JP5721333B2 - Sliding foundation structure - Google Patents

Sliding foundation structure Download PDF

Info

Publication number
JP5721333B2
JP5721333B2 JP2010051331A JP2010051331A JP5721333B2 JP 5721333 B2 JP5721333 B2 JP 5721333B2 JP 2010051331 A JP2010051331 A JP 2010051331A JP 2010051331 A JP2010051331 A JP 2010051331A JP 5721333 B2 JP5721333 B2 JP 5721333B2
Authority
JP
Japan
Prior art keywords
base plate
sliding
elastic member
fixing
restoring force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010051331A
Other languages
Japanese (ja)
Other versions
JP2011184950A (en
Inventor
圭二 北嶋
圭二 北嶋
雅嘉 ▲やな▼川
雅嘉 ▲やな▼川
雅也 波田
雅也 波田
Original Assignee
Jpホーム株式会社
▲高▼松建設株式会社
青木あすなろ建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jpホーム株式会社, ▲高▼松建設株式会社, 青木あすなろ建設株式会社 filed Critical Jpホーム株式会社
Priority to JP2010051331A priority Critical patent/JP5721333B2/en
Publication of JP2011184950A publication Critical patent/JP2011184950A/en
Application granted granted Critical
Publication of JP5721333B2 publication Critical patent/JP5721333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、地震時に建物に入力される地震力を低減し、建物の耐震性能を向上させる滑り基礎構造に関するものである。   The present invention relates to a sliding foundation structure that reduces the seismic force input to a building during an earthquake and improves the seismic performance of the building.

地震安全対策に対する社会的要請の高まりとともに、大地震発生時に建物に加わる地震力を低減する免震構造が注目されており、既に数多くの免震建物が建設されている。   With the increasing social demand for earthquake safety measures, seismic isolation structures that reduce the seismic force applied to buildings in the event of a major earthquake are drawing attention, and many seismic isolation buildings have already been constructed.

一般に基礎免震と呼ばれる免震構造では、図1に示すような、免震層5の上下に剛強な上部基礎梁3及び下部基礎梁4を設置して、建物の重量を支え、かつ、復元機能を持つ免震装置(積層ゴム)6aと、地震エネルギーを吸収する免震装置(ダンパー)6bを設置する方式の免震構造が多く採用されている。   In the seismic isolation structure generally called basic seismic isolation, rigid upper foundation beam 3 and lower foundation beam 4 are installed above and below the seismic isolation layer 5 to support the weight of the building and restore it as shown in FIG. Many seismic isolation structures are installed, in which a seismic isolation device (laminated rubber) 6a having a function and a seismic isolation device (damper) 6b for absorbing seismic energy are installed.

しかしながら、戸建て住宅や低層建物を免震構造化しようとする場合、建物の上屋にかかるコストに対し、根切りコスト、二重の基礎梁構築コスト、免震装置コスト等の免震層構築のためのコストがかかり、コスト面から免震構造化できないケースが多く発生している。   However, when attempting to make a base-isolated structure for a detached house or low-rise building, the cost of building the base is not limited to the cost of the roof of the building. There are many cases where seismic isolation structure is not possible due to cost.

このような状況を背景にして、滑り支承手段に減衰機能と復元機能とを持たせた免震装置が提案されている(例えば特許文献1参照)。この装置は、コンパクトに一体化された構成であり、機能性、施工性の点で優れたものである。   Against this background, a seismic isolation device has been proposed in which the sliding support means has a damping function and a restoring function (see, for example, Patent Document 1). This device has a compact integrated structure and is excellent in terms of functionality and workability.

しかしながら、この装置では、上部構造体の重量を支える基礎滑り面に集中的に応力が働き、支承部に大きな圧縮応力が働くため、滑り面の滑り材が潰れる可能性が考えられる。そのため、潰れが発生しない滑り材を選定する必要があり、これらの滑り材が限られた高価な材料であるためにコスト高となることが考えられる。また、免震層の設置が必要であり、さらにその分のコストが考慮される。   However, in this apparatus, stress acts intensively on the basic sliding surface that supports the weight of the upper structure, and a large compressive stress acts on the support portion. Therefore, there is a possibility that the sliding material on the sliding surface may be crushed. Therefore, it is necessary to select sliding materials that do not cause crushing, and these sliding materials are limited and expensive materials, which may increase the cost. In addition, it is necessary to install a seismic isolation layer, and the cost for that is considered.

その他の提案としては、建物に対応する表層地盤を掘削して形成した地盤領域とベタ基礎との間に、免震用マット部材を配置し、従来の戸建て住宅工法を大きく変えることなく建物に作用する地震力を低減させることのできる地盤減震構造が提案されている(例えば特許文献2参照)。   As another proposal, seismic isolation mat members are placed between the ground area formed by excavating the surface ground corresponding to the building and the solid foundation, so that it works on the building without greatly changing the conventional detached house construction method. A ground seismic reduction structure capable of reducing the seismic force is proposed (for example, see Patent Document 2).

しかしながら、この提案では復元力装置がなく、ずれた際は地中に設置されているセンタリング機構を用いて、ジャッキ等で建物を元の位置に戻さなければならないため地震後の作業が必要となる。また、センタリング機構が地中に設置されているため、センタリング機構のメンテナンスが容易に行えないという問題がある。また免震用のマットを用いるため、さらにその分コスト高となる可能性がある。   However, in this proposal, there is no restoring force device, and if it slips, the centering mechanism installed in the ground must be used to return the building to its original position with a jack etc., so work after the earthquake is necessary . In addition, since the centering mechanism is installed in the ground, there is a problem that the centering mechanism cannot be easily maintained. In addition, the use of seismic isolation mats may increase the cost.

特開2000−179621号公報JP 2000-179621 A 特開2008−101451号公報JP 2008-101451 A

本発明は、以上の通りの事情に鑑みてなされたものであり、根切りコスト、免震層構築コスト、免震装置コスト等を大幅に低減した、地震力低減効果の高い滑り基礎構造を提供することを課題とする。   The present invention has been made in view of the circumstances as described above, and provides a sliding foundation structure having a high effect of reducing seismic force, which significantly reduces root cutting costs, seismic isolation layer construction costs, seismic isolation device costs, and the like. The task is to do.

本発明の滑り基礎構造は、上記の課題を解決するために、以下のことを特徴としている。   In order to solve the above problems, the sliding foundation structure of the present invention is characterized by the following.

第1:材質がコンクリートの下部基礎板と、材質がコンクリートの上部基礎板の間の全面に、低摩擦抵抗材料を配設した滑り基礎構造であって、前記低摩擦抵抗材料が黒鉛粉末単独であり、その摩擦係数が0.15〜0.25の範囲内であり、上部基礎板内部に空間を設け、該空間に復元力装置を配設している。 1: a sliding foundation structure in which a low friction resistance material is disposed on the entire surface between a lower base plate made of concrete and an upper base plate made of concrete , wherein the low friction resistance material is graphite powder alone, The friction coefficient is within a range of 0.15 to 0.25 , a space is provided inside the upper base plate, and a restoring force device is provided in the space.

:前記第1の滑り基礎構造において、復元力装置が、弾性部材と、弾性部材上部を上部基礎板に固定するための固定部材と、弾性部材下部を下部基礎板に固定するための固定部材から構成されている。 Second : In the first sliding foundation structure, the restoring force device includes an elastic member, a fixing member for fixing the upper portion of the elastic member to the upper base plate, and a fixing for fixing the lower portion of the elastic member to the lower base plate. It consists of members.

:前記第1の滑り基礎構造において、復元力装置が、支柱に接合された弾性部材と、弾性部材を空間側面に固定するための固定部材と、支柱を下部基礎板に固定するための固定部材から構成されている。 Third : In the first sliding foundation structure, the restoring force device includes an elastic member joined to the support, a fixing member for fixing the elastic member to the side surface of the space, and a support for fixing the support to the lower base plate. It is comprised from the fixing member.

上記第1の発明によれば、下部基礎板と上部基礎板の間に低摩擦抵抗材料を配設しているので、滑り支承等の装置を用いることなく安価に建物重量を支え、さらに地震動の上部基礎板への伝達を低減することができる。   According to the first aspect of the invention, since the low friction resistance material is disposed between the lower foundation plate and the upper foundation plate, the building weight is supported at low cost without using a device such as a sliding bearing, and the upper foundation of the earthquake motion is further provided. Transmission to the plate can be reduced.

さらに、上部基礎板内部に空間を設け、該空間に復元力装置を配設しているので、地震後の上部基礎板の残留変形(上部基礎板と下部基礎板のずれ)を制御することができる。   Furthermore, since a space is provided inside the upper base plate and a restoring force device is provided in the space, residual deformation of the upper base plate after the earthquake (displacement between the upper base plate and the lower base plate) can be controlled. it can.

上記第2の発明によれば、低摩擦抵抗材料の摩擦係数を0.1〜0.3の範囲内と限定したので、地震動の上部基礎板への低減をより確実に顕著なものとすることができる。   According to the second invention, since the friction coefficient of the low friction resistance material is limited to within the range of 0.1 to 0.3, the reduction of the seismic motion to the upper base plate is more surely remarkable. Can do.

上記第3、第4の発明によれば、復元力装置が、固定部材を上・下部基礎板に固定するための固定部材、又は、固定部材を空間側面に固定するための固定部材と、支柱を下部基礎板に固定するための固定部材から構成されているので、復元力装置の設置・交換が簡単であり設置・交換コストを大幅に削減することができる。   According to the third and fourth inventions, the restoring force device includes a fixing member for fixing the fixing member to the upper and lower base plates, or a fixing member for fixing the fixing member to the side surface of the space, and the support column. Since it is comprised from the fixing member for fixing to a lower baseplate, installation / replacement of a restoring force apparatus is easy, and installation / replacement cost can be reduced significantly.

従来の免震構造を示す概略断面図である。It is a schematic sectional drawing which shows the conventional seismic isolation structure. 本発明の滑り基礎構造を適用した場合の概略断面図である。It is a schematic sectional drawing at the time of applying the sliding foundation structure of the present invention. 本発明の滑り基礎構造の復元力装置の一形態であり、弾性部材にゴムを使用した場合の概略断面図である。It is one form of the restoring force apparatus of the sliding foundation structure of this invention, and is a schematic sectional drawing at the time of using rubber | gum for an elastic member. 本発明の滑り基礎構造の復元力装置の一形態であり、弾性部材にコイルバネを使用した場合の概略断面図である。It is one form of the restoring force apparatus of the sliding foundation structure of this invention, and is a schematic sectional drawing at the time of using a coil spring for an elastic member. 本発明の滑り基礎構造の復元力装置の一形態であり、弾性部材に複数のコイルバネを使用した場合の概略断面図である。It is one form of the restoring force apparatus of the sliding foundation structure of this invention, and is a schematic sectional drawing at the time of using a some coil spring for an elastic member. 本発明の滑り基礎構造の復元力装置の一形態であり、弾性部材を支持する支柱と、弾性部材を使用し、弾性部材を複数のせん断ゴムとした場合の概略断面図である。It is one form of the restoring force apparatus of the sliding foundation structure of this invention, and is a schematic sectional drawing at the time of using the support | pillar which supports an elastic member, and an elastic member, and making an elastic member into several shear rubber. 本発明の滑り基礎構造の復元力装置の一形態であり、弾性部材を支持する支柱と、弾性部材を使用し、弾性部材を複数のコイルバネとした場合の概略断面図である。It is one form of the restoring force apparatus of the sliding foundation structure of this invention, and is a schematic sectional drawing at the time of using the support | pillar which supports an elastic member, and an elastic member, and making an elastic member into several coil springs. 本発明の滑り基礎構造の復元力装置の地震時の動きを模式的に示した断面図である。(1)は、地震発生前の通常の状態を示す概略断面図である。(2)は、地震発生時、下部基礎板が左に揺れた状態を示す概略断面図である。(3)は、地震発生時、下部基礎板が右に揺れた状態を示す概略断面図である。(4)は、地震が終わった状態を示す概略断面図である。It is sectional drawing which showed typically the motion at the time of the earthquake of the restoring force apparatus of the sliding foundation structure of this invention. (1) is a schematic sectional view showing a normal state before the occurrence of an earthquake. (2) is a schematic cross-sectional view showing a state in which the lower base plate sways to the left when an earthquake occurs. (3) is a schematic cross-sectional view showing a state in which the lower foundation plate sways to the right when an earthquake occurs. (4) is a schematic cross-sectional view showing a state where the earthquake is over. (a)は、滑り面を全面とする場合の概略図である。(b)は、滑り面を支承基礎とする場合の概略図である。(A) is the schematic in case a sliding surface is made into the whole surface. (B) is the schematic in the case of using a sliding surface as a support foundation. 本発明の滑り基礎構造における低摩擦抵抗材料の効果を確認するための装置の概略図である。It is the schematic of the apparatus for confirming the effect of the low friction resistance material in the sliding foundation structure of this invention. 測定結果の加速度と時間の関係を示すグラフである。It is a graph which shows the relationship between the acceleration of a measurement result, and time. 摩擦係数と風荷重による静止摩擦力を示すグラフである。It is a graph which shows the static frictional force by a friction coefficient and a wind load.

以下、本発明を実施するための形態について詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail.

本発明の滑り基礎構造は、図2に示すように、構造物2を支える上部基礎板8と下部基礎板7の間に低摩擦抵抗材料9を配設し、上部基礎板8内部に設けた空間10に復元力装置を配設した構造となっている。   As shown in FIG. 2, the sliding foundation structure of the present invention is provided with a low friction resistance material 9 between the upper base plate 8 and the lower base plate 7 that support the structure 2, and is provided inside the upper base plate 8. The restoring force device is arranged in the space 10.

本発明の滑り基礎構造に用いる低摩擦抵抗材料9としては、後述する低摩擦抵抗材料9の摩擦係数が範囲内のものであれば特に制限はなく、例えば、黒鉛粉末、黒鉛シート、テフロン(登録商標)シート、高分子系ポリエチレンシート、バリウムフェライトシート、石材等を用いることができる。これらは1種単独で用いてもよいし、2種以上を併用して用いてもよい。また、これらの1種又は2種以上を重ねて用いてもよい。   The low friction resistance material 9 used in the sliding foundation structure of the present invention is not particularly limited as long as the low friction resistance material 9 described later has a friction coefficient within the range. For example, graphite powder, graphite sheet, Teflon (registered) (Trademark) sheet, polymer polyethylene sheet, barium ferrite sheet, stone, and the like can be used. These may be used alone or in combination of two or more. Moreover, you may use these 1 type (s) or 2 or more types repeatedly.

本発明で用いられる上記の低摩擦抵抗材料9は、その摩擦係数が0.1〜0.3の範囲内、好ましくは0.15〜0.25の範囲内である。   The low frictional resistance material 9 used in the present invention has a friction coefficient in the range of 0.1 to 0.3, preferably in the range of 0.15 to 0.25.

本発明の免震基礎構造体において、上部基礎板8と下部基礎板7の間に摩擦抵抗の下限値を考慮しない低摩擦抵抗材料9を用いた場合、地震力以外の建築物に加えられる外力、例えば暴風時の風荷重により建築物が動いてしまう可能性が考えられる。   In the base-isolated base structure of the present invention, when a low frictional resistance material 9 that does not consider the lower limit of frictional resistance is used between the upper foundation plate 8 and the lower foundation plate 7, external force applied to the building other than seismic force For example, there is a possibility that the building may move due to a wind load during a storm.

このようなこと考慮して、下記実験データをもとに摩擦係数の下限値を見出した。   Considering this, the lower limit of the friction coefficient was found based on the following experimental data.

接地面積が10m×10mの平均的な建物を想定した場合の、接地面の摩擦係数と風荷重による静止摩擦力を示すデータとして図12に示すものがある。   FIG. 12 shows data indicating the friction coefficient of the contact surface and the static friction force due to the wind load when an average building having a contact area of 10 m × 10 m is assumed.

この結果より、上記の条件においては、摩擦係数が0.1あれば風荷重によって建物が動かないことが考察される。   From this result, it is considered that the building does not move due to wind load if the friction coefficient is 0.1 under the above conditions.

次に、摩擦係数の上限を考慮しない場合には、地震発生時の地震力が加えられても、上部基礎板8と下部基礎板7の間に滑りが発生せず、本発明の滑り基礎構造の効果が十分に発揮されない可能性が考えられる。   Next, when the upper limit of the friction coefficient is not taken into consideration, even if the seismic force at the time of the earthquake is applied, no slip occurs between the upper base plate 8 and the lower base plate 7, and the sliding base structure of the present invention. There is a possibility that the effect of is not fully exhibited.

これに対し、日本建築学会関東支部の「耐震構造の設計」(2003.7.P100)によれば、建物の性能グレードが基準級(免震、耐震、制震性能なし)であって、加速度が300Gal(cm/s)のときに、建物の修復レベルが小規模修復〜中規模修復のレベルであるとの試算がある。この中規模修復レベルとは、中規模の建物修復により機能がほぼ完全に回復するレベルとされている。 On the other hand, according to the “Design of Seismic Structure” (2003. 3.7.P100) of the Kanto Branch of the Architectural Institute of Japan, the performance grade of the building is a standard class (no seismic isolation, seismic resistance, no seismic performance) and acceleration There is a trial calculation that the level of restoration of the building is the level of small-scale restoration to medium-scale restoration when the value is 300 Gal (cm / s 2 ). This medium-scale restoration level is a level at which the function is almost completely restored by medium-scale building restoration.

ここで、摩擦係数(μ)は加速度(a)と重力加速度(g:980cm/s)により次式(1)で表される。
μ=a/g (1)
式(1)より、上記中規模修復レベルの基準となる加速度が300Gal(cm/s)の場合の摩擦係数は約0.3と算出することができる。従って、低摩擦抵抗材料の摩擦係数が0.3以下であれば300Gal(cm/s)以上の加速度が建物にかからないものと考察される。
Here, the friction coefficient (μ) is expressed by the following equation (1) by acceleration (a) and gravitational acceleration (g: 980 cm / s 2 ).
μ = a / g (1)
From Equation (1), the friction coefficient when the acceleration serving as the reference for the above-mentioned medium-scale restoration level is 300 Gal (cm / s 2 ) can be calculated as about 0.3. Therefore, if the friction coefficient of the low friction resistance material is 0.3 or less, it is considered that the acceleration of 300 Gal (cm / s 2 ) or more is not applied to the building.

本発明の滑り基礎構造に用いられる低摩擦抵抗材料9の摩擦係数は、上記のデータを根拠として摩擦係数の下限及び上限を決定するものである。   The friction coefficient of the low friction resistance material 9 used in the sliding foundation structure of the present invention determines the lower limit and the upper limit of the friction coefficient based on the above data.

本発明の滑り基礎構造の下部基礎板7は上部基礎板8を、低摩擦抵抗材料9を介してほぼ全面で支持している。滑り面を全面にする優位性については、以下の検討の結果を考慮した。   The lower base plate 7 of the sliding base structure of the present invention supports the upper base plate 8 on the almost entire surface via the low friction resistance material 9. The results of the following examinations were taken into account for the superiority of the sliding surface.

滑り面を全面とする場合と、滑り面を支承基礎とする場合の比較を図9(a)及び図9(b)に示す。   A comparison between the case where the sliding surface is the entire surface and the case where the sliding surface is the support base is shown in FIGS. 9 (a) and 9 (b).

図9(a)は、滑り面を全面とする場合を示し、建物の一辺、即ち基礎の一辺をBとしている。図9(b)は、滑り面を支承基礎とした場合を示し、建物の一辺をBとし、一辺がB/20の支承基礎を建物四隅に配置している。   FIG. 9A shows a case where the sliding surface is the entire surface, and B is one side of the building, that is, one side of the foundation. FIG.9 (b) shows the case where a sliding surface is used as a support foundation, and the one side of a building is set to B, and the support base of one side is B / 20 is arrange | positioned in the four corners of a building.

ここで、全面基礎とした場合と、支承基礎とした場合のそれぞれの最大軸応力σを比較すると以下のとおりとなる。   Here, when the maximum axial stress σ is compared between the case where the entire surface foundation is used and the case where the bearing foundation is used, the following results are obtained.

全面基礎では、軸力:N、基礎底面積:A、建物重量:Wとした場合、N=W、A=B×Bとなり、最大軸応力σを下記式(2)で表すことができる。
σ=N/A=W/B (2)
支承基礎では、軸力:N、基礎底面積:A、建物重量:Wとした場合、N=W、A=B/100となり、最大軸応力σを下記式(3)で表すことができる。
σ=N/A=100W/B (3)
全面基礎と支承基礎の、それぞれの最大軸応力σを比較すると、全面基礎とした場合には、支承基礎の場合の1/100の最大軸応力σであることがわかる。即ち、配設する低摩擦材料9にかかる最大軸応力σも1/100であり、低摩擦抵抗材料9の選択幅を広くすることができる。
In the case of the entire surface foundation, assuming that the axial force is N, the foundation bottom area is A, and the building weight is W, N = W and A = B × B, and the maximum axial stress σ can be expressed by the following formula (2).
σ = N / A = W / B 2 (2)
The bearing foundation, axial forces: N, basal footprint: A, Building Weight: If is W, can be expressed N = W, A = B 2 /100 , and the maximum shaft stress σ by the following formula (3) .
σ = N / A = 100 W / B 2 (3)
Comparing the maximum axial stress σ of the entire surface foundation and the bearing foundation, it can be seen that when the entire surface foundation is used, the maximum axial stress σ is 1/100 that of the supporting foundation. That is, the maximum axial stress σ applied to the disposed low friction material 9 is also 1/100, and the selection range of the low friction resistance material 9 can be widened.

本発明の滑り基礎構造の上部基礎板8内部に設ける空間10は復元力装置を配設するためのものであり、上部基礎板8の強度、及び低摩擦抵抗材料9の表面積が確保される範囲内であれば、空間10の大きさ、形状は特に制限されるものではない。   The space 10 provided in the upper base plate 8 of the sliding base structure of the present invention is for arranging a restoring force device, and the range in which the strength of the upper base plate 8 and the surface area of the low friction resistance material 9 are ensured. If it is inside, the size and shape of the space 10 are not particularly limited.

復元力装置は、弾性部材11と、弾性部材11を上部基礎板8に取付け可能な取付鋼板13で構成されている。弾性部材11の上部は取付鋼板13に固定されており、取付鋼板13は上部基礎板8と図示しない取付手段により固定されている。取付手段は特に制限されるものではないが、通常公知の取付手段、例えばボルトとナットによって取付け、固定することができる。   The restoring force device includes an elastic member 11 and a mounting steel plate 13 that can attach the elastic member 11 to the upper base plate 8. The upper part of the elastic member 11 is fixed to the mounting steel plate 13, and the mounting steel plate 13 is fixed to the upper base plate 8 and mounting means (not shown). The attachment means is not particularly limited, but can be attached and fixed by commonly known attachment means such as bolts and nuts.

弾性部材11の下部は、直接下部基礎板7に固定しても、取付部材を介して固定しても構わない。取付手段としては、取付鋼板13と上部基礎板8と同様の方法により取付け、固定することができる。   The lower part of the elastic member 11 may be fixed directly to the lower base plate 7 or may be fixed via an attachment member. As an attachment means, it can attach and fix by the method similar to the attachment steel plate 13 and the upper base plate 8. FIG.

復元力装置の弾性部材11は、強力な復元力を有するものであれば特に制限はなく、例えば、ゴムやバネ、機械的なショックアブソーバー等を用いることができる。ゴムとしては単層ゴム、積層ゴム、せん断ゴム等、バネとしてはコイルばね等を挙げることができる。またこれらを1種単独で用いてもよいし、2種以上を併用して用いてもよい。   The elastic member 11 of the restoring force device is not particularly limited as long as it has a strong restoring force. For example, rubber, a spring, a mechanical shock absorber, or the like can be used. Examples of rubber include single-layer rubber, laminated rubber, and shear rubber. Examples of spring include a coil spring. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more types.

これらの復元力装置の具体例としては、図3に示すような弾性部材11をゴム12としたものや、図4に示すようなコイルバネ14としたもの、図5に示すような複数のコイルバネ15としたものを例示することができる。   Specific examples of these restoring force devices include a rubber 12 as an elastic member 11 as shown in FIG. 3, a coil spring 14 as shown in FIG. 4, and a plurality of coil springs 15 as shown in FIG. Can be illustrated.

さらに、復元力装置の他の具体例としては、図6に示すような、支柱17に接合されたせん断ゴム16と、該せん断ゴム16を空間10側面に固定するための固定部材18と、支柱17を下部基礎板7に固定するための取付鋼板19及び、空間10の上部を塞ぐための蓋20から構成したものや、図7に示すよう複数のコイルバネ21を用いたものを例示することができる。   Further, as another specific example of the restoring force device, as shown in FIG. 6, a shear rubber 16 joined to the support column 17, a fixing member 18 for fixing the shear rubber 16 to the side surface of the space 10, a support column, Examples include a mounting steel plate 19 for fixing 17 to the lower base plate 7 and a lid 20 for closing the upper portion of the space 10, and a configuration using a plurality of coil springs 21 as shown in FIG. it can.

図6、図7のような構成としたものは、図3、図4、図5の構成としたものに比べて復元力装置のメンテナンスをより容易に行うことができるため好ましい。   6 and 7 is preferable because maintenance of the restoring force device can be performed more easily than the configuration shown in FIGS. 3, 4, and 5.

復元力装置は、全てを同一種類のものとしてもよいし、複数種を併用しても構わない。また、その設置個数や大きさ、性能は、建物の大きさ、建物重量に応じて適宜選択的に設定することができる。   All of the restoring force devices may be of the same type, or a plurality of types may be used in combination. Further, the number, size, and performance of the installation can be selectively set as appropriate according to the size of the building and the weight of the building.

復元力装置の高さは空間10の高さ(上部基礎板8の高さ)と一致しているため、建物を支えるものではない。即ち、地震力が加わったときに低摩擦抵抗材料9の作用によって生じる上部基礎板8と下部基礎板7の滑りを制御して揺れを抑え、さらに揺れが終わった時点で上部基礎板8と下部基礎板7のズレを元の位置に復元するための装置である。   Since the height of the restoring force device coincides with the height of the space 10 (the height of the upper base plate 8), it does not support the building. That is, when the seismic force is applied, the sliding of the upper base plate 8 and the lower base plate 7 caused by the action of the low friction resistance material 9 is controlled to suppress the shaking, and when the shaking ends, the upper base plate 8 and the lower base plate 8 This is a device for restoring the displacement of the base plate 7 to the original position.

次に、本発明の滑り基礎構造の動作について詳細に説明する。   Next, the operation of the sliding foundation structure of the present invention will be described in detail.

図8(1)〜(4)は、通常時、地震時、地震終了時における、各時点における本発明の滑り基礎構造の動作を示したものである。   8 (1) to (4) show the operation of the sliding foundation structure of the present invention at each time point during normal times, during an earthquake, and at the end of an earthquake.

図8(1)は、弾性部材11には地震力は加わっておらず撓みのない状態である。   FIG. 8 (1) shows a state where the elastic member 11 is not subjected to seismic force and is not bent.

図8(2)は、地震の発生により下部基礎板7が左方向に揺れた状態であるが、低摩擦抵抗材料9の作用により上部基礎板8の位置には変化がない。従って図示しない構造物内では殆ど揺れを感じていない状態である。   FIG. 8 (2) shows a state in which the lower base plate 7 sways leftward due to the occurrence of an earthquake, but the position of the upper base plate 8 does not change due to the action of the low friction resistance material 9. Therefore, almost no shaking is felt in the structure not shown.

図8(3)は下部基礎板7が右方向に揺れた状態であり、図4(2)と同様に低摩擦抵抗材料9の作用により上部基礎板8の位置には変化がない。   FIG. 8 (3) shows a state in which the lower base plate 7 is swayed in the right direction, and the position of the upper base plate 8 is not changed by the action of the low friction resistance material 9 as in FIG. 4 (2).

図8(4)は地震の終了時であり、揺れが終了した時点で弾性部材11の撓みが元に戻ろうとする復元力により上部基礎板8を下部基礎板7と同様の位置に戻す。   FIG. 8 (4) shows the end of the earthquake, and when the shaking ends, the upper base plate 8 is returned to the same position as the lower base plate 7 by the restoring force to return the bending of the elastic member 11.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

図10に示す装置を用いて本発明の滑り基礎構造の低摩擦抵抗材料の効果を確認した。   The effect of the low friction resistance material of the sliding foundation structure of the present invention was confirmed using the apparatus shown in FIG.

図10において、振動台テーブル22上にコンクリート盤23を固定し、この上に摩擦係数0.2の黒鉛粉末24を配設した。さらに黒鉛粉末24の上にピンコロ25及び加速度計26を配設した。   In FIG. 10, a concrete board 23 is fixed on a vibration table 22 and a graphite powder 24 having a friction coefficient of 0.2 is disposed thereon. Further, a pin roller 25 and an accelerometer 26 are disposed on the graphite powder 24.

この状態で、振動台テーブル22に加速度700Gal(cm/s)、波長が1.35秒の振動を与えて、ピンコロ25にかかる加速度を測定した。その結果をグラフにして図11に示す。 In this state, an acceleration of 700 Gal (cm / s 2 ) and a wavelength of 1.35 seconds was applied to the vibration table 22 and the acceleration applied to the pin roller 25 was measured. The result is shown as a graph in FIG.

この結果から、加速度700Galの入力に対してピンコロ25にかかる加速度は約200Galであることがわかる。即ち、本発明の低摩擦抵抗材料を配設することにより、その上の構造物には200Galより大きい加速度が加わらないことが確認された。   From this result, it can be seen that the acceleration applied to the pin roller 25 with respect to the input of the acceleration 700 Gal is about 200 Gal. In other words, it was confirmed that by providing the low friction resistance material of the present invention, an acceleration higher than 200 Gal is not applied to the structure on the material.

本発明の滑り基礎構造においては、上記の低摩擦抵抗材料の効果に加えて、復元力装置による効果により、さらに優れた耐震効果を有する滑り基礎構造とすることができる。   In the sliding foundation structure of the present invention, in addition to the effect of the low frictional resistance material described above, a sliding foundation structure having a further excellent seismic effect can be obtained by the effect of the restoring force device.

1 地盤
2 構造物
3 上部基礎梁
4 下部基礎梁
5 免震層
6a 免震装置(積層ゴム)
6b 免震装置(ダンパー)
7 下部基礎板
8 上部基礎板
9 低摩擦抵抗材料
10 空間
11 弾性部材
12 ゴム
13 取付鋼板
14 コイルバネ
15 複数のコイルバネ
16 せん断ゴム
17 支柱
18 固定部材
19 取付鋼板
20 蓋
21 複数のコイルバネ
22 振動台テーブル
23 コンクリート盤
24 黒鉛粉末
25 ピンコロ
26 加速度計
27 地盤加速度
28 ピンコロ加速度
1 Ground 2 Structure 3 Upper foundation beam 4 Lower foundation beam 5 Seismic isolation layer 6a Seismic isolation device (laminated rubber)
6b Seismic isolation device (damper)
7 Lower base plate 8 Upper base plate 9 Low friction resistance material 10 Space 11 Elastic member 12 Rubber 13 Mounting steel plate 14 Coil spring 15 Multiple coil springs 16 Shear rubber 17 Strut 18 Fixing member 19 Mounting steel plate 20 Lid 21 Multiple coil springs 22 Vibration table 23 Concrete board 24 Graphite powder 25 Pin roller 26 Accelerometer 27 Ground acceleration 28 Pin roller acceleration

Claims (3)

材質がコンクリートの下部基礎板と、材質がコンクリートの上部基礎板の間の全面に、低摩擦抵抗材料を配設した滑り基礎構造であって、前記低摩擦抵抗材料が黒鉛粉末単独であり、その摩擦係数が0.15〜0.25の範囲内であり、上部基礎板内部に空間を設け、該空間に復元力装置を配設したことを特徴とする滑り基礎構造。 A sliding foundation structure in which a low friction resistance material is disposed on the entire surface between a lower base plate made of concrete and an upper base plate made of concrete, and the low friction resistance material is graphite powder alone, and its friction coefficient Is in the range of 0.15 to 0.25 , a space is provided inside the upper base plate, and a restoring force device is disposed in the space. 復元力装置が、弾性部材と、弾性部材上部を上部基礎板に固定するための固定部材と、弾性部材下部を下部基礎板に固定するための固定部材から構成されていることを特徴とする請求項1に記載の滑り基礎構造。   The restoring force device includes an elastic member, a fixing member for fixing the upper portion of the elastic member to the upper base plate, and a fixing member for fixing the lower portion of the elastic member to the lower base plate. Item 2. A sliding foundation structure according to item 1. 復元力装置が、支柱に接合された弾性部材と、弾性部材を空間側面に固定するための固定部材と、支柱を下部基礎板に固定するための固定部材から構成されていることを特徴とする請求項1に記載の滑り基礎構造。   The restoring force device is composed of an elastic member joined to the support, a fixing member for fixing the elastic member to the side surface of the space, and a fixing member for fixing the support to the lower base plate. The sliding foundation structure according to claim 1.
JP2010051331A 2010-03-09 2010-03-09 Sliding foundation structure Active JP5721333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051331A JP5721333B2 (en) 2010-03-09 2010-03-09 Sliding foundation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051331A JP5721333B2 (en) 2010-03-09 2010-03-09 Sliding foundation structure

Publications (2)

Publication Number Publication Date
JP2011184950A JP2011184950A (en) 2011-09-22
JP5721333B2 true JP5721333B2 (en) 2015-05-20

Family

ID=44791557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051331A Active JP5721333B2 (en) 2010-03-09 2010-03-09 Sliding foundation structure

Country Status (1)

Country Link
JP (1) JP5721333B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10508403B2 (en) * 2016-02-04 2019-12-17 Ivan TEOBALDELLI Foundation
JP6967476B2 (en) * 2018-03-15 2021-11-17 鹿島建設株式会社 Joining structure, how to build a joining structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722773B2 (en) * 2002-03-28 2005-11-30 大同メタル工業株式会社 Sliding device for seismic isolation device
JP3800339B2 (en) * 2003-11-07 2006-07-26 春三 音瀬 Seismic isolation structure of building
JP2008150871A (en) * 2006-12-18 2008-07-03 Panahome Corp Construction method for base isolation foundation
JP2008223876A (en) * 2007-03-13 2008-09-25 Tokai Rubber Ind Ltd Vibration damping device

Also Published As

Publication number Publication date
JP2011184950A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
TWI417443B (en) Seismically stable flooring
CA2672314A1 (en) Seismic controller for friction bearing isolated structures
KR100731210B1 (en) Earthquake Isolation Bearing for Bridges Using Shape Memory Alloy
CN101881090A (en) Variable-rigidity shock insulation support
JP5638762B2 (en) Building
JP6533527B2 (en) Elastic bearing
KR101127938B1 (en) Seismic isolating apparatus
JP5721333B2 (en) Sliding foundation structure
JP5314367B2 (en) Structure
JP3763568B2 (en) Seismic isolation system
JP4706958B2 (en) Seismic isolation structure
JP2015081464A (en) Vibration control structure
JP2016216906A (en) Base isolation structure
JP3736285B2 (en) Isolation device
Nikam et al. Seismic energy dissipation of a building using friction damper
TWI439616B (en) The energy dissipation and vibration reduction device
JP6483570B2 (en) How to replace the seismic isolation device
JP3747282B2 (en) Hybrid seismic isolation device
JP2017043988A (en) Vibration control building
KR101409400B1 (en) Laminated rubber bearing having hat-shaped steel damper
JP5095015B1 (en) Seismic isolation device
JP2003097642A (en) Vertical quake-absorbing equipment
Wankhade Performance analysis of RC moment resisting frames using different rubber bearing base isolation techniques
JP5713514B1 (en) Isolation device
Kerileng et al. Base Isolation Systems in Multi-Storey Structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324

R150 Certificate of patent or registration of utility model

Ref document number: 5721333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250