JP5910640B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP5910640B2
JP5910640B2 JP2014004942A JP2014004942A JP5910640B2 JP 5910640 B2 JP5910640 B2 JP 5910640B2 JP 2014004942 A JP2014004942 A JP 2014004942A JP 2014004942 A JP2014004942 A JP 2014004942A JP 5910640 B2 JP5910640 B2 JP 5910640B2
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel cell
oxidant
porous body
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014004942A
Other languages
English (en)
Other versions
JP2015133285A (ja
Inventor
窪 英樹
英樹 窪
裕樹 岡部
裕樹 岡部
近藤 考司
考司 近藤
敦巳 井田
敦巳 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014004942A priority Critical patent/JP5910640B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to AU2015207341A priority patent/AU2015207341B2/en
Priority to EP15705698.7A priority patent/EP3095151B1/en
Priority to CA2936321A priority patent/CA2936321C/en
Priority to PCT/IB2015/000060 priority patent/WO2015107418A1/en
Priority to KR1020167018723A priority patent/KR101851886B1/ko
Priority to NO15705698A priority patent/NO3095151T3/no
Priority to BR112016016241-2A priority patent/BR112016016241B1/pt
Priority to DK15705698.7T priority patent/DK3095151T3/en
Priority to RU2016128217A priority patent/RU2638565C1/ru
Priority to CN201580004445.XA priority patent/CN105917510B/zh
Priority to US15/110,807 priority patent/US9923228B2/en
Publication of JP2015133285A publication Critical patent/JP2015133285A/ja
Application granted granted Critical
Publication of JP5910640B2 publication Critical patent/JP5910640B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、多孔体を反応ガス流路として用いている燃料電池に関する。
特許文献1には、力ソードの供給側マニホールドにエキスパンドメタルおよびシーリングプレートを突出させた燃料電池が記載されている。
特開2012−123949号公報
カソードガスの排出側では、反応により生成した水が排出される。しかしながら、上記特許文献1では、排出側マニホールドにおいて、効率よく排水するための構造については、十分な検討がされていなかった。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、複数の発電ユニットが積層されて形成される燃料電池が提供される。この燃料電池において、前記発電ユニットは、電解質膜と、前記電解質膜の両端にアノード側触媒層とカソード側触媒層とが積層している膜電極ガス拡散層接合体と、前記膜電極ガス拡散層接合体の外周に沿って配置されるシール部と、前記カソード側触媒層に面するように配置され、前記カソード側触媒層に酸化剤ガスを供給する多孔体流路と、前記シール部と前記多孔体流路との間に設けられた遮蔽板と、前記膜電極ガス拡散層接合体と前記多孔体流路とを挟持する一対のセパレータープレートと、を備え、前記シール部及び前記一対のセパレータープレートは、互いに対応する位置に開口部を有しており、前記開口部は、前記複数の発電ユニットが積層されたときに連通して、前記多孔体流路から酸化剤排ガスを排出する酸化剤排ガス排出マニホールドを形成し、前記遮蔽板と、前記多孔体流路と、前記一対のセパレータのうち前記多孔体流路側に接する第1のセパレータープレートと、は、前記シール部により規定される前記酸化剤排ガス排出マニホールドの内側に突出している。この形態の燃料電池によれば、遮蔽板と、多孔体流路と、一対のセパレータのうち多孔体流路側に接する第1のセパレータープレートとは、シール部により規定される酸化剤排ガス排出マニホールドの内側に突出しているので、燃料電池の反応により生成した生成水が酸化剤排ガス排出マニホールドに排出されやすく、酸化剤排ガス排出マニホールドから多孔体流路への水の逆流を抑制できる。
(2)上記形態の燃料電池において、前記多孔体流路の前記酸化剤排ガス排出マニホールドの内側に突出している部分の両面は、前記遮蔽板と、前記第1のセパレータープレートとによって覆われていてもよい。この形態の燃料電池燃料電池によれば、多孔体流路の両面は、遮蔽板と、第1のセパレータープレートとによって覆われていているので、この覆われた部分からの生成水の逆流を抑制できる。
(3)上記形態の燃料電池において、前記遮蔽板と前記第1のセパレータープレートのうち、前記酸化剤排ガス排出マニホールドにおける酸化剤排ガスの流れる向きにおいて下流側に配置される方は、上流側に配置される方よりも、前記酸化剤排ガス排出マニホールドの内側に突出している突出量が小さくてもよい。酸化剤排ガス排出マニホールドに排出された生成水は上流から下流に流れる。この形態の燃料電池によれば、多孔体流路の上流側が覆われているので、多孔体流路に生成水が逆流し難い。
(4)上記形態の燃料電池において、前記多孔体流路は、前記前記遮蔽板及び前記第1のセパレータープレートよりも、前記酸化剤排ガス排出マニホールドの内側に突出していてもよい。この形態の燃料電池によれば、多孔体の突出した部分から生成水を排出しやすい。
(5)上記形態の燃料電池において、前記遮蔽板と前記第1のセパレータープレートのうち、前記酸化剤排ガス排出マニホールドにおける酸化剤排ガスの流れる向きにおいて下流側に配置される方は、前記酸化剤排ガス排出マニホールドと前記多孔体流路とを連通させる孔またはスリットを有してもよい。この形態の燃料電池によれば、生成水を孔またはスリットから排出できる。
なお、本発明は、種々の態様で実現することが可能である。例えば、燃料電池の他、燃料電池における生成水の排水構造、等の形態で実現することができる。
燃料電池の外観を模式的に示す説明図である。 発電ユニットのターミナルプレート近傍における酸化剤排ガス排出マニホールド近傍を模式的に示す断面図である。 膜電極ガス拡散層接合体(MEGA)の構成を示す説明図である。 発電ユニットの酸化剤排ガス排出マニホールド近傍を拡大して示す説明図である。 比較例と本実施形態との酸化剤排ガスの流れ向きを示すシミュレーション結果を示す説明図である。 比較例の酸化剤排ガス排出マニホールドのターミナルプレート近傍における生成水の分布を示す説明図である。 本実施形態の酸化剤排ガス排出マニホールドのターミナルプレート近傍における生成水の分布を示す説明図である。 本実施形態と比較例の生成水の流れを簡単に比較する説明図である。 発電ユニットの圧力損失を示すグラフである。 エアストイキ比と発電ユニットの電圧(セル電圧)とを示す説明図である。 本実施形態の変形例の一部を示す説明図である。
第1の実施形態:
図1は、燃料電池の外観を模式的に示す説明図である。燃料電池10は、発電ユニット100と、ターミナルプレート200、210と、絶縁プレート220と、エンドプレート230、240と、を備える。発電ユニット100は、複数有り、積層されている。ターミナルプレート200、210は、積層された発電ユニット100の両側にそれぞれ配置されており、発電ユニット100からの電圧、電流を取り出すために用いられる。絶縁プレート220は、ターミナルプレート200の外側に配置されている。なお、ボディとの固定場所によっては、ターミナルプレート210の外側に絶縁プレートを配置する構成であってもよい。エンドプレート230、240は、発電ユニット100と、ターミナルプレート200、210と、絶縁プレート220と、を締結するために燃料電池10の両側に配置される。
燃料電池10は、発電ユニット100と、ターミナルプレート200と、絶縁プレート220と、エンドプレート230とは、それぞれ複数の開口部を有しており、これらの開口部が連通してマニホールド310、315、320、325、330、335が形成されている。マニホールド310は、発電ユニット100に酸化剤ガスを供給するために用いられるので、酸化剤ガス供給マニホールド310とも呼ぶ。以下、マニホールド315、320、325、330、335は、それぞれの役割から、「酸化剤排ガス排出マニホールド315」、「燃料ガス供給マニホールド320」、「燃料排ガス排出マニホールド325」、「冷媒供給マニホールド330」、「冷媒排出マニホールド335」とも呼ぶ。
図2は、発電ユニット100のターミナルプレート210近傍における酸化剤排ガス排出マニホールド315近傍を模式的に示す断面図である。発電ユニット100は、膜電極ガス拡散層接合体110(以下「MEGA110」と呼ぶ。)とフレーム140と、カソード側セパレータープレート150と、アノード側セパレータープレート160と、多孔体流路170と、遮蔽板180と、を備える。MEGA110の構成については、後述する。
フレーム140は、MEGA110を外縁から支持する部材であり、樹脂により形成されている。フレーム140は、カソード側セパレータープレート150と、アノード側セパレータープレート160とともに、酸化剤ガスや燃料ガス、冷媒の漏れをシールするため、シール部とも呼ぶ。フレーム140のカソード側には、遮蔽板180が配置されている。遮蔽板180は、金属製の板であり、一部が酸化剤排ガス排出マニホールド315内に突出している。なお、本実施形態では、カソード側セパレータープレート150と、アノード側セパレータープレート160と、フレーム140の長さが異なるので、酸化剤排ガス排出マニホールド315の端部(図2の下端)をフレーム140の端面140aで規定するものとする。なお、フレーム140の製造バラツキやバリ等を考慮して、フレーム140の端面140aの平均位置で規定しても良い。なお、酸化剤排ガス排出マニホールド315の他方の端(図2の上端)は、フレーム140の反対側の端面140b、カソード側セパレータープレート150、アノード側セパレータープレート160の端部位置が図の上下方向で同じ位置のため、フレーム140の反対側の端面140bあるいは、カソード側セパレータープレート150の端部、アノード側セパレータープレート160端部のいずれで規定しても良い。MEGA110とフレーム140と遮蔽板180のカソード側には、多孔体流路170が配置されている。多孔体流路170は、酸化剤ガスを流すための流路であり、エキスパンドメタルにより形成されている。ただし、エキスパンドメタルの代わりに、他の種類の金属多孔体により形成されていてもよい。多孔体流路170は、遮蔽板180と同位置まで酸化剤排ガス排出マニホールド315内に突出している。なお、図2において、カソード側セパレータープレート150、多孔体流路170、遮蔽板180の突出している大きさについては、模式的に示している。
多孔体流路170の隣の発電ユニット100側、あるいはターミナルプレート210側には、カソード側セパレータープレート150が配置される。カソード側セパレータープレート150は、金属製の板であり、一部が酸化剤排ガス排出マニホールド315内に突出している。MEGA110とフレーム140の多孔体流路170と反対側の面には、アノード側セパレータープレート160が配置される。アノード側セパレータープレート160は、凹凸のある金属製のプレートである。アノード側セパレータープレート160は、酸化剤排ガス排出マニホールド315内に突出していない。アノード側セパレータープレート160とMEGA110との間には燃料ガス流路132が形成され、アノード側セパレータープレート160とカソード側セパレータープレート150との間には、冷媒流路が形成される。
図3は、膜電極ガス拡散層接合体110(MEGA110)の構成を示す説明図である。MEGA110は、電解質膜112と、カソード側触媒層114と、アノード側触媒層116と、カソード側ガス拡散層118と、アノード側ガス拡散層120と、を備える。電解質膜112は、プロトン伝導性を有する電解質膜であり、例えば、パーフルオロカーボンスルホン酸ポリマのようなフッ素系電解質樹脂(イオン交換樹脂)が用いられる。
カソード側触媒層114と、アノード側触媒層116は、触媒(例えば白金)を担持したカーボンを有している。本実施形態では、アノード側触媒層116は電解質膜112の第1面の全領域にわたって塗工されているが、カソード側触媒層114は電解質膜112の第2面のうちの一部の領域(発電領域)のみに塗工されている。この理由は、アノード側触媒層116は、カソード側触媒層114に比べて単位面積当たりの触媒量が少なくて良い(典型的には1/2以下であり、例えば約1/3)ので、電解質膜112の第1面の全領域に触媒を塗工しても過度の無駄とはならない反面、塗工工程が簡単になるからである。
カソード側触媒層114の上には、カソード側ガス拡散層118が配置され、アノード側触媒層116の上には、アノード側ガス拡散層120が配置されている。カソード側ガス拡散層118及びアノード側ガス拡散層120は、カーボンペーパーで形成されているただし、カーボンペーパーの代わりにカーボン不織布で形成されていてもよい。
図4は、発電ユニット100の酸化剤排ガス排出マニホールド315近傍を拡大して示す説明図である。ここでは、本実施形態と、比較例の2つの構造を示している。本実施形態と比較例とも、多孔体流路170と、遮蔽板180とが、酸化剤排ガス排出マニホールド315内に突出している点は共通する。しかし、本実施形態では、カソード側セパレータープレート150と遮蔽板180が、多孔体流路170と同じ長さだけ酸化剤排ガス排出マニホールド315内に突出しており、多孔体流路170の両側の表面がこれらの2枚の板150、180により覆われている。これに対し、比較例では、カソード側セパレータープレート150は酸化剤排ガス排出マニホールド315内に突出していない点が異なる。
図5は、比較例と本実施形態との酸化剤排ガスの流れ向きを示すシミュレーション結果を示す説明図である。本実施形態では、多孔体流路170の両面が遮蔽板180とカソード側セパレータープレート150とによって覆われているので、多孔体流路170から排出される酸化剤排ガス及び生成水の方向は、酸化剤排ガス排出マニホールド315を流れる酸化剤排ガスの流れ方向とほぼ垂直方向である。これに対し、比較例では、多孔体流路170のカソード側セパレータープレート150側の面の一部は、カソード側セパレータープレート150によって覆われていないので、多孔体流路170から排出される酸化剤排ガス及び生成水は、酸化剤排ガス排出マニホールド315を流れる酸化剤排ガスの流れ方向とほぼ垂直方向だけでなく、酸化剤排ガス排出マニホールド315を流れる酸化剤排ガスの流れ方向と逆方向にも流れる。
図6は、比較例の酸化剤排ガス排出マニホールド315のターミナルプレート210近傍における生成水の分布を示す説明図である。上述したように、比較例では、多孔体流路170から排出される酸化剤排ガス及び生成水は、酸化剤排ガス排出マニホールド315を流れる酸化剤排ガスの流れ方向と逆方向にも流れるので、生成水は、図6左図の矢印で示すように酸化剤排ガス排出マニホールド315の奥、すなわち、ターミナルプレート210近傍に寄せ集まり滞留する。ここで、燃料電池10(図1)に対する負荷が小さくなって酸化剤ガスの流量が減少すると、多孔体流路170から排出される酸化剤排ガスに対して、滞留した生成水(以下「滞留水」とも呼ぶ。)が、蓋のように作用し、酸化剤排ガスの排出を阻害する。この結果、酸化剤ガスの圧力損失が増大する。そうすると、奥側の発電ユニット100に酸化剤ガスが供給され難くなる。また、滞留水と多孔体流路170との接触部の大きさが大きいので、燃料電池10への酸化剤ガスの供給が停止した場合には、多孔体流路170に滞留水が逆流し易い。
図7は、本実施形態の酸化剤排ガス排出マニホールド315のターミナルプレート210近傍における生成水の分布を示す説明図である。多孔体流路170の酸化剤排ガスの出口部分には、滞留水はほとんど存在しないため、他の部分に滞留水が存在しても、滞留水が蓋のように作用し難い。また、滞留水と多孔体流路170との接触部の大きさが小さいので、燃料電池10への酸化剤ガスの供給が停止した場合であっても、多孔体流路170に滞留水が逆流し難い。
図8は、本実施形態と比較例の生成水の流れを簡単に比較する説明図である。本実施形態では、酸化剤排ガスや生成水は、多孔体流路170の長手方向に沿った方向(図8の上下方向)に排出される。これに対し、比較例では、酸化剤排ガスや生成水は、多孔体流路170の長手方向に沿った方向と酸化剤排ガス排出マニホールド315の上流側に向かう方向との中間の方向に向けて排出される。なお、本実施形態では、図7に示すように滞留水(生成水)は、カソード側セパレータープレート150と、遮蔽板180との間の凹部に溜まるが、滞留水は、多孔体流路170とほとんど接していないので、多孔体流路170には逆流し難い。一方、比較例では、図6に示すように、滞留水(生成水)は、多孔体流路170と、遮蔽板180との間の凹部に溜まり、多孔体流路170と接しており、多孔体流路170に逆流し易いと言える。
図9は、発電ユニット100の圧力損失を示すグラフである。なお、図9では、圧力損失を、比較例のドライ状態における圧力損失を1.0としたときの比を用いて示している。また、燃料電池10には、多数の発電ユニット100があるが、グラフの値は平均値である。ドライとは、燃料電池10において発電をしていない状態、すなわち生成水が発生しない状態で酸化剤ガスを流したときを意味する。ウェットとは、燃料電池10において、最大電流量で発電をしている状態、すなわち生成水の生成量が最も多い状態で酸化剤ガスを流したときを意味する。燃料電池10が車両等に搭載されて使用される場合には、このドライとウェットとの間の状態で運転される。
一般に、酸化剤ガス供給マニホールド310の入口側は、発電ユニット100に酸化剤ガスが入り易いが、ターミナルプレート210との突き当たり側は、圧力損失のため発電ユニット100に酸化剤ガスが入り難い。特にウェット状態では、入口側の圧力損失はドライ状態とあまり変わらないが、ターミナルプレート210との突き当たり側では、生成水によりさらに圧力損失が増大し、圧力損失のため発電ユニット100に酸化剤ガスが入り難くなる。したがって、ドライよりもウェットの方が、圧力損失が大きい。
上述したように、車両では、燃料電池10は、ドライとウェットとの間の状態で運転される。そのため、圧力損失の大きなウェット側において、圧力損失が小さいことが好ましい。比較例のドライ状態における圧力損失を1.0としたときのウェット側で圧力損失は、比較例では、2.8であり、本実施形態では、2.5であるので、比較例よりも、本実施形態の方が好ましい。
また、ウェット/ドライ圧力損失比も、以下の理由により小さい方がよい。例えば、高温で燃料電池10が運転される場合の運転状態は、高温により乾燥しており、ドライにおける運転状態に近い。ここで、車両が停車し、駐車場に入る場合のように、ゆっくり動く場合、燃料電池10の温度が下がるため、運転状態は、ドライからウェットに変わる。この場合、全ての発電ユニット100は、同じようなウェットとはならない。ここで、ドライ状態とウェット状態との圧力損失比が大きいと、これらの2つの状態における各発電ユニット100のガス供給状態が大きく異なるので、効率的な発電が阻害されるおそれがある。したがって、ウェット/ドライ圧力損失比も小さい方が好ましい。ウェット/ドライ圧力損失比は、比較例では、2.8であり、本実施形態では、2.4であるので、比較例よりも、本実施形態の方が好ましい。
図10は、エアストイキ比と発電ユニット100の電圧(セル電圧)とを示す説明図である。本実施形態では、発電ユニット100に一定の電流を流したときの発電ユニット100の電圧を測定している。ここで、エアストイキ比とは、発電ユニット100に一定の電流を流すのに必要な酸化剤ガス量に対する、発電ユニット100に流す酸化剤ガス量の比を意味する。例えば、エアストイキ比2であれば、発電ユニット100に一定の電流を流すのに必要な酸化剤ガス量の2倍の量の酸化剤ガスを発電ユニットに流している。ここで、生成水の滞留による影響は、酸化剤ガスの流量の少ない低エアストイキ比側で現れ易い。エアストイキ比の低い領域では、実施形態の方が、比較例よりもセル電圧が高く、本実施形態の効果が現れていると言える。
以上説明したように、本実施形態では、多孔体流路170と、カソード側セパレータープレート150と、遮蔽板180とが、フレーム140で規定される酸化剤排ガス排出マニホールドの内側に突出しているので、多孔体流路170の酸化剤排ガスの出口部分には、滞留水はほとんど存在せず、滞留水が蓋のように作用し難い。また、滞留水と多孔体流路170との接触部の大きさが小さいので、燃料電池10への酸化剤ガスの供給が停止した場合であっても、多孔体流路170に滞留水が逆流し難い。その結果、生成水が排出し易く、ウェットにおける発電性能の低下を抑制できる。
図11は、本実施形態の変形例の一部を示す説明図である。図11(A)は、多孔体流路170と、カソード側セパレータープレート150と、遮蔽板180とを、フレーム140で規定される酸化剤排ガス排出マニホールドの内側に突出させている点は本実施形態と共通するが、遮蔽板180の突出量を多孔体流路170の突出量よりも小さくしている。その結果、遮蔽板180は、多孔体流路170のフレーム140の端面140a寄りを覆っているが、多孔体流路170の端部(図11(A)の上側)を覆っていない。この形態では、酸化剤排ガス及び生成水は、酸化剤排ガスや生成水は、多孔体流路170の長手方向に沿った方向と酸化剤排ガス排出マニホールド315の下流側に向かう方向との中間の方向に向けて排出される。そのため、生成水が逆流することはなく、スムーズに排出される。なお、遮蔽板180をフレーム140で規定される酸化剤排ガス排出マニホールド315の内側に突出させない構成であってもよい。
図11(B)は、多孔体流路170と、カソード側セパレータープレート150と、遮蔽板180との配置は、本実施形態と同じであるが、遮蔽板180に多数の孔181を備える点が異なる。この形態では、酸化剤排ガスや生成水は、本実施形態と同様に、多孔体流路170の長手方向に沿った方向に排出される他、遮蔽板180の孔181から酸化剤排ガスの流れの下流方向に排出される。そのため、生成水が逆流することはなく、燃料電池10該に容易に排出される。なお、生成水が排出可能であれば、孔181の代わりにスリットを採用しても良い。
図11(C)は、多孔体流路170と、カソード側セパレータープレート150と、遮蔽板180とを、フレーム140で規定される酸化剤排ガス排出マニホールド315の内側に突出させている点は、本実施形態と共通するが、遮蔽板180とカソード側セパレータープレート150の突出量を多孔体流路170の突出量よりも小さくしている。すなわち、多孔体流路170のフレーム140の端面140a寄りは、カソード側セパレータープレート150と、遮蔽板180とによって覆われているが、多孔体流路170の端部(図11(C)の上側)は、遮蔽板180とカソード側セパレータープレート150に覆われていない。この形態では、酸化剤排ガスや生成水は、本実施形態と同様に、多孔体流路170の長手方向に沿った方向に排出される。滞留水が存在する場合、図6の右図あるいは、図7に示すように、カソード側セパレータープレート150と、遮蔽板180との間に溜まる。この形態であっても、図7に示した本実施形態と同様に、多孔体流路170は、滞留水と接触し難いので、滞留水が蓋のように作用し難い。また、燃料電池10への酸化剤ガスの供給が停止した場合であっても、多孔体流路170に滞留水が逆流し難い。なお、遮蔽板180とカソード側セパレータープレート150の突出量が多孔体流路170の突出量よりも小さければ、遮蔽板180とカソード側セパレータープレート150それぞれの突出量は、同じ突出量か、酸化剤排ガスの流れの上流側であるカソード側セパレータープレート150の方が突出していることが好ましい。『多孔体流路170の突出量>カソード側セパレータープレート150の突出量≧遮蔽板180の突出量』であることが好ましい。ただし、遮蔽板180方をカソード側セパレータープレート150よりも突出させても良い。
上記実施形態において、発電ユニット100のカソード側を酸化剤排ガス排出マニホールド315の流れの上流側、アノード側を下流側としているが、カソードとアノードの関係は逆であっても良い。この場合、変形例の図11(A)に対応する例では、カソード側セパレータープレート150の突出量が、多孔体流路170と、遮蔽板180の突出量よりも小さくすればよい。また、変形例の図11(B)に対応する例では、カソード側セパレータープレート150に開口を設ければ良い。
上述した実施形態及び各種の変形例から理解できるように、遮蔽板180と、多孔体流路170と、カソード側セパレータープレート150とが、フレーム140により規定される酸化剤排ガス排出マニホールド315の内側に突出していることが好ましい。
以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。
10…燃料電池
100…発電ユニット
110…膜電極ガス拡散層接合体(MEGA)
112…電解質膜
114…カソード側触媒層
116…アノード側触媒層
118…カソード側ガス拡散層
120…アノード側ガス拡散層
132…燃料ガス流路
140…フレーム
140a、140b…端面
150…カソード側セパレータープレート
160…アノード側セパレータープレート
170…多孔体流路
180…遮蔽板
181…孔
200、210…ターミナルプレート
220…絶縁プレート
230、240…エンドプレート
310…酸化剤ガス供給マニホールド
315…酸化剤排ガス排出マニホールド
320…燃料ガス供給マニホールド
325…燃料排ガス排出マニホールド
330…冷媒供給マニホールド
335…冷媒排出マニホールド

Claims (5)

  1. 複数の発電ユニットが積層されて形成される燃料電池であって、
    前記発電ユニットは、
    電解質膜と、前記電解質膜の第1面にアノード側触媒層が積層され、前記第1面と反対側の面である第2面にカソード側触媒層が積層されている膜電極ガス拡散層接合体と、
    前記膜電極ガス拡散層接合体の外周に沿って配置されるシール部と、
    前記カソード側触媒層に面するように配置され、前記カソード側触媒層に酸化剤ガスを供給する多孔体流路と、
    前記シール部と前記多孔体流路との間に設けられた遮蔽板と、
    前記膜電極ガス拡散層接合体と前記多孔体流路とを挟持する一対のセパレータープレートと、
    を備え、
    前記シール部及び前記一対のセパレータープレートは、互いに対応する位置に開口部を有しており、
    前記開口部は、前記複数の発電ユニットが積層されたときに連通して、前記多孔体流路から酸化剤排ガスを排出する酸化剤排ガス排出マニホールドを形成し、
    前記遮蔽板と、前記多孔体流路と、前記一対のセパレータープレートのうち前記多孔体流路側に接する第1のセパレータープレートと、は、前記シール部により規定される前記酸化剤排ガス排出マニホールドの内側に突出している、燃料電池。
  2. 請求項1に記載の燃料電池において、
    前記多孔体流路の前記酸化剤排ガス排出マニホールドの内側に突出している部分の両面は、前記遮蔽板と、前記第1のセパレータープレートとによって覆われている、燃料電池。
  3. 請求項1に記載の燃料電池において、
    前記遮蔽板と前記第1のセパレータープレートのうち、前記酸化剤排ガス排出マニホールドにおける酸化剤排ガスの流れる向きにおいて下流側に配置される方は、上流側に配置される方よりも、前記酸化剤排ガス排出マニホールドの内側に突出している突出量が小さい、燃料電池。
  4. 請求項1に記載の燃料電池において、
    前記多孔体流路は、前記前記遮蔽板及び前記第1のセパレータープレートよりも、前記酸化剤排ガス排出マニホールドの内側に突出している、燃料電池。
  5. 請求項1〜4のいずれか一項に記載に記載の燃料電池において、
    前記遮蔽板と前記第1のセパレータープレートのうち、前記酸化剤排ガス排出マニホールドにおける酸化剤排ガスの流れる向きにおいて下流側に配置される方は、前記酸化剤排ガス排出マニホールドと前記多孔体流路とを連通させる孔またはスリットを有する、燃料電池。
JP2014004942A 2014-01-15 2014-01-15 燃料電池 Active JP5910640B2 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2014004942A JP5910640B2 (ja) 2014-01-15 2014-01-15 燃料電池
DK15705698.7T DK3095151T3 (en) 2014-01-15 2015-01-06 fuel cell
CA2936321A CA2936321C (en) 2014-01-15 2015-01-06 Fuel cell with improved water discharge
PCT/IB2015/000060 WO2015107418A1 (en) 2014-01-15 2015-01-06 Fuel cell
KR1020167018723A KR101851886B1 (ko) 2014-01-15 2015-01-06 연료 전지
NO15705698A NO3095151T3 (ja) 2014-01-15 2015-01-06
AU2015207341A AU2015207341B2 (en) 2014-01-15 2015-01-06 Fuel cell
EP15705698.7A EP3095151B1 (en) 2014-01-15 2015-01-06 Fuel cell
RU2016128217A RU2638565C1 (ru) 2014-01-15 2015-01-06 Топливный элемент
CN201580004445.XA CN105917510B (zh) 2014-01-15 2015-01-06 燃料电池
US15/110,807 US9923228B2 (en) 2014-01-15 2015-01-06 Fuel cell
BR112016016241-2A BR112016016241B1 (pt) 2014-01-15 2015-01-06 Célula de combustível

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014004942A JP5910640B2 (ja) 2014-01-15 2014-01-15 燃料電池

Publications (2)

Publication Number Publication Date
JP2015133285A JP2015133285A (ja) 2015-07-23
JP5910640B2 true JP5910640B2 (ja) 2016-04-27

Family

ID=52339655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014004942A Active JP5910640B2 (ja) 2014-01-15 2014-01-15 燃料電池

Country Status (12)

Country Link
US (1) US9923228B2 (ja)
EP (1) EP3095151B1 (ja)
JP (1) JP5910640B2 (ja)
KR (1) KR101851886B1 (ja)
CN (1) CN105917510B (ja)
AU (1) AU2015207341B2 (ja)
BR (1) BR112016016241B1 (ja)
CA (1) CA2936321C (ja)
DK (1) DK3095151T3 (ja)
NO (1) NO3095151T3 (ja)
RU (1) RU2638565C1 (ja)
WO (1) WO2015107418A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547731B2 (ja) * 2016-12-13 2019-07-24 トヨタ自動車株式会社 燃料電池スタック
JP7062993B2 (ja) * 2018-02-13 2022-05-09 トヨタ自動車株式会社 燃料電池の検査方法および検査システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874364B2 (ja) * 2004-12-28 2007-01-31 松下電器産業株式会社 燃料電池及びこれを備える燃料電池スタック
KR101594612B1 (ko) * 2006-04-11 2016-02-16 마이에프씨 에이비 고분자 전해질 전기 화학 장치
JP4978060B2 (ja) * 2006-05-31 2012-07-18 トヨタ自動車株式会社 燃料電池およびその製造方法
US8642230B2 (en) * 2007-06-11 2014-02-04 Panasonic Corporation Electrode-membrane-frame assembly for fuel cell, polyelectrolyte fuel cell and manufacturing method therefor
JP2009054346A (ja) * 2007-08-24 2009-03-12 Toyota Motor Corp 燃料電池用セパレータ及び燃料電池
JP5286895B2 (ja) * 2008-04-04 2013-09-11 トヨタ自動車株式会社 単セルアセンブリ、および燃料電池
JP5366469B2 (ja) * 2008-08-04 2013-12-11 本田技研工業株式会社 電解質膜・電極構造体
JP5203250B2 (ja) * 2009-02-19 2013-06-05 本田技研工業株式会社 燃料電池スタック
JP5240282B2 (ja) * 2010-12-06 2013-07-17 トヨタ自動車株式会社 燃料電池セル
JP2012226979A (ja) * 2011-04-20 2012-11-15 Toyota Motor Corp 燃料電池
RU2496187C1 (ru) * 2012-02-22 2013-10-20 Общество С Ограниченной Ответственностью "М-Пауэр Ворлд" Биоэлектрохимический реактор

Also Published As

Publication number Publication date
DK3095151T3 (en) 2018-04-23
EP3095151A1 (en) 2016-11-23
CA2936321C (en) 2018-05-29
AU2015207341B2 (en) 2017-03-02
US20160329593A1 (en) 2016-11-10
JP2015133285A (ja) 2015-07-23
KR101851886B1 (ko) 2018-04-24
CN105917510A (zh) 2016-08-31
KR20160098366A (ko) 2016-08-18
BR112016016241B1 (pt) 2023-11-14
BR112016016241A2 (pt) 2017-08-08
CA2936321A1 (en) 2015-07-23
AU2015207341A1 (en) 2016-07-28
RU2638565C1 (ru) 2017-12-14
EP3095151B1 (en) 2018-02-28
WO2015107418A1 (en) 2015-07-23
CN105917510B (zh) 2018-09-11
NO3095151T3 (ja) 2018-07-28
US9923228B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
CN109728322B (zh) 用于燃料电池的电池单元框架及燃料电池堆
JP2017199609A (ja) 燃料電池
JP5321086B2 (ja) 燃料電池
JP6119707B2 (ja) 燃料電池および燃料電池の製造方法
JP5093249B2 (ja) 燃料電池
JP5910640B2 (ja) 燃料電池
JP5125016B2 (ja) 燃料電池
JP4957091B2 (ja) 燃料電池
JP2012069445A (ja) 燃料電池
JP5653867B2 (ja) 燃料電池
JP6156317B2 (ja) 膜電極接合体及び燃料電池
CN216288531U (zh) 燃料电池堆的发电单电池
JP2014241222A (ja) 燃料電池
JP2006066225A (ja) 燃料電池セパレータ
KR102540924B1 (ko) 연료전지 스택
JP6780612B2 (ja) 燃料電池用セパレータ
JP2006012462A (ja) 燃料電池のシール構造
JP2023102600A (ja) 発電セル
JP6519496B2 (ja) 燃料電池
JP2012003875A (ja) 燃料電池
JP4972891B2 (ja) 燃料電池のセパレータ流路構造
JP2012014846A (ja) 燃料電池用セパレータ
JP2019125531A (ja) 燃料電池
JP2009259735A (ja) 燃料電池
JP2018081880A (ja) 燃料電池

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R151 Written notification of patent or utility model registration

Ref document number: 5910640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151