JP5927259B2 - 力制御を実行するロボットシステム - Google Patents

力制御を実行するロボットシステム Download PDF

Info

Publication number
JP5927259B2
JP5927259B2 JP2014201327A JP2014201327A JP5927259B2 JP 5927259 B2 JP5927259 B2 JP 5927259B2 JP 2014201327 A JP2014201327 A JP 2014201327A JP 2014201327 A JP2014201327 A JP 2014201327A JP 5927259 B2 JP5927259 B2 JP 5927259B2
Authority
JP
Japan
Prior art keywords
robot
actuator
workpiece
force
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014201327A
Other languages
English (en)
Other versions
JP2016068216A (ja
Inventor
佐藤 貴之
貴之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2014201327A priority Critical patent/JP5927259B2/ja
Priority to US14/862,249 priority patent/US9636827B2/en
Priority to DE102015012314.9A priority patent/DE102015012314B4/de
Priority to CN201510629448.4A priority patent/CN105458878B/zh
Publication of JP2016068216A publication Critical patent/JP2016068216A/ja
Application granted granted Critical
Publication of JP5927259B2 publication Critical patent/JP5927259B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/02Arm motion controller
    • Y10S901/09Closed loop, sensor feedback controls arm movement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Description

本発明は、加工ツールをワークに対して所定の力で押圧しながら、それら加工ツール及びワークを相対移動させることによって、ワークに対して所定の加工工程を実行するロボットシステムに関する。
ロボットを用いてワークの研磨又はバリ取りを実行するロボットシステムが公知である。このようなロボットシステムでは、ロボットの手首に取り付けられた加工ツール(グラインダ、サンダなど)を、ロボットの可動範囲内に位置決めされたワークの表面に対して押圧しながらロボットを動作させる。或いは、ロボットによりワークを把持し、ワークをロボットの可動範囲内に固定された加工ツールに対して押圧しながらロボットを動作させる。ところで、ワークの位置決め、又はロボットによるワークの把持位置には誤差が生じることがある。或いはワークの個体差又は加工ツールの摩耗量などに起因して加工ツールとワークとの位置関係に誤差が生じることがある。そのような誤差に起因して加工品質が低下するのを防止するため、種々の方法が提案されている。
特許文献1には、ロボット手首と研磨又はバリ取り用の工具との間にコンプライアンス機構を備えたロボットにおいて、工具がワークに当接するようにロボットの動作軌道を教示する方法が開示されている。この公知技術によれば、ワークの位置決め誤差、把持位置の誤差、又はワークの形状ないし寸法に個体差がある場合でも、コンプライアンス機構のストローク範囲内であれば、それら誤差を吸収でき、ワークの研磨又はバリ取りを適切に実行できる。
特許文献2及び特許文献3には、ロボット手首と研磨又はバリ取り用の工具との間に、アクチュエータを備えた力制御機構が取付けられたロボットにおいて、工具がワークに当接するようにロボットの動作軌道を教示する方法が開示されている。この公知技術によれば、ワークの位置決め誤差、把持位置の誤差、又はワークの形状ないし寸法に個体差がある場合でも、工具とワークとの間の接触力が一定になるように制御される。したがって、力制御機構のストローク範囲内であれば、種々の要因に起因する誤差を吸収できる。
特許文献4及び特許文献5には、ロボット手首と研磨又はバリ取り用の工具の間に力センサを備えたロボットにおいて、工具がワークに当接するようにロボットの動作軌道を教示する方法が開示されている。この公知技術によれば、インピーダンス制御、又はハイブリッド制御などの公知の方法で力制御を行い、工具とワークとの間の接触力が一定になるようにロボットが制御される。この公知技術によれば、工具を所定の力で任意の方向からワークに対して押圧できる。また、ロボットの可動範囲は大きいので、理論上は大きな誤差を吸収できる。
特許文献6には、コンプライアンス機構を手首部に備えたロボットを用いて、研磨又はバリ取り用の工具がワークに当接するようにロボットの動作軌道を教示する方法が開示されている。この公知技術によれば、工具がワークから受ける反力を測定し、その反力が所定の値になるようにロボット軌道をリアルタイムで補正する。
特許文献7には、力覚センサ及び流体圧シリンダ装置を備えたロボットシステムにおいて、力覚センサの検出データに基づいて、ロボットの目標速度、目標軌道、流体圧シリンダ装置の目標押圧力、加工工具の目標動作速度の内、少なくとも1つを調整する方法が開示されている。
特開2009-172692号公報 米国特許5448146号明細書 特開平6-226671号公報 特開昭60-155356号公報 特開平8-087336号公報 特開平2-015956号公報 特開2011−041992号公報
特許文献1に記載の方法では、コンプライアンス機構に柔軟な部位が含まれる場合、コンプライアンス機構が水平方向に向けられたとき、又は鉛直方向に対して傾斜させられたときに、コンプライアンス機構が重力により変形してしまう。その結果、位置誤差を吸収できなくなったり、又は過度の押圧力が発生したりすることがある。また、位置誤差又はワークの個体差の合計がコンプライアンス機構のストロークより大きい場合には、誤差を吸収できなくなる。コンプライアンス機構がバネで構成される場合は、位置誤差の大きさと押圧力が比例する関係にあるので、場所に応じて押圧力が変化することになり、加工品質が一定にならない。
特許文献2及び特許文献3に記載の方法は、力制御機構が水平方向に向けられたり、鉛直方向に対して傾斜させられたりしても、機構部が変形する問題はない。しかしながら、特許文献1に記載の方法と同様に、コンプライアンス機構のストロークより大きな誤差を吸収することはできない。
特許文献4及び特許文献5に記載の方法は、ロボット本体の動作を通じて押圧力の制御を行うので、力制御の応答性は、ロボット本体の質量、イナーシャ及び剛性、並びにロボットを駆動するアクチュエータの性能などに影響を受ける。一般的に、機構部の質量及びイナーシャが大きくなるほど、応答性は低下する傾向にある。したがって、大型のロボットでは力制御の応答性が不十分になり、要求される加工品質を達成できないことがある。同様に、特許文献6に記載の方法も、押圧力制御の応答性は、ロボット本体の質量、イナーシャ及び剛性、並びにロボットを駆動するアクチュエータの性能などに影響を受ける。
特許文献7に記載の方法によれば、流体圧シリンダの変位量を測定し、その流体圧シリンダの位置が機械的な上限に達したときに、ロボットの目標軌道を修正する。そのため、流体圧シリンダのストロークより大きな誤差量も吸収可能である。しかしながら、ストロークが上限に達して初めてロボットの軌道が修正されるので、短時間ながら工具とワークとが非接触状態になったり、過剰な押圧力が発生したりする虞がある。
したがって、位置決め誤差、又はワークの形状ないし寸法に個体差があるような場合であっても、バリ取り又は研磨などの所定の加工工程を適切に実行できるロボットシステムが求められている。
1番目の発明によれば、加工ツールを用いてワークに対する加工工程を実行するロボットシステムであって、前記加工ツール及び前記ワークのいずれか一方を保持し、前記加工ツール及び前記ワークを互いに対して相対移動させるように動作するロボットと、前記加工ツール又は前記ワークが取付けられていて、前記ロボットと協働して前記加工ツール又は前記ワークの作用点の位置を変更する1自由度以上のアクチュエータと、前記ロボットの動作を制御する制御装置と、を備えており、前記制御装置は、予め定められる動作軌道に従って前記ロボットを動作させるロボット制御部と、前記加工ツールと前記ワークとの間に作用する力を検出する力検出部と、前記アクチュエータに取付けられた前記加工ツール又は前記ワークの作用点の現在位置を検出する位置検出部と、前記力検出部により検出される力が予め定められる値に近づくように、前記アクチュエータに取付けられた前記加工ツール又は前記ワークの作用点の目標位置を求める力制御部と、前記加工ツール又は前記ワークの作用点の前記目標位置に応じて、前記ロボットの動作軌道の位置補正量及び前記アクチュエータの位置補正量を算出する位置補正部と、を備えており、前記位置補正部によって単位時間ごとに算出される前記ロボットの動作軌道の位置補正量が、予め定められる値以下に制限されるようになる、ロボットシステムが提供される。
2番目の発明によれば、1番目の発明に係るロボットシステムにおいて、前記アクチュエータ及び該アクチュエータの位置を検出する位置センサが、前記ロボットの手首部に設けられており、前記ワークが前記ロボットの可動範囲内に配置されている。
3番目の発明によれば、1番目の発明に係るロボットシステムにおいて、前記ロボットが前記ワークを保持できるように形成されており、前記アクチュエータ及び該アクチュエータの位置を検出する位置センサが、前記ロボットの可動範囲内の所定位置に固定されている。
4番目の発明によれば、1番目の発明に係るロボットシステムにおいて、前記アクチュエータ及び該アクチュエータの位置を検出する位置センサが、前記ロボットの手首部に設けられており、前記加工ツールが、前記ロボットの可動範囲内の所定位置に固定されている。
5番目の発明によれば、1番目の発明に係るロボットシステムにおいて、前記加工ツールが前記ロボットの手首部に取付けられており、前記アクチュエータ及び該アクチュエータの位置を検出する位置センサが、前記ロボットの可動範囲内の所定位置に固定されている。
番目の発明によれば、1番目から番目のいずれかの発明に係るロボットシステムにおいて、前記制御装置が、前記アクチュエータの可動範囲の上限または下限に達したときに、前記ロボットをアラーム停止させること、又は前記ロボットの現在の位置及び姿勢と、前記アクチュエータの現在の位置とのうちの少なくとも一方を記録すること、のうちの少なくとも一方を実行する実行部をさらに備える。
番目の発明によれば、1番目から番目のいずれかの発明に係るロボットシステムにおいて、前記制御装置が、前記ロボットの前記動作軌道を、前記位置補正部により算出される位置補正量に従って補正されたロボットの動作軌道に置き換える置換部をさらに備える。
番目の発明によれば、1番目から番目のいずれかの発明に係るロボットシステムにおいて、前記加工ツールと前記ワークとの間に作用する力を検出する力センサが、前記ロボットの手首部に取付けられている。
番目の発明によれば、1番目から番目のいずれかの発明に係るロボットシステムにおいて、前記加工ツールと前記ワークとの間に作用する力を検出する力センサが、前記ロボットの可動範囲内の所定位置に固定されている。
これら及び他の発明の目的、特徴及び利点は、添付図面に示される本発明の例示的な実施形態に係る詳細な説明を参照することによって、より明らかになるであろう。
本発明によれば、ワークの位置決め誤差が大きかったり、ワークの形状ないし寸法に個体差があったりするような場合であっても、ワークのバリ取り又は研磨などの加工工程を適切に実行できる。また、力制御の応答性は、ロボットから独立して制御される1自由度以上のアクチュエータの性能に応じて決まるので、ロボットの構成にかかわらず良好な加工品質を達成できる。
一実施形態に係るロボットシステムの概略構成を示す図である。 一実施形態に係るロボットシステムの機能ブロック図である。 1自由度を有するアクチュエータを備えた加工ツールの概略構成を示す図である。 2自由度を有するアクチュエータを備えた加工ツールの概略構成を示す図である。 ロボットの動作軌道に沿って移動する加工ツールを示す図である。 ロボットの動作軌道に沿って移動する加工ツールを示す図である。 一実施形態に係るロボットシステムにおいて実行される処理の流れを示すフローチャートである。 別の実施形態に係るロボットシステムの概略構成を示す図である。 別の実施形態に係るロボットシステムの概略構成を示す図である。 別の実施形態に係るロボットシステムの概略構成を示す図である。 別の実施形態に係るロボットシステムの概略構成を示す図である。 別の実施形態に係るロボットシステムの概略構成を示す図である。 別の実施形態に係るロボットシステムの機能ブロック図である。 別の実施形態に係るロボットシステムの機能ブロック図である。
以下、添付図面を参照して本発明の実施形態を説明する。本発明の理解を助けるため、図示される各構成要件の縮尺は適宜変更されている。同一又は対応する構成要素には、同一の参照符号が使用される。
図1は、一実施形態に係るロボットシステムの概略構成を示している。ロボットシステム10は、ロボット2によりワーク7のバリ取り又は研磨などの加工工程を実行するのに使用される。ロボット2は、例えば図示されるような6軸の多関節ロボットである。他の構成を有する任意の公知のロボット2が使用されてもよい。ロボット2は、通信ケーブル11などの公知の通信手段を介して制御装置3から送出される制御指令に従って、位置及び姿勢を変更できるようになっている。
ロボット2のアーム21の先端に設けられた手首部22には、力センサ4、アクチュエータ5、及び加工ツール6が取付けられている。アクチュエータ5と手首部22との間に設けられた力センサ4は、加工ツール6に作用する外力を検出する。すなわち、力センサ4は、ワーク7に対する加工を実行する際に、ワーク7に対して押圧される加工ツール6に作用する反力を検出できるようになっている。加工ツール6は、例えばグラインダ、サンダなどのバリ取り又は研磨などの加工に使用される公知の工具である。
アクチュエータ5には、手首部22とは反対側の端部に加工ツール6が取付けられている。アクチュエータ5は、ロボット2の動作機構とは別個に1以上の自由度を有する。アクチュエータ5は、例えばサーボモータ、空気圧シリンダ、油圧シリンダなどから動力を受けるように形成される。例えば、アクチュエータ5がサーボモータによって駆動される場合、ボールねじなどを介して回転運動が直線運動に変換される。アクチュエータ5は、後述する力制御部33による力制御に従って動作し、加工ツール6の作用点61の位置を調整できるようになっている。加工ツール6の作用点61は、加工工程においてワーク7に接触する箇所である。
アクチュエータ5は、アクチュエータ5の位置を検出する位置センサ51を備えている。位置センサ51により検出されるアクチュエータ5の位置に基づいて、加工ツール6の作用点61の位置が算出される。位置センサ51は、例えばパルスエンコーダ、レゾルバ又はリニアスケールなどである。
図3は、加工ツール6を移動させるアクチュエータ5の構成例を示している。図示されるアクチュエータ5は1自由度を有していて、加工ツール6を矢印A3で示される方向(X軸に対して平行な方向)に移動可能である。ワーク7に対する加工を実行する際、加工ツール6の作用点61は、ワーク7に対する押圧力が所定の値になる目標位置に向かってアクチュエータ5によって移動させられる。アクチュエータ5による加工ツール6の作用点61の可動範囲は、アクチュエータ5のボールねじの長さ、又はシリンダの可動範囲などに応じて定まる。
図4は、加工ツール6を移動させるアクチュエータ5の別の構成例を示している。図示されるアクチュエータ5は2自由度を有していて、加工ツール6を矢印A41,A42で示される方向(X軸及びY軸に対してそれぞれ平行な方向)に移動可能である。この場合、アクチュエータ5は、X軸方向及びY軸方向のそれぞれにおいて力制御に従って動作し、それにより、加工ツール6が、加工ツール6とワーク7との間に作用するX−Y平面における力が所定の値になる目標位置に向かって移動させられる。X−Y平面における加工ツール6の作用点61の可動範囲は、アクチュエータ5のボールねじの長さ、又はシリンダの可動範囲などに応じて定まる。
ワーク7は、ロボット2の可動範囲内の所定の位置に位置決めされている。或いは、ワーク7は、ロボット2の可動範囲内の未知の位置に設けられていてもよい。ロボットシステム10は、ワーク7に対して加工ツール6を所定の力で押圧しながら、ロボット2の位置及び姿勢を変更し、加工ツール6を、ワーク7の表面7aのバリが形成された部位又は研磨対象の部位に沿って移動させることによって、ワーク7を加工する。
制御装置3は、CPUと、ROMと、RAMと、入力デバイス及び表示デバイスなどの外部装置との間で信号及びデータを送受信するインタフェースと、を含むハードウェア構成を有するデジタルコンピュータである。制御装置3は、予め定められる制御周期で後述する種々の機能を実行する。
図2は、ロボットシステム10の機能ブロック図である。図示されるように、制御装置3は、ロボット制御部31と、力検出部32と、力制御部33と、位置検出部34と、位置補正部35と、を備えている。
ロボット制御部31は、ロボット2の手首部22に設けられている加工ツール6の作用点61が、予め定められる動作軌道に沿って移動するように、ロボット2に対する制御指令を生成する。ロボット制御部31によって生成される制御指令に従って、ロボット2の各関節軸に設けられたサーボモータに駆動電流が供給されるようになっている。
力検出部32は、ロボット2の手首部22に設けられた力センサ4によって、加工ツール6とワーク7の間に作用する力を検出する。力センサ4は、例えば歪みゲージを利用するセンサ、静電容量の変化を検出して力を求めるセンサ、又は歪みを光学的に検出するセンサなどである。力センサ4は任意の公知の力センサであってよく、特定の検出原理には限定されない。力センサ4は、1方向の力を検出できるセンサであってもよいし、或いは必要に応じて互いに直交する2方向又は3方向の力を検出するセンサであってもよい。
力制御部33は、加工ツール6とワーク7との間に作用する力が所定の値に近づくようにアクチュエータ5の位置を制御する。力制御部33は、例えばインピーダンス制御、ダンピング制御、剛性制御、ハイブリッド制御などを利用して力制御を実行する。力制御の応答性は、アクチュエータ5及びその制御装置の性能、アクチュエータ5にかかる負荷の大きさなどに応じて定まる。本実施形態において、アクチュエータ5にかかる負荷は、主として加工ツール6及び加工ツール6の取付部品に起因するものであって比較的小さい。したがって、アクチュエータ5は、力制御に対して良好な応答性を有する。アクチュエータ5を制御する制御装置が、ロボット2を制御する制御装置3とは別個に設けられていてもよい。その場合、力制御部33及び後述する位置補正部35の一部の機能は、制御装置3とは別個のコンピュータに実装される。
位置検出部34は、アクチュエータ5に備え付けられた位置センサ51からアクチュエータ5の位置を検出する。さらに、位置検出部34は、アクチュエータの位置から加工ツール6の作用点61をさらに演算により求めることができる。
次に、ロボット2及びアクチュエータ5をデジタル制御する方式について説明する。
インピーダンス制御に基づいて、以下の式(1)を満足するように力制御を一定の制御周期Δtで実行する。なお、アクチュエータ5は、図3に例示した1自由度を有するアクチュエータであり、アクチュエータ5の移動方向は位置センサ51に対して設定される座標系のX軸方向とする。
Figure 0005927259
なお、式(1)のマス係数、ダンパ係数及びバネ係数、並びに加工ツール6の設定位置、設定速度及び設定加速度、並びに力目標値は、オペレータによって入力される設定値である。加工ツール6の作用点61の実位置は、位置検出部34の出力値である。加工ツール6の作用点61の実速度は、例えば位置検出部34の出力値の差分から求められる。
式(1)から、加工ツール6の作用点61の目標加速度を求める次の式(2)が得られる。
Figure 0005927259
式(2)の右辺を2階積分することにより、加工ツール6の作用点61の目標位置が求められる。制御周期Δtの間、式(2)の右辺の値が一定であると仮定すると、Δt後の目標位置は、次の式(3)で表せる。
Figure 0005927259
加工ツール6の作用点61の現在位置は、位置検出部34の出力値である。加工ツール6の作用点61の現在速度は、位置検出部34の出力値の差分から計算により求められる。
図4を参照して説明したような2自由度のアクチュエータを使用するときは、位置センサ51の座標系のX軸方向及びY軸方向について、それぞれ独立に求められる式(1)を立てる(Y軸方向については、式中の「x」を「y」に読み替える)。そして、1自由度のアクチュエータの場合と同様に、式(3)から、X軸方向及びY軸方向それぞれについて加工ツール6の作用点61の目標位置を求めればよい。
位置補正部35は、力制御部33によって求められた加工ツール6の作用点61の目標位置に従って、アクチュエータ5の位置補正量を算出する。ところで、力制御部33によって制御される加工ツール6の作用点61のストロークは、前述したように、アクチュエータ5のボールねじの長さ又はシリンダの可動範囲などに応じて定まる。図5Aには、直線状に定められた動作軌道T5に従ってロボット2を動作させたときの加工ツール6を示している。ロボット2は、例えば手首部22の先端に設定される基準点23が、動作軌道T5を通って移動するように制御される。ロボット2の動作軌道は、例示される直線状の動作軌道T5に限定されず、アクチュエータ5の可動範囲内で加工を実行できるように、ワーク7の表面7aの形状などを考慮して設定される。すなわち、ワーク7の表面7aの形状に従って湾曲していてもよい。
ところで、ワーク7の位置決め誤差が予想の範囲を超えて大きかったり、ワーク7の形状が未知であるか、若しくはワーク7の形状ないし寸法の個体差が大きかったりした場合、力制御中に作用点61の目標位置がアクチュエータ5の可動範囲から外れることもありうる。その場合、図5Aにおいて破線で示されるように、加工ツール6の作用点61がワーク7の表面7aに達することができずに、力制御を実行できなくなる。反対に、加工ツール6がワーク7に対して接近しすぎて、過剰な押圧力が加工ツール6とワーク7との間に発生することもある。
そこで、位置補正部35は、前述した式(3)で得られる加工ツール6の作用点61の目標位置が、アクチュエータ5の可動範囲に対応する所定の範囲から外れる場合に、力制御部33に基づくアクチュエータ5の位置補正に加えて、ロボット2の動作軌道の位置補正を実行する。すなわち、ロボット2の動作軌道を自動的に補正し、アクチュエータ5の位置補正量に加えてロボット2の位置補正量を算出することによって、式(3)で求められた目標位置を実現する。図5Bは、位置補正部35によって位置補正された動作軌道T5’を示している。破線で示された位置において、ロボット2の動作軌道T5’は、ワーク7に接近するように補正される。したがって、アクチュエータ5の可動範囲内において、加工ツール6をワーク7に対して所定の押圧力で押圧できるようになる。
式(3)で求められる加工ツール6の作用点61の目標位置Ptをアクチュエータ5の可動範囲内で実現する方法として、次の方法を採用できる。図3を参照して説明した1自由度のアクチュエータ5を例として説明するが、2自由度を有するアクチュエータにおいては、X軸方向及びY軸方向それぞれについて同様の計算を行えばよい。例えば、位置補正部35は、Pt>Pm+Prが成立する場合、加工ツール6の作用点61の目標位置を(Pt−Pc)に補正する。Pmは、アクチュエータ5がその可動範囲の中心に位置するときの加工ツール6の作用点61の位置である。Prは、Pm+Pr及びPm−Prがともにアクチュエータ5の可動範囲に含まれるように、予め設定される。Prは、例えばゼロ以上であって、アクチュエータ5のストロークの半分以下の値であるが、加工工程中にアクチュエータ5の可動範囲から外れないようにするために、ストロークの半分より十分に小さい値に設定するのが望ましい。目標位置Ptは、位置センサ51の座標系において記述される値である。さらに、位置補正部35は、ロボット2の動作軌道を位置センサ51の座標系のX軸方向(アクチュエータ5の動作方向)にPcだけ補正する。Pcは固定値であり、例えばロボットの機種に応じて設定されてもよい。また、Ptが可動範囲の限界に近づくのに従って、Pcが大きくなるように設定されてもよい。
Pt<Pm−Prが成立する場合は、加工ツール6の作用点61の目標位置を(Pt+Pc)に補正するとともに、ロボット2の動作軌道を、位置センサの座標系のX軸方向に−Pcだけ補正する。
ロボット2が無理なく動作できるようにするために、1制御周期Δtにおけるロボット2の動作軌道の位置補正量Pcに上限を設けてもよい。その場合、位置補正量Pcが予め定められる上限値を超えるときは、位置補正量Pcが当該上限値に置き換えられる。或いは、ローパスフィルタなどを介して、位置補正量Pcが整値Pc’によって置換されてもよい。或いは、1制御周期Δtにおける位置補正量を制限するとともに、複数回の制御周期Δtの間にわたって位置補正を実行してもよい。
なお、図4に示したような2自由度アクチュエータの場合には、X軸方向とは独立してY軸方向において、ロボット2の動作軌道の位置補正量を求めればよい。
図6を参照して、一実施形態に係るロボットシステム10において実行される処理の流れを説明する。ステップS601〜S607までの処理は、所定の制御周期Δtで実行される。ロボットシステム10が加工工程を開始すると、ステップS601において、ロボット制御部31が予め教示ないし指定された動作軌道に従ってロボット2を動作させる。ステップS602において、力検出部32が、加工ツール6とワーク7との間に作用する力を検出する。
次いで、ステップS603において、位置検出部34は、アクチュエータ5の現在位置を検出し、さらにアクチュエータ5の位置から加工ツール6の作用点61の現在位置を計算する。ステップS604において、力制御部33は、ステップS602で取得した力が所定の押圧力に近づくようにアクチュエータ5の位置、ひいては加工ツール6の作用点61の目標位置を前述した式(3)に従って算出する。さらに、加工ツール6の作用点61の目標位置に対応するアクチュエータ5の目標位置を算出する。
ステップS605では、ステップS604において求められたアクチュエータ5の目標位置が、アクチュエータ5の可動範囲に基づいて予め定められる範囲内にあるか否かを判定する。判定に用いられる範囲は、前述したように、アクチュエータ5の可動範囲の限界に達する前に動作軌道の変更の要否を判断できるようにある程度余裕を持たせた範囲である。
ステップS605における判定が否定された場合、加工ツール6の作用点61を目標位置に移動させようとしたときに、アクチュエータ5の可動範囲を超える虞がある。したがって、力制御を適切に実行するために、ステップS606において、位置補正部35は、加工ツール6がワーク7に接近するように、或いはワーク7から離間するように、ロボット2の動作軌道を変更する位置補正量を算出する。そして、ステップS607では、位置補正部35は、加工ツール6の作用点61が目標位置に到達するように、ステップS604で求められたアクチュエータ5の目標位置から、ステップS606で求められたロボット2の動作軌道の位置補正量を差し引いたアクチュエータ5の位置補正量を算出する。
他方、ステップS605における判定が肯定された場合、ロボット2の動作軌道を変更する必要はなく、アクチュエータ5を動作させるのみによって力制御を実行できるとみなせる。したがって、ステップS606をバイパスしてステップS607に進み、位置補正部35が、ステップS604において求められたアクチュエータ5の目標位置に従ってアクチュエータ5の位置補正量を算出する。
本実施形態に係るロボットシステム10によれば、次の利点が得られる。
(1)力制御に従って加工工程を実行する際に、加工ツール6とワーク7との相対的位置関係をアクチュエータ5によって変更できる。したがって、力制御に対する応答性が、ロボット2の構成から独立して、アクチュエータ5に応じて定まるようになる。通常、アクチュエータ5にかかる負荷は小さく、アクチュエータは良好な応答性を実現できるので、力制御に対して優れた応答性を有するロボットシステム10を提供できるようになる。
(2)加工ツール6の作用点61の目標位置がアクチュエータ5の可動範囲を超える場合は、ロボット2の動作軌道を自動的に変更する。それにより、アクチュエータ5の可動範囲に制限されなくなるので、誤差が大きい場合であっても、加工工程を適切に実行できるようになる。
(3)位置補正部35によって算出された位置補正量が予め定められる上限値を超えるような場合、位置補正量が当該上限値になるように制限される。それにより、ロボット2又はアクチュエータ5が1制御周期Δtにおいて急激に移動するのを防止できるようになる。
図7は、別の実施形態に係るロボットシステム10の概略構成を示している。本実施形態において、ロボット2の手首部22には、ワーク7を保持可能な保持ツール62が取付けられている。他方、加工ツール6は、支持体12を介してロボット2の可動範囲内に固定されている。すなわち、ロボット2は、ワーク7を保持ツール62で保持した状態で位置及び姿勢を変更することにより、ワーク7を加工ツール6に対して相対的に移動できるようになっている。保持ツール62は、例えば開閉する爪を備えたハンド、負圧を利用して吸引力を発生する吸着ツール、磁気的にワーク7を吸着する磁気式ツールなどである。支持体12と加工ツール6との間には、力センサ4と、位置センサ51と、アクチュエータ5と、が設けられている。本実施形態においては、ワーク7が加工ツール6に対して所定の押圧力が発生するように、アクチュエータ5及びロボット2によってワーク7の作用点及び加工ツール6の作用点61を互いに対して相対的に移動させることにより、加工工程を実行する。ワーク7の作用点は、加工されるべきワーク7の表面7aにおいて定められる加工ツール6との接触点である。制御装置3の機能的構成は前述した実施形態と同様である。
図8は、別の実施形態に係るロボットシステム10の概略構成を示している。本実施形態において、ロボット2の手首部22には、ワーク7を保持可能な保持ツール62と、アクチュエータ5と、位置センサ51と、力センサ4と、が取付けられている。他方、加工ツール6は、支持体12を介してロボット2の可動範囲内に固定されている。本実施形態においては、ワーク7と加工ツール6との間に所定の押圧力が発生するように、アクチュエータ5及びロボット2によってワーク7の作用点及び加工ツール6の作用点61を互いに対して相対的に移動させることにより、加工工程を実行する。制御装置3の機能的構成は前述した実施形態と同様である。
図9は、別の実施形態に係るロボットシステム10の概略構成を示している。本実施形態において、ロボット2は、加工ツール6を手首部22に備えている。他方、支持体12には、力センサ4と、位置センサ51と、アクチュエータ5と、アクチュエータ5に取付けられていてワーク7を保持可能な保持ツール62と、が設けられている。本実施形態では、ワーク7と加工ツール6との間に所定の押圧力が発生するように、ロボット2が加工ツール6の作用点61を移動させるとともに、アクチュエータ5が保持ツール62によって保持されたワーク7の作用点を移動させる。制御装置3の機能的構成は前述した実施形態と同様である。
図10は、別の実施形態に係るロボットシステム10の概略構成を示している。本実施形態において、ロボット2の手首部22には、位置センサ51と、アクチュエータ5と、保持ツール62と、が取付けられている。他方、支持体12には、力センサ4と、加工ツール6と、が固定されている。本実施形態においては、ロボット2及びアクチュエータ5が協働して加工ツール6の作用点61及びワーク7の作用点を互いに相対移動させることによって、ワーク7に対する加工工程を実行する。制御装置3の機能的構成は前述した実施形態と同様である。
図11は、別の実施形態に係るロボットシステム10の概略構成を示している。本実施形態において、ロボット2は、力センサ4及び加工ツール6を手首部22に備えている。他方、位置センサ51、アクチュエータ5、及び保持ツール62が支持体12に固定されている。本実施形態においては、ロボット2及びアクチュエータ5が協働して加工ツール6の作用点61及びワーク7の作用点を互いに対して相対移動させることによって、ワーク7に対する加工工程を実行する。制御装置3の機能的構成は前述した実施形態と同様である。
図12は、別の実施形態に係るロボットシステム10の機能ブロック図である。本実施形態によれば、制御装置3は、図2に示される構成に加えて、実行部36をさらに備えている。実行部36は、位置センサ51によって検出されるアクチュエータ5の位置がアクチュエータ5の可動範囲の上限値又は下限値に達しているとき、或いは上限値又は下限値に十分に近づいたときに、ロボット2をアラーム停止する。すなわち、アクチュエータ5が可動範囲の限界に概ね達した際に、ロボットシステム10はオペレータに異常を通知できる。オペレータは、それに対して、例えば対象のワーク7を不良品として、良品と区別して廃棄したり、或いは設定を変更して加工工程を再実行したりすることができる。
別の実施形態において、実行部36は、アクチュエータ5が可動範囲の限界に概ね達したときのロボット2の現在位置及びアクチュエータ5の現在位置のうちの少なくとも1つを記録するように構成されてもよい。その場合、ロボットシステム10は、ロボット2をアラーム停止することなく加工工程を実行し、オペレータは、後で異常が生じた箇所を検査したり、或いは設定を変更して加工工程を再実行したりすることができる。
図13は、別の実施形態に係るロボットシステム10の機能ブロック図である。本実施形態によれば、制御装置3は、図2に示される構成に加えて、置換部37をさらに備えている。置換部37は、位置補正部35によって算出される位置補正量に従って補正された動作軌道を記憶するとともに、ロボット制御部31によって用いられるロボット2の動作軌道を補正後の動作軌道に置換する。
例えば、異なる製造ロットのワークにおいては、形状ないし寸法の個体差が大きい場合であっても、同一製造ロット内では個体差が小さいことがある。そのような場合、製造ロットの切替り後に初めて実行される加工工程において補正されたロボットの動作軌道を新たな動作軌道として記憶しておけば、次に製造ロットが切替るまでの期間は、ワーク7ごとにロボット2の動作軌道を毎回補正する必要がなくなる。したがって、より安定した加工が可能になる。
以上、本発明の種々の実施形態について説明したが、当業者であれば、他の実施形態によっても本発明の意図する作用効果を実現できることを認識するであろう。特に、本発明の範囲を逸脱することなく、前述した実施形態の構成要素を削除又は置換することができるし、公知の手段をさらに付加することができる。また、本明細書において明示的又は暗示的に開示される複数の実施形態の特徴を任意に組合せることによっても本発明を実施できることは当業者に自明である。
10 ロボットシステム
11 通信ケーブル
12 支持体
2 ロボット
21 アーム
22 手首部
23 基準点
3 制御装置
31 ロボット制御部
32 力検出部
33 力制御部
34 位置検出部
35 位置補正部
36 実行部
37 置換部
4 力センサ
5 アクチュエータ
51 位置センサ
6 加工ツール
61 作用点
62 保持ツール
7 ワーク
7a 表面

Claims (9)

  1. 加工ツールを用いてワークに対する加工工程を実行するロボットシステムであって、
    前記加工ツール及び前記ワークのいずれか一方を保持し、前記加工ツール及び前記ワークを互いに対して相対移動させるように動作するロボットと、
    前記加工ツール又は前記ワークが取付けられていて、前記ロボットと協働して前記加工ツール又は前記ワークの作用点の位置を変更する1自由度以上のアクチュエータと、
    前記ロボットの動作を制御する制御装置と、を備えており、
    前記制御装置は、
    予め定められる動作軌道に従って前記ロボットを動作させるロボット制御部と、
    前記加工ツールと前記ワークとの間に作用する力を検出する力検出部と、
    前記アクチュエータに取付けられた前記加工ツール又は前記ワークの作用点の現在位置を検出する位置検出部と、
    前記力検出部により検出される力が予め定められる値に近づくように、前記アクチュエータに取付けられた前記加工ツール又は前記ワークの作用点の目標位置を求める力制御部と、
    前記加工ツール又は前記ワークの作用点の前記目標位置に応じて、前記ロボットの動作軌道の位置補正量及び前記アクチュエータの位置補正量を算出する位置補正部と、
    を備えており、
    前記位置補正部によって単位時間ごとに算出される前記ロボットの動作軌道の位置補正量が、予め定められる値以下に制限されるようになる、ロボットシステム。
  2. 前記アクチュエータ及び該アクチュエータの位置を検出する位置センサが、前記ロボットの手首部に設けられており、
    前記ワークが前記ロボットの可動範囲内に配置されている、請求項1に記載のロボットシステム。
  3. 前記ロボットが前記ワークを保持できるように形成されており、
    前記アクチュエータ及び該アクチュエータの位置を検出する位置センサが、前記ロボットの可動範囲内の所定位置に固定されている、請求項1に記載のロボットシステム。
  4. 前記アクチュエータ及び該アクチュエータの位置を検出する位置センサが、前記ロボットの手首部に設けられており、
    前記加工ツールが、前記ロボットの可動範囲内の所定位置に固定されている、請求項1に記載のロボットシステム。
  5. 前記加工ツールが前記ロボットの手首部に取付けられており、
    前記アクチュエータ及び該アクチュエータの位置を検出する位置センサが、前記ロボットの可動範囲内の所定位置に固定されている、請求項1に記載のロボットシステム。
  6. 前記制御装置が、前記アクチュエータの可動範囲の上限または下限に達したときに、前記ロボットをアラーム停止させること、又は前記ロボットの現在の位置及び姿勢と、前記アクチュエータの現在の位置とのうちの少なくとも一方を記録すること、のうちの少なくとも一方を実行する実行部をさらに備える、請求項1からのいずれか1項に記載のロボットシステム。
  7. 前記制御装置が、前記ロボットの前記動作軌道を、前記位置補正部により算出される位置補正量に従って補正されたロボットの動作軌道に置き換える置換部をさらに備える、請求項1からのいずれか1項に記載のロボットシステム。
  8. 前記加工ツールと前記ワークとの間に作用する力を検出する力センサが、前記ロボットの手首部に取付けられている、請求項1からのいずれか1項に記載のロボットシステム。
  9. 前記加工ツールと前記ワークとの間に作用する力を検出する力センサが、前記ロボットの可動範囲内の所定位置に固定されている、請求項1からのいずれか1項に記載のロボットシステム。
JP2014201327A 2014-09-30 2014-09-30 力制御を実行するロボットシステム Active JP5927259B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014201327A JP5927259B2 (ja) 2014-09-30 2014-09-30 力制御を実行するロボットシステム
US14/862,249 US9636827B2 (en) 2014-09-30 2015-09-23 Robot system for performing force control
DE102015012314.9A DE102015012314B4 (de) 2014-09-30 2015-09-23 Robotersystem zum Durchführen einer Kraftsteuerung
CN201510629448.4A CN105458878B (zh) 2014-09-30 2015-09-28 执行力控制的机器人***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201327A JP5927259B2 (ja) 2014-09-30 2014-09-30 力制御を実行するロボットシステム

Publications (2)

Publication Number Publication Date
JP2016068216A JP2016068216A (ja) 2016-05-09
JP5927259B2 true JP5927259B2 (ja) 2016-06-01

Family

ID=55485889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201327A Active JP5927259B2 (ja) 2014-09-30 2014-09-30 力制御を実行するロボットシステム

Country Status (4)

Country Link
US (1) US9636827B2 (ja)
JP (1) JP5927259B2 (ja)
CN (1) CN105458878B (ja)
DE (1) DE102015012314B4 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105844B2 (en) * 2016-06-16 2018-10-23 General Electric Company System and method for controlling robotic machine assemblies to perform tasks on vehicles
US10272573B2 (en) * 2015-12-18 2019-04-30 Ge Global Sourcing Llc Control system and method for applying force to grasp a brake lever
GB201517930D0 (en) * 2015-10-09 2015-11-25 Automata Technologies Ltd Robot arm effectors
US10029372B2 (en) * 2015-12-11 2018-07-24 General Electric Company Control system and method for brake bleeding
DE102016106488C5 (de) * 2016-04-08 2020-07-30 Battenberg Robotic Gmbh & Co. Kg Verfahren zum Erfassen eines Parameters eines Verschlusselementes
JP6434446B2 (ja) * 2016-04-28 2018-12-05 ファナック株式会社 加工システム
US10040196B2 (en) * 2016-07-07 2018-08-07 Technologies Holding Corp. System and method for in-flight robotic arm retargeting
JP6734522B2 (ja) * 2017-05-08 2020-08-05 トライエンジニアリング株式会社 ロボット装置
US10537993B2 (en) * 2017-08-17 2020-01-21 Matthew S. Ulliman Apparatus and method for surface finishing
EP3444079B1 (en) * 2017-08-17 2022-02-16 Siemens Healthcare GmbH Method and robotic system for operating a hand-guided robot
KR102075933B1 (ko) * 2017-10-30 2020-05-19 한국생산기술연구원 공구의 마모에 따라 가공부하를 조절하는 로봇 시스템 및 이를 이용한 가공부하 조절 방법
CN107962480B (zh) * 2017-11-28 2019-10-15 华中科技大学 一种叶片机器人砂带磨削加工力控制方法
CN107876904B (zh) * 2017-12-18 2023-10-27 唐山师范学院 对齿轮端面进行倒角打磨机械手及其打磨方法
WO2019127024A1 (en) * 2017-12-26 2019-07-04 Abb Schweiz Ag Method and apparatus for robotic machining
CN108406801A (zh) * 2018-03-23 2018-08-17 芜湖鲍斯柯机器人有限公司 机器人激光焊接打磨装置
JP6773712B2 (ja) * 2018-03-27 2020-10-21 ファナック株式会社 ロボット加工システム
JP7087632B2 (ja) * 2018-04-26 2022-06-21 セイコーエプソン株式会社 ロボット制御装置
JP7206638B2 (ja) * 2018-06-01 2023-01-18 セイコーエプソン株式会社 ロボット、制御装置およびロボットの制御方法
CN109366492A (zh) * 2018-10-24 2019-02-22 武汉理工大学 基于机器人的铸件打磨轨迹在线补偿***及方法
CN109732625B (zh) * 2019-03-15 2020-11-27 珠海格力电器股份有限公司 一种基于机器视觉的工业机器人柔性打磨方法及***
CN109807734B (zh) * 2019-03-19 2024-02-23 王承辉 自动打磨抛光机
WO2020241478A1 (ja) * 2019-05-28 2020-12-03 キョーラク株式会社 ロボットシステム、成形品の製造方法
JP7244758B2 (ja) * 2019-05-28 2023-03-23 キョーラク株式会社 ロボットシステム、成形品の製造方法
KR20220038067A (ko) * 2019-07-24 2022-03-25 시티즌 도케이 가부시키가이샤 가공장치, 이에 이용되는 제어장치 및 가공장치의 제어방법
CN110465862B (zh) * 2019-08-25 2021-05-04 山东理工大学 一种自动化复杂曲面力控高剪低压磨削装置及其加工方法
CN111136532B (zh) * 2020-01-02 2021-08-24 中车青岛四方机车车辆股份有限公司 自动打磨装置及打磨方法
HRP20200144A2 (hr) * 2020-01-29 2021-08-06 Amtos Solutions D.O.O. Uređaj za aktivno upravljanje kontaktnom silom u postupcima obrade
JP2022011402A (ja) * 2020-06-30 2022-01-17 セイコーエプソン株式会社 ロボットの制御方法およびロボットシステム
CN112720460B (zh) * 2020-12-07 2022-06-10 深圳市优必选科技股份有限公司 机器人控制方法、装置、计算机可读存储介质及机器人
US11673264B2 (en) 2021-03-25 2023-06-13 Mitsubishi Electric Research Laboratories, Inc. System and method for robotic assembly based on adaptive compliance
CN113459085A (zh) * 2021-05-24 2021-10-01 南京航空航天大学 一种基于力反馈的复杂曲面机器人贴合方法
CN114750153B (zh) * 2022-04-13 2024-03-19 上海电气集团股份有限公司 机器人机械臂的运动控制***、协作机器人及存储介质

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155356A (ja) 1984-01-26 1985-08-15 Robotsuto Giken Kk 研磨ロボツト
JPH01226671A (ja) 1988-03-04 1989-09-11 Murata Mach Ltd 糸継装置における継ぎ目検査方法
JP2676793B2 (ja) * 1988-06-30 1997-11-17 トヨタ自動車株式会社 倣い制御ロボット
US5448146A (en) 1993-01-29 1995-09-05 Board Of Regents, The University Of Texas System Method for applying constant force with nonlinear feedback control and constant force device using same
JPH06226671A (ja) 1993-02-02 1994-08-16 Mazda Motor Corp ロボットハンド制御装置
JPH0887336A (ja) 1994-09-19 1996-04-02 Hitachi Constr Mach Co Ltd 力制御ロボット
JPH08132332A (ja) * 1994-11-04 1996-05-28 Fanuc Ltd 工作機械における位置ずれ補正方法
JP2001219354A (ja) * 2000-02-04 2001-08-14 Kawasaki Heavy Ind Ltd 研磨システム
JP3923047B2 (ja) * 2003-03-04 2007-05-30 ファナック株式会社 同期制御装置
JP4098761B2 (ja) * 2004-08-17 2008-06-11 ファナック株式会社 仕上げ加工方法
JP4202365B2 (ja) * 2006-03-07 2008-12-24 ファナック株式会社 力制御装置
JP4267027B2 (ja) * 2006-12-07 2009-05-27 ファナック株式会社 ロボット制御装置
JP2008188722A (ja) 2007-02-06 2008-08-21 Fanuc Ltd ロボット制御装置
JP2009172692A (ja) 2008-01-22 2009-08-06 Yaskawa Electric Corp バリ取り工具を備えたロボット
JP5236596B2 (ja) * 2009-08-19 2013-07-17 ファナック株式会社 加工ロボットシステム
DE102011006679B4 (de) * 2011-03-16 2018-07-12 Ferrobotics Compliant Robot Technology Gmbh Aktive Handhabungsvorrichtung und Verfahren für Kontaktaufgaben
JP5966372B2 (ja) * 2012-01-17 2016-08-10 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、ロボット制御方法及びロボット
US8897919B2 (en) * 2012-06-13 2014-11-25 Fanuc Corporation Robot controller which conducts a force control by using a three-axial force sensor

Also Published As

Publication number Publication date
DE102015012314A1 (de) 2016-03-31
CN105458878A (zh) 2016-04-06
CN105458878B (zh) 2017-04-26
US20160089789A1 (en) 2016-03-31
JP2016068216A (ja) 2016-05-09
DE102015012314B4 (de) 2017-04-06
US9636827B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
JP5927259B2 (ja) 力制御を実行するロボットシステム
US11752626B2 (en) Apparatus and method for automated contact tasks
US9724825B2 (en) Robot controller for robot which sets two objects in combined state
JP5311294B2 (ja) ロボットの接触位置検出装置
JP5236596B2 (ja) 加工ロボットシステム
JP6484265B2 (ja) 学習制御機能を備えたロボットシステム及び学習制御方法
JP5890473B2 (ja) モータを制御するモータ制御装置
JP6663978B2 (ja) ツールオフセットを決定するシステムおよび方法
JP6924563B2 (ja) 位置決め制御装置の制御方法及び位置決め制御装置
KR101879025B1 (ko) 위치들을 기록하기 위한 장치 및 방법
JP2012115912A (ja) 加工ロボット及びその重力補償方法
JP6542629B2 (ja) 加工ツールの位置決め装置及び位置決め方法
US10618173B2 (en) Processing system and method for controlling processing machine
JP6088601B2 (ja) 走行軸付きロボットにおけるツール先端の振れを抑制するロボット制御装置
JP6988757B2 (ja) エンドエフェクタおよびエンドエフェクタ装置
CN117042930A (zh) 用于机器人辅助的表面加工的力控搬运装置
Ma et al. Design and control of an end-effector module for industrial finishing applications
JP6278620B2 (ja) アクティブコンプライアンス装置
JP2019010700A (ja) ロボット、ロボットシステム、及びそれらの制御方法
JP2019155523A (ja) ロボット制御装置、ロボット制御方法、ロボット制御装置を用いた物品の組立方法、プログラム及び記録媒体
JP6978950B2 (ja) 搬送装置及びその動作方法
US20230081519A1 (en) End effector, robot, and control method of the end effector
JP2024088431A (ja) 遠隔操作システム
JP2019117497A (ja) 接着装置
JP2021030326A (ja) ロボットシステム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5927259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150