JP2002053903A - Secondarily aggregated body of metallic magnetic grain for magnetic recording and its production method - Google Patents

Secondarily aggregated body of metallic magnetic grain for magnetic recording and its production method

Info

Publication number
JP2002053903A
JP2002053903A JP2000238373A JP2000238373A JP2002053903A JP 2002053903 A JP2002053903 A JP 2002053903A JP 2000238373 A JP2000238373 A JP 2000238373A JP 2000238373 A JP2000238373 A JP 2000238373A JP 2002053903 A JP2002053903 A JP 2002053903A
Authority
JP
Japan
Prior art keywords
particles
metal magnetic
magnetic
granulated
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000238373A
Other languages
Japanese (ja)
Inventor
Kenji Okinaka
健二 沖中
Masayuki Uekami
雅之 上神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2000238373A priority Critical patent/JP2002053903A/en
Priority to EP01305102A priority patent/EP1164582A3/en
Priority to US09/878,184 priority patent/US6720094B2/en
Priority to KR1020010033152A priority patent/KR20020002211A/en
Publication of JP2002053903A publication Critical patent/JP2002053903A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a secondarily aggregated body of metallic magnetic grains, from which a magnetic coating film having enhanced surface smoothness and squareness ratio can be obtained when a coating type magnetic recording medium is produced because of its excellent kneading characteristics with various binder resins and organic solvents in a kneading machine and its excellent diluting and dispersing characteristics in the addition of an organic solvent, further which has high storing efficiency and transporting efficiency and moreover excellent in handling performance because of being provided with good fluidity as well. SOLUTION: In this secondarily aggregated body of metallic magnetic grains for magnetic recording, the average diameter of major axis of the primary grains of the metallic magnetic grains is 0.05 to 0.25 μm, and the average grain size of the secondarily aggregated body is 300 to 800 μm, the upper limit value of the grain size is 2,000 μm, and the angle of repose is 38 to 45 degrees, and the secondarily aggregated body is obtained by disintegrating the granulated material of metallic magnetic grains by a device having a function of disintegrating the same with a rotor and a grading function of forcedly passing the same through a screen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塗布型磁気記録媒
体を製造する際、混練機中での各種結合剤樹脂及び有機
溶媒との混練特性並びに有機溶媒を追加しての希釈分散
特性に優れるため、得られた磁性塗膜の表面平滑性及び
角型比を一層向上させることができ、更に、貯蔵効率及
び輸送効率が高く、しかも良好な流動性を兼備するため
にハンドリング性能に優れる金属磁性粒子の二次凝集体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is excellent in kneading characteristics of various binder resins and organic solvents in a kneader and dilution / dispersion characteristics by adding an organic solvent when manufacturing a coating type magnetic recording medium. Therefore, it is possible to further improve the surface smoothness and squareness ratio of the obtained magnetic coating film, and furthermore, it has high storage efficiency and high transport efficiency, and also has excellent fluidity and excellent handling performance due to its excellent fluidity. It relates to a secondary aggregate of particles.

【0002】[0002]

【従来の技術】近年、民生用DAT(デジタルオーディ
オテープ)、8mmビデオテープ、Hi−8テープ、業
務用VTRテープ、コンピューターテープあるいはディ
スクなどのオーディオ、ビデオ、コンピューター用の磁
気記録再生用機器の長時間記録化、小型軽量化が激化し
ており、特に、昨今におけるVTR(ビデオ・テープ・
レコーダー)の普及は目覚しく、長時間記録化並びに小
型軽量化、更に記録方式をアナログ方式からデジタル方
式化への移行を目指したVTRの開発が盛んに行われて
いるが、これに伴い、一方においては、塗布型磁気記録
媒体の高画像画質、高出力特性、殊に周波数特性の向上
が要求されており、この要求に応じる為には、磁気記録
媒体に起因するノイズの低下、残留磁束密度Brの向
上、高保磁力化並びに、分散性、充填性、テープ表面の
平滑性の向上が必要であり、益々S/N比の向上が要求
されてきている。
2. Description of the Related Art In recent years, the length of audio and video equipment such as consumer DAT (digital audio tape), 8 mm video tape, Hi-8 tape, commercial VTR tape, computer tape or disk, and magnetic recording / reproducing equipment for computers has been long. Time recording, miniaturization, and weight reduction are intensifying. In particular, VTRs (video tape,
Recorders) have been remarkably popularized, and the development of VTRs aiming at long-term recording, miniaturization and weight reduction, and a shift from analog to digital recording has been actively carried out. Are required to improve high image quality, high output characteristics, especially frequency characteristics of a coating type magnetic recording medium, and in order to meet this demand, reduction of noise due to the magnetic recording medium, residual magnetic flux density Br , High coercive force, and dispersibility, filling property, and smoothness of the tape surface are required, and an improvement in the S / N ratio is increasingly demanded.

【0003】塗布型磁気記録媒体のこれらの諸特性は使
用される磁性粒子粉末と密接な関係を有するものである
が、近年においては、従来の酸化鉄磁性粒子粉末に比較
して高い保磁力と大きな飽和磁化を有する鉄を主成分と
する金属磁性粒子粉末が注目され、DAT(デジタルオ
ーディオテープ)、8mmビデオテープ、Hi−8テー
プ、業務用VTRテープ、コンピューターテープあるい
はディスクなどの磁気記録媒体に使用され実用化されて
いる。特にDAT(デジタルオーディオテープ)、8m
mビデオテープ、Hi−8テープなどに従来から使用さ
れている金属磁性粒子粉末については、更なる出力向上
が要求されている。
[0003] These properties of the coating type magnetic recording medium are closely related to the magnetic particle powder used, but in recent years, they have higher coercive force and higher coercive force than conventional iron oxide magnetic particle powder. Attention has been paid to metal magnetic particle powders containing iron as a main component having a large saturation magnetization, and are used in magnetic recording media such as DAT (digital audio tape), 8 mm video tape, Hi-8 tape, commercial VTR tape, computer tape or disk. Used and put to practical use. Especially DAT (Digital Audio Tape), 8m
For metal magnetic particle powders conventionally used for m-video tapes, Hi-8 tapes and the like, further improvement in output is required.

【0004】塗布型磁気記録媒体の諸特性について詳述
すれば次の通りである。
[0004] The characteristics of the coating type magnetic recording medium will be described in detail below.

【0005】ビデオ用磁気記録媒体として高画像画質を
得る為には、S/N比、ビデオ周波数特性の向上が要求
される。その為には、塗布型磁気記録媒体の表面平滑性
を改良することが重要となり、磁性粒子粉末の塗料中で
の分散性、塗膜中での配向性及び充填性を向上させるこ
とが必要となる。また、ビデオ周波数特性の向上を図る
為には、磁気記録媒体の保磁力が高く、且つ、残留磁束
密度が大きいことが必要であり、加えて、磁気記録媒体
のS.F.D.(Switching Field D
istribution)、即ち、保磁力分布が小さい
ことが必要である。
[0005] In order to obtain high image quality as a video magnetic recording medium, it is required to improve the S / N ratio and the video frequency characteristics. For that purpose, it is important to improve the surface smoothness of the coating type magnetic recording medium, and it is necessary to improve the dispersibility of the magnetic particle powder in the coating, the orientation in the coating, and the filling property. Become. In order to improve the video frequency characteristics, it is necessary that the magnetic recording medium has a high coercive force and a high residual magnetic flux density. F. D. (Switching Field D
It is necessary that the distribution is small.

【0006】周知の通り、金属磁性粒子粉末は出発原料
であるゲータイト粒子粉末、当該ゲータイト粒子粉末を
加熱脱水して得られるヘマタイト粒子粉末、又は前記各
粒子粉末に鉄以外の異種金属を含有させた粒子粉末を、
適度な大きさの造粒物に形成せしめた後、当該造粒物を
加熱還元することにより得られる。その際、出発原料で
あるゲータイト粒子粉末の形状や粒度を適切に制御し、
更に、加熱、還元などの熱処理時の粒子同士の融着、あ
るいは単一粒子の変形、形状破壊を防止することが重要
である。
[0006] As is well known, the metal magnetic particle powder is a goethite particle powder as a starting material, a hematite particle powder obtained by heating and dehydrating the goethite particle powder, or a heterogeneous metal other than iron is contained in each of the particle powders. Particle powder,
After being formed into granules having an appropriate size, the granules can be obtained by heating and reducing the granules. At that time, appropriately control the shape and particle size of the starting material goethite particle powder,
Furthermore, it is important to prevent fusion of particles during heat treatment such as heating and reduction, or to prevent deformation and shape destruction of single particles.

【0007】一般に、金属磁性粒子粉末は造粒物の形態
のまま混練機に投入され、各種結合剤樹脂や有機溶剤と
共に混練される。
[0007] Generally, the metal magnetic particle powder is put into a kneader in the form of granules and kneaded with various binder resins and organic solvents.

【0008】具体的には、塗布型磁気記録媒体を製造す
る場合には、前記金属磁性粒子の造粒物と各種結合剤樹
脂及び有機溶媒とでニーダー等の混練機でまず混練し、
その混練物に有機溶媒を追加し希釈分散して磁性塗料と
して非磁性支持体上に塗布する。前述したとおり、金属
磁性粒子の分散性は、磁性塗膜の表面平滑性を左右する
ものであり、また、分散性が悪い場合には角型比も低下
することから、金属磁性粒子が分散性に優れ、且つ、前
記金属磁性粒子の造粒物は容易に一次粒子である金属磁
性粒子にできることが強く要求されている。
Specifically, in the case of producing a coating type magnetic recording medium, first, the granulated product of the metal magnetic particles, various binder resins and an organic solvent are kneaded with a kneader such as a kneader.
An organic solvent is added to the kneaded product, diluted and dispersed, and applied as a magnetic coating material on a non-magnetic support. As described above, the dispersibility of the metal magnetic particles affects the surface smoothness of the magnetic coating film, and when the dispersibility is poor, the squareness ratio is also reduced. Therefore, it is strongly required that the granulated metal magnetic particles be easily converted into primary magnetic metal particles.

【0009】一方、金属磁性粒子からなる造粒物に関し
ては、製造した物を保存容器あるいは輸送容器に詰める
場合、またその容器を倉庫に一時保管したり輸送したり
する場合にも、嵩密度ができるだけ大きい方が使用する
容器も小さくすることができ、また保管場所も省スペー
スになり、更に輸送コストも低減できる。しかしなが
ら、一般的には粉体の嵩密度が大きくなると流動性が悪
化し、保存もしくは輸送容器あるいは受け入れタンク等
からの排出の際、排出口が造粒物の大きさよりもはるか
に大きいにもかかわらず流出しないか、しばしば流出が
停止するような閉塞現象あるいは架橋現象などを起こし
ハンドリング性能が著しく低下するため、適切な流動性
を兼ね備えた造粒物が強く要求されている。
On the other hand, with regard to the granulated material composed of metal magnetic particles, the bulk density is low even when the manufactured product is packed in a storage container or a transport container, or when the container is temporarily stored or transported in a warehouse. A container that is as large as possible can use a smaller container, saves storage space, and further reduces transportation costs. However, in general, when the bulk density of the powder increases, the flowability deteriorates, and when the powder is discharged from a storage or transport container or a receiving tank, etc., the discharge port is much larger than the size of the granulated material. Since a blocking phenomenon or a cross-linking phenomenon in which the flow often stops or a flow phenomenon is caused to occur and the handling performance is remarkably reduced, granules having appropriate fluidity are strongly demanded.

【0010】粉体が流動する際に寄与する因子は、造粒
物の粒子径、粒子密度、粒子形状及び表面性とされてい
る。そこで本発明では、粒子径、粒子密度について鋭意
研究した。
Factors that contribute to the flow of the powder are the particle size, particle density, particle shape and surface properties of the granulated product. Therefore, in the present invention, a diligent study has been made on the particle diameter and the particle density.

【0011】磁気記録媒体用磁性粒子粉末の磁気特性、
分散性、流動性、貯蔵特性等を改良する技術として、特
開昭62−275028号公報、特開昭63−8880
7号公報、特開平3−276423号公報、特公平1−
52442号公報、特公平4−70363号公報、特公
平7−62900号公報、特開平8−172005号公
報等が知られている。
The magnetic properties of the magnetic particle powder for a magnetic recording medium,
Techniques for improving dispersibility, flowability, storage characteristics, etc. are described in JP-A-62-275028 and JP-A-63-8880.
7, JP-A-3-276423, Japanese Patent Publication No.
Japanese Patent Publication No. 52442, Japanese Patent Publication No. 4-70363, Japanese Patent Publication No. 7-62900, Japanese Patent Application Laid-Open No. 8-172005, and the like are known.

【0012】[0012]

【発明が解決しようとする課題】塗布型磁気記録媒体を
製造する際の各種結合剤樹脂及び有機溶媒との混練特
性、更に有機溶媒を追加しての希釈分散特性に優れると
共に、貯蔵効率及び輸送効率が高く、しかも、良好な流
動性を兼備する金属磁性粒子の造粒物は現在最も要求さ
れているところであるが、未だ得られていない。
The kneading characteristics of various binder resins and organic solvents when producing a coating type magnetic recording medium, and the dilution and dispersion characteristics by adding an organic solvent are excellent, as well as the storage efficiency and transportation. Granules of metal magnetic particles having high efficiency and good fluidity are currently being most demanded, but have not yet been obtained.

【0013】即ち、前出特開昭62−275028号公
報には、分散性に優れた磁性粉末を得るために、噴霧乾
燥を行って直径が5〜200μmの球状を呈するコバル
ト含有強磁性酸化鉄粉末を得る技術が記載されている
が、これは処理物がコバルト含有強磁性酸化鉄であるこ
と及びその被処理物特有の問題であるコバルト被着後の
水系スラリーからの乾燥方法(噴霧乾燥)に関する技術
であり、金属磁性粒子の造粒技術としてそのまま適用す
ることは困難である。金属磁性粒子を水系スラリーとし
た場合、水溶液中での酸化あるいは乾燥時の酸化などに
より、磁気特性が劣化するなどの問題を生じる可能性が
高く好ましくない。
That is, in order to obtain a magnetic powder excellent in dispersibility, a cobalt-containing ferromagnetic iron oxide having a spherical shape with a diameter of 5 to 200 μm is spray-dried in order to obtain a magnetic powder having excellent dispersibility. A technique for obtaining a powder is described. This is because the treated material is a cobalt-containing ferromagnetic iron oxide and a method of drying from an aqueous slurry after cobalt deposition, which is a problem specific to the treated material (spray drying). It is difficult to apply the technique directly as a granulation technique for metal magnetic particles. When the metal magnetic particles are made into an aqueous slurry, there is a high possibility that a problem such as deterioration of magnetic characteristics due to oxidation in an aqueous solution or oxidation during drying is caused, which is not preferable.

【0014】また、前出特開平63−88807号公報
には、磁性鉄粉の粉体密度の増大と磁性塗料の分散所要
時間の短縮を同時に満たすことを目的として、焼成粉を
微粉砕したのち水を結合剤として微粉砕した焼成粉を造
粒成形したものを乾燥し引き続き還元して磁性鉄粉を得
る技術が記載されているが、磁性塗料製造時の混練に最
適な造粒径あるいは粉体の流動性までは考慮されておら
ず、磁性塗料中の分散性やハンドリング性能が十分とは
言い難いものである。
Japanese Patent Application Laid-Open No. 63-88807 discloses that, in order to simultaneously increase the powder density of the magnetic iron powder and shorten the time required for dispersing the magnetic paint, the fired powder is finely pulverized. A technique is described in which granulated and formed fired powder obtained by finely pulverizing with water as a binder is dried and subsequently reduced to obtain a magnetic iron powder. The fluidity of the body is not considered, and the dispersibility in the magnetic paint and the handling performance are hardly sufficient.

【0015】また、前出特開平3−276423号公報
には、流動性が高く定量的に混練機に導入することがで
きる強磁性粉末を用いた磁気記録媒体の製造法が記載さ
れているが、造粒径について全く考慮されていないこと
から強磁性粉末の混練特性及び分散特性を十分に向上さ
せることができるとは言い難いものである。
Japanese Patent Application Laid-Open No. Hei 3-276423 describes a method for producing a magnetic recording medium using ferromagnetic powder which has a high fluidity and can be quantitatively introduced into a kneader. Since no consideration is given to the particle size, it is difficult to say that the kneading characteristics and the dispersion characteristics of the ferromagnetic powder can be sufficiently improved.

【0016】また、前出特公平1−52442号公報に
は、還元反応を均一に行うと同時に粒子の飛散を防止す
るために、オキシ水酸化鉄ないし酸化鉄を、塊状に造粒
成形して粒径が0.5〜30mmの造粒粒子として、筒
状還元炉の内部に供給し、還元性ガスを通気させながら
加熱還元して金属磁性粉末を得る製造法が記載されてい
るが、金属磁性粒子の造粒物の混練特性及び分散性、ま
た流動性、貯蔵効率、輸送効率については全く考慮され
ていない。
In Japanese Patent Publication No. 1-52442, in order to make the reduction reaction uniform and to prevent particles from scattering, iron oxyhydroxide or iron oxide is granulated and formed into a lump. A production method is described in which granulated particles having a particle diameter of 0.5 to 30 mm are supplied to the inside of a cylindrical reduction furnace, and heated and reduced while a reducing gas is passed therethrough to obtain a metal magnetic powder. No consideration is given to the kneading characteristics and dispersibility, the fluidity, the storage efficiency, and the transport efficiency of the granulated magnetic particles.

【0017】また、前出特公平4−70363号公報に
は、緻密な酸化被膜の形成と磁気特性の安定化を共に満
たすことを目的として、オキシ酸化鉄ないし酸化鉄粉末
をペレット状に成形し、加熱還元してペレット状の金属
粉を得て、これを酸化処理して粒子表面に酸化被膜を形
成し、その後ペレット化前の粒子径に粉砕する技術が記
載されているが、金属磁性粒子の造粒物をペレット化前
の粒子径まで粉砕していることから、貯蔵効率、輸送効
率については全く考慮されておらず、また、分散性及び
流動性が十分とは言い難いものである。
In Japanese Patent Publication No. 4-70363, for the purpose of satisfying both the formation of a dense oxide film and the stabilization of magnetic properties, iron oxyoxide or iron oxide powder is formed into pellets. A technique is described in which heat reduction is performed to obtain a pellet-shaped metal powder, which is oxidized to form an oxide film on the particle surface, and then crushed to a particle diameter before pelletization. Since the granulated material is pulverized to the particle size before pelletization, storage efficiency and transport efficiency are not considered at all, and dispersibility and fluidity are hardly sufficient.

【0018】また、前出特公平7−62900号公報に
は、強磁性金属微粉末の会合体(凝結体、凝集体および
軟会合体を含む)の会合が解除され、強磁性金属微粉末
中の一次粒子の含有率を高くすることを目的として、強
磁性金属微粉末をサンドミルなどで圧粉処理を行うこと
が記載されており、所定の線圧をかけて一次粒子まで強
力にほぐす技術は開示されてはいるが、その集合体の流
動性までは言及されておらず、後出比較例3に示す通
り、流動性が十分とは言い難いものである。また、金属
磁性粒子からなる造粒径については全く考慮されていな
い。
In Japanese Patent Publication No. 7-69900, the association of ferromagnetic metal fine powder (including aggregates, aggregates and soft aggregates) is released, and the ferromagnetic metal fine powder For the purpose of increasing the content of primary particles, it is described that compacting of ferromagnetic metal fine powder with a sand mill or the like is described. Although disclosed, it does not mention the fluidity of the aggregate, and as shown in Comparative Example 3 below, it is hard to say that the fluidity is sufficient. In addition, no consideration is given to the particle size formed of metal magnetic particles.

【0019】また、前出特開平8−172005号公報
には、嵩密度0.55〜1.0g/mlの磁気記録メタ
ル鉄粉が開示されているが、混練に最適な造粒径及び粉
体の流動性までは考慮されていない。
Also, Japanese Patent Application Laid-Open No. 8-172005 discloses a magnetic recording metal iron powder having a bulk density of 0.55 to 1.0 g / ml. No consideration is given to body fluidity.

【0020】そこで本発明は、塗布型磁気記録媒体を製
造する際の混練機中での各種結合剤樹脂及び有機溶媒と
の混練特性並びに有機溶媒を追加しての希釈分散特性に
優れ、得られた磁性塗膜の表面平滑性及び角型比を一層
向上させることができると共に、貯蔵効率及び輸送効率
が高く、しかも、良好な流動性を兼備する金属磁性粒子
の二次凝集体を得ることを技術的課題とする。
Therefore, the present invention provides excellent kneading characteristics with various binder resins and organic solvents in a kneader for producing a coating type magnetic recording medium, and excellent dilution and dispersion characteristics by adding an organic solvent. It is possible to further improve the surface smoothness and the squareness ratio of the magnetic coating film, and to obtain a secondary aggregate of metal magnetic particles having high storage efficiency and high transport efficiency, and also having good fluidity. Technical issues.

【0021】[0021]

【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。
The above technical objects can be achieved by the present invention as described below.

【0022】即ち、本発明は、一次粒子の平均長軸径が
0.05〜0.25μmの金属磁性粒子からなる二次凝
集体であり、当該二次凝集体の平均粒径が300〜80
0μmであって、二次凝集体の上限粒径が2000μm
であって、安息角が38〜45度であることを特徴とす
る磁気記録用金属磁性粒子の二次凝集体である。
That is, the present invention relates to a secondary agglomerate composed of metal magnetic particles having an average major axis diameter of primary particles of 0.05 to 0.25 μm, wherein the secondary aggregate has an average particle size of 300 to 80.
0 μm, and the upper limit particle size of the secondary aggregate is 2000 μm
And a secondary agglomerate of metal magnetic particles for magnetic recording, wherein the angle of repose is 38 to 45 degrees.

【0023】また、本発明は、一次粒子の平均長軸径が
0.05〜0.40μmのゲータイト粒子又は該ゲータ
イト粒子を加熱脱水して得られるへマタイト粒子を出発
原料粒子とし、当該出発原料粒子を造粒成形後、得られ
た造粒物を加熱還元して金属磁性粒子の造粒物とし、次
いで、当該金属磁性粒子の造粒物を解砕して金属磁性粒
子の二次凝集体とする製造法において、前記金属磁性粒
子の造粒物をローターで解砕する機能と強制的にスクリ
ーンを通過させる整粒機能とを有する装置で解砕するこ
とを特徴とする前記金属磁性粒子の二次凝集体の製造法
である。
Further, the present invention provides, as starting material particles, goethite particles having an average major axis diameter of primary particles of 0.05 to 0.40 μm or hematite particles obtained by heating and dehydrating the goethite particles. After granulation and molding of the particles, the obtained granules are reduced by heating to obtain granules of the metal magnetic particles, and then the granules of the metal magnetic particles are crushed to form secondary aggregates of the metal magnetic particles. In the manufacturing method, the metal magnetic particles of the metal magnetic particles characterized by being crushed by an apparatus having a function of crushing the granules of the metal magnetic particles with a rotor and a function of sieving forcefully through a screen This is a method for producing a secondary aggregate.

【0024】また、本発明は、一次粒子の平均長軸径が
0.05〜0.40μmのゲータイト粒子又は該ゲータ
イト粒子を加熱脱水して得られるへマタイト粒子を出発
原料粒子とし、当該出発原料粒子を造粒成形後、得られ
た造粒物を加熱還元して金属磁性粒子の造粒物とし、次
いで、当該金属磁性粒子の造粒物を解砕して金属磁性粒
子の二次凝集体とする製造法において、前記金属磁性粒
子の造粒物を対向回転する2軸のローターで解砕した後
に、孔径1.0mm〜2.0mmのスクリーンを強制的
に通過させて整粒することを特徴とする前記金属磁性粒
子の二次凝集体の製造法である。
Further, the present invention provides, as a starting material particle, goethite particles having an average major axis diameter of primary particles of 0.05 to 0.40 μm or hematite particles obtained by heating and dehydrating the goethite particles. After granulation and molding of the particles, the obtained granules are reduced by heating to obtain granules of the metal magnetic particles, and then the granules of the metal magnetic particles are crushed to form secondary aggregates of the metal magnetic particles. In the manufacturing method, after crushing the granulated product of the metal magnetic particles with a biaxial rotor rotating in the opposite direction, forcibly passing through a screen having a hole diameter of 1.0 mm to 2.0 mm to size the particles. A method for producing a secondary aggregate of the metal magnetic particles, which is characterized by the following.

【0025】先ず、本発明に係る金属磁性粒子の二次凝
集体について述べる。
First, the secondary aggregate of magnetic metal particles according to the present invention will be described.

【0026】本発明に係る金属磁性粒子の二次凝集体の
一次粒子は平均長軸径が0.05〜0.25μm、好ま
しくは0.05〜0.20μmである。平均長軸径が
0.05μm未満の場合には粒子サイズが小さくなり過
ぎて超常磁性の領域に近くなるので飽和磁化、保磁力が
低下し、更に塗料中での分散性が劣り、酸化安定性も劣
化しやすくなる。一方、0.25μmを超える場合には
粒子サイズが大きいために塗膜の表面平滑性が低下し、
それに起因して出力も向上し難くなる。
The primary particles of the secondary aggregate of metal magnetic particles according to the present invention have an average major axis diameter of 0.05 to 0.25 μm, preferably 0.05 to 0.20 μm. When the average major axis diameter is less than 0.05 μm, the particle size becomes too small and becomes close to the superparamagnetic region, so that the saturation magnetization and coercive force decrease, the dispersibility in the paint is poor, and the oxidation stability is low. Also easily deteriorates. On the other hand, if it exceeds 0.25 μm, the surface smoothness of the coating film decreases due to the large particle size,
As a result, it is difficult to improve the output.

【0027】本発明における一次粒子の粒子形状は針状
が好ましく、軸比は4〜13が好ましい。ここで針状と
は、文字通りの針状粒子はもちろん、紡錘状、米粒状も
含まれる。軸比が4未満の場合には必要とする保磁力が
得られず、一方、軸比が13を超える場合は、長軸径に
も依存するが酸化安定性が劣化しやすい傾向がある。特
に、紡錘状の場合は、軸比は5〜9が好ましい。
The primary particles in the present invention preferably have a needle shape and an axial ratio of 4 to 13. Here, the term "acicular" includes not only needle-like particles as literal, but also spindle-like and rice-grain-like. When the axial ratio is less than 4, the required coercive force cannot be obtained. On the other hand, when the axial ratio exceeds 13, the oxidative stability tends to deteriorate, though depending on the major axis diameter. In particular, in the case of a spindle shape, the axis ratio is preferably 5 to 9.

【0028】本発明における一次粒子のBET比表面積
は、35〜65m/gが好ましく、より好ましくは4
0〜60m/gである。BET比表面積が35m
g未満では加熱還元工程での焼結が既に生じており、磁
性塗膜の角型比が向上し難く、一方、65m/gを超
えると塗料中の粘度が高くなり過ぎ、分散し難くなるの
で好ましくない。
The BET specific surface area of the primary particles in the present invention is preferably 35 to 65 m 2 / g, more preferably 4 to 65 m 2 / g.
0 to 60 m 2 / g. BET specific surface area is 35 m 2 /
If it is less than g, sintering in the heat reduction step has already occurred, and it is difficult to improve the squareness ratio of the magnetic coating film. On the other hand, if it exceeds 65 m 2 / g, the viscosity in the coating material becomes too high and it becomes difficult to disperse. It is not preferable.

【0029】本発明に係る金属磁性粒子の二次凝集体は
平均粒径が300〜800μmであって、造粒径の上限
値が2000μmであって、安息角が38〜45度であ
る。
The secondary agglomerates of metal magnetic particles according to the present invention have an average particle size of 300 to 800 μm, an upper limit of the forming particle size of 2000 μm, and an angle of repose of 38 to 45 degrees.

【0030】二次凝集体の平均粒径が300μm未満の
場合には、安息角が大きくなり易く流動性が悪化する。
一方、800μmを超える場合には、良好な混練特性、
分散特性が得られ難い。
If the average particle size of the secondary aggregate is less than 300 μm, the angle of repose tends to be large, and the fluidity deteriorates.
On the other hand, when it exceeds 800 μm, good kneading characteristics,
It is difficult to obtain dispersion characteristics.

【0031】二次凝集体の上限値が2000μmを超え
る場合には、良好な混練特性、分散特性が得られ難い。
If the upper limit of the secondary aggregate exceeds 2000 μm, it is difficult to obtain good kneading characteristics and dispersion characteristics.

【0032】本発明の二次凝集体の53μm以下の重量
割合は30%以下が好ましい。30%を超える場合は、
安息角が大きくなりやすく流動性が悪化し、ハンドリン
グ性能が低下しやすく好ましくない。
The weight ratio of the secondary aggregate of the present invention of 53 μm or less is preferably 30% or less. If it exceeds 30%,
The angle of repose tends to be large, the fluidity deteriorates, and the handling performance tends to decrease, which is not preferable.

【0033】安息角が45度を超える場合にも同様に、
流動性が著しく悪化し、ハンドリング性能が低下するの
で好ましくない。
Similarly, when the angle of repose exceeds 45 degrees,
It is not preferable because the fluidity is significantly deteriorated and the handling performance is reduced.

【0034】本発明に係る金属磁性粒子の二次凝集体の
形状は、円柱状の金属磁性粒子の造粒物を解砕して得ら
れるので、不定形である。
The shape of the secondary agglomerates of the metal magnetic particles according to the present invention is indefinite because it is obtained by crushing the granulated product of the columnar metal magnetic particles.

【0035】本発明に係る金属磁性粒子の二次凝集体の
嵩密度は0.35g/ml以上が好ましく、より好まし
くは0.50g/ml以上である。嵩密度が0.35g
/ml未満の場合は、著しく貯蔵効率及び輸送効率が低
下するため好ましくない。殊に、0.50g/ml以上
の場合には、貯蔵効率及び輸送効率が一層向上する。一
方、嵩密度の上限値は0.65g/mlであり、0.6
5g/mlを超える場合は、一次粒子間距離が小さくな
り過ぎ磁性塗料中での分散性が劣り易い。更により好ま
しくは0.52〜0.63g/mlである。
The bulk density of the secondary aggregates of the metal magnetic particles according to the present invention is preferably at least 0.35 g / ml, more preferably at least 0.50 g / ml. Bulk density 0.35g
If it is less than / ml, the storage efficiency and the transport efficiency are remarkably reduced, which is not preferable. In particular, when it is 0.50 g / ml or more, the storage efficiency and the transport efficiency are further improved. On the other hand, the upper limit of the bulk density is 0.65 g / ml,
If it exceeds 5 g / ml, the distance between the primary particles becomes too small, and the dispersibility in the magnetic paint tends to be poor. Even more preferably, it is 0.52 to 0.63 g / ml.

【0036】本発明に係る金属磁性粒子の二次凝集体の
タップ密度は0.39〜0.75g/mlが好ましく、
より好ましくは0.55〜0.75g/mlであり、更
により好ましくは0.57〜0.73g/mlである。
The tap density of the secondary aggregate of the magnetic metal particles according to the present invention is preferably 0.39 to 0.75 g / ml,
It is more preferably 0.55 to 0.75 g / ml, and still more preferably 0.57 to 0.73 g / ml.

【0037】本発明に係る金属磁性粒子の二次凝集体の
圧縮度は10〜15%が好ましい。圧縮度が10%未満
の場合は、本発明の範囲では得ることが難しい。一方、
15%を超える場合は流動性が極端に悪化するため好ま
しくない。
The degree of compression of the secondary aggregate of metal magnetic particles according to the present invention is preferably 10 to 15%. If the degree of compression is less than 10%, it is difficult to obtain within the scope of the present invention. on the other hand,
If it exceeds 15%, the fluidity is extremely deteriorated, which is not preferable.

【0038】次に、本発明に係る金属磁性粒子の二次凝
集体の製造法について述べる。
Next, a method for producing a secondary aggregate of magnetic metal particles according to the present invention will be described.

【0039】本発明に係る金属磁性粒子の二次凝集体
は、ゲータイト粒子又は該ゲータイト粒子を加熱処理し
て得られたヘマタイト粒子を所定の大きさに造粒して、
得られた造粒物を還元し金属磁性粒子の造粒物とした後
に、前記金属磁性粒子の造粒物を解砕して得ることがで
きる。
The secondary aggregate of magnetic metal particles according to the present invention is obtained by granulating goethite particles or hematite particles obtained by heat-treating the goethite particles to a predetermined size,
After reducing the obtained granules to obtain granules of metal magnetic particles, the granules of the metal magnetic particles can be obtained by pulverization.

【0040】出発原料であるゲータイト粒子は、通常の
方法によって得ることができる。
Goethite particles as a starting material can be obtained by a usual method.

【0041】本発明におけるゲータイト粒子は、粒子形
状が針状であって、平均長軸径が0.05〜0.40μ
m、好ましくは0.05〜0.30μm、軸比が5〜1
5、好ましくは5〜10であって、BET比表面積が7
0〜250m/g、好ましくは100〜250m
gである。
The goethite particles of the present invention have a needle-like particle shape and an average major axis diameter of 0.05 to 0.40 μm.
m, preferably 0.05 to 0.30 μm, and the axial ratio is 5 to 1.
5, preferably 5 to 10, and a BET specific surface area of 7
0~250m 2 / g, preferably 100~250m 2 /
g.

【0042】前記ゲータイト粒子はCoを全Feに対し
て0.5〜45原子%含有し、Alを全Feに対して5
〜20原子%含有することが好ましい。
The goethite particles contain 0.5 to 45 atomic% of Co with respect to the total Fe, and 5% of Al with respect to the total Fe.
Preferably, it is contained in an amount of 20 to 20 atomic%.

【0043】またヘマタイト粒子は、前記ゲータイト粒
子に焼結防止処理をした後に、400〜850℃の温度
範囲で加熱処理して得ることができる。
The hematite particles can be obtained by subjecting the goethite particles to a sintering prevention treatment and then heating the goethite particles in a temperature range of 400 to 850 ° C.

【0044】焼結防止剤としては、希土類化合物を用い
る。希土類元素の化合物としては、スカンジウム、イッ
トリウム、ランタン、セリウム、プラセオジウム、ネオ
ジウム、サマリウム等の1種又は2種以上の化合物が好
適であり、前記希土類元素の塩化物、硫酸塩、硝酸塩等
が使用できる。その処理方法は乾式又は湿式のいずれで
もよく、好ましくは湿式での被覆処理である。
As the sintering inhibitor, a rare earth compound is used. As the rare earth element compound, one or more compounds such as scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, and samarium are suitable, and chlorides, sulfates, nitrates, and the like of the rare earth element can be used. . The treatment method may be either a dry method or a wet method, preferably a wet coating treatment.

【0045】希土類化合物の使用量は、全Feに対して
好ましくは1〜15原子%である。
The amount of the rare earth compound used is preferably 1 to 15 atomic% based on the total Fe.

【0046】また、NaSO等の不純物塩の除去の
ために加熱処理後のヘマタイト粒子を洗浄しても良い。
この場合において、被覆された焼結防止剤が溶出しない
条件で洗浄を行うことにより、不要な不純物の除去を行
うことが好ましい。具体的には、陽イオン性不純物の除
去によりpHを上げて行い、陰イオン性不純物の除去に
は、pHを下げることでより効率的に洗浄することがで
きる。
The hematite particles after the heat treatment may be washed to remove impurity salts such as Na 2 SO 4 .
In this case, it is preferable to remove unnecessary impurities by performing washing under conditions where the coated sintering inhibitor does not elute. Specifically, the cleaning can be performed more efficiently by removing the cationic impurities to increase the pH, and to remove the anionic impurities by lowering the pH.

【0047】本発明におけるヘマタイト粒子は、粒子形
状が針状であって、平均長軸径が0.05〜0.38μ
m、好ましくは0.05〜0.28μm、軸比が5〜1
5、好ましくは5〜10であって、BET比表面積が3
0〜150m/gであることが好ましい。前記ゲータ
イト粒子はCoを全Feに対して0.5〜45原子%、
Alを全Feに対して5〜20原子%、希土類元素を全
Feに対して1〜15原子%含有することが好ましい。
The hematite particles in the present invention have a needle-like particle shape and an average major axis diameter of 0.05 to 0.38 μm.
m, preferably 0.05 to 0.28 μm, and the axial ratio is 5 to 1.
5, preferably 5 to 10, and a BET specific surface area of 3
It is preferably from 0 to 150 m 2 / g. The goethite particles contain 0.5 to 45 atomic% of Co with respect to the total Fe,
Preferably, Al is contained in an amount of 5 to 20 atomic% based on the total Fe, and a rare earth element is included in an amount of 1 to 15 atomic% based on the total Fe.

【0048】本発明におけるゲータイト粒子又はヘマタ
イト粒子の造粒物は転動造粒、圧縮造粒、解砕造粒、押
し出し造粒等の各種方法によって得ることができるが、
焼結防止剤を被覆されたゲータイト粒子あるいはヘマタ
イト粒子を含む懸濁液をフィルタープレスにより圧縮脱
水して得たケーキを押し出し造粒法によって造粒成形す
る方法が工業的に好ましい。
The granules of goethite particles or hematite particles in the present invention can be obtained by various methods such as tumbling granulation, compression granulation, crushing granulation and extrusion granulation.
It is industrially preferable to extrude a cake obtained by compressing and dehydrating a suspension containing goethite particles or hematite particles coated with a sintering inhibitor using a filter press and granulating the cake by a granulation method.

【0049】本発明における出発原料となるゲータイト
粒子又はヘマタイト粒子の造粒物は平均造粒径(平均長
さ)が1〜10mm、平均直径が2〜4mmの円柱状で
あって、嵩密度が0.25g/ml以上、好ましくは
0.3g/ml以上、より好ましくは0.4g/ml以
上である。
The granulated goethite particles or hematite particles used as the starting material in the present invention have a columnar shape having an average particle diameter (average length) of 1 to 10 mm, an average diameter of 2 to 4 mm, and a bulk density of 1 to 10 mm. It is at least 0.25 g / ml, preferably at least 0.3 g / ml, more preferably at least 0.4 g / ml.

【0050】出発原料の造粒物の平均造粒径が1mm未
満の場合には、還元ガス流によって造粒物が大きく流動
し始めるため粒子間の衝突や摩擦を生起し、粒子同士の
焼結や一次粒子の形状のくずれが発生するので好ましく
なく、また微粉化した粒子が系外に飛散しダストとなっ
て排気ガスフィルターの目詰まりを引き起こすなど設備
的にも好ましくない現象が生ずる。一方、5mmを越え
た場合には、還元性ガスが粒子内部に行渡るまでに時間
がかかると同時に、還元反応を律速する造粒粒子内の水
蒸気の拡散も遅くなる為、還元時間が長くなり、生産性
が劣りまた、磁気特性の劣化を招き好ましくない。
If the average granulated particle size of the starting material is less than 1 mm, the granulated material starts to flow largely due to the reducing gas flow, so that collisions and friction between the particles occur, and the sintering of the particles occurs. In addition, the primary particles may be deformed and the shape of the primary particles may be unfavorably generated. In addition, undesired phenomena may occur in terms of facilities, such as finely divided particles flying out of the system and becoming dust, causing clogging of an exhaust gas filter. On the other hand, if it exceeds 5 mm, it takes time for the reducing gas to pass through the inside of the particles, and at the same time, the diffusion of water vapor in the granulated particles that controls the reduction reaction becomes slow, so that the reduction time becomes long. In addition, the productivity is inferior and the magnetic properties are deteriorated, which is not preferable.

【0051】造粒物の嵩密度が0.25g/ml未満の
場合、造粒物の強度が弱くなり微粉が発生し易く、ま
た、造粒物1個の重量が小さくなる為、還元効率を上げ
る目的でガスの通気量を増やすと造粒物が流動し易くな
り造粒物同志の摩擦や衝突によって粒子同志の焼結や一
次粒子の形状の崩れが発生し易くなる。
When the bulk density of the granulated material is less than 0.25 g / ml, the strength of the granulated material is weakened and fine powder is easily generated, and the weight of one granulated material is reduced. If the gas flow rate is increased for the purpose of raising, the granulated material tends to flow, and the sintering of the particles and the collapse of the shape of the primary particles due to friction and collision between the granulated materials are liable to occur.

【0052】 本発明においては、得られた造粒物を4
00〜700℃の温度範囲で加熱還元することによって
金属磁性粒子を得ることができる。400℃未満である
場合には、還元反応の進行が遅く、長時間を要する。ま
た、700℃を超える場合には、還元反応が急激に進行
して粒子の変形と、粒子及び粒子相互間の焼結を引き起
こす場合がある。
In the present invention, the obtained granulated product is
By heating and reducing in a temperature range of 00 to 700 ° C., metal magnetic particles can be obtained. When the temperature is lower than 400 ° C., the progress of the reduction reaction is slow, and a long time is required. On the other hand, when the temperature exceeds 700 ° C., the reduction reaction may rapidly proceed to cause deformation of the particles and sintering between the particles.

【0053】本発明では、加熱還元後の金属磁性粒子の
造粒物は周知の方法、例えば、トルエン等の有機溶媒中
に浸漬する方法、還元後の金属磁性粒子の造粒物の雰囲
気を一旦不活性ガスに置換した後に、不活性ガスの酸素
含有量を徐々に増加させながら最終的に空気とする方
法、酸素と水蒸気を混合したガスを使用して徐々に酸化
する方法等により空気中に取り出すことができる。
In the present invention, the granules of the metal magnetic particles after the heat reduction are reduced by a known method, for example, a method of immersing the particles in an organic solvent such as toluene, and the atmosphere of the granulated metal magnetic particles after the reduction is temporarily reduced. After replacing with an inert gas, the air is finally converted into air while gradually increasing the oxygen content of the inert gas, or gradually oxidized using a mixed gas of oxygen and water vapor into the air. Can be taken out.

【0054】金属磁性粒子の造粒物は、平均造粒径(平
均長さ)が1〜5mm、平均直径が2〜3mmの円柱状
であることが好ましい。また、安息角は36〜43度、
嵩密度は0.35〜0.65g/ml、好ましくは0.
50〜0.65g/ml、タップ密度は0.39〜0.
75g/ml、好ましくは0.55〜0.75g/m
l、圧縮度は8〜13%が好ましい。
The granulated metal magnetic particles preferably have a columnar shape having an average granulated particle diameter (average length) of 1 to 5 mm and an average diameter of 2 to 3 mm. Also, the angle of repose is 36-43 degrees,
The bulk density is 0.35 to 0.65 g / ml, preferably 0.1 to 0.5 g / ml.
50-0.65 g / ml, tap density 0.39-0.
75 g / ml, preferably 0.55 to 0.75 g / m
1, the degree of compression is preferably 8 to 13%.

【0055】本発明では、加熱還元した後の金属磁性粒
子の造粒物を解砕処理する。
In the present invention, the granulated product of the metal magnetic particles after the heat reduction is pulverized.

【0056】本発明で言う解砕処理とは、ローターで解
砕する機能と強制的にスクリーンを通過させる整粒機能
とを有する装置で金属磁性粒子の造粒物を解砕処理する
ことであり、具体的には、対向回転する2軸のローター
で解砕し、次いで、孔径1.0mm〜2.0mmのスク
リーンを強制的に通過させて整粒することを言う。使用
する処理装置としては、ランデルミルRMI型(徳寿工
作所(株)製)、コンバインドグラニュレーター(ター
ボ工業(株)製)等が挙げられる。運転条件は、ロータ
ー回転数を100〜400rpmとし、被処理物の投入
速度は1〜10kg/minとするのが好ましい。
The crushing treatment referred to in the present invention is to crush the granulated metal magnetic particles using a device having a function of crushing with a rotor and a function of forcing the particles to pass through a screen. Specifically, it refers to crushing with a biaxial rotor rotating in the opposite direction, and then forcibly passing through a screen having a hole diameter of 1.0 mm to 2.0 mm to size the particles. Examples of a processing apparatus to be used include a Randel mill RMI type (manufactured by Tokuju Kosakusho Co., Ltd.) and a combined granulator (manufactured by Turbo Kogyo Co., Ltd.). The operating conditions are preferably such that the rotor speed is 100 to 400 rpm, and the charging speed of the object to be treated is 1 to 10 kg / min.

【0057】なお、スクリーンとしては、金属板を打ち
抜いたパンチングタイプ、又は金属の針金を織り込んだ
メッシュタイプのいずれかを用いることができる。
As the screen, either a punching type obtained by punching a metal plate or a mesh type obtained by weaving a metal wire can be used.

【0058】なお、金属磁性粒子の磁気特性は保磁力が
103.5〜206.9kA/m(1300〜2600
Oe)、飽和磁化が110〜160Am/kg(11
0〜160emu/g)であることが好ましい。
The magnetic characteristics of the metal magnetic particles are such that the coercive force is 103.5 to 206.9 kA / m (1300 to 2600 kA / m).
Oe), and the saturation magnetization is 110 to 160 Am 2 / kg (11
0 to 160 emu / g).

【0059】[0059]

【発明の実施の形態】本発明の代表的な実施の形態は次
の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows.

【0060】各粒子の平均長軸径、平均短軸径及び軸比
は、いずれも電子顕微鏡写真から測定した数値の平均値
で示した。
The average major axis diameter, average minor axis diameter, and axial ratio of each particle were all shown as average values of numerical values measured from electron micrographs.

【0061】各粒子のCo量、Al量、希土類元素量
は、「誘導結合プラズマ発光分光分析装置SPS400
0」(セイコー電子工業(株)製)を使用し、測定し
た。
The amount of Co, the amount of Al, and the amount of rare earth element of each particle are described in “Inductively Coupled Plasma Emission Spectrometer SPS400”.
0 "(manufactured by Seiko Denshi Kogyo KK).

【0062】各粒子の比表面積は、「モノソーブMS−
11」(カンタクロム(株)製)を使用し、BET法に
より測定した値で示した。
The specific surface area of each particle is as follows: “Monosorb MS-
11 "(manufactured by Cantachrome Co., Ltd.) and the value measured by the BET method.

【0063】金属磁性粒子及び磁性塗膜の磁気特性は、
「振動試料磁力計VSM−3S−15」(東英工業
(株)製)を使用し、外部磁場795.8kA/m(1
0kOe)で測定した。
The magnetic properties of the metal magnetic particles and the magnetic coating film are as follows:
Using a “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Industry Co., Ltd.), an external magnetic field of 795.8 kA / m (1
0 kOe).

【0064】粉体の飽和磁化値(σs)の酸化安定性
(Δσs)及び磁性塗膜の飽和磁束密度(Bm)の酸化
安定性(ΔBm)は、温度60℃、相対湿度90%の恒
温槽に粉体又は磁性塗膜を一週間静置する促進経時試験
の後、粉体の飽和磁化値及び磁性塗膜の飽和磁束密度を
それぞれ測定し、試験開始前のσs及びBmと促進経時
試験一週間後のσs’及びBm’との差(絶対値)を試
験開始前のσs及びBmで除した値、即ち、Δσs、Δ
Bmとしてそれぞれ算出した。
The oxidation stability (Δσs) of the saturation magnetization value (σs) of the powder and the oxidation stability (ΔBm) of the saturation magnetic flux density (Bm) of the magnetic coating film were determined in a thermostatic chamber at a temperature of 60 ° C. and a relative humidity of 90%. After the accelerated aging test in which the powder or the magnetic coating film is allowed to stand for one week, the saturation magnetization value of the powder and the saturation magnetic flux density of the magnetic coating film were measured, respectively. A value obtained by dividing the difference (absolute value) between σs ′ and Bm ′ after one week by σs and Bm before the start of the test, that is, Δσs, Δ
Bm was calculated for each.

【0065】金属磁性粒子の着火温度は、「TG/DT
A測定装置SSC5100TG/DTA22」(セイコ
ー電子工業(株)製)を用いて測定した。
The ignition temperature of the metal magnetic particles is expressed as “TG / DT
A measurement device SSC5100TG / DTA22 "(manufactured by Seiko Instruments Inc.).

【0066】二次凝集体の平均粒径、安息角、嵩密度、
タップ密度、圧縮度は、「パウダテスタ PT−N型」
(ホソカワミクロン株式会社製)を用いてそれぞれ測定
した。なお、平均粒径は質量中位径であり、質量基準の
積算分布のグラフから50%の値を採用した。また、嵩
密度はゆるみ密度、タップ密度は固め密度の値を採用し
た。
The average particle size, angle of repose, bulk density,
Tap density and compression degree are "Powder tester PT-N type"
(Manufactured by Hosokawa Micron Corporation). In addition, the average particle diameter is a median diameter, and a value of 50% is adopted from a graph of a mass-based integrated distribution. The bulk density was a loose density, and the tap density was a solid density.

【0067】塗膜の表面光沢は、グロスメーター 「U
GV−5D」(スガ試験器株式会社製)を用いて入射角
45度で測定した値であり、標準板光沢を86.3%と
した時の値を%表示で示したものである。
The surface gloss of the coating film was measured using a gloss meter “U
GV-5D "(manufactured by Suga Test Instruments Co., Ltd.), measured at an incident angle of 45 degrees, and the value when the standard plate gloss is set to 86.3% is shown in%.

【0068】磁性塗膜の作成は、(A)混練工程と
(B)希釈分散工程とからなる。
The preparation of the magnetic coating comprises (A) a kneading step and (B) a diluting and dispersing step.

【0069】(A)混練工程:下記に示す成分を内容積
88mlの二軸のプラストミルに投入し、10分間混練
した。
(A) Kneading step: The following components were charged into a 88-ml biaxial plastmill having an inner volume of 88 ml and kneaded for 10 minutes.

【0070】 金属磁性粒子の二次凝集体 100重量部、 スルホン酸ナトリウム基を有する塩化ビニル樹脂 (商品名:MR110,日本ゼオン(株)) 15重量部、 シクロヘキサノン 35.0重量部、 メチルエチルケトン 5.3重量部、 トルエン 5.3重量部。100 parts by weight of secondary aggregate of metal magnetic particles, 15 parts by weight of vinyl chloride resin having a sodium sulfonate group (trade name: MR110, Nippon Zeon Co., Ltd.), 35.0 parts by weight of cyclohexanone, and methyl ethyl ketone 3 parts by weight, 5.3 parts by weight of toluene.

【0071】(B)希釈分散工程:次いで、得られた混
練物の希釈分散において、下記に示す成分を内容積10
0mlのガラスビンに入れた後、ペイントシェーカー
(レッドデビル社製)で2〜6時間混合分散を行うこと
により調製した磁性塗料を厚さ25μmのポリエチレン
テレフタートフィルム上に4mil(100μm)のド
クターブレードを用いて塗布し、397.9kA/m
(5kOe)で磁場中で乾燥させることにより得た。得
られた磁性塗膜について磁気特性を測定した。
(B) Dilution and dispersion step: Next, in the dilution and dispersion of the obtained kneaded material, the following components were added to the internal volume 10
After placing in a 0 ml glass bottle, the magnetic paint prepared by mixing and dispersing with a paint shaker (manufactured by Red Devil Co., Ltd.) for 2 to 6 hours was coated with a 4 mil (100 μm) doctor blade on a 25 μm thick polyethylene terephthalate film. And apply 399.9 kA / m
It was obtained by drying in a magnetic field at (5 kOe). The magnetic properties of the obtained magnetic coating film were measured.

【0072】 1mmφガラスビーズ 530重量部、 鉄を主成分とする紡錘状金属磁性粒子の混練物 100重量部、 メチルエチルケトン 83.3重量部、 トルエン 83.3重量部。530 parts by weight of 1 mmφ glass beads, 100 parts by weight of a kneaded mixture of spindle-shaped metal magnetic particles containing iron as a main component, 83.3 parts by weight of methyl ethyl ketone, 83.3 parts by weight of toluene.

【0073】混練物の状態のうち光沢度は、前記混練工
程(A)を行った後の混練物の状態について、下記3段
階で評価した。3が最も光沢度に優れる。 3:艶のある黒色 2:艶が無い黒色 1:全体的に白色を帯びている(濁った黒色)
Among the states of the kneaded material, the glossiness was evaluated on the following three scales with respect to the state of the kneaded material after performing the kneading step (A). 3 is most excellent in glossiness. 3: glossy black 2: matte black 1: white overall (turbid black)

【0074】混練物の状態のうち伸長性は、前記混練工
程(A)を行った後の混練物の状態について、下記3段
階で評価した。3が最も伸長性に優れる。 3:引っ張ると伸びがある 2:引っ張るとすぐ割れる 1:引っ張ることもできない(パサパサの状態)
Among the states of the kneaded material, the extensibility of the kneaded material after the kneading step (A) was evaluated in the following three stages. No. 3 is most excellent in extensibility. 3: stretches when pulled 2: cracks immediately when pulled 1: cannot be pulled

【0075】混練物の状態のうち柔軟性は、前記混練工
程(A)を行った後の混練物の状態について、下記3段
階で評価した。3が最も柔軟性に優れる。 3:弾力がある(少しの力で変形する) 2:少し弾力がある(強い力で変形する) 1:弾力が無く硬い
Among the states of the kneaded material, the flexibility was evaluated by the following three steps with respect to the state of the kneaded material after performing the kneading step (A). 3 is the most flexible. 3: elastic (deforms with a small force) 2: elastic (deforms with a strong force) 1: hard without elasticity

【0076】<紡錘状ゲータイト粒子の造粒物の製造>
炭酸ナトリウム25molと水酸化ナトリウム19mo
l(混合アルカリに対し水酸化ナトリウムは規定換算で
27.5mol%に該当する。)含む混合アルカリ水溶
液とFe2+として20molを含む硫酸第一鉄水溶液
20L(硫酸第一鉄に対し混合アルカリ水溶液は規定換
算で1.725当量に該当する。)を気泡塔中に投入し
て75分間熟成した後、全Feに対しCo換算で4.8
原子%に該当する硫酸コバルト水溶液を添加し、さらに
225分間熟成(Co添加時期の全熟成時間に対する比
率25%)した後、空気を通気してFe2+の酸化率4
0%まで酸化反応を行ってゲータイト種晶粒子を生成さ
せた。次いで、全Feに対しAl換算で12.0原子%
に該当する硫酸アルミニウム水溶液を添加して酸化反応
を行った後、フィルタープレスで電気伝導度60μS/
cmまで水洗を行ってプレスケーキとした。
<Production of Granulated Spindle-Shaped Goethite Particles>
25mol of sodium carbonate and 19mo of sodium hydroxide
l (sodium hydroxide corresponds to 27.5 mol% in terms of a specified conversion with respect to the mixed alkali) and an aqueous ferrous sulfate solution 20 L containing 20 mol as Fe2 + (a mixed alkali aqueous solution is specified for ferrous sulfate. (Equivalent to 1.725 equivalents in terms of conversion)) in a bubble column, aged for 75 minutes, and then 4.8 in terms of Co with respect to all Fe.
Was added cobalt sulfate aqueous solution corresponding to atomic%, (25% ratio of Co total aging time of addition timing) further 225 minutes aged after oxidation rate of the air by bubbling the Fe 2+ 4
The oxidation reaction was performed to 0% to generate goethite seed crystal particles. Next, 12.0 atomic% in terms of Al with respect to all Fe
After performing an oxidation reaction by adding an aqueous solution of aluminum sulfate corresponding to the above, an electric conductivity of 60 μS /
cm to give a press cake.

【0077】前記ケーキの一部を常法により乾燥、粉砕
を行って紡錘状ゲータイト粒子を得た。得られたゲータ
イト粒子は紡錘状を呈しており、平均長軸径0.17μ
m、軸比7.5であり、BET比表面積170m/g
で樹脂状粒子が全く存在していないものであった。な
お、Co含有量が全Feに対して4.8原子%、Al含
有量が全Feに対して12.0原子%であった。また、
Alは表層部分にのみ存在していた。
A part of the cake was dried and pulverized by a conventional method to obtain spindle-shaped goethite particles. The obtained goethite particles have a spindle shape and have an average major axis diameter of 0.17 μm.
m, the axial ratio is 7.5, and the BET specific surface area is 170 m 2 / g.
And no resinous particles were present. Note that the Co content was 4.8 atomic% with respect to all Fe, and the Al content was 12.0 atomic% with respect to all Fe. Also,
Al was present only in the surface layer.

【0078】<紡錘状ヘマタイト粒子の造粒物の製造>
次いで、得られた紡錘状ゲータイト粒子を含有するプレ
スケーキを水中に十分に分散させた後、前記ゲータイト
粒子中の全Feに対しNdとして3.0原子%に該当す
る硝酸ネオジム水溶液を添加し、攪拌し、次いで炭酸ナ
トリウム水溶液を沈澱剤として添加してpH9.5に調
整した後、フィルタープレスで水洗し、得られたプレス
ケーキは圧縮成型機を用いて孔径4mmの成型板で押し
出し成型して120℃で乾燥してNd化合物が被覆され
た紡錘状ゲータイト粒子の造粒物を得た。得られた造粒
物は、平均直径3.3mm、平均長さ10mmの円柱状
であった。
<Production of Granulated Spindle-Shaped Hematite Particles>
Next, after sufficiently dispersing the obtained press cake containing spindle-shaped goethite particles in water, an aqueous solution of neodymium nitrate corresponding to 3.0 atomic% as Nd is added to all Fe in the goethite particles, After stirring, and then adjusting the pH to 9.5 by adding an aqueous solution of sodium carbonate as a precipitant, washing with water using a filter press, the obtained press cake is extruded on a molding plate having a pore diameter of 4 mm using a compression molding machine. After drying at 120 ° C., a granulated product of spindle-shaped goethite particles coated with an Nd compound was obtained. The obtained granules were columnar with an average diameter of 3.3 mm and an average length of 10 mm.

【0079】前記造粒物を構成しているゲータイト粒子
中のCoの含有量は全Feに対して4.8原子%、Al
の含有量は全Feに対して12.0原子%、Ndの含有
量は全Feに対して3.0原子%であり、当該造粒物を
構成している紡錘状ゲータイト粒子はAlが中間層部分
にのみ存在し、Ndが表層部分にのみ存在していた。
The content of Co in the goethite particles constituting the granulated product was 4.8 atomic% with respect to the total Fe,
Is 12.0 atomic% with respect to the total Fe, the Nd content is 3.0 atomic% with respect to the total Fe, and the spindle-like goethite particles constituting the granulated product have an intermediate Al content. Nd was present only in the layer portion, and Nd was present only in the surface layer portion.

【0080】前記Nd化合物が被覆された紡錘状ゲータ
イト粒子の造粒物を空気中760℃で加熱脱水してNd
化合物からなる最外層を有する紡錘状ヘマタイト粒子か
らなる造粒物を得た。得られた造粒物は、平均直径3.
1mm、平均長さ5mmの円柱状であった。
The spindle-shaped goethite granules coated with the Nd compound are heated and dehydrated at 760 ° C. in air to obtain Nd.
A granulated product composed of spindle-shaped hematite particles having an outermost layer composed of a compound was obtained. The obtained granules have an average diameter of 3.
It had a columnar shape of 1 mm and an average length of 5 mm.

【0081】なお、前記造粒物を構成しているヘマタイ
ト粒子は紡錘状を呈しており、平均長軸径0.15μ
m、軸比7.7であり、BET比表面積は45m/g
であり、該粒子中のCoの含有量は全Feに対して4.
8原子%、Alの含有量は全Feに対して12.0原子
%、Ndの含有量は全Feに対して3.0原子%であっ
た。
The hematite particles constituting the granulated product are in the shape of a spindle, and have an average major axis diameter of 0.15 μm.
m, the axial ratio is 7.7, and the BET specific surface area is 45 m 2 / g.
And the content of Co in the particles was 4.
The content of Al was 12.0 atomic% with respect to the total Fe, and the content of Nd was 3.0 atomic% with respect to the total Fe.

【0082】<金属磁性粒子の造粒物の製造>次いで、
得られたNd化合物からなる最外層を有する紡錘状ヘマ
タイト粒子の円柱状造粒物100gを内径72mmの固
定層還元装置に投入し、毎分35LのHガスを通気
し、還元温度480℃で加熱還元した後、窒素ガスに切
り替えて65℃まで冷却した後、水蒸気を通気しながら
酸素分圧を徐々に増加させて空気と同じ比率として造粒
物を構成している各粒子表面に安定な酸化被膜を形成し
た。
<Production of Granulated Metal Magnetic Particles>
100 g of the columnar granules of spindle-shaped hematite particles having the outermost layer made of the Nd compound obtained were charged into a fixed-bed reduction device having an inner diameter of 72 mm, and 35 L of H 2 gas per minute was passed therethrough at a reduction temperature of 480 ° C. After heating and reducing, switching to nitrogen gas and cooling to 65 ° C., gradually increasing the oxygen partial pressure while passing water vapor, and stabilizing the surface of each particle constituting the granulated material at the same ratio as air. An oxide film was formed.

【0083】得られた紡錘状金属磁性粒子の円柱状造粒
物の平均長さは3mm、上限長さは5mm、平均直径は
2.8mmであり、安息角は40度、嵩密度は0.57
g/mlであった。
The average length of the columnar granules of the obtained spindle-shaped metal magnetic particles is 3 mm, the upper limit length is 5 mm, the average diameter is 2.8 mm, the angle of repose is 40 degrees, and the bulk density is 0. 57
g / ml.

【0084】なお、得られた紡錘状金属磁性粒子の造粒
物を構成している金属磁性粒子の粒子形状は紡錘状であ
り、平均長軸径が0.12μm、軸比が7.0、BET
比表面積が50m/g、結晶子サイズD110が15
0Åの粒子からなり、粒度が均斉で樹枝状粒子の少ない
ものであった。また、該粒子中のCoの含有量は全Fe
に対して4.8原子%、Alの含有量は全Feに対して
12.0原子%、Ndの含有量は全Feに対して3.0
原子%であり、Al/Coの比率は2.50であった。
The metal magnetic particles constituting the obtained granules of spindle-shaped metal magnetic particles had a spindle shape, an average major axis diameter of 0.12 μm, an axial ratio of 7.0, and BET
The specific surface area is 50 m 2 / g, and the crystallite size D 110 is 15
The particles consisted of 0 ° particles, were uniform in particle size, and had few dendritic particles. In addition, the content of Co in the particles was
4.8 at%, Al content is 12.0 at% with respect to total Fe, and Nd content is 3.0 with respect to total Fe.
Atomic%, and the Al / Co ratio was 2.50.

【0085】また、この紡錘状金属磁性粒子粉末の磁気
特性は、保磁力Hcが131.3kA/m(1650O
e)であり、飽和磁化σsが127Am/kg(12
7emu/g)、角形比(σr/σs)が0.49、飽
和磁化の酸化安定性Δσsが絶対値として5%(実測値
−5%)であり、着火温度が140℃であった。
The magnetic properties of the spindle-shaped metal magnetic particles are such that the coercive force Hc is 131.3 kA / m (1650O
e) and the saturation magnetization σs is 127 Am 2 / kg (12
7 emu / g), the squareness ratio (σr / σs) was 0.49, the oxidation stability Δσs of the saturation magnetization was 5% (actually measured value −5%) in absolute value, and the ignition temperature was 140 ° C.

【0086】<金属磁性粒子の二次凝集体の製造>次い
で、前記紡錘状金属磁性粒子の円柱状造粒物を300r
pm/で対向回転する2軸のローターに5kg/min
の速度で投入し、該装置下面にある孔径1.5mmのパ
ンチングタイプのスクリーンを通過させ解砕し(徳寿工
作所(株)製ランデルミルRM−1型機)、紡錘状金属
磁性粒子の二次凝集体を得た。
<Production of Secondary Aggregates of Metallic Magnetic Particles> Next, the columnar granules of the spindle-shaped metallic magnetic particles were prepared for 300 r.
5 kg / min for a biaxial rotor that rotates oppositely at pm /
And then pass through a screen of a punching type having a hole diameter of 1.5 mm on the lower surface of the apparatus to be disintegrated (Randel Mill RM-1 type machine manufactured by Tokuju Kosakusho Co., Ltd.), and to form secondary particles of spindle-shaped metal magnetic particles. Aggregates were obtained.

【0087】得られた紡錘状金属磁性粒子の二次凝集体
の平均粒径は650μm、上限粒径が1500μmであ
り、質量基準の積算粒度分布は図1に示す通りであっ
た。また、安息角は41度であり、嵩密度は0.58g
/ml、タップ密度は0.67g/ml、圧縮度13%
であった。なお、解砕前の造粒物と比較して、安息角、
嵩密度の変化幅は、それぞれ+1度、+0.01g/m
lであり、ほとんど変化していない。53μm以下の重
量割合は2.3%であった。
The obtained secondary aggregates of spindle-shaped metal magnetic particles had an average particle size of 650 μm and an upper limit particle size of 1500 μm, and the integrated particle size distribution on a mass basis was as shown in FIG. The angle of repose is 41 degrees and the bulk density is 0.58 g.
/ Ml, tap density 0.67g / ml, compressibility 13%
Met. In addition, the angle of repose,
The change width of the bulk density is +1 degree and +0.01 g / m, respectively.
1 and hardly changes. The weight ratio of 53 μm or less was 2.3%.

【0088】得られた金属磁性粒子の二次凝集体を用い
て製造した混練物の状態は、光沢度が3、伸長性が3、
柔軟性が3であった。
The state of the kneaded material produced by using the obtained secondary aggregates of metal magnetic particles was as follows: glossiness: 3, elongation: 3,
The flexibility was 3.

【0089】また、シート特性は希釈分散時間が2時間
では、シート45度グロスが159%、シート角形比
(Br/Bm)が81.2、シート配向性(OR)が
2.45、シートSFDが0.531、シートHcが1
29.9kA/m(1632Oe)、4時間では、シー
ト45度グロスが177%、シート角形比(Br/B
m)が82.8、シートORが2.61、シートSFD
が0.519、シートHcが128.7kA/m(16
17Oe)、6時間の場合シート45度グロスが182
%、シート角形比(Br/Bm)が83.6、シートO
Rが2.74、シートSFDが0.512、シートHc
が128.8kA/m(1619Oe)、ΔBmが3.
5%(実測値−3.5%)であった。
The sheet characteristics were as follows: when the dilution / dispersion time was 2 hours, the sheet 45 ° gloss was 159%, the sheet squareness ratio (Br / Bm) was 81.2, the sheet orientation (OR) was 2.45, and the sheet SFD was Is 0.531, sheet Hc is 1
At 29.9 kA / m (1632 Oe) and 4 hours, the sheet 45 ° gloss was 177%, and the sheet squareness ratio (Br / B
m) is 82.8, sheet OR is 2.61, sheet SFD
Is 0.519 and the sheet Hc is 128.7 kA / m (16
17 Oe), gross sheet gloss of 182 for 6 hours
%, Sheet squareness ratio (Br / Bm) is 83.6, sheet O
R is 2.74, sheet SFD is 0.512, sheet Hc
Is 128.8 kA / m (1619 Oe), and ΔBm is 3.
5% (actual value -3.5%).

【0090】なお、前記金属磁性粒子の二次凝集体と後
出比較例1について、図2に希釈分散時間と45度グロ
スの変化、図3に希釈分散時間と角型比(Br/Bm)
の変化を示す。本発明に係る金属磁性粒子の二次凝集体
は、希釈時間の長短に関わらず、相対的に高い特性を有
することが明らかである。
For the secondary agglomerates of the metal magnetic particles and Comparative Example 1 described below, FIG. 2 shows the change in dilution dispersion time and 45 ° gloss, and FIG. 3 shows the dilution dispersion time and squareness ratio (Br / Bm).
Shows the change in It is clear that the secondary aggregate of the metal magnetic particles according to the present invention has relatively high characteristics regardless of the length of the dilution time.

【0091】[0091]

【作用】本発明において最も重要な点は、金属磁性粒子
の造粒物を解砕することによって、混練機中での結合剤
樹脂及び有機溶媒との混練性及びその混練物の希釈分散
時の分散性が向上し、その結果、磁性塗膜の表面平滑性
及び角形比が向上するという事実である。
The most important point in the present invention is that, by pulverizing the granules of the metal magnetic particles, the kneading property of the kneading product with the binder resin and the organic solvent in the kneading machine and the dispersing of the kneaded materials during the dilution and dispersion are improved. The fact is that the dispersibility is improved, and as a result, the surface smoothness and the squareness ratio of the magnetic coating film are improved.

【0092】混練機中での結合剤樹脂及び有機溶媒との
混練性が向上することに関しては、金属磁性粒子の二次
凝集体の大きさ、粒度を特定の範囲に制御することによ
って、各二次凝集体をほぐす程度を均一に進行すること
ができると同時に部分的に過剰に粉砕することによる一
次粒子の形状破壊を抑制できることによるものと推定し
ている。この事実は、後出実施例及び比較例に示す通
り、本発明に係る金属磁性粒子の二次凝集体から得られ
た混練物は、光沢、伸び及び柔軟性がともに優れている
ことから、混練状態が一層向上していることからも明ら
かである。更に、混練状態が優れた混練物であることに
より、その後の希釈分散工程での有機溶媒への溶解性も
向上したため、得られた磁性塗膜の表面平滑性、角型比
が格段に向上したものと考えている。
Regarding the improvement in the kneading property of the binder resin and the organic solvent in the kneading machine, the size and the particle size of the secondary agglomerates of the magnetic metal particles are controlled to a specific range, so that each of them can be controlled. It is presumed that this is because the degree of disintegration of the secondary aggregates can be uniformly advanced, and at the same time, the shape destruction of primary particles due to partial excessive pulverization can be suppressed. This fact indicates that, as shown in the following Examples and Comparative Examples, the kneaded material obtained from the secondary aggregate of the metal magnetic particles according to the present invention has excellent gloss, elongation and flexibility, and thus is kneaded. It is clear from the fact that the condition has been further improved. Furthermore, because the kneaded state is an excellent kneaded product, the solubility in an organic solvent in the subsequent dilution and dispersion step has also been improved, and thus the surface smoothness and squareness ratio of the obtained magnetic coating film have been significantly improved. Believe in things.

【0093】また、本発明においては嵩密度の比較的大
きい金属磁性粒子の造粒物を特定の粒径及び粒度分布に
解砕しているため、嵩密度及び流動性をほとんど変化さ
せることなく、良好な貯蔵効率、輸送効率を維持しなが
ら、加えて良好なハンドリング性能を有する金属磁性粒
子の二次凝集体を得ることが可能となる。
In the present invention, the granulated metal magnetic particles having a relatively large bulk density are pulverized into a specific particle size and particle size distribution, so that the bulk density and the fluidity are hardly changed. It is possible to obtain a secondary aggregate of metal magnetic particles having good handling performance while maintaining good storage efficiency and transportation efficiency.

【0094】本発明においては、前述のように磁性塗料
中での分散性が向上したことによって、塗膜の表面平滑
性及び角型比を一層向上させることができることので、
金属磁性粒子が本来有する磁気特性を十分に発揮するこ
とができるものと考えている。
In the present invention, since the dispersibility in the magnetic paint is improved as described above, the surface smoothness and squareness of the coating film can be further improved.
It is considered that the magnetic properties inherent to metal magnetic particles can be sufficiently exhibited.

【0095】[0095]

【実施例】次に、実施例並びに比較例を挙げる。Next, examples and comparative examples will be described.

【0096】実施例1、2、比較例1、2:前記発明の
実施の形態の金属磁性粒子の造粒物を用いて、解砕条件
を種々変化させた以外は前記発明の実施の形態と同様に
して金属磁性粒子の二次凝集体を得た。なお、比較例1
は解砕処理を行わなかった。
Examples 1 and 2, Comparative Examples 1 and 2: The same as the above-described embodiment of the invention except that the crushing conditions were variously changed using the granulated metal magnetic particles of the embodiment of the invention. Similarly, a secondary aggregate of metal magnetic particles was obtained. Comparative Example 1
Did not undergo crushing.

【0097】このときの製造条件及び得られた金属磁性
粒子の二次凝集体の諸特性を表1に示す。
Table 1 shows the production conditions and various properties of the secondary aggregates of the obtained metal magnetic particles.

【0098】比較例3(特公平7−62900号公報の
追試) 前記発明の実施の形態の金属磁性粒子の造粒物を、「サ
ンドミル MPUN−2型」(松本鋳造製)を用いて線
圧20kgf/cmで10分間圧粉処理した。
Comparative Example 3 (Additional Examination of Japanese Patent Publication No. 7-62900) The granulated metal magnetic particles according to the embodiment of the present invention were subjected to linear pressure using a “Sandmill MPUN-2” (Matsumoto Casting). The powder was compacted at 20 kgf / cm 2 for 10 minutes.

【0099】得られた金属磁性粒子の諸特性を表1に示
す。
Table 1 shows the properties of the obtained metal magnetic particles.

【0100】[0100]

【表1】 [Table 1]

【0101】前記発明の実施の形態と同様にして磁性塗
膜を得た。
A magnetic coating film was obtained in the same manner as in the embodiment of the present invention.

【0102】得られた磁性塗膜の諸特性を表2及び表3
に示す。
Tables 2 and 3 show various properties of the obtained magnetic coating film.
Shown in

【0103】[0103]

【表2】 [Table 2]

【0104】[0104]

【表3】 [Table 3]

【0105】比較例3の圧粉処理を行った場合には、表
1に示す通り、安息角及び圧縮度が高く流動性が低下し
ている。更に、表2及び表3に示す通り、混練特性及び
分散特性も低下している。磁性塗膜の特性劣化は、圧粉
処理を行うことによって一次粒子の形状破壊が起こって
いるものと本発明者は推定している。
When the powder compaction treatment of Comparative Example 3 was performed, as shown in Table 1, the angle of repose and the degree of compression were high, and the fluidity was low. Further, as shown in Tables 2 and 3, the kneading characteristics and the dispersing characteristics are also reduced. The present inventors presume that the deterioration of the properties of the magnetic coating film is caused by the shape destruction of the primary particles caused by the compacting.

【0106】[0106]

【発明の効果】本発明に係る金属磁性粒子の二次凝集体
は、磁性塗膜の表面平滑性及び角型比を向上させること
ができ、更に、貯蔵効率及び輸送効率が高く、且つ良好
な流動性を兼備するので塗布型磁気記録媒体用として好
適である。
The secondary agglomerates of metal magnetic particles according to the present invention can improve the surface smoothness and squareness ratio of a magnetic coating film, and have high storage efficiency and high transport efficiency, as well as good performance. Since it also has fluidity, it is suitable for a coating type magnetic recording medium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 発明の実施の形態で得られた金属磁性粒子の
二次凝集体の質量基準積算粒度分布である。
FIG. 1 is a mass-based cumulative particle size distribution of secondary aggregates of metal magnetic particles obtained in an embodiment of the present invention.

【図2】 希釈分散時間と45度グロスの変化を示すグ
ラフである。 ◆:発明の実施の形態で得られた金属磁性粒子の二次凝
集体 □:比較例1の造粒物
FIG. 2 is a graph showing a change in dilution dispersion time and a 45 ° gloss. ◆: Secondary aggregate of metal magnetic particles obtained in the embodiment of the invention □: Granulated product of Comparative Example 1

【図3】 希釈分散時間と角型比(Br/Bm)の変化
を示すグラフである。 ◆:発明の実施の形態で得られた金属磁性粒子の二次凝
集体 □:比較例1の造粒物
FIG. 3 is a graph showing changes in dilution dispersion time and squareness ratio (Br / Bm). ◆: Secondary aggregate of metal magnetic particles obtained in the embodiment of the invention □: Granulated product of Comparative Example 1

フロントページの続き Fターム(参考) 4G002 AA03 AA05 AA10 AD03 AE03 4K017 AA04 BA06 CA02 DA03 EH19 FB06 5D006 BA01 BA08 5E040 AB02 CA06 HB17 HB19 NN01 NN17 Continued on the front page F term (reference) 4G002 AA03 AA05 AA10 AD03 AE03 4K017 AA04 BA06 CA02 DA03 EH19 FB06 5D006 BA01 BA08 5E040 AB02 CA06 HB17 HB19 NN01 NN17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一次粒子の平均長軸径が0.05〜0.
25μmの金属磁性粒子からなる二次凝集体であり、当
該二次凝集体の平均粒径が300〜800μm、粒径の
上限値が2000μmであって、安息角が38〜45度
であることを特徴とする磁気記録用金属磁性粒子の二次
凝集体。
1. The primary particles have an average major axis diameter of 0.05 to 0.1.
It is a secondary aggregate made of metal magnetic particles of 25 μm, the average particle size of the secondary aggregate is 300 to 800 μm, the upper limit of the particle size is 2000 μm, and the angle of repose is 38 to 45 degrees. Secondary aggregates of metallic magnetic particles for magnetic recording.
【請求項2】 一次粒子の平均長軸径が0.05〜0.
40μmのゲータイト粒子又は該ゲータイト粒子を加熱
脱水して得られるへマタイト粒子を出発原料粒子とし、
当該出発原料粒子を造粒成形後、得られた造粒物を加熱
還元して金属磁性粒子の造粒物とし、次いで、当該金属
磁性粒子の造粒物を解砕して金属磁性粒子の二次凝集体
とする製造法において、前記金属磁性粒子の造粒物をロ
ーターで解砕する機能と強制的にスクリーンを通過させ
る整粒機能とを有する装置で解砕することを特徴とする
請求項1記載の金属磁性粒子の二次凝集体の製造法。
2. The primary particles have an average major axis diameter of 0.05 to 0.1.
40 μm goethite particles or hematite particles obtained by heating and dehydrating the goethite particles as starting material particles,
After granulating the starting material particles, the obtained granulated material is reduced by heating to obtain a granulated metal magnetic particle, and then the granulated material of the metal magnetic particle is crushed to form a metal magnetic particle. The method for producing a secondary aggregate, wherein the granules of the metal magnetic particles are crushed by an apparatus having a function of crushing with a rotor and a function of sieving forcefully through a screen. 2. The method for producing a secondary aggregate of metal magnetic particles according to 1.
【請求項3】 一次粒子の平均長軸径が0.05〜0.
40μmのゲータイト粒子又は該ゲータイト粒子を加熱
脱水して得られるへマタイト粒子を出発原料粒子とし、
当該出発原料粒子を造粒成形後、得られた造粒物を加熱
還元して金属磁性粒子の造粒物とし、次いで、当該金属
磁性粒子の造粒物を解砕して金属磁性粒子の二次凝集体
とする製造法において、前記金属磁性粒子の造粒物を対
向回転する2軸のローターで解砕した後に、孔径1.0
mm〜2.0mmのスクリーンを強制的に通過させて整
粒することを特徴とする請求項2記載の金属磁性粒子の
二次凝集体の製造法。
3. The primary particles having an average major axis diameter of 0.05 to 0.1.
40 μm goethite particles or hematite particles obtained by heating and dehydrating the goethite particles as starting material particles,
After granulating the starting material particles, the obtained granulated material is reduced by heating to obtain a granulated metal magnetic particle, and then the granulated material of the metal magnetic particle is crushed to form a metal magnetic particle. In the production method of forming the next aggregate, the granulated product of the metal magnetic particles is pulverized by a biaxial rotor rotating in the opposite direction, and then the pore size is adjusted to 1.0.
3. The method for producing secondary aggregates of metal magnetic particles according to claim 2, wherein the particles are sized by forcibly passing through a screen having a size of 2.0 to 2.0 mm.
JP2000238373A 2000-06-13 2000-08-07 Secondarily aggregated body of metallic magnetic grain for magnetic recording and its production method Pending JP2002053903A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000238373A JP2002053903A (en) 2000-08-07 2000-08-07 Secondarily aggregated body of metallic magnetic grain for magnetic recording and its production method
EP01305102A EP1164582A3 (en) 2000-06-13 2001-06-12 Secondary agglomerates of magnetic metal particles for magnetic recording and process for producing the same
US09/878,184 US6720094B2 (en) 2000-06-13 2001-06-12 Secondary agglomerates of magnetic metal particles for magnetic recording and process for producing the same
KR1020010033152A KR20020002211A (en) 2000-06-13 2001-06-13 Secondary agglomerates of magnetic metal particles for magnetic recording and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000238373A JP2002053903A (en) 2000-08-07 2000-08-07 Secondarily aggregated body of metallic magnetic grain for magnetic recording and its production method

Publications (1)

Publication Number Publication Date
JP2002053903A true JP2002053903A (en) 2002-02-19

Family

ID=18730083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000238373A Pending JP2002053903A (en) 2000-06-13 2000-08-07 Secondarily aggregated body of metallic magnetic grain for magnetic recording and its production method

Country Status (1)

Country Link
JP (1) JP2002053903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509752A (en) * 2000-09-26 2004-04-02 バイエル アクチェンゲゼルシャフト Contact and adsorbent particulates
JP2012212807A (en) * 2011-03-31 2012-11-01 Dowa Electronics Materials Co Ltd Metallic magnetic powder and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509752A (en) * 2000-09-26 2004-04-02 バイエル アクチェンゲゼルシャフト Contact and adsorbent particulates
JP2012212807A (en) * 2011-03-31 2012-11-01 Dowa Electronics Materials Co Ltd Metallic magnetic powder and production method therefor

Similar Documents

Publication Publication Date Title
US5531922A (en) Granulated particles for magnetic particles for magnetic recording, and process for producing the same
US6720094B2 (en) Secondary agglomerates of magnetic metal particles for magnetic recording and process for producing the same
JP2004035939A (en) Spindle-shaped alloy magnetic particle powder for magnetic recording, and its manufacturing process
JP2002053903A (en) Secondarily aggregated body of metallic magnetic grain for magnetic recording and its production method
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JP2003059707A (en) Iron-based spindle metal magnetic particle powder and its manufacturing method
JP4038655B2 (en) Spindle-like alloy magnetic particle powder for magnetic recording and magnetic recording medium
US6783608B2 (en) Secondary agglomerates of magnetic metal particles for magnetic recording and process for producing the same
JP4870860B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP2011096312A (en) Iron nitride magnetic powder and magnetic recording medium using the same
JP2002115002A (en) Spindle shaped metal magnetic particle essentially consisting of iron and its production method
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JP4336932B2 (en) Secondary aggregate of metal magnetic particles for magnetic recording and process for producing the same
JP2002327202A (en) Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium
JP2002329310A (en) Surface reforming magnetic particle powder for magnetic recording medium, surface reforming filler material for magnetic recording medium and surface reforming nonmagnetic particle powder for nonmagnetic ground surface layer for magnetic recording medium as well as magnetic recording medium
JP2000143250A (en) Nonmagnetic particulate powder for nonmagnetic underlayer of magnetic recording medium, its production and magnetic recording medium
JP2000226606A (en) PRODUCTION OF SPINDLELIKE ALLOY MAGNETIC GRAIN POWDER ESSENTIALLY CONSISTING OF Fe AND Co FOR MAGNETIC RECORDING
JP4228165B2 (en) Manufacturing method of spindle-shaped alloy magnetic particle powder for magnetic recording material
JPH09205012A (en) Method for manufacturing metal magnetic powder
JP2814527B2 (en) Magnetic recording media
JP2001262205A (en) Method for producing spindle-shaped metallic magnetic particle essentially consisting of iron
JP2000203847A (en) Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt