JP5905205B2 - Metallic magnetic powder and method for producing the same - Google Patents

Metallic magnetic powder and method for producing the same Download PDF

Info

Publication number
JP5905205B2
JP5905205B2 JP2011078225A JP2011078225A JP5905205B2 JP 5905205 B2 JP5905205 B2 JP 5905205B2 JP 2011078225 A JP2011078225 A JP 2011078225A JP 2011078225 A JP2011078225 A JP 2011078225A JP 5905205 B2 JP5905205 B2 JP 5905205B2
Authority
JP
Japan
Prior art keywords
magnetic powder
metal magnetic
particles
iron
iron oxyhydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011078225A
Other languages
Japanese (ja)
Other versions
JP2012212807A (en
Inventor
和正 碇
和正 碇
吉田 貴行
貴行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2011078225A priority Critical patent/JP5905205B2/en
Publication of JP2012212807A publication Critical patent/JP2012212807A/en
Application granted granted Critical
Publication of JP5905205B2 publication Critical patent/JP5905205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は金属磁性粉末およびその製造方法に関し、特に、塗布型磁気記録媒体に使用される強磁性金属粉末およびその製造方法に関する。   The present invention relates to a metal magnetic powder and a method for producing the same, and more particularly to a ferromagnetic metal powder used for a coating type magnetic recording medium and a method for producing the same.

塗布型磁気記録媒体などの情報記録媒体は、音声情報や映像情報などの情報を記録および保存するために使用されており、近年の音声情報や映像情報のデジタル化やハイエンド化に伴って、情報記録媒体に記録および保存する情報量が増加する傾向にある。そのため、情報記録媒体の高容量化が指向されており、従来から高容量の磁気記録媒体として広く利用されてきた塗布型磁気記録媒体は、情報容量に対する単価の低廉性や、長期間の保管に耐え得る保管安定性から、益々重要性が高まっている。   Information recording media such as coating-type magnetic recording media are used for recording and storing information such as audio information and video information, and the information has become digital and high-end in recent years. There is a tendency that the amount of information recorded and stored in a recording medium increases. For this reason, an increase in the capacity of information recording media has been aimed at, and coating type magnetic recording media that have been widely used as high-capacity magnetic recording media have been used for low unit prices for information capacity and for long-term storage. The importance of storage stability that can withstand is increasing.

代表的な塗布型磁気記録媒体である磁気テープでは、1巻当たりの巻き数を増加させることによって高容量化する方法があるが、磁気テープの容器の容積やベースフィルムなどの他の部材の影響のために、巻き数の増加による高容量化には限界がある。一方、磁気記録媒体の小さい面積に多くの情報を書き込めるようにすることによって高容量化する方法もあり、この方法は極めて効果的な方法である。また、磁気記録媒体に情報を書き込むための記録波長を短くすることによって高容量化する方法もある。   There is a method to increase the capacity by increasing the number of windings per roll in a magnetic tape which is a typical coating type magnetic recording medium, but the influence of the volume of the container of the magnetic tape and other members such as a base film. For this reason, there is a limit to increasing the capacity by increasing the number of windings. On the other hand, there is a method of increasing the capacity by allowing a large amount of information to be written in a small area of the magnetic recording medium, and this method is extremely effective. There is also a method of increasing the capacity by shortening the recording wavelength for writing information on the magnetic recording medium.

磁気記録媒体の小さい面積に多くの情報を書き込めるようにすることによって高容量化する方法では、磁気記録媒体の限られた空間に金属磁性粉末の粒子をより多く存在させる必要があり、金属磁性粉末の粒子を微細化(低体積化)することが要求されている。また、磁気記録媒体に情報を書き込むための記録波長を短くする方法では、金属磁性粉末の粒子が情報の書き込みに耐えられる程度に微細化される、すなわち、記録波長よりも微細化されることが要求されている。このように、いずれの方法でも金属磁性粉末の粒子を微細化することが要求されている。   In the method of increasing the capacity by allowing a large amount of information to be written in a small area of the magnetic recording medium, it is necessary to have more particles of the metal magnetic powder in a limited space of the magnetic recording medium. It is demanded to reduce the size of the particles. Further, in the method of shortening the recording wavelength for writing information on the magnetic recording medium, the metal magnetic powder particles can be made fine enough to withstand the writing of information, that is, finer than the recording wavelength. It is requested. Thus, in any method, it is required to make the metal magnetic powder particles fine.

しかし、金属磁性粉末の粒子の微細化(低体積化)に伴って、比表面積が大きくなり、焼成および加熱還元の際に粒子間の焼結が生じ易くなり、粒子間の凝集が生じ易くなる。また、金属磁性粉末の粒子が焼結せずに粒子同士の凝集が抑制されて粒子の独立性が高くなっていなければ、微細化した金属磁性粉末を使用して磁性塗料を作製する際に分散性が悪くなり、磁性塗料中の磁性粒子の配向性が悪くなる。特に、金属磁性粉末の粒子が長軸長50nm以下の微粒子になると、粒子間の焼結を完全に防止することが困難になり、磁性塗料を作製する際の分散性を向上させるのが困難になり、磁性塗料中の磁性粒子の配向性が向上させるのが困難になる。   However, as the particles of metal magnetic powder become finer (lower volume), the specific surface area increases, and sintering between particles is likely to occur during firing and heat reduction, and aggregation between particles is likely to occur. . In addition, if the particles of the metal magnetic powder are not sintered and aggregation of the particles is suppressed and the independence of the particles is not increased, the particles are dispersed when the magnetic paint is made using the miniaturized metal magnetic powder. And the orientation of the magnetic particles in the magnetic coating is deteriorated. In particular, when the particles of the metal magnetic powder become fine particles having a major axis length of 50 nm or less, it becomes difficult to completely prevent the sintering between the particles, and it becomes difficult to improve the dispersibility when producing the magnetic paint. Thus, it becomes difficult to improve the orientation of the magnetic particles in the magnetic paint.

塗布型磁気記録媒体に使用される金属磁性粉末である(鉄を主成分として含有する)鉄系磁性粉体の粒子を微細化する方法として、焼結防止剤を含有するオキシ水酸化鉄(α−FeOOH)を焼成し、加熱還元して金属磁性粉末を得た後に、不要になった焼成防止剤に由来する非磁性成分を溶出させる方法が提案されている(例えば、特許文献1参照)。   An iron oxyhydroxide (α) containing an anti-sintering agent is used as a method of refining particles of an iron-based magnetic powder (containing iron as a main component) that is a metal magnetic powder used in a coating type magnetic recording medium. (FeOOH) is calcined and heat-reduced to obtain a metal magnetic powder, and then a method of eluting nonmagnetic components derived from the firing inhibitor that has become unnecessary is proposed (for example, see Patent Document 1).

また、金属磁性粉末を使用して磁性塗料を作製する際の分散性を向上させるために、ゲーサイト粒子を含む固形分濃度50重量%以下の含液物を真空凍結乾燥した後に加熱脱水して得られたヘマタイト粒子を加熱還元して、ほぐれ易く分散性に優れた金属磁性粉末を製造する方法が提案されている(例えば、特許文献2参照)。   In addition, in order to improve the dispersibility when producing a magnetic coating using a metal magnetic powder, a liquid-containing material containing goethite particles and having a solid content concentration of 50% by weight or less is vacuum-lyophilized and then heat-dehydrated. A method has been proposed in which the obtained hematite particles are reduced by heating to produce a metal magnetic powder that is easily loosened and excellent in dispersibility (see, for example, Patent Document 2).

特開2007−294841号公報(段落番号0022、0032)JP 2007-294841 A (paragraph numbers 0022, 0032) 特開2009−228136号公報(段落番号0016−0023)JP 2009-228136 A (paragraph numbers 0016-0023)

しかし、特許文献1の方法では、焼成および加熱還元の際に粒子間の焼結を防止することができるが、非磁性成分の少なくとも1種以上と錯体を形成し得る錯化剤が添加された液中において還元剤を作用させて非磁性成分を液中に溶出させる必要があり、金属磁性粉末の表面の特性が変化して磁性塗料中の磁性粒子の分散性が悪化する場合がある。   However, in the method of Patent Document 1, although sintering between particles can be prevented during firing and heat reduction, a complexing agent capable of forming a complex with at least one nonmagnetic component is added. It is necessary to cause a reducing agent to act in the liquid to elute the nonmagnetic component into the liquid, and the characteristics of the surface of the metal magnetic powder may change to deteriorate the dispersibility of the magnetic particles in the magnetic paint.

また、特許文献2の方法では、真空凍結乾燥という特殊な乾燥工程がボトルネックになって、大量生産には適していない。また、特許文献2の方法で得られる金属磁性粉末は、嵩密度が0.25g/cm以下と低いため、容器に詰めたときに詰まり難い粒子になって、必ずしも高密度磁気記録に適した粒子ではない。 In the method of Patent Document 2, a special drying process called vacuum freeze drying becomes a bottleneck and is not suitable for mass production. Moreover, since the metal magnetic powder obtained by the method of Patent Document 2 has a low bulk density of 0.25 g / cm 3 or less, it becomes particles that do not easily clog when packed in a container, and is not necessarily suitable for high-density magnetic recording. Not particles.

したがって、本発明は、このような従来の問題点に鑑み、粒子を小さくしても粒子同士の凝集を抑制して粒子の独立性を高くすることができ、磁性塗料に使用した場合に分散性を向上させることができるとともに、嵩密度を高くすることができる、金属磁性粉末およびその製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention can increase the independence of the particles by suppressing the aggregation of the particles even if the particles are small, and the dispersibility when used in the magnetic coating material. An object of the present invention is to provide a metal magnetic powder and a method for producing the same, which can improve the bulk density and increase the bulk density.

本発明者らは、上記課題を解決するために鋭意研究した結果、オキシ水酸化鉄の粒子の表面に焼結防止成分を被着させる前に、オキシ水酸化鉄のスラリーを湿式粉砕してオキシ水酸化鉄の粒子の凝集をほぐすことにより、焼結防止成分がより均一にオキシ水酸化鉄の粒子の表面を被覆して粒子間の焼結を抑制することができるようにすれば、金属磁性粉末の粒子を小さくしても粒子同士の凝集を抑制して粒子の独立性を高くすることができ、磁性塗料に使用した場合に分散性を向上させることができるとともに、嵩密度を高くすることができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention performed wet pulverization of the iron oxyhydroxide slurry by wet grinding the iron oxyhydroxide slurry before depositing the sintering inhibiting component on the surface of the iron oxyhydroxide particles. By reducing the aggregation of iron hydroxide particles, the anti-sintering component can more uniformly coat the surface of the iron oxyhydroxide particles and suppress the sintering between the particles. Even if the particle size of the powder is reduced, it is possible to increase the independence of the particles by suppressing the aggregation of the particles, and to improve the dispersibility when used in the magnetic paint, and to increase the bulk density. As a result, the present invention has been completed.

本発明による金属磁性粉末の製造方法は、オキシ水酸化鉄(α−FeOOH)のスラリーを湿式粉砕して得られたオキシ水酸化鉄の粒子の表面に焼結防止成分を被着させた後にオキシ水酸化鉄を還元することを特徴とする。   The method for producing a metal magnetic powder according to the present invention comprises the steps of depositing an anti-sintering component on the surface of iron oxyhydroxide particles obtained by wet-grinding an iron oxyhydroxide (α-FeOOH) slurry, and It is characterized by reducing iron hydroxide.

この金属磁性粉末の製造方法において、オキシ水酸化鉄のスラリーを湿式粉砕する際に、オキシ水酸化物のスラリーに分散剤を添加するのが好ましい。また、分散剤がカルボキシル基を有する化合物であるのが好ましい。さらに、焼結防止成分として(イットリウムを含む)希土類元素から選ばれる1種以上を含む焼結防止成分を使用してもよい。   In this metal magnetic powder manufacturing method, it is preferable to add a dispersant to the oxyhydroxide slurry when wet grinding the iron oxyhydroxide slurry. Moreover, it is preferable that a dispersing agent is a compound which has a carboxyl group. Further, a sintering preventing component containing one or more selected from rare earth elements (including yttrium) may be used as the sintering preventing component.

また、本発明による金属磁性粉末は、鉄または鉄とコバルトを主成分とする金属磁性相を有する粒子からなり、平均長軸長が10〜50nmであり、水銀圧入法により測定した細孔分布において細孔径が200nm以上の範囲の累積細孔容積が0.75mL/g以下であり、ゆるめ嵩密度が0.35g/cc以上で且つ固め嵩密度が0.40g/cc以上であることを特徴とする。   The metal magnetic powder according to the present invention is composed of particles having a metal magnetic phase mainly composed of iron or iron and cobalt, and has an average major axis length of 10 to 50 nm, in a pore distribution measured by a mercury intrusion method. The cumulative pore volume with a pore diameter in the range of 200 nm or more is 0.75 mL / g or less, the loose bulk density is 0.35 g / cc or more, and the consolidated bulk density is 0.40 g / cc or more. To do.

この金属磁性粉末では、金属磁性粉末の粒子の表面に焼結防止成分が被着してもよく、焼結防止成分として(イットリウムを含む)希土類元素から選ばれる1種以上を含む焼結防止成分を使用してもよい。   In this metal magnetic powder, an anti-sintering component may be deposited on the surface of the particles of the metal magnetic powder, and the anti-sintering component containing one or more selected from rare earth elements (including yttrium) as the anti-sintering component May be used.

本発明によれば、オキシ水酸化鉄の粒子の表面に焼結防止成分を被着させる前に、オキシ水酸化鉄のスラリーを湿式粉砕することにより、オキシ水酸化鉄の粒子の凝集をほぐすことができるので、焼結防止成分がより均一にオキシ水酸化鉄の粒子の表面を被覆することができ、金属磁性粉末の粒子を小さくしても粒子同士の凝集を抑制して粒子の独立性を高くすることができ、磁性塗料に使用した場合に分散性を向上させることができるとともに、嵩密度を高くすることができる。   According to the present invention, the iron oxyhydroxide slurry is wet pulverized to loosen the iron oxyhydroxide particles before the anti-sintering component is deposited on the surface of the iron oxyhydroxide particles. Therefore, the sintering prevention component can more uniformly coat the surface of the iron oxyhydroxide particles, and even if the particles of the metal magnetic powder are made smaller, the aggregation of the particles is suppressed and the independence of the particles is increased. When it is used for a magnetic paint, the dispersibility can be improved and the bulk density can be increased.

実施例においてオキシ水酸化鉄のスラリーを湿式粉砕するために使用する分散処理装置を概略的に示す図である。It is a figure which shows roughly the dispersion processing apparatus used in order to wet-grind the slurry of iron oxyhydroxide in an Example. 実施例および比較例において得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末のゆるめ嵩密度とその金属磁性粉末の平均粒子体積当たり(以下、「単位体積当たり」という)の磁気テープの保磁力との関係を示す図である。The loose bulk density of the metal magnetic powder and the average particle volume of the metal magnetic powder (hereinafter referred to as “per unit volume”) when the magnetic tape was produced using the metal magnetic powder obtained in the examples and comparative examples. It is a figure which shows the relationship with the coercive force of a magnetic tape. 実施例および比較例において得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末の固め嵩密度とその金属磁性粉末の単位体積当たりの磁気テープの保磁力との関係を示す図である。The figure which shows the relationship between the compacted bulk density of the metal magnetic powder at the time of producing a magnetic tape using the metal magnetic powder obtained in the Example and the comparative example, and the coercive force of the magnetic tape per unit volume of the metal magnetic powder It is. 実施例および比較例において得られた金属磁性粉末の水銀圧入法により測定した細孔分布における細孔径と累積細孔容積との関係を示す図である。It is a figure which shows the relationship between the pore diameter in the pore distribution measured by the mercury intrusion method of the metal magnetic powder obtained in the Example and the comparative example, and a cumulative pore volume. 実施例および比較例において得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末の平均粒子体積と磁気テープの保磁力との関係を示す図である。It is a figure which shows the relationship between the average particle volume of metal magnetic powder at the time of producing a magnetic tape using the metal magnetic powder obtained in the Example and the comparative example, and the coercive force of a magnetic tape. 実施例および比較例において得られた金属磁性粉末の水銀圧入法により測定した細孔分布における細孔径200nm以上の累積細孔容積とその金属磁性粉末を用いて作製した磁気テープの配向比との関係を示す図である。Relationship between cumulative pore volume of pore diameter of 200 nm or more in pore distribution measured by mercury intrusion method of metal magnetic powder obtained in Examples and Comparative Examples, and orientation ratio of magnetic tape prepared using the metal magnetic powder FIG. 実施例1の湿式粉砕後のオキシ水酸化鉄の粒子の透過型電子顕微鏡(TEM)写真である。2 is a transmission electron microscope (TEM) photograph of iron oxyhydroxide particles after wet grinding in Example 1. FIG. 比較例1の湿式粉砕後のオキシ水酸化鉄の粒子の透過型電子顕微鏡(TEM)写真である。2 is a transmission electron microscope (TEM) photograph of iron oxyhydroxide particles after wet pulverization of Comparative Example 1. FIG.

本発明による金属磁性粉末の製造方法の実施の形態では、オキシ水酸化鉄(α−FeOOH)のスラリーを湿式粉砕して得られたオキシ水酸化鉄の粒子の表面に焼結防止成分を被着させた後にオキシ水酸化鉄を還元する。   In the embodiment of the method for producing metal magnetic powder according to the present invention, an anti-sintering component is deposited on the surface of iron oxyhydroxide particles obtained by wet-grinding an iron oxyhydroxide (α-FeOOH) slurry. Then, iron oxyhydroxide is reduced.

出発材料として使用するオキシ水酸化鉄は、Feの一部が他の元素で置換されたオキシ水酸化鉄でもよく、従来の一般的な湿式法によって製造することができる。このオキシ水酸化鉄の粒子は、長軸長が20〜150nmであるのが好ましく、20〜100nmであるのがさらに好ましい。オキシ水酸化鉄の粒子がこの範囲の長軸長であれば、還元工程や安定化工程などの各工程の後でその体積が十分に小さくなり、より微粒子で高密度磁気記録に適した磁性粉末になる。   The iron oxyhydroxide used as a starting material may be iron oxyhydroxide in which a part of Fe is substituted with another element, and can be produced by a conventional general wet method. The major axis length of the iron oxyhydroxide particles is preferably 20 to 150 nm, and more preferably 20 to 100 nm. If the iron oxyhydroxide particles have a long axis length in this range, the volume is sufficiently small after each step such as the reduction step and the stabilization step, and the magnetic powder is finer and suitable for high-density magnetic recording. become.

オキシ水酸化鉄のスラリーの湿式粉砕は、分散容器内で回転翼の付いた回転軸を高速で回転させる回転剪断型撹拌機、分散メディアを含む分散容器内で回転翼の付いた回転軸を高速で回転させるアトライタおよびサンドミル、超音波分散機、高圧噴霧衝突式分散機などの様々な湿式粉砕装置を使用して行うことができる。この湿式粉砕装置にオキシ水酸化鉄のスラリーを通す回数は一回でもよいが、複数回にすれば、さらに独立性の高い粒子を得ることができる。   Wet grinding of iron oxyhydroxide slurry is a rotating shear type agitator that rotates a rotating shaft with rotating blades in a dispersion vessel at high speed, and a rotating shaft with rotating blades in a dispersion vessel containing dispersion media at high speed. It can be performed using various wet pulverizers such as an attritor and sand mill rotated at a high speed, an ultrasonic disperser, and a high-pressure spray impingement disperser. The number of times the iron oxyhydroxide slurry is passed through the wet pulverizer may be one, but if it is set to a plurality of times, particles with higher independence can be obtained.

オキシ水酸化鉄のスラリーの湿式粉砕は、効率的に粒子を処理するとともに粒子の独立性をさらに高めるために、スラリーに分散剤を添加して行うのが好ましい。この分散剤として、様々な分散剤を使用することができるが、最終製品として得られる金属磁性粉末の特性が劣化するのを防止するために、後工程において分解し得る炭素、窒素および酸素などによって構成された分散剤を使用するのが好ましい。特に、オキシ水酸化鉄の粒子の表面に作用して湿式粉砕効率を高めることができるカルボキシル基を有する化合物からなる分散剤を使用するのが好ましい。このようなカルボキシル基を有する化合物からなる分散剤として、(例えば、ライオン株式会社製のポリティA530、A540、A550、N−100K、PS−1900、サンノプコ株式会社製のSNディスパーザント5468、花王株式会社製のポイズ520、530、532A、カオーセラ2000などの)市販の分散剤を使用することができる。   The wet pulverization of the iron oxyhydroxide slurry is preferably performed by adding a dispersant to the slurry in order to efficiently process the particles and further increase the independence of the particles. Various dispersants can be used as this dispersant, but in order to prevent deterioration of the properties of the metal magnetic powder obtained as a final product, carbon, nitrogen, oxygen, etc., which can be decomposed in a later step, are used. It is preferred to use a structured dispersant. In particular, it is preferable to use a dispersant made of a compound having a carboxyl group that can act on the surface of the iron oxyhydroxide particles to increase the wet grinding efficiency. Examples of the dispersant composed of such a compound having a carboxyl group (for example, Polyty A530, A540, A550, N-100K, PS-1900 manufactured by Lion Corporation, SN Dispersant 5468 manufactured by San Nopco Corporation, Kao Corporation Commercially available dispersants (such as Poise 520, 530, 532A, Kaosela 2000, etc.) can be used.

オキシ水酸化鉄の粒子の表面に被着させる焼結防止成分は、(イットリウム(Y)を含む)希土類元素(R)から選ばれる1種以上を含むのが好ましい。このような焼結防止成分を被着させることにより、オキシ水酸化鉄の脱水および加熱還元時の焼結を防止することができる。なお、焼結防止成分を被着させる前にオキシ水酸化鉄のスラリーを湿式粉砕することにより、オキシ水酸化鉄の粒子の凝集をほぐすことができるので、焼結防止成分がより均一にオキシ水酸化鉄の粒子の表面を被覆することができる。   The sintering preventing component to be deposited on the surface of the iron oxyhydroxide particles preferably contains one or more selected from rare earth elements (R) (including yttrium (Y)). By adhering such an anti-sintering component, it is possible to prevent dehydration of iron oxyhydroxide and sintering during heat reduction. In addition, since the iron oxyhydroxide slurry is wet-pulverized before depositing the sintering preventing component, the aggregation of the iron oxyhydroxide particles can be loosened, so that the sintering preventing component is more uniformly distributed in the oxywater solution. The surface of the iron oxide particles can be coated.

このようにして焼結防止成分が表面に被着した針状粒子からなるオキシ水酸化鉄を先駆物質として得た後、酸化性雰囲気下において250〜600℃で加熱脱水することによって鉄系酸化物(α−酸化鉄(α−Fe))を得ることができる。なお、この加熱脱水時の雰囲気中に適量の水蒸気を添加してもよい。また、この酸化性雰囲気下における加熱脱水を省略して、鉄系酸化物を経由せずにオキシ水酸化鉄を直接加熱還元してもよい。 Thus, after obtaining iron oxyhydroxide which consists of acicular particle | grains which the anti-sintering component was adhere | attached on the surface as a precursor, it heat-dehydrates at 250-600 degreeC by oxidizing atmosphere, and iron-type oxide (Α-iron oxide (α-Fe 2 O 3 )) can be obtained. An appropriate amount of water vapor may be added to the atmosphere during the heat dehydration. Further, the heat dehydration in the oxidizing atmosphere may be omitted, and the iron oxyhydroxide may be directly heated and reduced without going through the iron-based oxide.

このようにして得られた鉄系酸化物を一酸化炭素、アセチレン、水素などの還元ガスにより250〜600℃の温度範囲で還元する。この還元は、多段還元(設定された温度範囲において所定の温度で所定の時間保持することをその保持温度を変えて数回繰り返して還元すること)でもよい。この保持温度と保持時間を適正に制御することにより、金属磁性粉末の特性を変化させることができる。また、この還元処理の雰囲気として、還元ガスに水蒸気を添加した雰囲気を使用してもよい。   The iron-based oxide thus obtained is reduced in a temperature range of 250 to 600 ° C. with a reducing gas such as carbon monoxide, acetylene or hydrogen. This reduction may be multi-stage reduction (retaining for a predetermined time at a predetermined temperature within a set temperature range by repeating the reduction several times by changing the holding temperature). By appropriately controlling the holding temperature and the holding time, the characteristics of the metal magnetic powder can be changed. Moreover, you may use the atmosphere which added water vapor | steam to reducing gas as the atmosphere of this reduction process.

このように加熱還元して得られた金属磁性粉末は、そのまま大気中で取り扱うと発火のおそれがあるので、徐酸化工程によって金属磁性粉末の粒子の表面に非磁性酸化物層および90emu/g以下の磁性酸化物層の少なくとも一方の酸化物層を形成するのが好ましい。この徐酸化工程は、不活性ガスに添加する酸化性ガスの量を徐々に増加した雰囲気中において金属磁性粉末を20〜300℃の温度で所定時間保持して、金属磁性粉末の粒子の表面に酸化物層を形成する工程である。実際には、還元が終了した後の金属磁性粉末を徐酸化工程を行う温度まで冷却し、その温度で徐酸化を行うのが好ましく、この温度で弱酸化性ガスによって金属磁性粉末の粒子の表面に酸化物層を形成して安定化させるのが好ましい。   Since the metal magnetic powder obtained by heating and reducing in this manner may ignite if handled in the air as it is, a non-magnetic oxide layer and 90 emu / g or less are formed on the surface of the metal magnetic powder particles by a gradual oxidation process. It is preferable to form at least one of the magnetic oxide layers. In this gradual oxidation step, the metal magnetic powder is held at a temperature of 20 to 300 ° C. for a predetermined time in an atmosphere in which the amount of oxidizing gas added to the inert gas is gradually increased. This is a step of forming an oxide layer. In practice, it is preferable to cool the metal magnetic powder after the reduction is completed to a temperature at which the gradual oxidation process is performed, and to perform the gradual oxidation at that temperature, and at this temperature, the surface of the particles of the metal magnetic powder by the weak oxidizing gas. It is preferable to stabilize by forming an oxide layer.

上述した実施の形態の金属磁性粉末の製造方法により製造された金属磁性粉末は、鉄または鉄とコバルトを主成分とする金属磁性相を有する粒子からなる金属磁性粉末である。すなわち、金属磁性相を構成する磁性元素(例えば、鉄、コバルト、ニッケル)のうち、鉄または鉄とコバルトの合計の原子割合が50%以上の金属磁性粉末である。   The metal magnetic powder produced by the method for producing a metal magnetic powder according to the above-described embodiment is a metal magnetic powder comprising particles having a metal magnetic phase mainly composed of iron or iron and cobalt. That is, among magnetic elements (for example, iron, cobalt, nickel) constituting the metal magnetic phase, it is a metal magnetic powder in which the total atomic ratio of iron or iron and cobalt is 50% or more.

この金属磁性粉末の表面に酸化膜を形成すると、鉄(Fe)とコバルト(Co)を主成分として含有する金属磁性粉末では、「{Co含有量(at%)/Fe含有量(at%)}×100」で表される、Feに対するCoの原子割合(以下「Co/Fe原子比」という)が、0〜50at%であるのが好ましく、5〜45at%であるのがさらに好ましく、10〜40at%であるのが最も好ましい。このような範囲であれば、安定した磁気特性が得られ易く、耐候性も良好になる。   When an oxide film is formed on the surface of the metal magnetic powder, the metal magnetic powder containing iron (Fe) and cobalt (Co) as main components is expressed as “{Co content (at%) / Fe content (at%). } × 100 ”, the atomic ratio of Co to Fe (hereinafter referred to as“ Co / Fe atomic ratio ”) is preferably 0 to 50 at%, more preferably 5 to 45 at%. Most preferred is ˜40 at%. Within such a range, stable magnetic characteristics can be easily obtained and weather resistance is also improved.

この金属磁性粉末にはAlが固溶しているのが好ましい。Alが固溶することにより、耐候性が改善されるとともに、焼結防止の効果も得られる。しかし、Alは非磁性成分であり、固溶量が多過ぎると磁気特性が希釈されて好ましくないので、金属磁性粉末全体に対するAl含有量は、0.1〜10質量%であるのが好ましく、0.5〜9質量%であるのがさらに好ましく、1〜8質量%であるのが最も好ましい。   It is preferable that Al is dissolved in the metal magnetic powder. When Al is dissolved, weather resistance is improved and an effect of preventing sintering is also obtained. However, Al is a non-magnetic component, and if the solid solution amount is too large, the magnetic properties are diluted, which is not preferable. Therefore, the Al content with respect to the entire metal magnetic powder is preferably 0.1 to 10% by mass, More preferably, it is 0.5-9 mass%, and it is most preferable that it is 1-8 mass%.

この金属磁性粉末には、還元時に焼結を抑制するための焼結防止成分が被着している。この焼結防止成分は、(イットリウム(Y)やスカンジウム(Sc)を含む)希土類元素から選ばれる1種以上を含むのが好ましい。金属磁性粉末が微粒子の場合には、焼結が進み易いことから、加熱の際に金属磁性粉末の微粒子の表面に希土類元素からなる焼結防止成分が被着しているのが極めて有効である。しかし、希土類元素は非磁性成分であり、希土類元素の含有量が多過ぎると磁気特性が希釈され、また、この金属磁性粉末を使用して作製した磁気テープとヘッドの摺動時にヘッドの汚れとして付着する可能性もあるので好ましくない。そのため、金属磁性粉末全体に対する希土類元素の含有量は、0質量%より多く且つ20質量%以下であるのが好ましく、0.1〜17質量%であるのがさらに好ましく、0.5〜15質量%であるのが最も好ましい。   This metal magnetic powder is coated with a sintering preventing component for suppressing sintering during reduction. This anti-sintering component preferably contains one or more selected from rare earth elements (including yttrium (Y) and scandium (Sc)). When the metal magnetic powder is a fine particle, sintering is easy to proceed. Therefore, it is extremely effective that a sintering preventing component made of a rare earth element is deposited on the surface of the fine particle of the metal magnetic powder during heating. . However, rare earth elements are non-magnetic components, and if the content of rare earth elements is too high, the magnetic properties are diluted. Since it may adhere, it is not preferable. Therefore, the content of the rare earth element with respect to the entire metal magnetic powder is preferably more than 0% by mass and 20% by mass or less, more preferably 0.1 to 17% by mass, and more preferably 0.5 to 15% by mass. % Is most preferred.

また、金属磁性粉末は、アルカリ土類金属を含んでもよい。アルカリ土類金属は意図的に添加してもよいが、原料の第一鉄塩、コバルト塩、アルミニウム塩、希土類塩から混入することもある。アルカリ土類金属の含有量が多過ぎると、時間の経過とともに周囲のバインダーなどと反応して塩を形成し、保存安定性を悪化させることがあり、特にアルカリ土類金属が水溶性の成分として含まれる場合にその影響が顕著に現れる可能性がある。そのため、金属磁性粉末全体に対するアルカリ土類金属の含有量は、0質量%より多く且つ0.5質量%以下であるのが好ましく、0.01〜0.3質量%であるのがさらに好ましく、0.01〜0.1質量%であるのが最も好ましい。   Moreover, the metal magnetic powder may contain an alkaline earth metal. The alkaline earth metal may be intentionally added, but may be mixed from the raw material ferrous salt, cobalt salt, aluminum salt or rare earth salt. When there is too much content of alkaline earth metal, it may react with surrounding binders over time to form a salt and deteriorate storage stability. Especially alkaline earth metal is a water-soluble component. If included, the effect may be noticeable. Therefore, the content of the alkaline earth metal with respect to the entire metal magnetic powder is preferably more than 0% by mass and 0.5% by mass or less, more preferably 0.01 to 0.3% by mass, Most preferably, it is 0.01-0.1 mass%.

この金属磁性粉末の粒子サイズは、平均長軸長が10〜50nmであるのが好ましく、10〜40nmであるのがさらに好ましい。平均長軸長が50nmを超えると、粒子体積が大きくなってしまい、磁気記録の高記録密度化に十分対応することが難しくなる。   As for the particle size of the metal magnetic powder, the average major axis length is preferably 10 to 50 nm, and more preferably 10 to 40 nm. When the average major axis length exceeds 50 nm, the particle volume becomes large, and it becomes difficult to sufficiently cope with the increase in recording density of magnetic recording.

この金属磁性粉末は、水銀圧入法により測定した細孔分布において細孔径が200nm以上の範囲の累積細孔容積が0.75mL/g以下である。この累積細孔容積が0.75mL/gより大きいと、金属磁性粉末にオキシ水酸化鉄の脱水および加熱還元時の粒子の焼結によるネッキングにより生じた粒子間の空孔が多く存在していることを示し、そのような金属磁性粉末は、粒子間の凝集が多くなり過ぎるため、高密度磁気記録に使用するには好ましくないからである。   This metal magnetic powder has a cumulative pore volume of 0.75 mL / g or less in a pore size range of 200 nm or more in a pore distribution measured by a mercury intrusion method. If the cumulative pore volume is larger than 0.75 mL / g, the metal magnetic powder has many voids between particles produced by necking by dehydration of iron oxyhydroxide and sintering of particles during heat reduction. This is because such a metal magnetic powder is not preferable for use in high-density magnetic recording because of excessive aggregation between particles.

この金属磁性粉末は、ゆるめ嵩密度が0.35g/cc以上で且つ固め嵩密度が0.40g/cc以上である。なお、本明細書中において、「ゆるめ嵩密度」とは、金属磁性粉末を自由落下させて容器に詰めたときの単位容積質量、「固め嵩密度」とは、金属磁性粉末100ccを容器に入れてタッピングを180回行った状態の単位容積質量をいい、これらの値から金属磁性粉末の単位体積当たりの詰まり易さがわかる。金属磁性粉末のゆるめ嵩密度が0.35g/cc以上で且つ固め嵩密度が0.40g/cc以上であれば、金属磁性粉末の粒子が詰まり易く、粒子が焼結せずに独立に存在する割合が高いため、磁気テープに使用したときに金属磁性粉末の単位体積当たりの保磁力が高くなることがわかった。なお、実用性を考慮すると、ゆるめ嵩密度は、好ましくは0.35〜0.65g/cc、さらに好ましくは0.35〜0.55g/ccであり、固め嵩密度は、好ましくは0.40〜0.60g/cc、さらに好ましくは0.40〜0.55g/ccである。   This metal magnetic powder has a loose bulk density of 0.35 g / cc or more and a hardened bulk density of 0.40 g / cc or more. In this specification, “loose bulk density” means the unit volume mass when the metal magnetic powder is freely dropped and packed in a container, and “hardened bulk density” means that 100 cc of the metal magnetic powder is put in the container. The unit volume mass in the state where tapping is performed 180 times is referred to, and the ease of clogging per unit volume of the metal magnetic powder can be understood from these values. If the loose bulk density of the metal magnetic powder is 0.35 g / cc or more and the solid bulk density is 0.40 g / cc or more, the particles of the metal magnetic powder are easily clogged and the particles exist independently without being sintered. Since the ratio was high, it was found that the coercive force per unit volume of the metal magnetic powder was high when used in a magnetic tape. In consideration of practicality, the loose bulk density is preferably 0.35 to 0.65 g / cc, more preferably 0.35 to 0.55 g / cc, and the hard bulk density is preferably 0.40. It is -0.60g / cc, More preferably, it is 0.40-0.55g / cc.

以下、本発明による金属磁性粉末およびその製造方法の実施例について詳細に説明する。   Examples of the magnetic metal powder and the method for producing the same according to the present invention will be described in detail below.

[実施例1]
Co/Fe=20.1at%、Al/(Fe+Co)=10.4at%の組成を有する長軸長88.1nmのオキシ水酸化鉄(α−FeOOH)を用意し、このオキシ水酸化鉄のスラリーを攪拌しながら、カルボキシル基を有する分散剤をオキシ水酸化鉄に対して2.5質量%になるように添加して10分間熟成させた後、この熟成させたスラリーを図1に概略的に示す分散処理装置の処理タンク1に入れて分散処理(湿式粉砕処理)を施した。この分散処理では、スラリーが処理タンク1から分散機を通って処理タンク2に送液されるのを1パスとし、処理タンク2から分散機を通って処理タンク1に送液されるのを2パスとして、10パス繰り返すことによって、オキシ水酸化鉄粒子を分散させた。なお、分散機としてアルティマイザーシステム(株式会社スギノマシン製のHJP−20084)を使用した。この湿式粉砕後のオキシ水酸化鉄の粒子の透過型電子顕微鏡(TEM)写真を図7に示す。このTEM写真からわかるように、オキシ水酸化鉄のスラリーを湿式粉砕することにより、オキシ水酸化鉄の粒子の凝集がほぐれていることがわかる。
[Example 1]
An iron oxyhydroxide (α-FeOOH) having a composition of Co / Fe = 20.1 at% and Al / (Fe + Co) = 10.4 at% and having a major axis length of 88.1 nm is prepared, and this iron oxyhydroxide slurry 1 was added to a dispersant having a carboxyl group so as to be 2.5% by mass with respect to iron oxyhydroxide and aged for 10 minutes, and the aged slurry is schematically shown in FIG. Dispersion treatment (wet pulverization treatment) was performed in the treatment tank 1 of the dispersion treatment apparatus shown. In this dispersion treatment, the slurry is sent from the treatment tank 1 through the dispersion machine to the treatment tank 2 as one pass, and the slurry is sent from the treatment tank 2 through the dispersion machine to the treatment tank 1 as 2 passes. As a pass, iron oxyhydroxide particles were dispersed by repeating 10 passes. In addition, an optimizer system (HJP-20084 manufactured by Sugino Machine Co., Ltd.) was used as a disperser. A transmission electron microscope (TEM) photograph of the iron oxyhydroxide particles after the wet pulverization is shown in FIG. As can be seen from the TEM photograph, it is found that the iron oxyhydroxide slurry is wet pulverized to loosen the aggregation of the iron oxyhydroxide particles.

このようにしてオキシ水酸化鉄粒子を分散させた液に(イットリウムとして2.0質量%含有する)酸化イットリウムの硫酸水溶液300gを添加して、Alが固溶するとともにイットリウムが表面に被着したオキシ水酸化鉄の粉末(ケーキ)を得た。このオキシ水酸化鉄のケーキを濾過し、水洗した後、130℃で乾燥させ、オキシ水酸化鉄の乾燥固形物を得た。   300 g of a sulfuric acid aqueous solution of yttrium oxide (containing 2.0 mass% as yttrium) was added to the liquid in which the iron oxyhydroxide particles were dispersed in this manner, so that Al was dissolved and yttrium was deposited on the surface. An iron oxyhydroxide powder (cake) was obtained. The iron oxyhydroxide cake was filtered, washed with water, and dried at 130 ° C. to obtain a dry solid of iron oxyhydroxide.

このオキシ水酸化鉄の乾燥固形物10gをバケットに入れ、水の流量として1.0g/分で水蒸気を添加しながら大気中において400℃で焼成し、α−酸化鉄(α−Fe)(ヘマタイト)を主成分とする鉄系酸化物を得た。 10 g of this dry iron oxyhydroxide solid was put into a bucket and fired at 400 ° C. in the atmosphere while adding water vapor at a flow rate of water of 1.0 g / min, and α-iron oxide (α-Fe 2 O 3 ) (Hematite) as a main component was obtained.

このα−酸化鉄を主成分とする鉄系酸化物を通気可能なバケット内に投入した後、バケットを貫通型還元炉内に装入し、水素ガスを40L/分の流量で通気するとともに、水の流量として1.0g/分で水蒸気を添加しながら、500℃で60分間還元処理を行った。この還元処理が終了した後、水蒸気の供給を停止し、水素雰囲気下において昇温速度10℃/分で600℃まで昇温させた。その後、水の流量として1.0g/分で水蒸気を添加しながら60分間高温還元処理を行い、(Feの一部がCoに置換された)金属鉄の粉末を得た。   After charging the iron-based oxide containing α-iron oxide as a main component into a bucket that can be ventilated, the bucket is charged into a through-type reduction furnace, and hydrogen gas is vented at a flow rate of 40 L / min. Reduction treatment was performed at 500 ° C. for 60 minutes while adding water vapor at a water flow rate of 1.0 g / min. After the reduction treatment was completed, the supply of water vapor was stopped, and the temperature was raised to 600 ° C. at a temperature rising rate of 10 ° C./min in a hydrogen atmosphere. Then, high-temperature reduction treatment was performed for 60 minutes while adding water vapor at a flow rate of water of 1.0 g / min, to obtain metallic iron powder (a part of Fe was replaced with Co).

次に、炉内雰囲気を水素から窒素に変換し、50L/分の流量で窒素を導入しながら炉内温度を降温速度20℃/分で80℃まで降温させた。その後、窒素と純酸素をそれぞれ50L/分および400mL/分の流量で混合したガスを炉内に添加した後、水の流量として1.0g/分で水蒸気を添加しながら、水蒸気と酸素と窒素の混合雰囲気中において、粉末の表面に酸化膜を形成し、空気の供給量を徐々に増加することによって、混合雰囲気中における酸素濃度を上昇させ、最終的な酸素の流量を2.0L/分にした。なお、炉内に導入されるガスの総量は、窒素の流量を調整することによってほぼ一定に保たれるようにし、この徐酸化処理は、約80℃に維持される雰囲気下において行った。   Next, the furnace atmosphere was converted from hydrogen to nitrogen, and the furnace temperature was lowered to 80 ° C. at a temperature drop rate of 20 ° C./min while introducing nitrogen at a flow rate of 50 L / min. Then, after adding a gas in which nitrogen and pure oxygen were mixed at a flow rate of 50 L / min and 400 mL / min, respectively, and adding water vapor at a flow rate of 1.0 g / min, water vapor, oxygen and nitrogen were added. In the mixed atmosphere, an oxide film is formed on the surface of the powder, and by gradually increasing the supply amount of air, the oxygen concentration in the mixed atmosphere is increased, and the final oxygen flow rate is 2.0 L / min. I made it. The total amount of gas introduced into the furnace was kept almost constant by adjusting the flow rate of nitrogen, and this gradual oxidation treatment was performed in an atmosphere maintained at about 80 ° C.

このようにして得られた金属磁性粉末(表面に酸化膜を有する最終製品としての金属磁性粉末)の製造条件として、オキシ水酸化鉄の長軸長、分散機の種類、分散処理のパス数および分散剤の添加量を表1に示す。   The production conditions of the metal magnetic powder thus obtained (the metal magnetic powder as the final product having an oxide film on the surface) include the major axis length of iron oxyhydroxide, the type of disperser, the number of passes of the dispersion treatment, and The amount of dispersant added is shown in Table 1.

Figure 0005905205
Figure 0005905205

また、得られた金属磁性粉末について、金属磁性相と酸化膜を含む粒子全体の質量分析を行うことによって粉末の組成を求めた。なお、Co、Alおよび(Yを含む)希土類元素の定量は、日本ジャーレルアッシュ株式会社製の高周波誘導プラズマ発光分析装置ICP(IRIS/AP)を使用し、Feの定量は、平沼産業株式会社製の平沼自動滴定装置(COMTIME−980)を使用して行った。また、これらの定量結果は質量%として与えられるので、適宜原子%(at%)に換算して、原子比Co/Fe、Al/(Fe+Co)、Y/(Fe+Co)を求めた。その結果、Co/Fe=20.4at%、Al/(Fe+Co)=10.3at%、Y/(Fe+Co)=9.8at%であった。   Moreover, about the obtained metal magnetic powder, the composition of the powder was calculated | required by performing mass spectrometry of the whole particle | grains containing a metal magnetic phase and an oxide film. Co, Al and rare earth elements (including Y) were quantified using a high frequency induction plasma emission spectrometer ICP (IRIS / AP) manufactured by Japan Jarrel Ash Co., and Fe was quantified by Hiranuma Sangyo Co., Ltd. This was carried out using a Hiranuma automatic titrator (COMTIME-980). Since these quantitative results are given as mass%, the atomic ratios Co / Fe, Al / (Fe + Co), and Y / (Fe + Co) were determined by appropriately converting to atomic% (at%). As a result, Co / Fe = 20.4 at%, Al / (Fe + Co) = 10.3 at%, and Y / (Fe + Co) = 9.8 at%.

また、得られた金属磁性粉末の粉体物理特性として、平均長軸長、平均短軸長、平均粒子体積、結晶子サイズDxおよびBET比表面積を算出し、ゆるめ嵩密度および固め嵩密度を測定した。   In addition, as the powder physical properties of the obtained metal magnetic powder, the average major axis length, the average minor axis length, the average particle volume, the crystallite size Dx and the BET specific surface area are calculated, and the loose bulk density and the compacted bulk density are measured. did.

(平均長軸長および平均短軸長)
平均長軸長および平均短軸長は、透過型電子顕微鏡(日本電子株式会社製のJEM−100CXMark−II型)を使用し、100kVの加速電圧で、明視野で金属磁性粉末を観察した像を(例えば、倍率58000倍で)写真撮影して(例えば、縦横の倍率を9倍に)拡大し、複数の写真から単分散している粒子をランダムに300個選択して、各々の粒子について長軸長と短軸長を測定し、その平均値から求めた。
(Average major axis length and average minor axis length)
The average major axis length and the average minor axis length are obtained by using a transmission electron microscope (JEM-100CXMark-II type manufactured by JEOL Ltd.) and observing an image obtained by observing the metal magnetic powder in a bright field at an acceleration voltage of 100 kV. Take a picture (for example, at a magnification of 58000) and magnify it (for example, the vertical and horizontal magnification is 9 times), and randomly select 300 monodispersed particles from a plurality of photographs. The axial length and the short axis length were measured and obtained from the average value.

(平均粒子体積)
平均粒子体積は、金属磁性粉末の粒子を円柱形状に近似して、平均粒子体積=π×平均長軸長×(平均短軸長/2)から求めた。
(Average particle volume)
The average particle volume was determined from the average particle volume = π × average long axis length × (average short axis length / 2) 2 by approximating the particles of the metal magnetic powder to a cylindrical shape.

(BET比表面積)
BET比表面積は、ユアサイオニクス株式会社製の4ソーブUSを用いて、BET法により求めた。
(BET specific surface area)
The BET specific surface area was calculated | required by BET method using 4 Sorb US made from Your Scionics.

(結晶子サイズDx)
結晶子サイズDxは、X線回折装置(株式会社リガク製のUlitimate−III)を使用して、測定範囲2θ=45〜60°においてスキャンスピード5°/分で積算回数を5回としてX線回折パターンを測定し、シェラー式(結晶子サイズ=Kλ/βcosθ)により求めた。このシェラーの式において、Kはシェラー定数0.9、λはCo−Kα線波長、βはFe(110)面の回折ピークの半価幅(ラジアン)、θは回折角(ラジアン)である。
(Crystallite size Dx)
The crystallite size Dx is determined by X-ray diffraction using an X-ray diffractometer (Ultimate-III manufactured by Rigaku Corporation) with a scanning speed of 5 ° / min and a number of integrations of 5 times in the measurement range 2θ = 45-60 °. The pattern was measured and determined by the Scherrer equation (crystallite size = Kλ / βcos θ). In this Scherrer equation, K is the Scherrer constant 0.9, λ is the Co-Kα ray wavelength, β is the half-value width (radian) of the diffraction peak of the Fe (110) plane, and θ is the diffraction angle (radian).

(ゆるめ嵩密度および固め嵩密度)
ゆるめ嵩密度および固め嵩密度は、粉体特性評価装置(ホソカワミクロン株式会社製のパウダーテスターPT−E型)を使用して測定した。
(Loose bulk density and firm bulk density)
The loose bulk density and the hard bulk density were measured using a powder characteristic evaluation apparatus (Powder Tester PT-E type manufactured by Hosokawa Micron Corporation).

これらの結果を表2に示す。   These results are shown in Table 2.

Figure 0005905205
Figure 0005905205

(金属磁性粉末の磁気特性および耐候性の評価)
得られた金属磁性粉末の磁気特性として、東英工業株式会社製のVSM装置(VSM−7P)を使用して、外部磁場10kOe(795.8kA/m)で、保磁力Hc(OeおよびkA/m)、飽和磁化σs(Am/kg)、角形比SQを測定した。また、金属磁性粉末の耐候性を評価する指標として、金属磁性粉末を設定温度60℃、相対湿度90%の恒温恒湿容器内に1週間保持したときの飽和磁化σsの低下率Δσs(%)を測定した。これらの結果を表3に示す。
(Evaluation of magnetic properties and weather resistance of metallic magnetic powder)
As the magnetic properties of the obtained metal magnetic powder, using a VSM device (VSM-7P) manufactured by Toei Kogyo Co., Ltd., an external magnetic field of 10 kOe (795.8 kA / m) and a coercive force Hc (Oe and kA / m), saturation magnetization σs (Am 2 / kg), and squareness ratio SQ were measured. Further, as an index for evaluating the weather resistance of the metal magnetic powder, the decrease rate Δσs (%) of the saturation magnetization σs when the metal magnetic powder is kept in a constant temperature and humidity container at a set temperature of 60 ° C. and a relative humidity of 90% for one week. Was measured. These results are shown in Table 3.

Figure 0005905205
Figure 0005905205

(磁気記録媒体の磁気特性)
得られた金属磁性粉末100質量部に、塩化ビニル樹脂(日本ゼオン株式会社製のMR−555)15質量部、ポリウレタン樹脂(東洋紡株式会社製のUR−8200)15質量部、ステアリン酸1質量部、アセチルアセトン1質量部、メチルエチルケトン190質量部、シクロヘキサノン80質量部およびトルエン110質量部を加えた組成の磁性塗料をマイクロピペットで0.700mL採取してポットに添加し、その直後にスチールボール(2φ)30gとナイロンボール(8φ)10個をポットに加えて、ポットの蓋を閉じて10分間静置した。その後、ポットを遠心式ボールミル(FRITSH P−6)にセットし、ゆっくりと回転数を上げて600rpmに調整し、60分間分散させた。遠心式ボールミルを停止した後、ポットを取り出し、予めメチルエチルケトンとトルエンを1:1で混合した調整液1.800mLをマイクロピペットで添加した。その後、再びポットを遠心式ボールミルにセットし、600rpmで5分間分散させて、磁性塗料を作製した。
(Magnetic properties of magnetic recording media)
100 parts by mass of the obtained metal magnetic powder, 15 parts by mass of vinyl chloride resin (MR-555 manufactured by Nippon Zeon Co., Ltd.), 15 parts by mass of polyurethane resin (UR-8200 manufactured by Toyobo Co., Ltd.), 1 part by mass of stearic acid Then, 0.700 mL of a magnetic paint having a composition comprising 1 part by mass of acetylacetone, 190 parts by mass of methyl ethyl ketone, 80 parts by mass of cyclohexanone and 110 parts by mass of toluene was sampled with a micropipette and added to the pot. 30 g and 10 nylon balls (8φ) were added to the pot, and the pot lid was closed and allowed to stand for 10 minutes. Thereafter, the pot was set on a centrifugal ball mill (FRITSH P-6), and the number of rotations was slowly increased to 600 rpm and dispersed for 60 minutes. After stopping the centrifugal ball mill, the pot was taken out and 1.800 mL of a preliminarily mixed solution of methyl ethyl ketone and toluene at 1: 1 was added with a micropipette. Thereafter, the pot was set again on the centrifugal ball mill and dispersed at 600 rpm for 5 minutes to produce a magnetic paint.

次に、ポットの蓋を開けてナイロンボールを取り除き、スチールボールごと磁性塗料をアプリケータ(55μm)に入れ、ベースフィルム(東レ株式会社製のポリエチレンフィルム15C−B500、膜厚15μm)上に磁性塗料を塗布した後、迅速に5.5kGの配向器のコイル中心に置いて磁場配向させた後、乾燥させて磁気テープを作製した。   Next, the pot lid is opened, the nylon balls are removed, the steel ball and the magnetic paint are put into an applicator (55 μm), and the magnetic paint is applied on the base film (polyethylene film 15C-B500 manufactured by Toray Industries, Inc., film thickness 15 μm). Was applied to the coil center of a 5.5 kG aligner and magnetically oriented, and then dried to produce a magnetic tape.

このようにして作製した媒体としての磁気テープについて、東英工業株式会社製のVSM装置(VSM−7P)を使用して磁気測定を行い、保磁力Hcx(OeおよびkA/m)、金属磁性粉末の単位体積当たりの磁気テープの保磁力Hcx/V(Oe/nm)、保磁力分布SFD、角形比SQ、配向比ORを求めた。これらの結果を表4に示す。 The magnetic tape as the medium thus produced was subjected to magnetic measurement using a VSM device (VSM-7P) manufactured by Toei Kogyo Co., Ltd., coercive force Hcx (Oe and kA / m), metal magnetic powder The coercive force Hcx / V (Oe / nm 3 ), coercive force distribution SFD, squareness ratio SQ, and orientation ratio OR of the magnetic tape per unit volume were determined. These results are shown in Table 4.

Figure 0005905205
Figure 0005905205

また、得られた金属磁性粉末のゆるめ嵩密度および固め嵩密度とその金属磁性粉末の単位体積当たりの磁気テープの保磁力との関係をそれぞれ図2および図3に示す。   Moreover, the relationship between the loose bulk density and the hard bulk density of the obtained metal magnetic powder and the coercive force of the magnetic tape per unit volume of the metal magnetic powder is shown in FIGS. 2 and 3, respectively.

また、得られた金属磁性粉末の粒子の焼結状態を確認するため、細孔分布ポロシメーター(Micromeritics Instrument社製のAutoPoreIV 9500
V1.05)を用いて、水銀圧入法により細孔分布測定を行った。その結果、得られた細孔径と累積細孔容積の関係を図4に示す。また、得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末の平均粒子体積と磁気テープの保磁力との関係を図5に示し、得られた金属磁性粉末の水銀圧入法により測定した細孔分布における細孔径200nm以上の累積細孔容積とその金属磁性粉末を用いて作製した磁気テープの配向比との関係を図6に示す。
In addition, in order to confirm the sintered state of the particles of the obtained metal magnetic powder, a pore distribution porosimeter (AutoPore IV 9500 manufactured by Micromeritics Instruments) was used.
V1.05) was used to measure pore distribution by mercury porosimetry. As a result, the relationship between the obtained pore diameter and the cumulative pore volume is shown in FIG. FIG. 5 shows the relationship between the average particle volume of the metal magnetic powder and the coercive force of the magnetic tape when a magnetic tape is produced using the obtained metal magnetic powder, and a mercury intrusion method of the obtained metal magnetic powder. FIG. 6 shows the relationship between the cumulative pore volume having a pore diameter of 200 nm or more in the pore distribution measured by the above and the orientation ratio of the magnetic tape produced using the metal magnetic powder.

[実施例2〜3]
それぞれ長軸長76.5nm(実施例2)および66.4nm(実施例3)のオキシ水酸化鉄(実施例1とほぼ同じ組成)を使用した以外は実施例1と同様の方法により、金属磁性粉末を作製した。この金属磁性粉末の製造条件を表1に示す。
[Examples 2-3]
In the same manner as in Example 1, except that iron oxyhydroxides having a major axis length of 76.5 nm (Example 2) and 66.4 nm (Example 3) were used (substantially the same composition as Example 1), Magnetic powder was prepared. The production conditions for this metal magnetic powder are shown in Table 1.

また、得られた金属磁性粉末について、実施例1と同様の方法により粉体物理特性および磁気特性を測定した。これらの結果をそれぞれ表2および表3に示す。   The obtained metal magnetic powder was measured for powder physical properties and magnetic properties by the same method as in Example 1. These results are shown in Table 2 and Table 3, respectively.

また、得られた金属磁性粉末を使用して実施例1と同様の方法により作製した磁気テープについて、実施例1と同様の方法により磁気測定を行った。その結果を表4に示す。   In addition, magnetic measurement was performed on the magnetic tape produced by the same method as in Example 1 using the obtained metal magnetic powder by the same method as in Example 1. The results are shown in Table 4.

また、得られた金属磁性粉末のゆるめ嵩密度および固め嵩密度とその金属磁性粉末の単位体積当たりの磁気テープの保磁力との関係をそれぞれ図2および図3に示す。   Moreover, the relationship between the loose bulk density and the hard bulk density of the obtained metal magnetic powder and the coercive force of the magnetic tape per unit volume of the metal magnetic powder is shown in FIGS. 2 and 3, respectively.

さらに、得られた金属磁性粉末について、実施例1と同様の方法により細孔分布測定を行った。その結果、得られた細孔径と累積細孔容積の関係を図4に示す。また、得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末の平均粒子体積と磁気テープの保磁力との関係を図5に示し、得られた金属磁性粉末の水銀圧入法により測定した細孔分布における細孔径200nm以上の累積細孔容積とその金属磁性粉末を用いて作製した磁気テープの配向比との関係を図6に示す。   Furthermore, pore distribution measurement was performed on the obtained metal magnetic powder by the same method as in Example 1. As a result, the relationship between the obtained pore diameter and the cumulative pore volume is shown in FIG. FIG. 5 shows the relationship between the average particle volume of the metal magnetic powder and the coercive force of the magnetic tape when a magnetic tape is produced using the obtained metal magnetic powder, and a mercury intrusion method of the obtained metal magnetic powder. FIG. 6 shows the relationship between the cumulative pore volume having a pore diameter of 200 nm or more in the pore distribution measured by the above and the orientation ratio of the magnetic tape produced using the metal magnetic powder.

[実施例4]
長軸長90.2nmのオキシ水酸化鉄(実施例1とほぼ同じ組成)を使用し、分散剤の添加量を5.0質量%とした以外は実施例1と同様の方法により、金属磁性粉末を作製した。この金属磁性粉末の製造条件を表1に示す。
[Example 4]
In the same manner as in Example 1 except that iron oxyhydroxide having a major axis length of 90.2 nm (substantially the same composition as in Example 1) was used and the addition amount of the dispersant was 5.0% by mass, A powder was prepared. The production conditions for this metal magnetic powder are shown in Table 1.

また、得られた金属磁性粉末について、実施例1と同様の方法により粉体物理特性および磁気特性を測定した。これらの結果をそれぞれ表2および表3に示す。   The obtained metal magnetic powder was measured for powder physical properties and magnetic properties by the same method as in Example 1. These results are shown in Table 2 and Table 3, respectively.

また、得られた金属磁性粉末を使用して実施例1と同様の方法により作製した磁気テープについて、実施例1と同様の方法により磁気測定を行った。その結果を表4に示す。   In addition, magnetic measurement was performed on the magnetic tape produced by the same method as in Example 1 using the obtained metal magnetic powder by the same method as in Example 1. The results are shown in Table 4.

また、得られた金属磁性粉末のゆるめ嵩密度および固め嵩密度とその金属磁性粉末の単位体積当たりの磁気テープの保磁力との関係をそれぞれ図2および図3に示す。   Moreover, the relationship between the loose bulk density and the hard bulk density of the obtained metal magnetic powder and the coercive force of the magnetic tape per unit volume of the metal magnetic powder is shown in FIGS. 2 and 3, respectively.

さらに、得られた金属磁性粉末について、実施例1と同様の方法により細孔分布測定を行った。その結果、得られた細孔径と累積細孔容積の関係を図4に示す。また、得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末の平均粒子体積と磁気テープの保磁力との関係を図5に示し、得られた金属磁性粉末の水銀圧入法により測定した細孔分布における細孔径200nm以上の累積細孔容積とその金属磁性粉末を用いて作製した磁気テープの配向比との関係を図6に示す。   Furthermore, pore distribution measurement was performed on the obtained metal magnetic powder by the same method as in Example 1. As a result, the relationship between the obtained pore diameter and the cumulative pore volume is shown in FIG. FIG. 5 shows the relationship between the average particle volume of the metal magnetic powder and the coercive force of the magnetic tape when a magnetic tape is produced using the obtained metal magnetic powder, and a mercury intrusion method of the obtained metal magnetic powder. FIG. 6 shows the relationship between the cumulative pore volume having a pore diameter of 200 nm or more in the pore distribution measured by the above and the orientation ratio of the magnetic tape produced using the metal magnetic powder.

[実施例5〜7]
それぞれ長軸長86.5nm(実施例5)、79.6nm(実施例6)および70.7nm(実施例7)のオキシ水酸化鉄(実施例1とほぼ同じ組成)を使用し、分散機として超音波ホモジナイザー(株式会社日本精機製作所製のUS−600TCVP)を使用して15時間処理した以外は実施例1と同様の方法により、金属磁性粉末を作製した。この金属磁性粉末の製造条件を表1に示す。
[Examples 5 to 7]
Dispersing machine using iron oxyhydroxide (substantially the same composition as in Example 1) having a major axis length of 86.5 nm (Example 5), 79.6 nm (Example 6) and 70.7 nm (Example 7), respectively. A metal magnetic powder was prepared in the same manner as in Example 1 except that the treatment was performed for 15 hours using an ultrasonic homogenizer (US-600TCVP manufactured by Nippon Seiki Seisakusho Co., Ltd.). The production conditions for this metal magnetic powder are shown in Table 1.

また、得られた金属磁性粉末について、実施例1と同様の方法により粉体物理特性および磁気特性を測定した。これらの結果をそれぞれ表2および表3に示す。   The obtained metal magnetic powder was measured for powder physical properties and magnetic properties by the same method as in Example 1. These results are shown in Table 2 and Table 3, respectively.

また、得られた金属磁性粉末を使用して実施例1と同様の方法により作製した磁気テープについて、実施例1と同様の方法により磁気測定を行った。その結果を表4に示す。また、得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末の平均粒子体積と磁気テープの保磁力との関係を図5に示す。   In addition, magnetic measurement was performed on the magnetic tape produced by the same method as in Example 1 using the obtained metal magnetic powder by the same method as in Example 1. The results are shown in Table 4. FIG. 5 shows the relationship between the average particle volume of the metal magnetic powder and the coercivity of the magnetic tape when a magnetic tape is produced using the obtained metal magnetic powder.

[実施例8〜10]
それぞれ長軸長88.4nm(実施例8)、80.2nm(実施例9)および71.5nm(実施例10)のオキシ水酸化鉄(実施例1とほぼ同じ組成)を使用し、分散機としてマイルダー(太平洋機工株式会社製のMDN303V)を使用してゼネレータの標準仕様により回転数12000rpmで処理した以外は実施例1と同様の方法により、金属磁性粉末を作製した。この金属磁性粉末の製造条件を表1に示す。
[Examples 8 to 10]
Dispersing machines using iron oxyhydroxides (substantially the same composition as in Example 1) having major axis lengths of 88.4 nm (Example 8), 80.2 nm (Example 9) and 71.5 nm (Example 10), respectively. A metal magnetic powder was prepared in the same manner as in Example 1 except that treatment was performed at 12000 rpm with a standard specification of the generator using Milder (MDN303V manufactured by Taiheiyo Kiko Co., Ltd.). The production conditions for this metal magnetic powder are shown in Table 1.

また、得られた金属磁性粉末について、実施例1と同様の方法により粉体物理特性および磁気特性を測定した。これらの結果をそれぞれ表2および表3に示す。   The obtained metal magnetic powder was measured for powder physical properties and magnetic properties by the same method as in Example 1. These results are shown in Table 2 and Table 3, respectively.

また、得られた金属磁性粉末を使用して実施例1と同様の方法により作製した磁気テープについて、実施例1と同様の方法により磁気測定を行った。その結果を表4に示す。また、得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末の平均粒子体積と磁気テープの保磁力との関係を図5に示す。   In addition, magnetic measurement was performed on the magnetic tape produced by the same method as in Example 1 using the obtained metal magnetic powder by the same method as in Example 1. The results are shown in Table 4. FIG. 5 shows the relationship between the average particle volume of the metal magnetic powder and the coercivity of the magnetic tape when a magnetic tape is produced using the obtained metal magnetic powder.

[比較例1〜4]
それぞれ長軸長91.1nm(比較例1)、86.5nm(比較例2)、67.0nm(比較例3)および95.7nm(比較例4)のオキシ水酸化鉄(実施例1とほぼ同じ組成)を使用し、スラリーの分散処理を行わなかった以外は実施例1と同様の方法により、金属磁性粉末を作製した。この金属磁性粉末の製造条件を表1に示す。
[Comparative Examples 1-4]
Iron oxyhydroxides having a major axis length of 91.1 nm (Comparative Example 1), 86.5 nm (Comparative Example 2), 67.0 nm (Comparative Example 3) and 95.7 nm (Comparative Example 4), respectively (almost the same as Example 1) A metal magnetic powder was prepared in the same manner as in Example 1 except that the same composition was used and the slurry was not dispersed. The production conditions for this metal magnetic powder are shown in Table 1.

また、得られた金属磁性粉末について、実施例1と同様の方法により粉体物理特性および磁気特性を測定した。これらの結果をそれぞれ表2および表3に示す。   The obtained metal magnetic powder was measured for powder physical properties and magnetic properties by the same method as in Example 1. These results are shown in Table 2 and Table 3, respectively.

また、得られた金属磁性粉末を使用して実施例1と同様の方法により作製した磁気テープについて、実施例1と同様の方法により磁気測定を行った。その結果を表4に示す。   In addition, magnetic measurement was performed on the magnetic tape produced by the same method as in Example 1 using the obtained metal magnetic powder by the same method as in Example 1. The results are shown in Table 4.

また、得られた金属磁性粉末のゆるめ嵩密度および固め嵩密度とその金属磁性粉末の単位体積当たりの磁気テープの保磁力との関係をそれぞれ図2および図3に示す。   Moreover, the relationship between the loose bulk density and the hard bulk density of the obtained metal magnetic powder and the coercive force of the magnetic tape per unit volume of the metal magnetic powder is shown in FIGS. 2 and 3, respectively.

さらに、比較例1および比較例4で得られた金属磁性粉末について、実施例1と同様の方法により細孔分布測定を行った。その結果、得られた細孔径と累積細孔容積の関係を図4に示す。また、比較例1〜4で得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末の平均粒子体積と磁気テープの保磁力との関係を図5に示し、比較例1および比較例4で得られた金属磁性粉末の水銀圧入法により測定した細孔分布における細孔径200nm以上の累積細孔容積とその金属磁性粉末を用いて作製した磁気テープの配向比との関係を図6に示す。   Further, pore distribution measurement was performed on the metal magnetic powder obtained in Comparative Example 1 and Comparative Example 4 by the same method as in Example 1. As a result, the relationship between the obtained pore diameter and the cumulative pore volume is shown in FIG. Moreover, the relationship between the average particle volume of the metal magnetic powder and the coercive force of the magnetic tape when the magnetic tape was produced using the metal magnetic powder obtained in Comparative Examples 1 to 4 is shown in FIG. The relationship between the cumulative pore volume with a pore diameter of 200 nm or more in the pore distribution measured by the mercury intrusion method of the metal magnetic powder obtained in Comparative Example 4 and the orientation ratio of the magnetic tape produced using the metal magnetic powder is shown in FIG. It is shown in FIG.

また、比較例1のオキシ水酸化鉄の粒子(湿式粉砕処理を行わないオキシ水酸化鉄の粒子)の透過型電子顕微鏡(TEM)写真を図8に示す。このTEM写真から、湿式粉砕処理を行わないオキシ水酸化鉄の粒子は凝集しているのがわかる。   Moreover, the transmission electron microscope (TEM) photograph of the iron oxyhydroxide particle | grains (Iron oxyhydroxide particle | grains which do not perform a wet grinding process) of the comparative example 1 is shown in FIG. From this TEM photograph, it can be seen that the iron oxyhydroxide particles that are not wet pulverized are aggregated.

[比較例5]
長軸長89.6nmのオキシ水酸化鉄(実施例1とほぼ同じ組成)を使用し、スラリーの分散処理を行わなかった以外は実施例1と同様の方法により、Alが固溶するとともにイットリウムが表面に被着したオキシ水酸化鉄の乾燥固形物を得た。
[Comparative Example 5]
Al was dissolved in the same manner as in Example 1 except that iron oxyhydroxide having a major axis length of 89.6 nm (substantially the same composition as in Example 1) was used and the slurry was not dispersed. Gave a dry solid of iron oxyhydroxide deposited on the surface.

このオキシ水酸化鉄の乾燥固形物10gをバケットに入れ、水の流量として1.0g/分で水蒸気を添加しながら大気中において400℃で焼成し、α−酸化鉄(α−Fe)(ヘマタイト)を主成分とする鉄系酸化物を得た。 10 g of this dry iron oxyhydroxide solid was put into a bucket and fired at 400 ° C. in the atmosphere while adding water vapor at a flow rate of water of 1.0 g / min, and α-iron oxide (α-Fe 2 O 3 ) (Hematite) as a main component was obtained.

このα−酸化鉄を主成分とする鉄系酸化物を通気可能なバケット内に投入した後、バケットを貫通型還元炉内に装入し、水素ガスを40L/分の流量で通気しながら、水の流量として1.0g/分で水蒸気を添加しながら、400℃で30分間焼成させて還元処理を行った。この還元処理が終了した後、水蒸気の供給を停止し、水素雰囲気下において昇温速度10℃/分で600℃まで昇温させた。その後、水の流量として1.0g/分で水蒸気を添加しながら60分間高温還元処理を行い、鉄系合金粉末(α−鉄)(中間製品としての金属磁性粉末)を得た。   After putting this iron-based oxide containing α-iron oxide as a main component into a bucket that can be ventilated, the bucket was charged into a through-type reduction furnace, and hydrogen gas was vented at a flow rate of 40 L / min. While water vapor was added at a flow rate of 1.0 g / min, the reduction treatment was performed by baking at 400 ° C. for 30 minutes. After the reduction treatment was completed, the supply of water vapor was stopped, and the temperature was raised to 600 ° C. at a temperature rising rate of 10 ° C./min in a hydrogen atmosphere. Thereafter, a high temperature reduction treatment was performed for 60 minutes while adding water vapor at a flow rate of 1.0 g / min to obtain an iron-based alloy powder (α-iron) (metal magnetic powder as an intermediate product).

次に、この粉末の溶出処理を行うために使用する処理液として、純水900mLに対して、錯化剤として酒石酸ナトリウムを0.05モル/L、緩衝剤として硫酸アンモニウムを0.1モル/Lになるように混合し、NHでpH=9に調整した処理液を用意した。この処理液に還元処理後の中間製品としての金属磁性粉末10gを投入して30℃に保持した後、還元剤として水素化ホウ素ナトリウムを0.3モル/Lになるよう添加し、30℃で30分間攪拌しながら熟成させ、スラリーを得た。このスラリーを固液分離して固形分と濾液を回収した。 Next, as a treatment liquid used for the elution treatment of the powder, 0.05 mol / L of sodium tartrate as a complexing agent and 0.1 mol / L of ammonium sulfate as a buffering agent are applied to 900 mL of pure water. Then, a treatment liquid adjusted to pH = 9 with NH 3 was prepared. After adding 10 g of metal magnetic powder as an intermediate product after the reduction treatment to this treatment liquid and keeping it at 30 ° C., sodium borohydride was added as a reducing agent to 0.3 mol / L, and at 30 ° C. The slurry was aged with stirring for 30 minutes to obtain a slurry. This slurry was subjected to solid-liquid separation to recover a solid content and a filtrate.

回収した固形分を水洗し、濾過し、乾燥した後、実施例1と同様の方法により酸化処理を行って(表面に酸化膜を有する最終製品としての)金属磁性粉末を得た。この金属磁性粉末の製造条件を表1に示す。   The collected solid content was washed with water, filtered, dried, and then oxidized in the same manner as in Example 1 to obtain a metal magnetic powder (as a final product having an oxide film on the surface). The production conditions for this metal magnetic powder are shown in Table 1.

また、得られた金属磁性粉末について、実施例1と同様の方法により粉体物理特性および磁気特性を測定した。これらの結果をそれぞれ表2および表3に示す。   The obtained metal magnetic powder was measured for powder physical properties and magnetic properties by the same method as in Example 1. These results are shown in Table 2 and Table 3, respectively.

また、得られた金属磁性粉末を使用して実施例1と同様の方法により作製した磁気テープについて、実施例1と同様の方法により磁気測定を行った。その結果を表4に示す。   In addition, magnetic measurement was performed on the magnetic tape produced by the same method as in Example 1 using the obtained metal magnetic powder by the same method as in Example 1. The results are shown in Table 4.

さらに、得られた金属磁性粉末について、実施例1と同様の方法により細孔分布測定を行った。その結果、得られた細孔径と累積細孔容積の関係を図4に示す。また、得られた金属磁性粉末を用いて磁気テープを作製した際の金属磁性粉末の平均粒子体積と磁気テープの保磁力との関係を図5に示し、得られた金属磁性粉末の水銀圧入法により測定した細孔分布における細孔径200nm以上の累積細孔容積とその金属磁性粉末を用いて作製した磁気テープの配向比との関係を図6に示す。   Furthermore, pore distribution measurement was performed on the obtained metal magnetic powder by the same method as in Example 1. As a result, the relationship between the obtained pore diameter and the cumulative pore volume is shown in FIG. FIG. 5 shows the relationship between the average particle volume of the metal magnetic powder and the coercive force of the magnetic tape when a magnetic tape is produced using the obtained metal magnetic powder, and a mercury intrusion method of the obtained metal magnetic powder. FIG. 6 shows the relationship between the cumulative pore volume having a pore diameter of 200 nm or more in the pore distribution measured by the above and the orientation ratio of the magnetic tape produced using the metal magnetic powder.

図5に示すように、実施例1〜10の金属磁性粉末を用いて磁気テープを作製した場合、比較例1〜5の同程度の平均粒子体積の金属磁性粉末を用いて磁気テープを作製した場合と比べて、磁気テープの保磁力が高くなっている。したがって、実施例1〜10の金属磁性粉末は、比較例1〜5の金属磁性粉末と比べて、磁気テープに使用したときに磁性粉末の単位体積当たりの磁気テープの保磁力を高くすることができるので、高密度磁気記録に適していることがわかる。   As shown in FIG. 5, when magnetic tapes were produced using the metal magnetic powders of Examples 1 to 10, magnetic tapes were produced using the same average particle volume metal magnetic powders of Comparative Examples 1 to 5. Compared to the case, the coercive force of the magnetic tape is higher. Therefore, the metal magnetic powders of Examples 1 to 10 can increase the coercive force of the magnetic tape per unit volume of the magnetic powder when used in the magnetic tape as compared with the metal magnetic powders of Comparative Examples 1 to 5. It can be seen that it is suitable for high-density magnetic recording.

また、図6に示すように、実施例1〜4で得られた金属磁性粉末は、比較例1、4および5で得られた金属磁性粉末と比べて、水銀圧入法により測定した細孔分布における細孔径200nm以上の累積細孔容積が非常に小さく、その金属磁性粉末を用いて作製した磁気テープの配向比が非常に高くなっている。これらの結果から、実施例1〜4で得られた金属磁性粉末は、比較例1、4および5で得られた金属磁性粉末と比べて、粒子の焼結によって生じる粒子間の空孔が少なく、粒子の焼結が抑制されていることがわかる。なお、「細孔径200nm以上の累積細孔容積」としたのは、それより小さい細孔径も含めると、粒子の表面に存在する「脱水により生じた細孔」なども含んでしまうので、粒子の焼結によって生じる粒子間の空孔を正確に把握することができなくなるからである。   In addition, as shown in FIG. 6, the metal magnetic powders obtained in Examples 1 to 4 were compared with the metal magnetic powders obtained in Comparative Examples 1, 4 and 5, and the pore distribution measured by the mercury intrusion method. The cumulative pore volume with a pore diameter of 200 nm or more in is very small, and the orientation ratio of the magnetic tape produced using the metal magnetic powder is very high. From these results, the metal magnetic powders obtained in Examples 1 to 4 have fewer voids between particles produced by particle sintering than the metal magnetic powders obtained in Comparative Examples 1, 4 and 5. It can be seen that the sintering of the particles is suppressed. Note that the term “cumulative pore volume with a pore diameter of 200 nm or more” includes the pores smaller than that, including “pores generated by dehydration” existing on the surface of the particles. This is because it becomes impossible to accurately grasp the voids between particles generated by sintering.

本発明による金属磁性粉末を使用すれば、高密度磁気記録に適した磁気記録媒体を製造することができる。   If the metal magnetic powder according to the present invention is used, a magnetic recording medium suitable for high-density magnetic recording can be produced.

Claims (7)

長軸長20〜150nmのオキシ水酸化鉄(α−FeOOH)のスラリーを湿式粉砕して得られたオキシ水酸化鉄の粒子の表面に焼結防止成分を被着させた後にオキシ水酸化鉄を加熱還元する、金属磁性粉末の製造方法。 After the anti-sintering component is deposited on the surface of iron oxyhydroxide particles obtained by wet-grinding a slurry of iron oxyhydroxide (α-FeOOH) having a major axis length of 20 to 150 nm, iron oxyhydroxide is added. A method for producing metal magnetic powder, which is reduced by heating . 前記オキシ水酸化鉄のスラリーを湿式粉砕する際に、オキシ水酸化物のスラリーに分散剤を添加する、請求項1に記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to claim 1, wherein a dispersant is added to the oxyhydroxide slurry when the iron oxyhydroxide slurry is wet-pulverized. 前記分散剤がカルボキシル基を有する化合物である、請求項に記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to claim 2 , wherein the dispersant is a compound having a carboxyl group. 前記焼結防止成分が(イットリウムを含む)希土類元素から選ばれる1種以上を含む、請求項1乃至3のいずれかに記載の金属磁性粉末の製造方法。 The method for producing a metal magnetic powder according to any one of claims 1 to 3, wherein the sintering preventing component includes one or more selected from rare earth elements (including yttrium). 鉄または鉄とコバルトを主成分とする金属磁性相を有する粒子からなり、平均長軸長が10〜50nmであり、水銀圧入法により測定した細孔分布において細孔径が200nm以上の範囲の累積細孔容積が0.75mL/g以下であり、ゆるめ嵩密度が0.35g/cc以上で且つ固め嵩密度が0.40g/cc以上である、金属磁性粉末。 It is composed of particles having a metal magnetic phase mainly composed of iron or iron and cobalt, has an average major axis length of 10 to 50 nm, and a cumulative fineness with a pore diameter in the range of 200 nm or more in a pore distribution measured by mercury porosimetry. Metal magnetic powder having a pore volume of 0.75 mL / g or less, a loose bulk density of 0.35 g / cc or more, and a hardened bulk density of 0.40 g / cc or more. 前記粒子の表面に焼結防止成分が被着している、請求項5に記載の金属磁性粉末。 The metal magnetic powder according to claim 5, wherein an anti-sintering component is deposited on the surfaces of the particles. 前記焼結防止成分が(イットリウムを含む)希土類元素から選ばれる1種以上を含む、請求項に記載の金属磁性粉末。 The metal magnetic powder according to claim 6 , wherein the sintering preventing component contains one or more selected from rare earth elements (including yttrium).
JP2011078225A 2011-03-31 2011-03-31 Metallic magnetic powder and method for producing the same Expired - Fee Related JP5905205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078225A JP5905205B2 (en) 2011-03-31 2011-03-31 Metallic magnetic powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078225A JP5905205B2 (en) 2011-03-31 2011-03-31 Metallic magnetic powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012212807A JP2012212807A (en) 2012-11-01
JP5905205B2 true JP5905205B2 (en) 2016-04-20

Family

ID=47266533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078225A Expired - Fee Related JP5905205B2 (en) 2011-03-31 2011-03-31 Metallic magnetic powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5905205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3723926A4 (en) * 2018-03-15 2021-09-29 Hewlett-Packard Development Company, L.P. Composition for 3d printing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152048A1 (en) * 2014-03-31 2015-10-08 Dowaエレクトロニクス株式会社 Fe-co alloy powder, manufacturing method therefor, antenna, inductor, and emi filter
CN108137345B (en) * 2015-10-09 2021-03-30 日本曹达株式会社 Iron oxyhydroxide nanodispersion
US11170813B2 (en) 2016-10-17 2021-11-09 Sony Corporation Magnetic powder, method of producing the same, and magnetic recording medium
WO2018088050A1 (en) * 2016-11-11 2018-05-17 ソニー株式会社 Method for producing magnetic powder and method for producing magnetic recording medium
JP7338529B2 (en) * 2020-03-24 2023-09-05 Tdk株式会社 Fluidizing particles and magnetic cores

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846607A (en) * 1981-09-14 1983-03-18 Dainippon Ink & Chem Inc Manufacture of magnetic metal powder
JP2897871B2 (en) * 1995-08-11 1999-05-31 ティーディーケイ株式会社 Magnet powder, sintered magnet, bonded magnet and magnetic recording medium
JP3509837B2 (en) * 1995-10-20 2004-03-22 戸田工業株式会社 Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder
JP3262321B2 (en) * 1997-09-19 2002-03-04 ティーディーケイ株式会社 Manufacturing method of hexagonal ferrite sintered magnet
CN103310934B (en) * 1997-09-19 2016-05-04 Tdk株式会社 Magnet powder, sintered magnet, its manufacturing process, bonded permanent magnet, motor and magnetic recording media
JP3690456B2 (en) * 1997-12-26 2005-08-31 戸田工業株式会社 Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP2002053903A (en) * 2000-08-07 2002-02-19 Toda Kogyo Corp Secondarily aggregated body of metallic magnetic grain for magnetic recording and its production method
JP2004319838A (en) * 2003-04-17 2004-11-11 Fuji Photo Film Co Ltd Aggregate of ferromagnetic metallic powder and magnetic recording medium employing the same
JP4729682B2 (en) * 2004-07-27 2011-07-20 Dowaエレクトロニクス株式会社 Manufacturing method of metal magnetic powder
JP4296350B2 (en) * 2004-08-23 2009-07-15 Dowaエレクトロニクス株式会社 Nonmagnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP2006076860A (en) * 2004-09-13 2006-03-23 Tdk Corp Method of manufacturing oxide sintered compact and composition
JP4431769B2 (en) * 2005-09-15 2010-03-17 Dowaエレクトロニクス株式会社 Ferromagnetic powder and paint and magnetic recording medium using the same
JP4758858B2 (en) * 2006-03-28 2011-08-31 Dowaエレクトロニクス株式会社 Metallic magnetic powder for magnetic recording medium and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3723926A4 (en) * 2018-03-15 2021-09-29 Hewlett-Packard Development Company, L.P. Composition for 3d printing
US11534824B2 (en) 2018-03-15 2022-12-27 Hewlett-Packard Development Company, L.P. Composition
US11684978B2 (en) 2018-03-15 2023-06-27 Hewlett-Packard Development Company, L.P. Build material composition

Also Published As

Publication number Publication date
JP2012212807A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP4758858B2 (en) Metallic magnetic powder for magnetic recording medium and method for producing the same
JP5905205B2 (en) Metallic magnetic powder and method for producing the same
JP4431769B2 (en) Ferromagnetic powder and paint and magnetic recording medium using the same
JP2008311518A (en) Manufacturing method of ion nitride-based magnetic powder, iron nitride-based magnetic powder, and magnetic recording medium
JP5090546B2 (en) Metallic magnetic powder for magnetic recording media
JP5731483B2 (en) Metal magnetic powder and method for producing the same, magnetic paint, and magnetic recording medium
JP4834852B2 (en) Metal magnetic powder and magnetic recording medium using the same
JP5189017B2 (en) Metallic magnetic powder and method for producing the same
JP5280661B2 (en) Method for producing metal magnetic powder
JP2004035939A (en) Spindle-shaped alloy magnetic particle powder for magnetic recording, and its manufacturing process
JP2006128535A (en) Metal magnetism powder and magnetic recording medium using it
JP4182310B2 (en) Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording
JP4677734B2 (en) Magnetic powder for magnetic recording media
JP5337286B2 (en) Metal magnetic powder
JP5447767B2 (en) Method for producing ferromagnetic metal particle powder
JP6103172B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5228212B2 (en) Magnetic powder for coating type magnetic recording medium, method for producing the same, and magnetic recording medium
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP5403241B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5391415B2 (en) Magnetic powder for coating type magnetic recording medium, method for producing the same, and magnetic recording medium
JP4228165B2 (en) Manufacturing method of spindle-shaped alloy magnetic particle powder for magnetic recording material
JP5418773B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5082045B2 (en) Method for producing magnetic powder for magnetic recording medium
JP5700191B2 (en) Method for producing ferromagnetic metal particle powder, magnetic recording medium
JP5102485B2 (en) Manufacturing method of metal magnetic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160316

R150 Certificate of patent or registration of utility model

Ref document number: 5905205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees