JP5495013B2 - Vibration control mechanism - Google Patents

Vibration control mechanism Download PDF

Info

Publication number
JP5495013B2
JP5495013B2 JP2009204147A JP2009204147A JP5495013B2 JP 5495013 B2 JP5495013 B2 JP 5495013B2 JP 2009204147 A JP2009204147 A JP 2009204147A JP 2009204147 A JP2009204147 A JP 2009204147A JP 5495013 B2 JP5495013 B2 JP 5495013B2
Authority
JP
Japan
Prior art keywords
floor
damping
layer
vibration
inertial mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009204147A
Other languages
Japanese (ja)
Other versions
JP2011052494A (en
Inventor
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2009204147A priority Critical patent/JP5495013B2/en
Publication of JP2011052494A publication Critical patent/JP2011052494A/en
Application granted granted Critical
Publication of JP5495013B2 publication Critical patent/JP5495013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は多層建物を対象とする制振機構、特に慣性質量ダンパーの利用により優れた制振効果が得られる制振機構に関する。   The present invention relates to a vibration damping mechanism for a multi-layer building, and more particularly to a vibration damping mechanism that can obtain an excellent vibration damping effect by using an inertial mass damper.

この種の制振機構として特許文献1に示される振動低減機構が公知である。
これは、多層構造物の任意の層に回転慣性質量ダンパーと付加バネとによる付加振動機構を設置してその付加振動機構の固有振動数を構造物の固有振動数に同調させることにより、付加振動機構が疑似TMD機構として機能して共振点近傍の最大応答値を広帯域にわたって大幅に低減でき、特に小型軽量の回転慣性質量ダンパーによって大きな振動低減効果が得られるので今後の普及が期待されている。
As this type of vibration control mechanism, a vibration reduction mechanism disclosed in Patent Document 1 is known.
This is because an additional vibration mechanism using a rotary inertia mass damper and an additional spring is installed in an arbitrary layer of a multilayer structure, and the natural frequency of the additional vibration mechanism is synchronized with the natural frequency of the structure. Since the mechanism functions as a pseudo TMD mechanism, the maximum response value in the vicinity of the resonance point can be greatly reduced over a wide band, and a large vibration reduction effect can be obtained by a small and lightweight rotary inertia mass damper.

特開2008−133947号公報JP 2008-133947 A

上記従来の振動低減機構は回転慣性質量ダンパーに対して付加バネを直列に設置することが不可欠であり、その付加バネに大きな負担力と変形能力を持たせる必要があるが、そのような性能の付加バネを建物に設置することは必ずしも容易ではなく、そのことがこの種の制振機構の普及を阻む要因ともなっている。   In the conventional vibration reduction mechanism described above, it is indispensable to install an additional spring in series with the rotary inertia mass damper, and it is necessary to give the additional spring a large burden force and deformation ability. It is not always easy to install an additional spring in a building, which is a factor that hinders the spread of this type of vibration control mechanism.

上記事情に鑑み、本発明は上記従来の振動低減機構をさらに改良し、付加バネを必要とせずとも優れた制振効果が得られるより有効な制振機構を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to further improve the conventional vibration reduction mechanism and to provide a more effective vibration suppression mechanism that can obtain an excellent vibration suppression effect without requiring an additional spring.

請求項1記載の発明は、多層建物の地上階の低層部における任意の階を制振階としてその制振階に設置される制振機構であって、前記制振階の上層と下層との間に層間変位により作動する慣性質量ダンパーと減衰機構を並列設置し、前記慣性質量ダンパーの慣性質量ψと前記減衰機構の減衰係数cを、前記制振階の層剛性k、前記制振階の上層の質量m、前記多層建物の前記制振階より上部で前記質量mを含む全質量M、前記多層建物の1次固有周期Tに基づいて次式により設定して、前記慣性質量ダンパーによる慣性質量ψと前記制振階の層剛性kとによる振動系の固有周期を前記多層建物の1次固有周期Tに同調させてなることを特徴とする。 The invention according to claim 1 is a vibration control mechanism installed on a vibration suppression floor with an arbitrary floor in a lower part of the ground floor of a multi-layer building as a vibration suppression floor, and includes an upper layer and a lower layer of the vibration suppression floor. An inertial mass damper and a damping mechanism that are operated by an interlayer displacement are installed in parallel, and the inertial mass ψ of the inertial mass damper and the damping coefficient c of the damping mechanism are determined by the layer stiffness k of the damping floor and the damping floor The inertia mass damper is set by the following equation based on the mass m of the upper layer, the total mass M including the mass m above the damping floor of the multi-layer building, and the primary natural period T 1 of the multi-layer building. The natural period of the vibration system due to the inertial mass ψ and the layer rigidity k of the damping floor is synchronized with the primary natural period T 1 of the multi-layer building.

Figure 0005495013
Figure 0005495013

請求項2記載の発明は、多層建物の地上階の低層部において上下に連続している複数階を制振階としてその制振階に設置される制振機構であって、前記制振階全体の上層と下層との間に層間変位により作動する慣性質量ダンパーと減衰機構とを並列設置し、前記慣性質量ダンパーの慣性質量ψと前記減衰機構の減衰係数cを、前記制振階全体の合成層剛性k’、前記制振階の上層の質量m’、前記多層建物の前記制振階より上部で前記質量m’を含む全質量M、前記多層建物の1次固有周期Tに基づいて次式により設定して、前記慣性質量ダンパーによる慣性質量ψと前記制振階全体の合成層剛性k’とによる振動系の固有周期を前記多層建物の1次固有周期Tに同調させてなることを特徴とする。

The invention according to claim 2 is a vibration control mechanism that is installed on the vibration control floor with a plurality of floors continuous in the vertical direction in the lower part of the ground floor of the multi-layer building as the vibration control floor, and the entire vibration control floor Inertial mass dampers and damping mechanisms that operate due to interlayer displacement are installed in parallel between the upper layer and lower layer, and the inertia mass ψ of the inertia mass damper and the damping coefficient c of the damping mechanism are combined into the entire damping floor. Based on the layer stiffness k ′, the mass m ′ immediately above the damping floor, the total mass M including the mass m ′ above the damping floor of the multilayer building, and the primary natural period T 1 of the multilayer building Te are set with the following equation, and the natural period of the vibration system is tuned to the primary natural period T 1 of the said multilayer building by inertial mass ψ and the overall damping floor composite layer rigid k 'by the inertial mass damper It is characterized by becoming.

Figure 0005495013
Figure 0005495013

請求項3記載の発明は、請求項1または2記載の発明の制振機構であって、前記制振階とは別の任意の階を第2の制振階としてその第2の制振階の上層と下層との間に層間変位により作動する第2の慣性質量ダンパーと第2の減衰機構を並列設置し、前記第2の慣性質量ダンパーの慣性質量ψtと前記第2の減衰機構の減衰係数ctを、前記第2の制振階の層剛性kt、前記多層建物の高次固有周期Ts(s≧2)に基づいて次式により設定して、前記第2の慣性質量ダンパーによる慣性質量ψtと前記第2の制振階の層剛性ktとによる振動系の固有周期を前記多層建物の高次固有周期Tsに同調させてなることを特徴とする。 The invention according to claim 3 is the vibration damping mechanism of the invention according to claim 1 or 2, wherein the second damping floor is an arbitrary floor different from the damping floor as the second damping floor. A second inertial mass damper and a second damping mechanism, which are operated by interlayer displacement, are installed in parallel between the upper layer and the lower layer, and the inertial mass ψ t of the second inertial mass damper and the second damping mechanism The damping coefficient c t is set by the following equation based on the layer stiffness k t of the second damping floor and the higher-order natural period T s (s ≧ 2) of the multi-layer building, and the second inertial mass It is characterized in that the natural period of the vibration system by the inertial mass ψ t by the damper and the layer rigidity k t of the second damping floor is synchronized with the higher-order natural period T s of the multi-layer building.

Figure 0005495013
Figure 0005495013

本発明によれば、地上階の低層部に設定した制振階の上下の層間に慣性質量ダンパーと減衰機構を並列設置して1次固有周期に同調させるだけで、多層建物の1次振動モードを抑制し地震や風に対する応答が低減できる。また、他の階に第2の制振階を設定して第2の慣性質量ダンパーと第2の減衰機構を並列設置して高次固有周期に同調させれば、高次振動モードに対する制振効果も得られる。
したがって本発明によれば、特許文献1に示される従来の振動低減機構のように慣性質量ダンパーを付加バネと直列することなく単に減衰機構と並列にして層間に設置するだけで良いから、従来型では不実用化の妨げとなっていた付加バネが不要となって構成を大幅に簡略化でき、充分にローコストで信頼性に優れる制振機構を実現することができる。
According to the present invention, a primary vibration mode of a multi-layer building can be obtained by simply installing an inertial mass damper and a damping mechanism in parallel between the upper and lower layers of the damping floor set in the lower floor portion of the ground floor and synchronizing them with the primary natural period. Can suppress the response to earthquakes and winds. In addition, if a second damping floor is set on another floor and the second inertia mass damper and the second damping mechanism are installed in parallel and tuned to the higher order natural period, the damping for the higher order vibration mode is performed. An effect is also obtained.
Therefore, according to the present invention, as in the conventional vibration reduction mechanism shown in Patent Document 1, the inertia mass damper is simply placed in parallel with the damping mechanism without being in series with the additional spring, so that the conventional type is provided. Thus, the additional spring, which has been impeded by the impractical use, is no longer needed, and the configuration can be greatly simplified, and a vibration control mechanism that is sufficiently low-cost and excellent in reliability can be realized.

本発明の制振機構の実施形態を示すもので、第1実施形態を振動モデルとして示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an embodiment of a vibration damping mechanism of the present invention, and is a diagram illustrating a first embodiment as a vibration model. 同、第2実施形態を振動モデルとして示す図である。It is a figure which shows 2nd Embodiment as a vibration model same as the above. 本発明の制振機構の具体的な設計例(Case4〜5)を比較例(Case1〜3)とともに示す図である。It is a figure which shows the specific design example (Case4-5) of the damping mechanism of this invention with a comparative example (Case1-3). 同、比較例(case1)の解析結果を示す図である。It is a figure which shows the analysis result of a comparative example (case1). 同、比較例(case2)の解析結果を示す図である。It is a figure which shows the analysis result of a comparative example (case2). 同、比較例(case3)の解析結果を示す図である。It is a figure which shows the analysis result of a comparative example (case3). 同、本発明の具体例(case4)の解析結果を示す図である。FIG. 6 is a diagram showing an analysis result of a specific example (case 4) of the present invention. 同、本発明の具体例(case4a)の解析結果を示す図である。FIG. 6 is a diagram showing the analysis result of a specific example (case 4a) of the present invention. 同、本発明の具体例(case5)の解析結果を示す図である。It is a figure which shows the analysis result of the specific example (case 5) of this invention. 同、本発明の具体例の効果を比較例と対比して示す図である。It is a figure which shows the effect of the specific example of this invention in contrast with a comparative example. 同、本発明の具体例の効果を比較例と対比して示す図である。It is a figure which shows the effect of the specific example of this invention in contrast with a comparative example. 同、本発明の具体例の効果を比較例と対比して示す図である。It is a figure which shows the effect of the specific example of this invention in contrast with a comparative example.

図1は本発明の制振機構の第1実施形態を振動モデルとして示す図である。
これは中高層ないし超高層の多層建物を対象とするもので、(a)に示すように地上階の低層部における任意の階(たとえば地上1階)を制振階として設定し、その制振階の上下の層間に水平方向の加振による層間変形によって作動する慣性質量ダンパー1と減衰機構2を並列設置することを基本とするものである。
本第1実施形態の制振機構は、特許文献1に示される従来の振動低減機構と同様に慣性質量ダンパー1を特定階にのみ設置するものではあるが、従来の振動低減機構のようにそれに付加バネを直列配置するのではなく慣性質量ダンパー1に減衰機構2を並列設置する点で両者の構成は異なるものである。
FIG. 1 is a diagram showing a first embodiment of a vibration damping mechanism of the present invention as a vibration model.
This is intended for middle- and high-rise multi-story buildings. As shown in (a), an arbitrary floor in the lower part of the ground floor (for example, the first floor above ground) is set as the vibration suppression floor, and the vibration suppression floor. Basically, the inertial mass damper 1 and the damping mechanism 2 that are operated by interlayer deformation caused by horizontal excitation are installed in parallel between the upper and lower layers.
The vibration damping mechanism according to the first embodiment is such that the inertial mass damper 1 is installed only on a specific floor as in the conventional vibration reduction mechanism disclosed in Patent Document 1, but like the conventional vibration reduction mechanism, The configuration of the two is different in that the damping mechanism 2 is installed in parallel to the inertial mass damper 1 instead of arranging the additional springs in series.

なお、減衰機構2としてはオイルダンパーをはじめとして、履歴系の鋼材ダンパーや摩擦ダンパー、粘弾性ダンパー、粘性ダンパー等、各種の減衰装置が採用可能であるし、各種の減衰装置を適宜組み合わせて使用することでも良い。
また、制振階は構造計画上で検討すべき層間変形が生じる階のうちの最下階とすることが好ましく、一般的には地下階の層間変形は無視し得るので上記のように地上1階を制振階とすることが現実的であるが、傾斜地に設けられる建物や特殊な構造形式の建物等において制振階をたとえば地下階や地上2階以上に設定することが有利な場合にはそのようにすることを妨げるものではない。但し、制振階を上階に設定するほど制振効果は小さくなるので、その点も考慮して制振階を最適階に設定すべきである。
Various damping devices such as oil dampers, hysteretic steel dampers, friction dampers, viscoelastic dampers, viscous dampers, etc. can be used as the damping mechanism 2, and various damping devices are used in combination as appropriate. You can do it.
In addition, the vibration-damping floor is preferably the lowest floor among the floors where the interlayer deformation to be considered in the structural plan is generated. Generally, the interlayer deformation in the basement floor can be ignored, so that the floor 1 When it is realistic to use a floor as a vibration control floor, but it is advantageous to set the vibration suppression floor to, for example, the basement floor or two or more floors above ground in buildings with special structures Does not prevent you from doing so. However, as the vibration suppression floor is set to the upper floor, the vibration suppression effect becomes smaller. Therefore, the vibration suppression floor should be set to the optimum floor in consideration of this point.

そして、本第1実施形態では、慣性質量ダンパー1の慣性質量ψと減衰機構2の減衰係数cを、制振階の層剛性k、制振階の上層の質量m、この多層建物の制振階より上部の全質量M、この多層建物の1次固有周期T1に基づいて次式により設定する。 In the first embodiment, the inertia mass ψ of the inertia mass damper 1 and the damping coefficient c of the damping mechanism 2 are set to the layer stiffness k of the damping floor, the mass m of the upper floor of the damping floor, and the damping of this multilayer building. Based on the total mass M above the floor and the primary natural period T 1 of this multi-story building, the following equation is used.

Figure 0005495013
Figure 0005495013

慣性質量ダンパー1と減衰機構2の諸元を上記のように設定することにより、慣性質量ダンパー1による慣性質量ψと制振階の層剛性kとによる振動系の固有周期をこの多層建物の1次固有周期T1に同調させることができ、それによりこの振動系をTMD機構として作動させて1次振動モードに対する共振点近傍の最大応答を大幅に低減することができる。
したがって本実施形態の制振機構によれば、上述した従来の振動低減機構においては不可欠な付加バネを省略しているにも拘わらず、それと同等ないしそれ以上の優れた制振効果が得られる。
By setting the specifications of the inertial mass damper 1 and the damping mechanism 2 as described above, the natural period of the vibration system due to the inertial mass ψ by the inertial mass damper 1 and the layer stiffness k of the damping floor is set to 1 for this multilayer building. It can be tuned to the secondary natural period T 1 , thereby operating this vibration system as a TMD mechanism and greatly reducing the maximum response near the resonance point for the primary vibration mode.
Therefore, according to the vibration damping mechanism of the present embodiment, an excellent vibration damping effect equivalent to or higher than that can be obtained even though the additional spring, which is indispensable in the conventional vibration reduction mechanism described above, is omitted.

図1(b)は上記の制振機構の変形例を示すものである。
これは1次振動モードのみならず2次振動モードについても応答を低減可能としたものであって、上記の制振階とは別の任意の階を第2の制振階として設定し(図1(b)では地上1階を制振階とし、その直上階の地上2階を第2の制振階としている)、そこに第2の慣性質量ダンパー3と第2の減衰機構4を並列設置している。
そして、第2の慣性質量ダンパー3の慣性質量ψtと第2の減衰機構4の減衰係数ctを、第2の制振階の層剛性kt、この多層建物の2次固有周期Tに基づいて次式により設定するものである。
FIG.1 (b) shows the modification of said damping mechanism.
This can reduce the response not only in the primary vibration mode but also in the secondary vibration mode, and an arbitrary floor different from the above-mentioned vibration suppression floor is set as the second vibration suppression floor (see FIG. 1 (b), the first floor above the ground is the vibration suppression floor, and the second floor above it is the second vibration suppression floor), and the second inertia mass damper 3 and the second damping mechanism 4 are arranged in parallel there. It is installed.
Then, the inertia mass ψ t of the second inertia mass damper 3 and the damping coefficient c t of the second damping mechanism 4 are set to the layer rigidity k t of the second damping floor, the secondary natural period T 2 of this multilayer building. Is set according to the following equation.

Figure 0005495013
Figure 0005495013

第2の慣性質量ダンパー3と第2の減衰機構4の諸元をこのように設定することにより、それらによる振動系の固有周期をこの多層建物の2次固有周期Tに同調させることができ、したがって(a)の場合と同様に慣性質量ダンパー1と減衰機構2による1次振動モードに対する応答低減効果が得られことに加えて、第2の慣性質量ダンパー3と第2の減衰機構4により2次振動モードに対する応答も有効に低減できるものとなる。
なお、さらに高次(3次、4次…)の固有周期TS(T3、T4…)に同調させる場合には、上式における2次固有周期T2を3次固有周期T3、4次固有周期T4…に置き換えて第2の慣性質量ダンパー3と第2の減衰機構4の諸元を設定すれば良い。
いずれにしても、第2の制振階に設置する第2の慣性質量ダンパー3と第2の減衰機構4は、制振階に設置する慣性質量ダンパー1と減衰機構2に比べて小容量で済むから、制振階に慣性質量ダンパー1と減衰機構2を設置することに加えて第2の制振階に小容量の第2の慣性質量ダンパー3と第2の減衰機構4を付加することで、1次振動モードのみならず高次振動モードに対する応答低減効果も同時に得られることになる。
By the second inertial mass damper 3 to set the second specification of the damping mechanism 4 in this way, it is possible to tune the natural period of the vibration system by them in the secondary natural period T 2 of the multilayer building Therefore, as in the case of (a), in addition to the effect of reducing the response to the primary vibration mode by the inertial mass damper 1 and the damping mechanism 2, the second inertial mass damper 3 and the second damping mechanism 4 The response to the secondary vibration mode can also be effectively reduced.
When tuning to a higher-order (third-order, fourth-order ...) natural period T S (T 3 , T 4 ...), The second-order natural period T 2 in the above equation is changed to the third-order natural period T 3 , The specifications of the second inertial mass damper 3 and the second damping mechanism 4 may be set in place of the quaternary natural period T 4 .
In any case, the second inertia mass damper 3 and the second damping mechanism 4 installed on the second damping floor are smaller in capacity than the inertia mass damper 1 and the damping mechanism 2 installed on the damping floor. Therefore, in addition to installing the inertial mass damper 1 and the damping mechanism 2 on the damping floor, the second inertial mass damper 3 and the second damping mechanism 4 having a small capacity are added to the second damping floor. Thus, not only the primary vibration mode but also the response reduction effect for the high-order vibration mode can be obtained at the same time.

図2は本発明の制振機構の第2実施形態を振動モデルとして示す図である。
これは、地上部の低層部において上下に連続している複数階(図示例では地上1階および2階)を制振階として、それら制振階全体の上下の層間に跨るように慣性質量ダンパー1と減衰機構2とを並列設置したものである。
この場合、複数階に跨る制振階は図示例のように地上1階と2階に設定することが現実的であるが、必ずしもそれに限るものではなく、条件によっては他の階たとえば地上2階と3階を制振階とすることも妨げるものではない。但し、制振階を上階に設定するほど制振効果は小さくなるから、その点も考慮して制振階を最適に設定すべきである。
FIG. 2 is a diagram showing a second embodiment of the vibration damping mechanism of the present invention as a vibration model.
This is an inertial mass damper that spans between the upper and lower layers of the entire damping floor, with a plurality of floors (upper and lower floors in the example shown in the figure) as the damping floors in the lower part of the ground part. 1 and the damping mechanism 2 are installed in parallel.
In this case, it is realistic to set the vibration control floors over a plurality of floors to the first floor and the second floor as shown in the figure, but it is not necessarily limited to this. It is not a hindrance to set the third floor as a vibration control floor. However, since the damping effect becomes smaller as the damping floor is set to the upper floor, the damping floor should be optimally set in consideration of this point.

そして、この場合は慣性質量ダンパー1の慣性質量ψと減衰機構2の減衰係数cを、制振階全体の合成層剛性k’、制振階全体の上層の質量m’、この多層建物の制振階より上部の全質量M、多層建物の1次固有周期T1に基づいて次式により設定することにより、慣性質量ダンパー1による慣性質量ψと制振階全体の合成層剛性k’とによる振動系の固有周期を多層建物の1次固有周期T1に同調させることにより、第1実施形態の場合と同様に1次振動モードでの応答を有効に低減することができる。 In this case, the inertia mass ψ of the inertia mass damper 1 and the damping coefficient c of the damping mechanism 2 are set to the composite layer rigidity k ′ of the entire damping floor, the mass m ′ of the upper layer of the entire damping floor, the damping of this multilayer building. By setting the following equation based on the total mass M above the tremor and the primary natural period T 1 of the multi-layer building, the inertia mass ψ by the inertia mass damper 1 and the composite layer stiffness k ′ of the entire damping floor By tuning the natural period of the vibration system to the primary natural period T 1 of the multi-layer building, the response in the primary vibration mode can be effectively reduced as in the case of the first embodiment.

Figure 0005495013
Figure 0005495013

なお、制振階全体の合成層剛性k’は各階の層剛性から求めることができ、図示例のように制振階が1階および2階の場合において1階の層剛性k1、2階の層剛性k2とすると、それらの合成層剛性k’は次式となる。仮に、1階の層剛性k1と2階の層剛性k2が均等(k1=k2)の場合には第2の制振階全体の合成層剛性k’は各階の層剛性の1/2となり、したがってその合成層剛性k’に基づいて設定される慣性質量ψも第1実施形態のように制振階が単一階である場合に比べて小さくなる。 The composite layer stiffness k ′ of the entire damping floor can be obtained from the layer stiffness of each floor. When the damping floor is the first floor and the second floor as in the illustrated example, the first-layer stiffness k 1 and the second floor Assuming that the layer stiffness k 2 is, the composite layer stiffness k ′ is expressed by the following equation. If the layer rigidity k 1 of the first floor and the layer rigidity k 2 of the second floor are equal (k 1 = k 2 ), the combined layer rigidity k ′ of the entire second damping floor is 1 of the layer rigidity of each floor. Therefore, the inertial mass ψ set based on the composite layer rigidity k ′ is also smaller than in the case where the damping floor is a single floor as in the first embodiment.

Figure 0005495013
Figure 0005495013

図2(b)は、図1(b)の場合と同様に、制振階とは別の階に第2の制振階を設定し(図示例では地上1階〜2階を制振階とし、その直上階の3階を第2の制振階としている)、そこに第2の慣性質量ダンパー3と第2の減衰機構4を付加して、それらの慣性質量ψtと減衰係数ctを第2の制振階の層剛性ktに基づいて[数5]により2次固有周期T2に同調させる(あるいは[数3]により任意の高次固有周期TSに同調させる)ようにしたものであり、1次振動モードのみならず高次振動モードに対する応答低減効果も得られるものである。 In FIG. 2 (b), as in FIG. 1 (b), a second vibration suppression floor is set on a different floor from the vibration suppression floor (in the illustrated example, the first floor to the second floor are the vibration suppression floors). The third floor immediately above is the second damping floor), and a second inertial mass damper 3 and a second damping mechanism 4 are added thereto, and their inertial mass ψ t and damping coefficient c the t based on the second damping floor layers stiffness k t [Equation 5 by (tuned to any higher natural period T S or by [Equation 3]) to tune to a secondary natural period T 2 so Thus, a response reduction effect not only for the primary vibration mode but also for the higher vibration mode can be obtained.

以下、本発明の制振機構の具体的な設計例とその効果について検討し、従来の制振機構と比較する。
以下の検討は、鉄骨造、地上8階建ての建物に対して基礎(1FL)から地震入力を与えた場合を対象とする。この建物の1次固有周期T1=1.00秒(1次固有振動数f1=1Hz)、2次固有周期T2=0.303秒(2次固有振動数f2=3.3Hz)とし、構造減衰は1次に対してh1=0.02の剛性比例型とする。
Hereinafter, specific design examples and effects of the vibration damping mechanism of the present invention will be examined and compared with the conventional vibration damping mechanism.
The following examination is for the case where an earthquake input is given from the foundation (1FL) to a steel structure and an eight-story building. The primary natural period of this building T 1 = 1.00 seconds (primary natural frequency f 1 = 1 Hz), the secondary natural period T 2 = 0.303 seconds (secondary natural frequency f 2 = 3.3 Hz), and the structural damping is For the primary, the rigidity proportional type is h 1 = 0.02.

図3に検討対象の各ケースの諸元を一覧として示す。Case1〜3は比較例であり、Case4(4a)〜5は本発明の制振機構の具体例である。
・Case1 制振なしで構造体のみの場合
・Case2 慣性質量ダンパーを各層に設置して2次以上の高次モードを制御する場合
(この場合の1次固有周期T1=1.11秒)
・Case3 1〜4階にオイルダンパーを設置した従来型の制振構造
・Case4 (図1(a)に示した振動モデルに対応するもの)
1階を制振階として慣性質量ダンパー1と減衰機構2を設置し、慣性質量ψと 減衰係数cを[数4]により設定した場合
・Case4a(図1(b)に示した振動モデルに対応するもの)
Case4に加えて、2階を第2の制振階として第2の慣性質量ダンパー3と第2 の減衰機構4を設置し、慣性質量ψtと減衰係数ctを[数5]により設定して 2次モードも制御した場合
・Case5 (図2(a)に示した振動モデルに対応するもの)
1〜2階を制振階として慣性質量ダンパー1と減衰機構2を設置し、慣性質量 ψと減衰係数cを[数6][数7]により設定した場合
FIG. 3 shows the specifications of each case to be examined as a list. Cases 1 to 3 are comparative examples, and Case 4 (4a) to 5 are specific examples of the vibration damping mechanism of the present invention.
・ In case of structure only without Case1 vibration control ・ In case of controlling the higher order mode more than second order by installing Case2 inertia mass damper in each layer
(In this case, the primary natural period T1 = 1.11 seconds)
Case 3 Conventional vibration control structure with oil dampers installed on the 1st to 4th floors ・ Case 4 (corresponding to the vibration model shown in Fig. 1 (a))
When the inertial mass damper 1 and damping mechanism 2 are installed with the first floor as the damping floor, and the inertial mass ψ and damping coefficient c are set by [Equation 4] ・ Case4a (corresponds to the vibration model shown in Fig. 1 (b)) What to do)
In addition to Case4, a second floor and a second inertial mass damper 3 a second damping mechanism 4 installed as a second damping floor, the inertial mass [psi t and the damping coefficient c t set by Equation 5 When secondary mode is also controlled-Case 5 (corresponding to the vibration model shown in Fig. 2 (a))
When the inertial mass damper 1 and damping mechanism 2 are installed with the 1st and 2nd floors as damping floors, and the inertial mass ψ and damping coefficient c are set by [Equation 6] and [Equation 7]

図4〜図9に各ケースの振動特性を把握するための伝達関数を示す。縦軸の応答倍率は、地震動(1FL)の振幅に対する床応答の比率を示す。比較対象とする床位置は、最上階(RFL)と中間階(5FL)および最下階の上階床(2FL)とする。応答倍率が小さい部分を比較するため、縦軸を対数軸として拡大したグラフも併記している。   4 to 9 show transfer functions for grasping the vibration characteristics of each case. The response magnification on the vertical axis indicates the ratio of floor response to the amplitude of ground motion (1FL). The floor positions to be compared are the top floor (RFL), the middle floor (5FL), and the upper floor (2FL) of the bottom floor. In order to compare the portions where the response magnification is small, a graph in which the vertical axis is a logarithmic axis is also shown.

各ケースの伝達関数から以下のことが分かる。
・制振なしで構造体のみのcase1では、1次固有周期の共振点において大きな応答倍率をもつ。
・慣性質量ダンパーを各層に設置して2次以上の高次モードを制御したCase2は、2次以上の高次モードによる振動はなくなるが、減衰の総量がCase4,5と同様にあるものの1次の応答倍率のピーク値はあまり低減されない。
・1〜4階にオイルダンパーを設置したCase3は、減衰の総量が他のケースの3倍以上あるため、1次のピーク値も小さく高次モードの影響もほとんど見られない。
・慣性質量ダンパー1を1階だけに設置して1次モードを制御したCase4は、1次の共振点近傍においてTMD機構等の同調型の制振機構に特有の2峰特性が見られ、1層だけの制振ながら4層にわたって制振している上記のCase3と同等のピーク値に低減される。しかし、1次モードしか制御していないため、応答倍率で振動周期0.303秒(振動数3.3Hz)近傍にあらわれる2次モードのピーク値は低減できていない。
・Case4に加えて2階にも小さな第2の慣性質量ダンパー3と第2の減衰機構4を設置したCase4aでは、上記の振動数3.3Hz近傍にあらわれたピーク値がなくなっている。
・1〜2階にまたがって慣性質量ダンパー1を設置して1次モードを制御したCase5は、慣性質量の総量がCase2の0.27倍、Case4の0.4倍で、減衰係数の総量がCase2の0.8倍、Case3の0.2倍、Case4の0.62倍と小さいにもかかわらず、1次の応答倍率のピーク値は他のケース以下に低減されている。しかし、高次モードのピーク値については制御していないので、3.85Hz近傍において高次の応答倍率のピークがあらわれる。
The following can be seen from the transfer function of each case.
-Case1 with only structure without vibration suppression has a large response magnification at the resonance point of the primary natural period.
Case 2 with an inertial mass damper installed in each layer to control the second and higher order modes eliminates vibration due to the second and higher order modes, but the total amount of damping is the same as in Cases 4 and 5, but the first order. The peak value of the response magnification is not reduced so much.
Case 3 with oil dampers on the 1st to 4th floor has a total attenuation of more than 3 times that of the other cases, so the primary peak value is small and there is almost no effect of higher-order modes.
Case 4 with the inertial mass damper 1 installed only on the first floor and controlling the primary mode has two peak characteristics unique to the tuning type vibration control mechanism such as the TMD mechanism in the vicinity of the primary resonance point. It is reduced to the peak value equivalent to the above Case3 which is damping over 4 layers while damping only the layer. However, since only the primary mode is controlled, the peak value of the secondary mode that appears in the vicinity of the vibration period of 0.303 seconds (frequency 3.3 Hz) in response magnification cannot be reduced.
• In Case 4a, which has a small second inertial mass damper 3 and a second damping mechanism 4 on the second floor in addition to Case 4, the peak value that appears in the vicinity of the above-mentioned frequency of 3.3 Hz disappears.
・ Case5, which has the inertial mass damper 1 across the first and second floors and controls the primary mode, has a total inertial mass of 0.27 times Case2 and 0.4 times Case4, and a total damping coefficient of 0.8 times Case2. Despite being as small as 0.2 times of Case3 and 0.62 times of Case4, the peak value of the first order response magnification is reduced below that of the other cases. However, since the peak value of the higher-order mode is not controlled, a higher-order response magnification peak appears near 3.85 Hz.

各ケースについて、制振機構の違いによる応答低減効果を時刻歴応答解析により検討した結果を図10〜図12に示す。入力地震波はEL CENTRO NS(最大加速度356gal)、建築センター波L2(最大加速度342gal)、神戸海洋気象台観測波(最大加速度818gal)の3波として基礎(1FL)から入力する。   The results of examining the response reduction effect due to the difference in the vibration control mechanism for each case by the time history response analysis are shown in FIGS. The input seismic wave is input from the foundation (1FL) as three waves of EL CENTRO NS (maximum acceleration 356 gal), building center wave L2 (maximum acceleration 342 gal), and Kobe Ocean Meteorological Observatory wave (maximum acceleration 818 gal).

時刻歴解析により以下の点が分かる。
・慣性質量ダンパーを各層に設置して2次以上の高次モードを制御したCase2は、特に低層部において他の制振機構と比較して応答層間変位が大きくなる。
・1〜4階にオイルダンパーを設置したCase3は、どの地震動入力に対しても加速度も層間変位も安定して応答低減できる。
・慣性質量ダンパー1を1階だけに設置して1次モードを制御したCase4は、高次モードの影響の大きいEL CENTROやパルス的なKOBEについては制振効果が他のケースより劣るが、地震動の振動数特性が小さい建築センター波については概ね良好な制振効果を発揮する。
・Case4に加えて2階にも小さな第2の慣性質量ダンパー3と第2の減衰機構4を設置して2次モードも制御したCase4aは、いずれの地震動についてもCase4より制振効果の改善が見られる。
・1〜2階にまたがって慣性質量ダンパー1を設置して1次モードを制御したCase5は、いずれの地震動に対しても応答低減効果が大きくなったが、制振機構が跨いで取り付かない2FLの加速度については他のケース以上となる傾向がある。
Time history analysis reveals the following points.
Case 2 with inertial mass dampers installed in each layer to control the second and higher order modes has a larger response layer displacement than other vibration control mechanisms, especially in the lower layer.
Case 3 with oil dampers on the 1st to 4th floors can stably reduce the response and acceleration of any seismic motion.
Case 4 with the inertial mass damper 1 installed only on the first floor and controlling the primary mode has lower vibration control effect than other cases for EL CENTRO and pulsed KOBE, which are highly influenced by the higher order mode. For building center waves with low frequency characteristics, the vibration suppression effect is generally good.
・ In addition to Case4, Case4a, which has a small second inertial mass damper 3 and a second damping mechanism 4 on the second floor to control the secondary mode, can improve the vibration control effect of Case4 over Case4. It can be seen.
Case 5 with inertial mass damper 1 installed on the first and second floors and controlling the primary mode has a large response reduction effect for any seismic motion, but the vibration control mechanism cannot be installed across the 2FL. There is a tendency that the acceleration of is more than other cases.

本発明の効果を以下に列挙する。
(1)慣性質量ダンパーを付加バネと直列することなく、単に減衰機構と並列にして層間に設置するだけで、多層建物の1次振動モードを抑制し地震や風に対する応答が低減できる。また、外乱がおさまった後の「あとゆれ」についても大幅に低減できる。
(2)慣性質量ダンパーと付加バネを直列して層間に配置する従来の振動低減機構では、付加バネにかなりの負担力と変形性能が要求されることからそのことが実用化の妨げとなっていたが、本発明によれば付加バネが不要となり、制振機構が容易に構成できる。
(3)低層階のわずかな層数に慣性質量ダンパーと減衰機構を並列設置するだけで、従来型の全層にダンパーを設置する場合と同様の応答低減効果を発揮できる。なお、本発明に加えて各層間にオイルダンパー等の他の減衰要素を設置すればさらに応答低減効果を高めることができる。
The effects of the present invention are listed below.
(1) The primary vibration mode of a multi-layer building can be suppressed and the response to earthquakes and winds can be reduced simply by installing an inertial mass damper in between the layers in parallel with the damping mechanism instead of in series with the additional spring. In addition, “after-shake” after the disturbance has subsided can be greatly reduced.
(2) In the conventional vibration reduction mechanism in which the inertia mass damper and the additional spring are arranged in series between the layers, the additional spring requires a considerable burden and deformation performance, which has hindered practical application. However, according to the present invention, no additional spring is required, and the vibration damping mechanism can be easily configured.
(3) By simply installing an inertial mass damper and a damping mechanism in parallel on a small number of lower floors, the same response reduction effect can be achieved as when installing dampers on all conventional layers. In addition to the present invention, if other damping elements such as oil dampers are installed between the respective layers, the response reduction effect can be further enhanced.

(4)微小振幅から大振幅まで有効なパッシブ型の制振機構であり、外部エネルギーを必要としないし、電気的な制御やコンピュータ制御が不要で単純な機構であり、信頼性が高くローコストである。
(5)低層部の剛性を大きく低下させるソフトファーストストーリーのような所謂「柔層構造」とは異なり、通常の剛性分布でも対応できるので、より汎用性の高い制振手法であるといえる。また、柔層構造のように低層階(柔層階)での過大な変形が生じることもないから、内外装材を含め特段の層間変形対応は不要である。
(6)従来型のTMD機構は、構造物の頂部近傍に設置するためその重量が構造物への負荷となるが、本発明では低層階に慣性質量ダンパーを設置するので、高所に大きな重量を設置する必要がなく、慣性質量ダンパーの重量が慣性質量より桁違いに小さいこともあり、構造物への荷重負荷も小さい。
(4) Passive vibration control mechanism effective from minute amplitude to large amplitude, which does not require external energy, is a simple mechanism that does not require electrical control or computer control, and is highly reliable and low-cost. is there.
(5) Unlike a so-called “soft layer structure” such as a soft first story that greatly lowers the rigidity of the lower layer, it can be handled by a normal rigidity distribution, and can be said to be a more versatile vibration control method. Further, since there is no excessive deformation on the lower floors (soft floors) unlike the soft layer structure, special interlayer deformation handling including inner and outer materials is unnecessary.
(6) Since the conventional TMD mechanism is installed near the top of the structure, its weight is a load on the structure. However, in the present invention, an inertia mass damper is installed on the lower floor, so it has a large weight at a high place. The weight of the inertia mass damper may be orders of magnitude smaller than the inertia mass, and the load on the structure is also small.

(7)制振階を複数階としてそれを跨ぐように慣性質量ダンパーを設置する場合には、単に層間に設置する場合よりも慣性質量が大幅に小さくて済む
(8)本発明では従来の一般的なTMD機構と比較して「構造物の質量に対する慣性質量の比(慣性質量比)」が大きくとれるので、ロバスト性の高い制振機構となる。そのため、制振対象の多層建物の重量や用途、機材等の積載荷重や剛性が変動しても広帯域に制振効果を発揮し、同調が多少ずれたとしても応答低減効果を維持できる。
(9)本発明の制振機構は多層建物を新設する場合に限らず、既存の多層建物の制振補強手法としても適用することができる。その場合、既存建物の低層階にのみ慣性質量ダンパーと減衰機構を設置すれば良いから、既存建物を使用しながらの制振補強も可能である。
(7) When the inertial mass damper is installed so as to straddle multiple floors, the inertial mass is much smaller than when it is simply installed between the layers.
(8) In the present invention, since the “ratio of the inertial mass to the mass of the structure (inertial mass ratio)” can be increased as compared with the conventional general TMD mechanism, the vibration suppression mechanism has high robustness. Therefore, even if the weight and application of the multi-layer building subject to vibration suppression, the load and rigidity of the equipment, etc. fluctuate, the vibration suppression effect can be exerted in a wide band, and the response reduction effect can be maintained even if the synchronization is slightly shifted.
(9) The vibration damping mechanism of the present invention is not limited to the case where a multi-layer building is newly established, and can also be applied as a vibration damping reinforcement method for an existing multi-layer building. In that case, since it is only necessary to install an inertia mass damper and a damping mechanism only on the lower floor of the existing building, it is possible to reinforce the vibration while using the existing building.

1 慣性質量ダンパー
2 減衰機構
3 第2の慣性質量ダンパー
4 第2の減衰機構
DESCRIPTION OF SYMBOLS 1 Inertial mass damper 2 Damping mechanism 3 Second inertial mass damper 4 Second damping mechanism

Claims (3)

多層建物の地上階の低層部における任意の階を制振階としてその制振階に設置される制振機構であって、
前記制振階の上層と下層との間に層間変位により作動する慣性質量ダンパーと減衰機構を並列設置し、
前記慣性質量ダンパーの慣性質量ψと前記減衰機構の減衰係数cを、前記制振階の層剛性k、前記制振階の上層の質量m、前記多層建物の前記制振階より上部で前記質量mを含む全質量M、前記多層建物の1次固有周期Tに基づいて次式により設定して、前記慣性質量ダンパーによる慣性質量ψと前記制振階の層剛性kとによる振動系の固有周期を前記多層建物の1次固有周期Tに同調させてなることを特徴とする制振機構。
Figure 0005495013
It is a vibration control mechanism installed on the vibration control floor as an arbitrary floor in the lower part of the ground floor of the multi-layer building,
Between the upper and lower layers of the vibration suppression floor, an inertial mass damper that operates by interlayer displacement and a damping mechanism are installed in parallel,
The inertial mass ψ of the inertial mass damper and the damping coefficient c of the damping mechanism are the layer stiffness k of the damping floor, the mass m of the layer immediately above the damping floor, and the upper part of the multilayer building above the damping floor. Based on the total mass M including the mass m and the primary natural period T 1 of the multi-layer building, the following equation is set, and the vibration system of the inertial mass ψ by the inertial mass damper and the layer stiffness k of the damping floor damping mechanism characterized by comprising by tuning the natural period in the primary natural period T 1 of the said multilayer building.
Figure 0005495013
多層建物の地上階の低層部において上下に連続している複数階を制振階としてその制振階に設置される制振機構であって、
前記制振階全体の上層と下層との間に層間変位により作動する慣性質量ダンパーと減衰機構とを並列設置し、
前記慣性質量ダンパーの慣性質量ψと前記減衰機構の減衰係数cを、前記制振階全体の合成層剛性k’、前記制振階の上層の質量m’、前記多層建物の前記制振階より上部で前記質量m’を含む全質量M、前記多層建物の1次固有周期Tに基づいて次式により設定して、前記慣性質量ダンパーによる慣性質量ψと前記制振階全体の合成層剛性k’とによる振動系の固有周期を前記多層建物の1次固有周期Tに同調させてなることを特徴とする制振機構。
Figure 0005495013
A vibration control mechanism that is installed on the vibration control floor as a vibration control floor with multiple floors that are continuous up and down in the lower part of the ground floor of the multi-layer building,
Between the upper layer and the lower layer of the entire damping floor, an inertial mass damper that operates by interlayer displacement and a damping mechanism are installed in parallel,
Wherein the damping coefficient c of the inertial mass ψ and the damping mechanism of the inertial mass damper, the damping floor whole composite layer rigid k ', straight upper layer of the mass m of the vibration floor', the damping floor of the multi-layer building Based on the total mass M including the mass m ′ at the upper part and the primary natural period T 1 of the multi-layer building, the following equation is established, and the inertia mass ψ by the inertia mass damper and the composite layer of the entire damping floor A vibration damping mechanism characterized in that a natural period of a vibration system based on rigidity k ′ is synchronized with a primary natural period T 1 of the multi-layer building.
Figure 0005495013
請求項1または2記載の制振機構であって、
前記制振階とは別の任意の階を第2の制振階としてその第2の制振階の上層と下層との間に層間変位により作動する第2の慣性質量ダンパーと第2の減衰機構を並列設置し、
前記第2の慣性質量ダンパーの慣性質量ψと前記第2の減衰機構の減衰係数cを、前記第2の制振階の層剛性k、前記多層建物の高次固有周期T(s≧2)に基づいて次式により設定して、前記第2の慣性質量ダンパーによる慣性質量ψと前記第2の制振階の層剛性kとによる振動系の固有周期を前記多層建物の高次固有周期Tに同調させてなることを特徴とする制振機構。
Figure 0005495013
The vibration damping mechanism according to claim 1 or 2,
A second inertia mass damper that operates by an interlayer displacement between an upper layer and a lower layer of the second damping floor, and an arbitrary floor other than the damping floor as a second damping floor, and a second damping Install the mechanisms in parallel,
The damping coefficient c t of the inertial mass [psi t of the second proof mass damper the second damping mechanism, said second damping floor layers stiffness k t, higher natural period T s of the multilayer building ( s ≧ 2) on the basis set by the following equation, wherein a natural period of the vibration system according to the layer stiffness k t of the inertial mass [psi t said second damping floor by the second inertial mass damper multilayer building damping mechanism is tuned to higher natural period T s is characterized by comprising.
Figure 0005495013
JP2009204147A 2009-09-03 2009-09-03 Vibration control mechanism Active JP5495013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204147A JP5495013B2 (en) 2009-09-03 2009-09-03 Vibration control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204147A JP5495013B2 (en) 2009-09-03 2009-09-03 Vibration control mechanism

Publications (2)

Publication Number Publication Date
JP2011052494A JP2011052494A (en) 2011-03-17
JP5495013B2 true JP5495013B2 (en) 2014-05-21

Family

ID=43941768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204147A Active JP5495013B2 (en) 2009-09-03 2009-09-03 Vibration control mechanism

Country Status (1)

Country Link
JP (1) JP5495013B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025988B2 (en) * 2018-05-10 2022-02-25 戸田建設株式会社 Building damping system and building
JP7244267B2 (en) * 2018-12-12 2023-03-22 清水建設株式会社 Damping structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4351923B2 (en) * 2004-01-29 2009-10-28 辰治 石丸 Design method, design support system, design support program, rotating body, and building structure
JP4931491B2 (en) * 2006-06-22 2012-05-16 辰治 石丸 A method for determining a natural period of a structure, a method for designing a structure, and a structure.
JP4968682B2 (en) * 2006-10-23 2012-07-04 清水建設株式会社 Vibration reduction mechanism and specification method thereof
JP5024623B2 (en) * 2008-01-31 2012-09-12 清水建設株式会社 Seismic isolation mechanism

Also Published As

Publication number Publication date
JP2011052494A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP4968682B2 (en) Vibration reduction mechanism and specification method thereof
Zhu et al. A study on interaction control for seismic response of parallel structures
JP2010007793A (en) Base isolation structure
Passoni et al. Existing structures connected with dampers: state of the art and future developments
JP5495013B2 (en) Vibration control mechanism
JP5316849B2 (en) Damping structure
JP5870454B2 (en) Optimal design method of low-rise concentrated control system using inertial mass damper
JP6636383B2 (en) Seismic isolation structure and method of designing seismic isolation structure
JP6709600B2 (en) Multi-layer seismic isolation structure
Sun et al. Connecting parameters optimization on unsymmetrical twin-tower structure linked by sky-bridge
JP2009155801A (en) Vibration control structure
Rai et al. Effectiveness of multiple TSWDs for seismic response control of masonry-infilled RC framed structures
JP6853869B2 (en) Vibration control structure of the building
JP6108370B2 (en) Optimal design method of low-rise centralized control system using viscous damping
Nawrotzki Tuned-mass systems for the dynamic upgrade of buildings and other structures
JP6190643B2 (en) Vibration control device
JP6397544B2 (en) Intermediate seismic isolation structure
Lomiento et al. Design criteria for added dampers and supporting braces
Awchat et al. Seismic Response of Tall Building with Underground Storey Using Dampers
JP5252224B2 (en) Damping structure of tower structure
JP5483097B2 (en) Vibration control structure
Gutierrez Soto Investigation of passive control of irregular building structures using bidirectional tuned mass damper
Matinrad et al. Seismic performance evaluation of a tall building with dual lateral system consisting of moment frames and tuned mass dampers
JP6505272B2 (en) Intermediate seismic isolation structure
JP6132157B2 (en) Vibration isolation structure for liquid storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5495013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150