widely known. On the other hand, a large earthquake occurs, long-period ground motion acts, the deformation of the seismic isolation layer becomes excessive, the upper structure collides with the retaining wall, etc., or the laminated rubber that constitutes the seismic isolation structure There is a concern that the (structure spring) is damaged.

これに対し、上部構造物を構造体バネと構造体減衰で免震支持するとともに、別途応答低減機構を水平剛性(構造体バネのバネ剛性)と並列に設置してなる免震構造が提案、実用化されている(例えば、特許文献1参照)。また、この免震構造の応答低減機構は、慣性質量ダンパーと付加バネを直列に接続するとともに、オイルダンパーなどの第1の付加減衰を慣性質量ダンパーと並列に接続し、さらに、オイルダンパーなどの第2の付加減衰を慣性質量ダンパーと直列に接続し、さらに、第2の付加減衰と並列に復元バネを接続して構成されている。   On the other hand, a seismic isolation structure is proposed, in which the upper structure is isolated and supported by a structure spring and structure damping, and a separate response reduction mechanism is installed in parallel with the horizontal rigidity (spring rigidity of the structure spring). It has been put into practical use (for example, see Patent Document 1). In addition, this seismic isolation structure response reduction mechanism connects an inertial mass damper and an additional spring in series, and connects a first additional damping such as an oil damper in parallel with the inertial mass damper. The second additional damping is connected in series with the inertia mass damper, and further, a restoring spring is connected in parallel with the second additional damping.

そして、このように構成した応答低減機構では、慣性質量ダンパーによる慣性質量と復元バネのバネ剛性で応答低減機構の固有周期を上部構造物の固有周期と同調させることで、共振時の応答を大幅に改善することが可能になる。   In the response reduction mechanism configured in this way, the response at the time of resonance is greatly increased by synchronizing the natural period of the response reduction mechanism with the natural period of the superstructure by the inertial mass of the inertial mass damper and the spring stiffness of the restoring spring. It becomes possible to improve.

特開2011−236968号公報JP 2011-236968 A

しかしながら、上記の応答低減機構(免震構造)においては、復元バネのバネ剛性と慣性質量ダンパーの慣性質量で応答低減機構の固有周期を上部構造物の固有周期と同調させ、変位を出すようにすることで、オイルダンパーの第1の付加減衰と第2の付加減衰によって確実にエネルギー減衰効果が発揮されるように、すなわち、2つのオイルダンパーの制震要素で確実にエネルギー減衰効果が得られるようにしている。   However, in the response reduction mechanism (seismic isolation structure) described above, the natural period of the response reduction mechanism is synchronized with the natural period of the superstructure by the spring stiffness of the restoring spring and the inertial mass of the inertial mass damper so as to produce displacement. By doing so, the energy damping effect is surely exhibited by the first additional damping and the second additional damping of the oil damper, that is, the energy damping effect is surely obtained by the vibration control elements of the two oil dampers. I am doing so.

上記のような同調型減衰というのは、元々減衰が少ない制震建物において有効な機構であり、免震建物は、免震機構に元々大きな減衰が含まれているため、建物周期に同調させるための非常に軟らかい復元バネを設置することで得られる減衰というものの効果は薄れてしまう。すなわち、免震建物に同調型の復元バネを設置することの利点は非常に少ない。   The above-mentioned tuned attenuation is a mechanism that is effective in seismic control buildings that originally have low attenuation. Since seismic isolation buildings originally contain large attenuation, they must be synchronized with the building cycle. The effect of the damping that can be obtained by installing a very soft restoring spring is diminished. That is, there are very few advantages of installing a synchronous restoring spring in a base-isolated building.

また、上記の応答低減機構においては、オイルダンパーの第1の付加減衰と第2の付加減衰、慣性質量ダンパー、復元バネを備えてなり、部材点数が多く、高コストになるという問題もあった。   In addition, the response reduction mechanism includes the first additional damping and the second additional damping of the oil damper, the inertia mass damper, and the restoring spring, and there is a problem that the number of members is large and the cost is increased. .

そして、このようなことから、高価なオイルダンパーを用いずに応答低減機構を構成するようにし、確実に免震機能を発揮して上部構造物の地震時応答を低減させる免震構造が強く望まれていた。   For this reason, there is a strong desire for a seismic isolation structure that reduces the response of the upper structure during an earthquake by demonstrating the seismic isolation function by constructing a response reduction mechanism without using expensive oil dampers. It was rare.

本発明の免震構造は、上部構造物と固定端の間の免震層に設けられ、前記上部構造物を構造体バネと構造体減衰を介して前記固定端に接続するとともに、前記上部構造物の地震時応答を低減させるための応答低減機構を前記構造体バネと並列に設けてなる免震構造であって、前記応答低減機構が、第1の慣性質量ダンパーと、前記第1の慣性質量ダンパーと並列に設けられた第2の慣性質量ダンパーと、前記第1の慣性質量ダンパーと直列に設けられ、摩擦要素の滑りによって前記第1の慣性質量ダンパーに作用する負荷を制限する過負荷防止機構とを備え、且つ、慣性質量比を0.2〜0.5にして構成されていることを特徴とする。 The seismic isolation structure of the present invention is provided in a seismic isolation layer between an upper structure and a fixed end, and connects the upper structure to the fixed end via a structure spring and a structure damping. A seismic isolation structure in which a response reduction mechanism for reducing an earthquake response of an object is provided in parallel with the structure spring, wherein the response reduction mechanism includes a first inertia mass damper and the first inertia. A second inertial mass damper provided in parallel with the mass damper and an overload that is provided in series with the first inertial mass damper and limits the load acting on the first inertial mass damper by sliding of a friction element And an inertial mass ratio of 0.2 to 0.5 .

本発明の免震構造は、上部構造物と固定端の間の免震層に設けられ、前記上部構造物を構造体バネと構造体減衰を介して前記固定端に接続するとともに、前記上部構造物の地震時応答を低減させるための応答低減機構を前記構造体バネと並列に設けてなる免震構造であって、前記応答低減機構が、第1の慣性質量ダンパーと、前記第1の慣性質量ダンパーと並列に設けられた第2の慣性質量ダンパーと、前記第1の慣性質量ダンパーと直列に設けられ、摩擦要素の滑りによって前記第1の慣性質量ダンパーに作用する負荷を制限する過負荷防止機構とを備え、且つ、前記摩擦要素に滑りが生じる制限負荷を、慣性質量×重力加速度×(1/10)以下にして構成されていることを特徴とする。The seismic isolation structure of the present invention is provided in a seismic isolation layer between an upper structure and a fixed end, and connects the upper structure to the fixed end via a structure spring and a structure damping. A seismic isolation structure in which a response reduction mechanism for reducing an earthquake response of an object is provided in parallel with the structure spring, wherein the response reduction mechanism includes a first inertia mass damper and the first inertia. A second inertial mass damper provided in parallel with the mass damper and an overload that is provided in series with the first inertial mass damper and limits the load acting on the first inertial mass damper by sliding of a friction element And a limiting load that causes the friction element to slip is configured to be inertial mass × gravity acceleration × (1/10) or less.

本発明の免震構造においては、応答低減機構が第1の慣性質量ダンパーと第2の慣性質量ダンパーを備えることにより、上部構造物を構造体バネと構造体減衰で免震支持してなる免震構造(応答低減機構を備えていない免震構造)と比較し、免震層変位を例えば最大で40%程度低減することが可能になる。また、応答低減機構が過負荷防止機構を備えることにより、免震層の変位低減効果を保ちつつ、上部構造物の応答加速度や層間変形角の増加量を抑制することが可能になる。   In the seismic isolation structure of the present invention, the response reduction mechanism includes the first inertia mass damper and the second inertia mass damper, so that the upper structure is isolated by the structure spring and the structure damping. Compared with a seismic structure (a seismic isolation structure not equipped with a response reduction mechanism), it is possible to reduce the seismic isolation layer displacement by, for example, about 40% at the maximum. In addition, since the response reduction mechanism includes the overload prevention mechanism, it is possible to suppress an increase in the response acceleration of the upper structure and the interlayer deformation angle while maintaining the displacement reduction effect of the seismic isolation layer.

よって、本発明の免震構造によれば、高価なオイルダンパーを用いず、部材点数を少なくして応答低減機構を構成し、確実に免震機能を発揮して上部構造物の地震時応答を低減させることが可能になる。   Therefore, according to the seismic isolation structure of the present invention, an expensive oil damper is not used, the response reduction mechanism is configured by reducing the number of members, and the seismic isolation function is surely exhibited so that the response of the upper structure at the time of earthquake is achieved. It becomes possible to reduce.

また、本発明の免震構造においては、慣性質量比を0.2〜0.5にすることで、免震層の変位低減効果と上部構造物の応答加速度や層間変形角の抑制効果をバランスよく活用することが可能になる。   Moreover, in the seismic isolation structure of the present invention, the inertial mass ratio is 0.2 to 0.5, thereby balancing the effect of reducing the displacement of the seismic isolation layer and the effect of suppressing the response acceleration of the upper structure and the interlayer deformation angle. It can be used well.

また、本発明の免震構造においては、摩擦要素に滑りが生じる制限負荷を、慣性質量×重力加速度×(1/10)以下にすることによっても、免震層の変位低減効果と上部構造物の応答加速度や層間変形角の抑制効果をバランスよく活用することが可能になる。   Further, in the seismic isolation structure of the present invention, the effect of reducing the displacement of the seismic isolation layer and the superstructure can also be achieved by setting the limiting load at which the friction element slips to an inertia mass × gravity acceleration × (1/10) or less. The response acceleration and the effect of suppressing the interlayer deformation angle can be utilized in a balanced manner.

本発明の一実施形態に係る免震構造を示す図である。It is a figure which shows the seismic isolation structure which concerns on one Embodiment of this invention. 地震応答解析で用いた本発明のモデルを示す図である。It is a figure which shows the model of this invention used by the earthquake response analysis. 地震応答解析における上部構造の骨格曲線の設定を示す図である。It is a figure which shows the setting of the skeleton curve of the superstructure in an earthquake response analysis. 摩擦要素の復元力特性を示す図である。It is a figure which shows the restoring force characteristic of a friction element. 地震応答解析で用いた入力地震動の速度応答スペクトルを示す図である。It is a figure which shows the speed response spectrum of the input ground motion used by the earthquake response analysis. 告示波を入力した際の地震応答解析の結果を示す図である。It is a figure which shows the result of an earthquake response analysis at the time of inputting a notification wave. 地震応答解析の結果を示す図であり、モデルC(本発明)に各地震波を入力した際の慣性質量比と免震層変位比の関係を示す図である。It is a figure which shows the result of an earthquake response analysis, and is a figure which shows the relationship between the inertial mass ratio at the time of inputting each seismic wave into the model C (this invention), and a seismic isolation layer displacement ratio. 地震応答解析の結果を示す図であり、モデルC(本発明)に各地震波を入力した際の慣性質量比と最大加速度の関係を示す図である。It is a figure which shows the result of an earthquake response analysis, and is a figure which shows the relationship between an inertial mass ratio and the maximum acceleration at the time of inputting each seismic wave into the model C (this invention). 地震応答解析の結果を示す図であり、制限負荷f=慣性質量mi×重力加速度g×(1/40)としたモデルC(本発明)に、ElCentoro波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, restriction load f 0 = the inertial mass mi × gravitational acceleration g Model C that was × (1/40) (present invention), the various response value when you enter ElCentoro wave FIG. 地震応答解析の結果を示す図であり、f=mi×g×(1/20)としたモデルCに、ElCentoro波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, f 0 = the the model C mi × g × (1/20) , is a diagram showing various response value when you enter ElCentoro wave. 地震応答解析の結果を示す図であり、f=mi×g×(1/10)としたモデルCに、ElCentoro波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, f 0 = the the model C mi × g × (1/10) , is a diagram showing various response value when you enter ElCentoro wave. 地震応答解析の結果を示す図であり、制限負荷f=慣性質量mi×重力加速度g×(1/40)としたモデルC(本発明)に、八戸波を入力した際の各種応答値を示す図である。It is a figure which shows the result of an earthquake response analysis, and various response values at the time of inputting a Hachinohe wave to model C (the present invention) where limit load f 0 = inertial mass mi × gravity acceleration g × (1/40) are shown. FIG. 地震応答解析の結果を示す図であり、f=mi×g×(1/20)としたモデルCに、八戸波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, the f 0 = mi × g × ( 1/20) and model C, a diagram showing various response value when you enter Hachinohe wave. 地震応答解析の結果を示す図であり、f=mi×g×(1/10)としたモデルCに、八戸波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, the f 0 = mi × g × ( 1/10) and model C, a diagram showing various response value when you enter Hachinohe wave. 地震応答解析の結果を示す図であり、制限負荷f=慣性質量mi×重力加速度g×(1/40)としたモデルC(本発明)に、Taft波を入力した際の各種応答値を示す図である。It is a figure which shows the result of an earthquake response analysis, and various response values at the time of inputting a Taft wave to model C (the present invention) where limit load f 0 = inertial mass mi × gravity acceleration g × (1/40) are shown. FIG. 地震応答解析の結果を示す図であり、f=mi×g×(1/20)としたモデルCに、Taft波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, f 0 = the the model C mi × g × (1/20) , is a diagram showing various response value when inputting the Taft wave. 地震応答解析の結果を示す図であり、f=mi×g×(1/10)としたモデルCに、Taft波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, f 0 = the the model C mi × g × (1/10) , is a diagram showing various response value when inputting the Taft wave. 地震応答解析の結果を示す図であり、制限負荷f=慣性質量mi×重力加速度g×(1/40)としたモデルC(本発明)に、告示波を入力した際の各種応答値を示す図である。It is a figure which shows the result of an earthquake response analysis, and various response values when a notification wave is input to the model C (the present invention) where the limit load f 0 = inertial mass mi × gravity acceleration g × (1/40) are shown. FIG. 地震応答解析の結果を示す図であり、f=mi×g×(1/20)としたモデルCに、告示波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, f 0 = the the model C mi × g × (1/20) , is a diagram showing various response value when inputting the notice wave. 地震応答解析の結果を示す図であり、f=mi×g×(1/10)としたモデルCに、告示波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, f 0 = the the model C mi × g × (1/10) , is a diagram showing various response value when inputting the notice wave. 地震応答解析の結果を示す図であり、制限負荷f=慣性質量mi×重力加速度g×(1/40)としたモデルC(本発明)に、三の丸波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, restriction load f 0 = the inertial mass mi × gravitational acceleration g Model C that was × (1/40) (present invention), the various response value when you enter Sannomaru wave FIG. 地震応答解析の結果を示す図であり、f=mi×g×(1/20)としたモデルCに、三の丸波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, f 0 = the the model C mi × g × (1/20) , is a diagram showing various response value when you enter Sannomaru wave. 地震応答解析の結果を示す図であり、f=mi×g×(1/10)としたモデルCに、三の丸波を入力した際の各種応答値を示す図である。Shows the results of the seismic response analysis, f 0 = the the model C mi × g × (1/10) , is a diagram showing various response value when you enter Sannomaru wave.

以下、図1から図23を参照し、本発明の一実施形態に係る免震構造について説明する。   Hereinafter, a base isolation structure according to an embodiment of the present invention will be described with reference to FIGS.

本実施形態の免震構造1は、図1に示すように、建物などの上部構造物2と地盤などの固定端3の間の免震層4に設けられている。また、この免震構造1は、上部構造物2を構造体バネ5と構造体減衰6を介して固定端3に接続するとともに、上部構造物2の地震動入力に対する応答(地震時応答)を低減させるための応答低減機構7を構造体バネ5と並列に設置して構成されている。   As shown in FIG. 1, the seismic isolation structure 1 of this embodiment is provided in the seismic isolation layer 4 between the upper structure 2 such as a building and the fixed end 3 such as the ground. In addition, this seismic isolation structure 1 connects the upper structure 2 to the fixed end 3 via the structure spring 5 and the structure damping 6 and reduces the response (earthquake response) of the upper structure 2 to the ground motion input. The response reduction mechanism 7 for causing the structure is installed in parallel with the structure spring 5.

本実施形態の応答低減機構7は、第1の慣性質量ダンパー8と、この第1の慣性質量ダンパー8と並列に配設された第2の慣性質量ダンパー9とを備え、さらに、第1の慣性質量ダンパー8と直列に配設され、摩擦要素10の滑りによって第1の慣性質量ダンパー8に作用する負荷を制限する過負荷防止機構11を備えて構成されている。   The response reduction mechanism 7 of the present embodiment includes a first inertial mass damper 8 and a second inertial mass damper 9 disposed in parallel with the first inertial mass damper 8, and further includes a first inertial mass damper 8. An overload prevention mechanism 11 is provided which is arranged in series with the inertial mass damper 8 and limits the load acting on the first inertial mass damper 8 by the sliding of the friction element 10.

また、慣性質量ダンパー8、9としては、例えばボールネジ機構と回転錘(フライホイール)を組み合わせたものが採用可能であり、この種の慣性質量ダンパーでは、回転錘の実際の質量の数百倍以上もの大きな質量効果を得ることができる。そして、本実施形態の応答低減機構7では、第1の慣性質量ダンパー8が、過負荷防止機構11が作動することで(すなわち、摩擦要素10が滑ることで)回転が止まる回転錘とされ、第2の慣性質量ダンパー9が、過負荷防止機構11が作動しても回転し続けるボールネジやボールナットのボールネジ機構とされている。また、このとき、例えば、第1の慣性質量ダンパー8の慣性質量miの負担割合が85%、第2の慣性質量ダンパー9の慣性質量miの負担割合が15%となるように構成されている。   As the inertia mass dampers 8 and 9, for example, a combination of a ball screw mechanism and a rotary weight (flywheel) can be adopted. In this type of inertia mass damper, the actual mass of the rotary weight is several hundred times or more. A great mass effect can be obtained. In the response reduction mechanism 7 of the present embodiment, the first inertial mass damper 8 is a rotating weight that stops rotating when the overload prevention mechanism 11 operates (that is, when the friction element 10 slips). The second inertia mass damper 9 is a ball screw mechanism of a ball screw or a ball nut that continues to rotate even when the overload prevention mechanism 11 operates. At this time, for example, the load ratio of the inertia mass mi of the first inertia mass damper 8 is 85%, and the load ratio of the inertia mass mi of the second inertia mass damper 9 is 15%. .

さらに、本実施形態の免震構造1において、応答低減機構7は、慣性質量比(慣性質量mi/上部構造物全重量M)が0.2〜0.5となるようにして構成されている。あるいは、応答低減機構7は、摩擦要素10に滑りが生じる制限負荷(滑り出し荷重、頭打ち負担反力)fを、慣性質量mi×重力加速度g×(1/10)以下にして構成されている。 Furthermore, in the seismic isolation structure 1 of the present embodiment, the response reduction mechanism 7 is configured such that the inertial mass ratio (inertial mass mi / upper structure total weight M) is 0.2 to 0.5. . Alternatively, the response reduction mechanism 7 is configured such that the limit load (sliding load, peak load reaction force) f 0 at which the friction element 10 slips is equal to or less than the inertial mass mi × gravity acceleration g × (1/10). .

〔実施例1〕
次に、本実施形態の免震構造1の優位性を確認するために行なった地震応答解析について説明する。ここでは、5質点の免震建物モデルを作成し、慣性質量ダンパー8、9の有無、過負荷防止機構11の有無、慣性質量miの大小、入力地震動の特性をパラメータとしてそれぞれ地震応答解析を行い、その結果を比較することにより、本実施形態の免震構造1の優位性を確認・評価するようにしている。
[Example 1]
Next, the earthquake response analysis performed in order to confirm the superiority of the seismic isolation structure 1 of this embodiment is demonstrated. Here, a seismic isolated building model of 5 mass points is created, and seismic response analysis is performed using parameters of the presence / absence of inertia mass dampers 8 and 9, presence / absence of overload prevention mechanism 11, magnitude of inertia mass mi, and characteristics of input ground motion. By comparing the results, the superiority of the seismic isolation structure 1 of this embodiment is confirmed and evaluated.

具体的に、まず、解析モデルは、図2に示すように、5質点の等価せん断型モデルを使用した。   Specifically, first, as the analysis model, as shown in FIG. 2, a 5-mass point equivalent shear type model was used.

この5質点の等価せん断型モデルにおける主構造(上部構造物2)の諸条件は次のように設定した。
各質点の質量は一様に1000tonとし、合計5000tonとした。また、上部構造物2の各層(各階)の剛性は、最上層と最下層の剛性比が0.57:1.0の台形分布となるようにして与えた。基礎固定時の1次固有周期は0.43secとした。また、ベースシア係数Cb=0.15とし、Ai分布で各層の層せん断力を求めて図3のように各層の骨格曲線を設定し、復元力モデルに武田モデルを使用した。さらに、上部構造物2の減衰は、歪エネルギー比例型で5次まで3%とした。
The conditions of the main structure (superstructure 2) in this 5-mass point equivalent shear model were set as follows.
The mass of each mass point was uniformly 1000 tons, and the total was 5000 tons. In addition, the rigidity of each layer (each floor) of the upper structure 2 was given such that the rigidity ratio of the uppermost layer and the lowermost layer had a trapezoidal distribution of 0.57: 1.0. The primary natural period when the foundation was fixed was 0.43 sec. Further, the base shear coefficient Cb = 0.15 was obtained, the layer shear force of each layer was obtained from the Ai distribution, the skeleton curve of each layer was set as shown in FIG. 3, and the Takeda model was used as the restoring force model. Further, the attenuation of the upper structure 2 is 3% up to the fifth order in a strain energy proportional type.

次に、免震層4の諸条件は次のように設定した。
構造体バネ5にはゴム総厚が20cmの積層ゴムを用い、免震層4を含めた1次固有周期を5.0secとした。また、免震層4の構造体減衰6には鋼材ダンパーを用い、負担率αを0.04として耐力を設定し、降伏変位が20mmのバイリニアでモデル化した。
Next, the conditions of the seismic isolation layer 4 were set as follows.
A laminated rubber having a total rubber thickness of 20 cm was used for the structure spring 5, and the primary natural period including the seismic isolation layer 4 was set to 5.0 sec. In addition, a steel damper was used for the structure damping 6 of the seismic isolation layer 4, and the yield strength was set with a load factor α of 0.04, and a bilinear model with a yield displacement of 20 mm was used.

そして、この地震応答解析では、以下の4つの検討解析モデルを設定した。
〔モデルA〕:従来免震モデル(積層ゴムと鋼材ダンパーのみ(構造体バネ5と構造体減衰6のみ)のモデル)
〔モデルB〕:慣性質量ダンパーを免震層4に並列に付加したモデル(慣性質量ダンパー8、9のみの(過負荷防止機構11がない)モデル)
〔モデルC〕:慣性質量ダンパー8、9に過負荷防止機構11を付加したモデル(本発明)
〔モデルD〕:モデルAの構造体減衰6を十分に大きくした変位抑制型免震モデル
なお、本発明にかかるモデルCは、慣性質量ダンパー(第1の慣性質量ダンパー8)と、図4に示す復元力特性をもつ摩擦要素10を直列に接続している。また、慣性質量ダンパー8の負担力が滑り出し荷重(制限負荷、頭打ち負担反力)fを超えると摩擦要素10が滑り、この滑り出し荷重f以上の過大な荷重が慣性質量ダンパー8に入力されないモデルとなっている。また、モデル上、摩擦要素10が接続する第1の慣性質量ダンパー8と、接続しない第2の慣性質量ダンパー9の質量比を85:15としている。
And in this earthquake response analysis, the following four analysis models were set.
[Model A]: Conventional seismic isolation model (laminated rubber and steel damper only (structure spring 5 and structure damping 6 only) model)
[Model B]: A model in which an inertial mass damper is added in parallel to the seismic isolation layer 4 (a model having only the inertial mass dampers 8 and 9 (no overload prevention mechanism 11))
[Model C]: Model in which the overload prevention mechanism 11 is added to the inertia mass dampers 8 and 9 (the present invention)
[Model D]: A displacement-suppressing seismic isolation model in which the structure damping 6 of model A is sufficiently large. Note that model C according to the present invention includes an inertia mass damper (first inertia mass damper 8) and FIG. Friction elements 10 having the restoring force characteristics shown are connected in series. Further, when the load force of the inertial mass damper 8 exceeds the sliding load (restrictive load, peak load reaction force) f 0 , the friction element 10 slips, and an excessive load equal to or greater than the sliding load f 0 is not input to the inertial mass damper 8. It is a model. In the model, the mass ratio of the first inertia mass damper 8 to which the friction element 10 is connected and the second inertia mass damper 9 not to be connected is set to 85:15.

そして、上記の4つのモデルに対し、慣性質量ダンパー8、9の慣性質量miと入力地震動の特性をパラメータとして地震応答解析を行なった。また、各解析ケースにおける慣性質量mi(慣性質量比)と摩擦要素10の滑り出し荷重fは表1に示す通りとした。さらに、慣性質量miは、上部構造物の全重量Mに対して5〜80%の大きさに設定し、摩擦要素10の滑り出し荷重fは、各ケースにおける慣性質量mi×重力加速度g×(1/20)とした。 Then, an earthquake response analysis was performed on the above four models using the inertia mass mi of the inertia mass dampers 8 and 9 and the characteristics of the input ground motion as parameters. In addition, the inertia mass mi (inertia mass ratio) and the sliding load f 0 of the friction element 10 in each analysis case are as shown in Table 1. Further, the inertia mass mi is set to 5 to 80% of the total weight M of the superstructure, and the sliding load f 0 of the friction element 10 is the inertia mass mi × gravitational acceleration g × ( 1/20).

また、表2に、解析に使用した入力地震動と、その最大加速度の値を示す。さらに、図5に、速度応答スペクトル(減衰5%)を示す。このうち、El Centro、八戸、Taftの各入力地震動の波については、最大加速度を50cm/sに基準化して用いた。また、各入力地震動の入力方向を1方向にして解析を行なった。   Table 2 shows the input ground motion used for the analysis and the value of the maximum acceleration. Furthermore, FIG. 5 shows a velocity response spectrum (attenuation 5%). Of these, the El Centro, Hachinohe, and Taft input ground motion waves were used with the maximum acceleration normalized to 50 cm / s. The analysis was performed with the input direction of each input seismic motion as one direction.

Figure 0005945889
Figure 0005945889

Figure 0005945889
Figure 0005945889

次に、地震応答解析の結果について説明する。
はじめに、図6は、告示波レベル2を入力した際の各モデルの慣性質量比と応答値の関係を示している。また、応答値は、免震層変位(図6(a))、ダンパーの反力(図6(b))、各階の応答加速度(図6(c))、各階(層)の層間変形角(図6(d))であり、ここでは、慣性質量比を0.2と0.5にした場合の解析結果を示している。さらに、図7は、モデルC(本発明)に各地震波を入力した際のモデルA(従来免震モデル)との免震層変位比と慣性質量比の関係を示し、図8は、モデルC(本発明)に各地震波を入力した際の全階における最大加速度と慣性質量比の関係を示している。
Next, the results of the earthquake response analysis will be described.
First, FIG. 6 shows the relationship between the inertial mass ratio and response value of each model when the notification wave level 2 is input. The response values are the seismic isolation layer displacement (FIG. 6A), the reaction force of the damper (FIG. 6B), the response acceleration of each floor (FIG. 6C), and the interlayer deformation angle of each floor (layer). FIG. 6D shows the analysis results when the inertial mass ratio is 0.2 and 0.5. Further, FIG. 7 shows the relationship between the seismic isolation layer displacement ratio and the inertial mass ratio with model A (conventional seismic isolation model) when each seismic wave is input to model C (present invention), and FIG. (Invention) shows the relationship between the maximum acceleration and the inertial mass ratio in all floors when each seismic wave is input.

まず、図6(b)に示すように、モデルB(過負荷防止機構がないモデル)、モデルC(本発明)ともに、慣性質量比が大きくなるほどダンパー反力が増加するが、モデルCでは、過負荷防止機構11の効果により、モデルBに比べて最大60%程度、ダンパー反力が低減することが確認された。また、図6(a)に示すように、モデルB、モデルCともに、モデルA(従来免震モデル)と比べ、慣性質量比を大きくするほど免震層4の変位が小さくなることが確認された。また、モデルBとモデルCの変位には大きな差異が認められなかった。   First, as shown in FIG. 6B, both model B (model without an overload prevention mechanism) and model C (present invention) increase the damper reaction force as the inertial mass ratio increases. As a result of the effect of the overload prevention mechanism 11, it was confirmed that the damper reaction force was reduced by about 60% in comparison with the model B. Further, as shown in FIG. 6A, it is confirmed that the displacement of the seismic isolation layer 4 decreases as the inertial mass ratio increases in both models B and C compared to model A (conventional seismic isolation model). It was. Further, there was no significant difference in displacement between model B and model C.

そして、これらの結果から、応答低減機構7が慣性質量ダンパー8、9だけでなく過負荷防止機構11を備えていることにより、変位低減効果を維持したまま、ダンパー反力を大幅に低減できることが実証された。但し、慣性質量比が小さすぎると、免震層4の変位の抑制効果は小さくなり、図7に示すように、慣性質量比を0.2以上にすると免震層4の変位を15%程度低減できることが確認された。これにより、モデルC(本発明)のように応答低減機構7(免震構造1)を構成する場合において、慣性質量比を0.2以上にすることで、確実且つ効果的に免震層4の変位を抑制できることが実証された。   From these results, the response reduction mechanism 7 includes not only the inertia mass dampers 8 and 9 but also the overload prevention mechanism 11, so that the damper reaction force can be greatly reduced while maintaining the displacement reduction effect. Proven. However, if the inertial mass ratio is too small, the effect of suppressing the displacement of the seismic isolation layer 4 becomes small. As shown in FIG. 7, when the inertial mass ratio is 0.2 or more, the displacement of the seismic isolation layer 4 is about 15%. It was confirmed that it can be reduced. As a result, when the response reduction mechanism 7 (the seismic isolation structure 1) is configured as in the model C (the present invention), the seismic isolation layer 4 can be reliably and effectively achieved by setting the inertial mass ratio to 0.2 or more. It was proved that the displacement of can be suppressed.

ここで、構造体バネ5として適用する積層ゴムは、市販されている大型のものでその最大許容変位が70cm程度であるが、モデルAに対し、例えば上町断層帯を震源とする大阪地区の想定地震動を入力すると免震層4の変位が80cm程度になってしまう。これに基づき、免震層4の変位をモデルAに対して15%程度低減させることが必要とされている。   Here, the laminated rubber to be applied as the structure spring 5 is a commercially available large-sized rubber having a maximum allowable displacement of about 70 cm. If seismic motion is input, the displacement of the seismic isolation layer 4 will be about 80 cm. Based on this, it is necessary to reduce the displacement of the seismic isolation layer 4 by about 15% with respect to the model A.

一方、各階の応答加速度や層間変形角の解析結果を示す図6(c)及び図6(d)から、慣性質量ダンパー8、9を付加することにより、モデルBとモデルCの各応答値は、モデルAに比べ、慣性質量比が大きくなると増加する傾向が認められた。しかしながら、このとき、モデルCはモデルBと比べるとその増加量が小さく、層間変形角においては全てのケースで1/200を大幅に下回る結果となった。   On the other hand, by adding inertia mass dampers 8 and 9 from FIGS. 6 (c) and 6 (d) showing the analysis results of response acceleration and interlayer deformation angle of each floor, the response values of model B and model C are as follows. Compared with model A, a tendency to increase as the inertial mass ratio increases was observed. However, at this time, the increase amount of the model C is smaller than that of the model B, and the inter-layer deformation angle is significantly less than 1/200 in all cases.

但し、慣性質量比を大きくし過ぎると、各階の応答加速度が増加する傾向が認められた。ここで、「非構造部材の耐震設計施工指針・同解説および耐震設計施工要領:日本建築学会」には、免震建物の場合、床の加速度が200〜250(gal(=cm/s))を超えると、例えば書棚や食器戸棚、システム家具などのアスペクト比が0.2前後の細い家具や置物が転倒する危険性が高まることが示されている。このため、免震構造1を備えることで、全ての階の最大加速度を200gal程度以下に抑えることが求められる。 However, when the inertial mass ratio was increased too much, the response acceleration of each floor tended to increase. Here, in the “Guidelines for seismic design and construction of non-structural members, explanation and seismic design and construction guidelines: Architectural Institute of Japan”, the acceleration of the floor is 200 to 250 (gal (= cm / s 2 ) in the case of a base-isolated building. ) Exceeds that, for example, there is an increased risk of falls of thin furniture and figurines with aspect ratios of around 0.2, such as bookcases, cupboards, and system furniture. For this reason, by providing the seismic isolation structure 1, it is required to suppress the maximum acceleration of all floors to about 200 gal or less.

そして、図8に示すように、モデルCにおいては、慣性質量比が0.5を超えると上部構造物2の最大加速度が200galを超えることが確認された。これにより、モデルC(本発明)のように応答低減機構7(免震構造1)を構成する場合において、慣性質量比を0.5以下にすることで、確実且つ効果的に上部構造物2の最大加速度を抑制できることが実証された。   And as shown in FIG. 8, in the model C, when the inertial mass ratio exceeded 0.5, it was confirmed that the maximum acceleration of the upper structure 2 exceeds 200 gal. Thus, when the response reduction mechanism 7 (the seismic isolation structure 1) is configured as in the model C (the present invention), the upper structure 2 can be reliably and effectively made by setting the inertial mass ratio to 0.5 or less. It was demonstrated that the maximum acceleration of can be suppressed.

なお、図6(c)、図6(d)に示すモデルD(免震層4の減衰を十分に大きくした従来免震モデル)の応答値は、モデルCの慣性質量比を0.5としたときの免震層変位と同じ変位となるように減衰量を調整したモデルの応答値である。そして、このモデルDの結果と慣性質量比0.5のモデルCの結果を比較すると、全ての階の応答加速度と全層の層間変形角がモデルCの応答値を大きく上回ることが確認された。このことから、モデルDでは減衰量を大きくすることにより免震層変位を低減することは可能であるが、応答加速度と層間変形角を抑える免震効果が低くなってしまうことが確認された。   In addition, the response value of the model D (conventional seismic isolation model in which the damping of the seismic isolation layer 4 is sufficiently increased) shown in FIGS. 6 (c) and 6 (d) is 0.5. This is the response value of the model with the attenuation adjusted to be the same displacement as the seismic isolation layer displacement. Then, comparing the result of model D with the result of model C having an inertial mass ratio of 0.5, it was confirmed that the response acceleration of all floors and the interlayer deformation angle of all layers greatly exceeded the response value of model C. . From this, it was confirmed that in model D, it is possible to reduce the seismic isolation layer displacement by increasing the attenuation, but the seismic isolation effect that suppresses the response acceleration and the interlayer deformation angle is reduced.

〔実施例2〕
次に、モデルC(本発明)に対し、過負荷防止機構11の頭打ち負担反力fを慣性質量mi×重力加速度g×(1/10)、mi×g×(1/20)、mi×g×(1/40)に変化させて地震応答解析を行なった結果について説明する。ここでは、過負荷防止機構11の頭打ち負担反力fを変化させた各ケースのモデルCに対し、ElCentro、八戸、Taft、告示、三の丸の各入力地震動の波を入力し、応答加速度、免震層変位、ダンパー応力、層間変形角を求めた。
[Example 2]
Next, with respect to the model C (the present invention), the peak load reaction force f 0 of the overload prevention mechanism 11 is expressed as inertia mass mi × gravity acceleration g × (1/10), mi × g × (1/20), mi. The results of the seismic response analysis with xg × (1/40) being changed will be described. Here, El Centro, Hachinohe, Taft, Notification, Sannomaru input seismic motion waves are input to model C of each case where the peak load reaction force f 0 of the overload prevention mechanism 11 is changed, and response acceleration, Seismic displacement, damper stress, and interlayer deformation angle were obtained.

また、図9〜図11は、ElCentro波を入力し、順に、mi×g×(1/10)、mi×g×(1/20)、mi×g×(1/40)のときの応答値(応答加速度、免震層変位、ダンパー応力、層間変形角)を求めた結果を示している。同様に、図12〜図14が八戸波、図15〜図17がTaft波、図18〜図20が告示波、図21〜図23が三の丸波をそれぞれ入力した結果を示している。   FIGS. 9 to 11 show responses when El Centro waves are input and mi × g × (1/10), mi × g × (1/20), and mi × g × (1/40) are sequentially input. The values (response acceleration, seismic isolation layer displacement, damper stress, interlayer deformation angle) are shown. Similarly, FIGS. 12 to 14 show Hachinohe waves, FIGS. 15 to 17 show Taft waves, FIGS. 18 to 20 show notification waves, and FIGS. 21 to 23 show results of inputting three round waves, respectively.

そして、これらの結果から、変位を15%程度低減し、加速度を200gal程度に抑制できる慣性質量比の範囲は、mi×g×(1/40)で「0.3〜0.7」、mi×g×(1/20)で「0.2〜0.5」、mi×g×(1/10)で「0.2のみ」となることが確認された。これにより、過負荷防止機構11の頭打ち負担反力fをmi×g×(1/10)以下に設定すれば、確実且つ効果的に、免震層4の変位を15%程度低減させつつ、応答加速度を200gal程度に抑制できることが実証された。 From these results, the range of the inertial mass ratio that can reduce the displacement by about 15% and suppress the acceleration to about 200 gal is mi × g × (1/40), “0.3 to 0.7”, mi It was confirmed that “× g × (1/20)” was “0.2 to 0.5” and mi × g × (1/10) was “0.2 only”. As a result, if the peak load reaction force f 0 of the overload prevention mechanism 11 is set to mi × g × (1/10) or less, the displacement of the seismic isolation layer 4 can be reliably and effectively reduced by about 15%. It was demonstrated that the response acceleration can be suppressed to about 200 gal.

したがって、本実施形態の免震構造1においては、応答低減機構7が第1の慣性質量ダンパー8と第2の慣性質量ダンパー9を備えることにより、上部構造物2を構造体バネ5と構造体減衰6で免震支持してなる免震構造(応答低減機構7を備えていない免震構造:モデルA)と比較し、免震層変位を例えば最大で40%程度低減することが可能になる。また、応答低減機構7が過負荷防止機構11を備えることにより、免震層4の変位低減効果を保ちつつ、上部構造物2の応答加速度や層間変形角の増加量を抑制することが可能になる。   Therefore, in the seismic isolation structure 1 of the present embodiment, the response reduction mechanism 7 includes the first inertia mass damper 8 and the second inertia mass damper 9, so that the upper structure 2 is connected to the structure spring 5 and the structure body. Compared to the base isolation structure (base isolation structure without the response reduction mechanism 7: model A) that supports base isolation with damping 6, it is possible to reduce the base isolation layer displacement by, for example, about 40% at the maximum. . Further, since the response reduction mechanism 7 includes the overload prevention mechanism 11, it is possible to suppress an increase in the response acceleration of the upper structure 2 and the interlayer deformation angle while maintaining the displacement reduction effect of the seismic isolation layer 4. Become.

よって、本実施形態の免震構造1によれば、オイルダンパーの第1の付加減衰と第2の付加減衰、慣性質量ダンパー、復元バネを備えた従来の応答低減機構と比較し、高価なオイルダンパーを用いず、部材点数を少なくして応答低減機構7を構成し、確実に免震機能を発揮して上部構造物2の地震時応答を低減させることが可能になる。   Therefore, according to the seismic isolation structure 1 of the present embodiment, the oil damper is more expensive than the conventional response reduction mechanism including the first additional damping and the second additional damping of the oil damper, the inertia mass damper, and the restoring spring. Without using a damper, the response reduction mechanism 7 is configured by reducing the number of members, and the seismic isolation function can be reliably exhibited to reduce the response of the upper structure 2 during an earthquake.

また、本実施形態の免震構造1においては、慣性質量比を0.2〜0.5にすることで、免震層4の変位低減効果と上部構造物2の応答加速度や層間変形角の抑制効果をバランスよく活用することが可能になる。   Moreover, in the base isolation structure 1 of this embodiment, the inertia mass ratio is set to 0.2 to 0.5, so that the displacement reduction effect of the base isolation layer 4 and the response acceleration and interlayer deformation angle of the upper structure 2 are reduced. It becomes possible to utilize the suppression effect in a balanced manner.

また、摩擦要素10に滑りが生じる制限負荷fを、慣性質量mi×重力加速度g×(1/10)以下にすることによっても、免震層4の変位低減効果と上部構造物2の応答加速度や層間変形角の抑制効果をバランスよく活用することが可能になる。 Further, the displacement reducing effect of the seismic isolation layer 4 and the response of the upper structure 2 can also be achieved by setting the limit load f 0 at which the friction element 10 slips to an inertia mass mi × gravity acceleration g × (1/10) or less. It becomes possible to utilize the effect of suppressing the acceleration and the interlayer deformation angle in a balanced manner.

以上、本発明に係る免震構造の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   Although one embodiment of the seismic isolation structure according to the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

1 免震構造
2 上部構造物
3 固定端
4 免震層
5 構造体バネ
6 構造体減衰
7 応答低減機構
8 第1の慣性質量ダンパー
9 第2の慣性質量ダンパー
10 摩擦要素
11 過負荷防止機構
DESCRIPTION OF SYMBOLS 1 Base isolation structure 2 Superstructure 3 Fixed end 4 Base isolation layer 5 Structure spring 6 Structure damping 7 Response reduction mechanism 8 First inertia mass damper 9 Second inertia mass damper 10 Friction element 11 Overload prevention mechanism

Claims (2)

上部構造物と固定端の間の免震層に設けられ、前記上部構造物を構造体バネと構造体減衰を介して前記固定端に接続するとともに、前記上部構造物の地震時応答を低減させるための応答低減機構を前記構造体バネと並列に設けてなる免震構造であって、
前記応答低減機構が、第1の慣性質量ダンパーと、前記第1の慣性質量ダンパーと並列に設けられた第2の慣性質量ダンパーと、前記第1の慣性質量ダンパーと直列に設けられ、摩擦要素の滑りによって前記第1の慣性質量ダンパーに作用する負荷を制限する過負荷防止機構とを備え、且つ、慣性質量比を0.2〜0.5にして構成されていることを特徴とする免震構造。
Provided in a seismic isolation layer between the upper structure and the fixed end, connecting the upper structure to the fixed end via a structure spring and structure damping, and reducing the response of the upper structure during an earthquake A seismic isolation structure in which a response reduction mechanism for providing a parallel structure with the structure spring,
The response reducing mechanism is provided in series with a first inertial mass damper, a second inertial mass damper provided in parallel with the first inertial mass damper, and the first inertial mass damper, and a friction element. And an overload prevention mechanism for limiting a load acting on the first inertial mass damper by slipping of the first inertial mass damper , and an inertial mass ratio of 0.2 to 0.5. Seismic structure.
上部構造物と固定端の間の免震層に設けられ、前記上部構造物を構造体バネと構造体減衰を介して前記固定端に接続するとともに、前記上部構造物の地震時応答を低減させるための応答低減機構を前記構造体バネと並列に設けてなる免震構造であって、
前記応答低減機構が、第1の慣性質量ダンパーと、前記第1の慣性質量ダンパーと並列に設けられた第2の慣性質量ダンパーと、前記第1の慣性質量ダンパーと直列に設けられ、摩擦要素の滑りによって前記第1の慣性質量ダンパーに作用する負荷を制限する過負荷防止機構とを備え、且つ、前記摩擦要素に滑りが生じる制限負荷を、慣性質量×重力加速度×(1/10)以下にして構成されていることを特徴とする免震構造。
Provided in a seismic isolation layer between the upper structure and the fixed end, connecting the upper structure to the fixed end via a structure spring and structure damping, and reducing the response of the upper structure during an earthquake A seismic isolation structure in which a response reduction mechanism for providing a parallel structure with the structure spring,
The response reducing mechanism is provided in series with a first inertial mass damper, a second inertial mass damper provided in parallel with the first inertial mass damper, and the first inertial mass damper, and a friction element. An overload prevention mechanism for limiting a load acting on the first inertial mass damper due to slippage, and a limit load that causes the friction element to slip is expressed by inertial mass × gravity acceleration × (1/10) or less Seismic isolation structure characterized by being configured as
JP2012162756A 2012-07-23 2012-07-23 Seismic isolation structure Active JP5945889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162756A JP5945889B2 (en) 2012-07-23 2012-07-23 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162756A JP5945889B2 (en) 2012-07-23 2012-07-23 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2014020534A JP2014020534A (en) 2014-02-03
JP5945889B2 true JP5945889B2 (en) 2016-07-05

Family

ID=50195664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162756A Active JP5945889B2 (en) 2012-07-23 2012-07-23 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP5945889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922879A1 (en) * 2020-06-08 2021-12-15 Wölfel Engineering GmbH + Co. KG Pendulum damper assembly

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023503A (en) * 2014-07-23 2016-02-08 清水建設株式会社 Base-isolated structure
JP6580457B2 (en) 2015-10-29 2019-09-25 Thk株式会社 Rotating inertia mass damper
JP6689002B2 (en) * 2016-01-13 2020-04-28 清水建設株式会社 Mass / rigidity distribution setting method for building soundness determination and mass / rigidity distribution setting system for building soundness determination
JP6636383B2 (en) * 2016-05-11 2020-01-29 鹿島建設株式会社 Seismic isolation structure and method of designing seismic isolation structure
CN109457827B (en) * 2018-10-30 2020-10-20 郑州轻工业学院 Friction-induced deformation mode damping method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316842B2 (en) * 2008-06-04 2013-10-16 清水建設株式会社 Seismic isolation mechanism
JP5051590B2 (en) * 2008-07-10 2012-10-17 清水建設株式会社 Inertia mass damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922879A1 (en) * 2020-06-08 2021-12-15 Wölfel Engineering GmbH + Co. KG Pendulum damper assembly

Also Published As

Publication number Publication date
JP2014020534A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5945889B2 (en) Seismic isolation structure
Jangid Optimum lead–rubber isolation bearings for near-fault motions
JP6482373B2 (en) Seismic isolation structure
Murase et al. Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection
JP2018009442A (en) Base-isolated structure
JP5458370B2 (en) Connected vibration control structure
JP5234432B2 (en) Vibration control structure
Sone et al. Experimental verification of a tuned mass damper system with two‐phase support mechanism
JP5316849B2 (en) Damping structure
JP6835492B2 (en) Seismic isolation structure
JP6709600B2 (en) Multi-layer seismic isolation structure
JP6164473B2 (en) Seismic isolation structure of structure, seismic isolation method of structure and structure
JP6636383B2 (en) Seismic isolation structure and method of designing seismic isolation structure
JP6308741B2 (en) Intermediate seismic isolation structure
JP2022161982A (en) Multistory base insulation building
JP6590201B2 (en) Multi-layer seismic isolation structure
JP5495013B2 (en) Vibration control mechanism
JP6143058B2 (en) Vibration control structure
JP6397544B2 (en) Intermediate seismic isolation structure
JP5290786B2 (en) Damping structure
JP5721333B2 (en) Sliding foundation structure
JP2017145621A (en) Base-isolation structure
JP7370789B2 (en) Seismic control structure, control method of seismic control structure, and design method of seismic control structure
JP7374694B2 (en) Design method for seismically isolated buildings
JP6132157B2 (en) Vibration isolation structure for liquid storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160518

R150 Certificate of patent or registration of utility model

Ref document number: 5945889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150