JP5897427B2 - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP5897427B2
JP5897427B2 JP2012184342A JP2012184342A JP5897427B2 JP 5897427 B2 JP5897427 B2 JP 5897427B2 JP 2012184342 A JP2012184342 A JP 2012184342A JP 2012184342 A JP2012184342 A JP 2012184342A JP 5897427 B2 JP5897427 B2 JP 5897427B2
Authority
JP
Japan
Prior art keywords
dye
layer
electron transport
transport layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012184342A
Other languages
Japanese (ja)
Other versions
JP2014041967A (en
Inventor
真也 森部
真也 森部
加藤 直彦
直彦 加藤
樋口 和夫
和夫 樋口
上山 浩司
浩司 上山
克芳 水元
克芳 水元
豊田 竜生
竜生 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2012184342A priority Critical patent/JP5897427B2/en
Publication of JP2014041967A publication Critical patent/JP2014041967A/en
Application granted granted Critical
Publication of JP5897427B2 publication Critical patent/JP5897427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感型太陽電池に関する。   The present invention relates to a dye-sensitized solar cell.

従来、固体型の色素増感型太陽電池としては、光電極と、正孔輸送層と、対極とを備えたものが知られている。光電極は、透明導電性基板と、この透明導電性基板上に設けられた多孔質の電子輸送層と、この電子輸送層に吸着した色素とを含んでいる。正孔輸送層は、光電極の電子輸送層側に設けられ、その一部が電子輸送層の細孔内に充填されている。対極は、正孔輸送層を挟んで光電極と対向するように配置されている。こうした色素増感型太陽電池において、特許文献1の実施例に記載されているように、電子輸送層を酸化チタン層とし、正孔輸送層をヨウ化銅層としたとき、酸化チタンの細孔径分布が40nm〜150nmの範囲で最大値を示す場合には、酸化チタンの細孔径分布が25nm以下の範囲で最大値を示す場合に比べて、高い発電効率を達成している。   Conventionally, as a solid-state dye-sensitized solar cell, a cell including a photoelectrode, a hole transport layer, and a counter electrode is known. The photoelectrode includes a transparent conductive substrate, a porous electron transport layer provided on the transparent conductive substrate, and a dye adsorbed on the electron transport layer. The hole transport layer is provided on the electron transport layer side of the photoelectrode, and a part of the hole transport layer is filled in the pores of the electron transport layer. The counter electrode is disposed so as to face the photoelectrode with the hole transport layer interposed therebetween. In such a dye-sensitized solar cell, as described in Examples of Patent Document 1, when the electron transport layer is a titanium oxide layer and the hole transport layer is a copper iodide layer, the pore diameter of titanium oxide When the distribution shows the maximum value in the range of 40 nm to 150 nm, higher power generation efficiency is achieved compared to the case where the pore diameter distribution of titanium oxide shows the maximum value in the range of 25 nm or less.

特開2010−205753号公報JP 2010-205753 A

しかしながら、特許文献1のように、酸化チタンの細孔径分布が40nm〜150nmの範囲で最大値を示す場合、電子輸送層の細孔内に正孔輸送材料が十分充填されず、空隙が残るおそれがある。この空隙の屈折率はほぼ1であり、電子輸送材料の屈折率が2〜3であることを考えると、電子輸送材料と空隙との屈折率の差は1を超えるようになり、光の散乱が大きくなる。光の散乱が大きくなると、受光面から入射した光が色素増感型太陽電池の奥まで届かなくなり、その結果太陽電池特性が低下するという問題があった。なお、特許文献1の特許請求の範囲には、酸化チタンの細孔径分布が40nm〜2μmで最大値を示す点が記載されているが、実施例には、酸化チタンの細孔径分布が150nm以下で最大値を示すものしかサポートされていない。   However, as in Patent Document 1, when the pore size distribution of titanium oxide shows a maximum value in the range of 40 nm to 150 nm, the hole transport material may not be sufficiently filled in the pores of the electron transport layer, and voids may remain. There is. Considering that the refractive index of the void is approximately 1 and the refractive index of the electron transport material is 2 to 3, the difference in refractive index between the electron transport material and the void exceeds 1, and light scattering. Becomes larger. When the scattering of light increases, there is a problem that the light incident from the light receiving surface does not reach the back of the dye-sensitized solar cell, and as a result, the solar cell characteristics deteriorate. In addition, although the point of the pore diameter distribution of titanium oxide shows a maximum value at 40 nm to 2 μm is described in the claims of Patent Document 1, in the examples, the pore diameter distribution of titanium oxide is 150 nm or less. Only the one with the maximum value is supported.

本発明は、このような課題に鑑みなされたものであり、固体型の色素増感型太陽電池において、太陽電池特性を高めることを主目的とする。   This invention is made | formed in view of such a subject, and makes it a main objective to improve a solar cell characteristic in a solid-type dye-sensitized solar cell.

上述した目的を達成するために鋭意研究したところ、本発明者らは、細孔径分布において細孔径が160nm〜1μmの範囲で最大値を示す電子輸送材料を用いて電子輸送層を形成し、電子輸送材料の屈折率と正孔輸送層を構成する正孔輸送材料の屈折率とが所定の関係を満たすときに太陽電池特性が高まることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-mentioned object, the present inventors formed an electron transport layer using an electron transport material having a maximum pore size within a range of 160 nm to 1 μm in the pore size distribution, and The inventors have found that the solar cell characteristics are enhanced when the refractive index of the transport material and the refractive index of the hole transport material constituting the hole transport layer satisfy a predetermined relationship, and the present invention has been completed.

本発明の色素増感型太陽電池は、
色素を有する多孔質の電子輸送層を透明導電性基板上に備えた光電極と、
少なくとも一部が前記電子輸送層の細孔に充填された正孔輸送層と、
前記正孔輸送層を挟んで前記光電極と対向するように配置された対極と、
を備え、
前記電子輸送層は、細孔径分布において細孔径が160nm〜1μmの範囲で最大値を示し、
前記電子輸送層を構成する電子輸送材料と前記正孔輸送層を構成する正孔輸送材料との屈折率の差が光の波長400nm〜1000nmの範囲において1以下であるか、又は、前記電子輸送材料と前記正孔輸送材料との屈折率から求められるレイリー散乱断面積が光の波長400nm〜1000nmの範囲において0.1以下のものである。
The dye-sensitized solar cell of the present invention is
A photoelectrode comprising a porous electron transport layer having a dye on a transparent conductive substrate;
A hole transport layer at least partially filled in the pores of the electron transport layer;
A counter electrode disposed to face the photoelectrode across the hole transport layer;
With
The electron transport layer exhibits a maximum value in a pore diameter range of 160 nm to 1 μm in a pore diameter distribution,
The difference in refractive index between the electron transport material composing the electron transport layer and the hole transport material composing the hole transport layer is 1 or less in the light wavelength range of 400 nm to 1000 nm, or the electron transport The Rayleigh scattering cross section determined from the refractive index of the material and the hole transport material is 0.1 or less in the light wavelength range of 400 nm to 1000 nm.

本発明の色素増感型太陽電池によれば、太陽電池特性が向上する。こうした効果が得られる理由は明らかではないが、以下のように推測される。すなわち、従来のように、細孔径分布において細孔径が150nm以下の範囲で最大値を示す電子輸送層では、電子輸送層の細孔に正孔輸送材料が充填される割合が低くなる。そのため、光励起して生成した正孔が電子輸送層の細孔に存在している正孔輸送材料を介して取り出されにくくなり、太陽電池の変換効率が低くなる。また、電子輸送層の細孔に正孔輸送材料が充填された状態での細孔の空隙率が高くなる。そのため、電子輸送層の屈折率と電子輸送層の細孔内の空隙部分の屈折率との差あるいはレイリー散乱断面積が大きくなる。その結果、入射した光が散乱されやすくなり、電子輸送層の奥まで光が届きにくくなり、太陽電池の変換効率が低くなる。これに対して、本発明では、電子輸送層は、細孔径分布において細孔径が160nm〜1μmの範囲で最大値を示すため、細孔に正孔輸送材料が充填される割合が高くなる。そのため、光励起して生成した正孔が電子輸送層の細孔に存在している正孔輸送材料を介して取り出されやすくなり、太陽電池の変換効率が高くなる。また、電子輸送層の細孔内の空隙部分が少ないため、そうした空隙部分による光の散乱が抑制される。更に、電子輸送層の屈折率と正孔輸送層の屈折率との関係が適正であるため、それによっても光の散乱が抑制される。その結果、入射した光が電子輸送層の奥まで届きやすくなり、太陽電池の変換効率が高くなる。   According to the dye-sensitized solar cell of the present invention, the solar cell characteristics are improved. The reason why such an effect is obtained is not clear, but is presumed as follows. That is, as in the conventional case, in the electron transport layer that exhibits the maximum value in the pore diameter distribution in the range of 150 nm or less, the ratio of filling the hole transport material into the pores of the electron transport layer is low. Therefore, holes generated by photoexcitation are difficult to be taken out via the hole transport material present in the pores of the electron transport layer, and the conversion efficiency of the solar cell is lowered. Further, the porosity of the pores in a state where the hole transport material is filled in the pores of the electron transport layer is increased. Therefore, the difference between the refractive index of the electron transport layer and the refractive index of the void portion in the pores of the electron transport layer, or the Rayleigh scattering cross section increases. As a result, the incident light is likely to be scattered, it becomes difficult for light to reach the back of the electron transport layer, and the conversion efficiency of the solar cell is lowered. On the other hand, in the present invention, since the electron transport layer shows the maximum value in the pore diameter distribution in the range of 160 nm to 1 μm, the ratio of filling the pores with the hole transport material is increased. Therefore, holes generated by photoexcitation are easily taken out via the hole transport material present in the pores of the electron transport layer, and the conversion efficiency of the solar cell is increased. In addition, since there are few voids in the pores of the electron transport layer, light scattering by such voids is suppressed. Furthermore, since the relationship between the refractive index of the electron transport layer and the refractive index of the hole transport layer is appropriate, the scattering of light is also suppressed thereby. As a result, the incident light can easily reach the back of the electron transport layer, and the conversion efficiency of the solar cell is increased.

色素増感型太陽電池モジュール10の構成の概略の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a schematic configuration of the dye-sensitized solar cell module 10. 他の色素増感型太陽電池モジュールの構成の概略の一例を示す断面図。Sectional drawing which shows an example of the outline of a structure of another dye-sensitized solar cell module. 波長と屈折率との関係を示すグラフ。The graph which shows the relationship between a wavelength and a refractive index. 波長と屈折率の差ΔNとの関係を示すグラフ。The graph which shows the relationship between wavelength and refractive index difference (DELTA) N. 波長とレイリー散乱断面積Cscaとの関係を示すグラフ。The graph which shows the relationship between a wavelength and Rayleigh scattering cross section Csca. 実施例1及び比較例1の多孔質TiO2層の断面SEM像。Cross-sectional SEM image of a porous TiO 2 layer of Example 1 and Comparative Example 1. 実施例1〜3のIPCEスペクトルを示すグラフ。The graph which shows the IPCE spectrum of Examples 1-3.

本発明の色素増感型太陽電池モジュールの一実施形態を図面を用いて説明する。図1は、色素増感型太陽電池モジュール10の構成の概略の一例を示す断面図である。なお、図1には、点線の枠で囲んだ部分の拡大図も併せて示した。図1に示すように、本実施形態に係る色素増感型太陽電池モジュール10は、透明導電性基板14上に複数の色素増感型太陽電池40(以下セルとも称する)が順次配列した構成となっている。これらのセル40は直列に接続されている。この色素増感型太陽電池モジュール10では、各セル40の間を埋めるように、シール材32が形成されており、透明導電性基板14とは反対側のシール材32の面に平板状の保護部材34が形成されている。本実施形態に係るセル40は、光が透過する透明基板11の表面に透明導電膜12が形成されている透明導電性基板14と、透明導電性基板14の透明導電膜12に直接形成されている電子輸送層としての多孔質半導体層24と、多孔質半導体層24に隣接して設けられた固体の正孔輸送層としての固体p型半導体層26と、固体p型半導体層26及びセパレータ29を介して設けられた対極30と、を備えている。光電極20は、透明導電性基板14と、透明基板11の受光面13の反対側の面に分離形成された透明導電膜12に配設され受光に伴い電子を放出する多孔質半導体層24と、多孔質半導体層24の上に形成された色素層52と、を備えている。このセル40では、光電極20と対極30とが固体p型半導体層26を介して接続されているいわゆる固体型の色素増感型太陽電池として構成されている。このように、セル40では、有機溶媒等の電解液を介さずに発電可能な構成となっている。   An embodiment of the dye-sensitized solar cell module of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view illustrating an example of a schematic configuration of a dye-sensitized solar cell module 10. FIG. 1 also shows an enlarged view of a portion surrounded by a dotted frame. As shown in FIG. 1, the dye-sensitized solar cell module 10 according to this embodiment has a configuration in which a plurality of dye-sensitized solar cells 40 (hereinafter also referred to as cells) are sequentially arranged on a transparent conductive substrate 14. It has become. These cells 40 are connected in series. In this dye-sensitized solar cell module 10, a sealing material 32 is formed so as to fill between the cells 40, and a flat plate-like protection is provided on the surface of the sealing material 32 on the side opposite to the transparent conductive substrate 14. A member 34 is formed. The cell 40 according to the present embodiment is directly formed on the transparent conductive substrate 14 in which the transparent conductive film 12 is formed on the surface of the transparent substrate 11 through which light is transmitted, and the transparent conductive film 12 of the transparent conductive substrate 14. A porous semiconductor layer 24 as an electron transport layer, a solid p-type semiconductor layer 26 as a solid hole transport layer provided adjacent to the porous semiconductor layer 24, a solid p-type semiconductor layer 26 and a separator 29 And a counter electrode 30 provided therebetween. The photoelectrode 20 is disposed on the transparent conductive substrate 14 and the transparent conductive film 12 formed separately on the surface opposite to the light receiving surface 13 of the transparent substrate 11 and is provided with a porous semiconductor layer 24 that emits electrons upon receiving light. And a dye layer 52 formed on the porous semiconductor layer 24. The cell 40 is configured as a so-called solid dye-sensitized solar cell in which the photoelectrode 20 and the counter electrode 30 are connected via a solid p-type semiconductor layer 26. Thus, the cell 40 has a configuration capable of generating power without using an electrolyte such as an organic solvent.

透明導電性基板14は、透明基板11と透明導電膜12とにより構成され、光透過性及び導電性を有するものであり、シリコン太陽電池や液晶表示パネルに用いられているものを使用することができる。具体的には、フッ素ドープSnO2コートガラス、ITOコートガラス、ZnO:Alコートガラス、アンチモンドープ酸化スズ(SnO2−Sb)、等が挙げられる。また、酸化スズや酸化インジウムに原子価の異なる陽イオン若しくは陰イオンをドープした透明電極、メッシュ状、ストライプ状など光が透過できる構造にした金属電極をガラス基板等の基板上に設けたものも使用できる。この透明導電性基板14の透明導電膜12側の両端には、集電電極16,17が設けられており、この集電電極16,17を介してセル40で発電した電力を利用することができる。 The transparent conductive substrate 14 is composed of the transparent substrate 11 and the transparent conductive film 12, has light transparency and conductivity, and those used for silicon solar cells and liquid crystal display panels may be used. it can. Specific examples include fluorine-doped SnO 2 coated glass, ITO coated glass, ZnO: Al coated glass, and antimony-doped tin oxide (SnO 2 —Sb). Also, a transparent electrode obtained by doping tin oxide or indium oxide with cations or anions having different valences, or a metal electrode having a structure capable of transmitting light, such as a mesh shape or a stripe shape, provided on a substrate such as a glass substrate. Can be used. Current collecting electrodes 16 and 17 are provided at both ends of the transparent conductive substrate 14 on the transparent conductive film 12 side, and the power generated by the cell 40 via the current collecting electrodes 16 and 17 can be used. it can.

透明基板11としては、例えば、透明ガラス、透明プラスチック板、透明プラスチック膜、無機物透明結晶体などが挙げられ、このうち、透明ガラスが好ましい。この透明基板11は、透明なガラス基板、ガラス基板表面を適当に荒らすなどして光の反射を防止したもの、すりガラス状の半透明のガラス基板など光を透過するものなどとしてもよい。透明導電膜12は、例えば、透明基板11上に酸化スズを付着させることにより形成することができる。特に、フッ素をドープした酸化スズ(FTO)等の金属酸化物を用いれば、好適な透明導電膜12を形成することができる。透明導電膜12は、所定の間隔に溝18が形成されており、この溝18の幅に相当する間隔を隔てて複数の透明導電膜12の領域が分離形成されている。   Examples of the transparent substrate 11 include transparent glass, a transparent plastic plate, a transparent plastic film, and an inorganic transparent crystal, and among these, transparent glass is preferable. The transparent substrate 11 may be a transparent glass substrate, a glass substrate whose surface is appropriately roughened to prevent reflection of light, or a transparent glass substrate such as a ground glass-like translucent glass substrate. The transparent conductive film 12 can be formed, for example, by depositing tin oxide on the transparent substrate 11. In particular, if a metal oxide such as tin oxide (FTO) doped with fluorine is used, a suitable transparent conductive film 12 can be formed. In the transparent conductive film 12, grooves 18 are formed at predetermined intervals, and a plurality of regions of the transparent conductive film 12 are separately formed at intervals corresponding to the width of the grooves 18.

多孔質半導体層24は、n型半導体層により形成されている。n型半導体としては、金属酸化物半導体や金属硫化物半導体などが適しており、例えば、酸化チタン(TiO2)、酸化スズ(SnO)、酸化亜鉛(ZnO)、硫化カドミウム(CdS)、硫化亜鉛(ZnS)のうち少なくとも1以上であることが好ましく、このうち多孔質の酸化チタンがより好ましい。これらの半導体材料を微結晶又は多結晶状態にして薄膜化することにより、良好な多孔質半導体層24を形成することができる。特に、多孔質の酸化チタン層は、光電極20が有するn型半導体層として好適である。多孔質半導体層24の細孔径分布は、細孔径が160nm〜1μmの範囲で最大値を示す。また、多孔質半導体層24の材料の平均粒径は、100nm〜600nmであることが好ましく、200nm〜400nmであることがより好ましい。このような材料を用いれば、細孔径分布において細孔径が160nm〜1μmの範囲で最大値を示すものを容易に得ることができる。 The porous semiconductor layer 24 is formed of an n-type semiconductor layer. As the n-type semiconductor, a metal oxide semiconductor or a metal sulfide semiconductor is suitable. For example, titanium oxide (TiO 2 ), tin oxide (SnO), zinc oxide (ZnO), cadmium sulfide (CdS), zinc sulfide. At least one of (ZnS) is preferable, and among these, porous titanium oxide is more preferable. A good porous semiconductor layer 24 can be formed by thinning these semiconductor materials into a microcrystalline or polycrystalline state. In particular, the porous titanium oxide layer is suitable as an n-type semiconductor layer included in the photoelectrode 20. The pore size distribution of the porous semiconductor layer 24 shows a maximum value when the pore size is in the range of 160 nm to 1 μm. The average particle size of the material of the porous semiconductor layer 24 is preferably 100 nm to 600 nm, and more preferably 200 nm to 400 nm. If such a material is used, it is possible to easily obtain a material having a maximum pore size in the range of 160 nm to 1 μm in the pore size distribution.

色素層52を形成する色素は、受光に伴い電子を放出する。色素は、多孔質半導体層24を構成するn型半導体の表面に吸着されている。この吸着は、化学吸着や物理吸着等によって行うことができる。具体的には、多孔質半導体層24を透明導電性基板14上に形成したのち、この多孔質半導体層24へ色素を含む溶液を滴下して乾燥する方法や、色素溶液に浸漬し乾燥する方法などにより作製することができる。この色素は、可視光領域および赤外光領域のうち少なくとも一方に吸収を持つ増感特性を有していれば特に限定されるものではない。色素は、より好ましくは、少なくとも200nm〜10μmの波長の光により励起されて電子を放出するものであればよい。色素としては、ロダニン系色素(例えば下記の色素1,2など)や、カルバゾール系色素、スクワリリウム系色素、メタルフリーフタロシアニン、シアニン系色素、メロシアニン系色素、キサンテン系色素、トリフェニルメタン系色素等を用いることができる。また、色素としては、金属錯体を用いることもできる。金属錯体としては、例えば、銅フタロシアニン、チタニルフタロシアニン等の金属フタロシアニン、クロロフィルまたはその誘導体、ヘミン、ルテニウム、オスミウム、鉄及び亜鉛の錯体等が挙げられる。   The dye forming the dye layer 52 emits electrons upon receiving light. The dye is adsorbed on the surface of the n-type semiconductor constituting the porous semiconductor layer 24. This adsorption can be performed by chemical adsorption or physical adsorption. Specifically, after forming the porous semiconductor layer 24 on the transparent conductive substrate 14, a method of dropping a solution containing a dye onto the porous semiconductor layer 24 and drying, or a method of immersing and drying in a dye solution Etc. The dye is not particularly limited as long as it has a sensitization property having absorption in at least one of the visible light region and the infrared light region. More preferably, the dye may be one that emits electrons when excited with light having a wavelength of at least 200 nm to 10 μm. Examples of the dye include rhodanine dyes (for example, the following dyes 1 and 2), carbazole dyes, squarylium dyes, metal-free phthalocyanines, cyanine dyes, merocyanine dyes, xanthene dyes, triphenylmethane dyes, and the like. Can be used. Moreover, a metal complex can also be used as a pigment | dye. Examples of the metal complex include metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll or derivatives thereof, hemin, ruthenium, osmium, iron and zinc complexes.

固体p型半導体層26は、正孔輸送層としてp型半導体によって構成されている。p型半導体としては、固体の正孔輸送層を形成するものとすればよく、例えば、有機正孔輸送材料や無機正孔輸送材料としてもよい。有機正孔輸送材料としては、例えば、Spiro−OMeTAD(2,2',7,7'-tetrakis(N,N-di-p-methoxyphenilamine)-9,9'-spirobifluorene)や、P3HT(Poly(3-hexylthiophene))などが挙げられる。また、無機正孔輸送材料としては、例えば、Cu化合物やNi化合物を含む半導体により形成された層としてもよい。このCu化合物としては、例えば、CuI、CuSCN、CuO、Cu2Oのうちいずれか1以上が挙げられる。また、Ni化合物としては、NiOなどが挙げられる。このうち、Cu化合物がより好ましく、CuIが更に好ましい。この固体p型半導体層26は、添加剤としてのイオン性液体を含んで作製されていることが好ましい。こうすれば、変換効率や耐久性など、太陽電池特性をより高めることができる。この添加剤は、例えば、p型半導体材料(例えばCu化合物)の濃度に対する添加剤の濃度の割合を0.6%以上12.5%以下とした溶液を用いて固体p型半導体層26に添加されていることが好ましい。この添加剤は、イミダゾリウム系カチオン、ピリジウム系カチオン、脂環式アミン系カチオン及び脂肪族アミン系カチオンのうちいずれか1以上のカチオンと、チオシアネート(SCN-)及びアイオダイド(I-)のうちいずれか1以上のアニオンとを含むイオン性液体を含むことが好ましい。例えば、トリエチルアミンヒドロチオシアネート(THT)や、1−メチル−3−エチルイミダゾリウムチオシアネート(EMISCN)、1−ブチル−3−プロピルイミダゾリウムヨージド(PMII)、1−ブチル−3−メチルイミダゾリウムチオシアネート(BMISCN)などの液体が挙げられる。このうち、イミダゾリウム系カチオンとチオシアネートのアニオンを含むイオン性液体が好ましい。 The solid p-type semiconductor layer 26 is composed of a p-type semiconductor as a hole transport layer. As a p-type semiconductor, a solid hole transport layer may be formed. For example, an organic hole transport material or an inorganic hole transport material may be used. Examples of the organic hole transport material include Spiro-OMeTAD (2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenilamine) -9,9′-spirobifluorene) and P3HT (Poly ( 3-hexylthiophene)). Moreover, as an inorganic hole transport material, it is good also as a layer formed with the semiconductor containing Cu compound and Ni compound, for example. Examples of the Cu compound include one or more of CuI, CuSCN, CuO, and Cu 2 O. Moreover, NiO etc. are mentioned as a Ni compound. Of these, Cu compounds are more preferred, and CuI is even more preferred. The solid p-type semiconductor layer 26 is preferably produced including an ionic liquid as an additive. In this way, solar cell characteristics such as conversion efficiency and durability can be further improved. This additive is added to the solid p-type semiconductor layer 26 using, for example, a solution in which the ratio of the concentration of the additive to the concentration of the p-type semiconductor material (for example, Cu compound) is 0.6% or more and 12.5% or less. It is preferable that The additive may be any one or more of imidazolium cation, pyridium cation, alicyclic amine cation and aliphatic amine cation, and thiocyanate (SCN ) and iodide (I ). Or an ionic liquid containing one or more anions. For example, triethylamine hydrothiocyanate (THT), 1-methyl-3-ethylimidazolium thiocyanate (EMISCN), 1-butyl-3-propylimidazolium iodide (PMII), 1-butyl-3-methylimidazolium thiocyanate ( Liquids such as BMISCN). Among these, an ionic liquid containing an imidazolium cation and an anion of thiocyanate is preferable.

多孔質半導体層24を構成する材料の屈折率N1と固体p型半導体層26を構成する材料の屈折率N2との差ΔN(=N1−N2)は、光の波長400nm〜1000nmの範囲において1以下であることが好ましく、0.7以下であることがより好ましい。こうすれば、多孔質半導体層24に入射した光の散乱を抑制することができる。あるいは、屈折率の差ΔNの数値範囲を限定するのに代えて又は加えて、多孔質半導体層24を構成する材料と固体p型半導体層26を構成する材料との屈折率から求められるレイリー散乱断面積Csca(下記式、参考文献1:Solar Energy Materials & Solar Cells 93 (2009) 808-811,参考文献2:C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New Yor, 1998)が光の波長400nm〜1000nmの範囲において0.1以下、好ましくは0.05以下となるようにしてもよい。こうしても、多孔質半導体層24に入射した光の散乱を抑制することができる。以上のようにして光の散乱を抑制することにより、光の透過性を向上させ、光が多孔質半導体層24の奥まで進入することで太陽電池特性を向上させることができる。
Csca=(N1 2−N2 22/(N1 2+2N2 22
The difference ΔN (= N 1 −N 2 ) between the refractive index N 1 of the material constituting the porous semiconductor layer 24 and the refractive index N 2 of the material constituting the solid p-type semiconductor layer 26 is a light wavelength of 400 nm to 1000 nm. Is preferably 1 or less, more preferably 0.7 or less. In this way, scattering of light incident on the porous semiconductor layer 24 can be suppressed. Alternatively, instead of or in addition to limiting the numerical range of the refractive index difference ΔN, Rayleigh scattering determined from the refractive index of the material constituting the porous semiconductor layer 24 and the material constituting the solid p-type semiconductor layer 26. Cross-sectional area Csca (formula, reference 1: Solar Energy Materials & Solar Cells 93 (2009) 808-811, reference 2: CF Bohren, DR Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New Yor, 1998 ) May be 0.1 or less, preferably 0.05 or less in the light wavelength range of 400 nm to 1000 nm. Even in this case, scattering of light incident on the porous semiconductor layer 24 can be suppressed. By suppressing the scattering of light as described above, the light transmittance can be improved, and the solar cell characteristics can be improved by allowing light to enter deep inside the porous semiconductor layer 24.
Csca = (N 1 2 −N 2 2 ) 2 / (N 1 2 + 2N 2 2 ) 2

ここで、電子輸送材料と正孔輸送材料との組合せに対する、屈折率の差ΔNやレイリー散乱断面積Cscaの値を表1に示す。   Here, Table 1 shows values of the refractive index difference ΔN and the Rayleigh scattering cross section Csca for the combination of the electron transport material and the hole transport material.

また、多孔質半導体層24の細孔に固体p型半導体層26の一部が充填された状態での細孔の空隙率(充填後空隙率)は27%以下であることが好ましい。充填後空隙率は、多孔質半導体層24の細孔に固体p型半導体層26を充填する前の空隙率(充填前空隙率)から、多孔質半導体層24の断面に占める固体p型半導体層26の占有率を差し引いた値である。充填前空隙率は、窒素ガス吸着量測定によって求めることができる。占有率は、多孔質半導体層24の細孔に固体p型半導体層26を充填した後の断面SEM像から、多孔質半導体層全体に対する固体p型半導体層26の割合として求めることができる。充填後空隙率が27%以下の場合には、空隙部分(屈折率は約1)による光の散乱が抑制される。その結果、入射した光が多孔質半導体層24の奥まで届きやすくなり、太陽電池の変換効率が高くなる。充填後空隙率は、7〜27%であることがより好ましい。   In addition, the porosity of the pores (porosity after filling) in a state where a part of the solid p-type semiconductor layer 26 is filled in the pores of the porous semiconductor layer 24 is preferably 27% or less. The porosity after filling is determined based on the porosity before filling the solid p-type semiconductor layer 26 into the pores of the porous semiconductor layer 24 (the porosity before filling), and the solid p-type semiconductor layer occupying the cross section of the porous semiconductor layer 24 This is a value obtained by subtracting the occupation ratio of 26. The porosity before filling can be determined by measuring the amount of nitrogen gas adsorbed. The occupation ratio can be obtained as a ratio of the solid p-type semiconductor layer 26 to the entire porous semiconductor layer from the cross-sectional SEM image after the solid p-type semiconductor layer 26 is filled in the pores of the porous semiconductor layer 24. When the void ratio after filling is 27% or less, light scattering by the void portion (refractive index is about 1) is suppressed. As a result, the incident light easily reaches the depth of the porous semiconductor layer 24, and the conversion efficiency of the solar cell is increased. The porosity after filling is more preferably 7 to 27%.

セパレータ29は、多孔質半導体層24及び固体p型半導体層26が積層された光電極20の1つの側面に隣接するように断面I字状に形成されている。セパレータ29の一端は透明導電性基板14上の溝18と接触している。これにより、光電極20と対極30との直接接触が回避される。セパレータ29は、絶縁性の材料からなり、例えば、ガラスビーズ、二酸化ケイ素(シリカ)及びルチル型の酸化チタンなどで形成されていてもよい。このセパレータ29としては、シリカ粒子を焼結した絶縁体が好ましい。シリカ粒子は、屈折率が低く光散乱が小さく、良好な透明性を有するため、セパレータに好ましい。   The separator 29 is formed in an I-shaped cross section so as to be adjacent to one side surface of the photoelectrode 20 on which the porous semiconductor layer 24 and the solid p-type semiconductor layer 26 are laminated. One end of the separator 29 is in contact with the groove 18 on the transparent conductive substrate 14. Thereby, the direct contact with the photoelectrode 20 and the counter electrode 30 is avoided. The separator 29 is made of an insulating material, and may be formed of, for example, glass beads, silicon dioxide (silica), rutile titanium oxide, or the like. The separator 29 is preferably an insulator in which silica particles are sintered. Silica particles are preferable for the separator because they have a low refractive index, low light scattering, and good transparency.

対極30は、セパレータ29の外面と固体p型半導体層26の裏面27とに接触するよう、断面L字状に形成されている。この対極30は、固体p型半導体層26の裏面27に接続されていると共に、接続部21を介して隣側の透明導電膜12に電気的に接続されている。この対極30の裏面27と接触する面は、光電極20に対して所定の間隔を隔てて対向している。対極30としては、導電性及び固体p型半導体層26との接合性を有するものであれば特に限定されず、例えば、Pt,Au,カーボンなどが挙げられ、このうちカーボンが好ましい。なお、対極30やセパレータ29などは、セル40の構成に合わせたものとすれば、どのような形状としてもよい。   The counter electrode 30 is formed in an L-shaped cross section so as to contact the outer surface of the separator 29 and the back surface 27 of the solid p-type semiconductor layer 26. The counter electrode 30 is connected to the back surface 27 of the solid p-type semiconductor layer 26 and is electrically connected to the adjacent transparent conductive film 12 via the connection portion 21. The surface of the counter electrode 30 that is in contact with the back surface 27 faces the photoelectrode 20 at a predetermined interval. The counter electrode 30 is not particularly limited as long as it has conductivity and bondability to the solid p-type semiconductor layer 26, and examples thereof include Pt, Au, and carbon. Among these, carbon is preferable. The counter electrode 30 and the separator 29 may have any shape as long as the counter electrode 30 and the separator 29 are adapted to the configuration of the cell 40.

シール材32は、絶縁性の部材であれば特に限定されずに用いることができる。このシール材32としては、例えば、ポリエチレン等の熱可塑性樹脂フィルム、あるいはエポキシ系接着剤を使用することができる。   The sealing material 32 can be used without particular limitation as long as it is an insulating member. As the sealing material 32, for example, a thermoplastic resin film such as polyethylene or an epoxy adhesive can be used.

保護部材34は、セル40の保護を図る部材であり、例えば、防湿フィルムや保護ガラスなどとすることができる。この保護部材34は、省略してもよい。   The protection member 34 is a member that protects the cell 40, and may be, for example, a moisture-proof film or protective glass. This protective member 34 may be omitted.

このセル40に対して、透明基板11の受光面13側から光を照射すると、透明導電膜12の受光面15を介して光が多孔質半導体層24へ到達し、色素層52内の色素が光を吸収して電子と正孔が発生する。正孔は色素から固体p型半導体層26へ移動する。一方、電子は光電極20から透明導電膜12、接続部21を経由して隣の対極30へ移動する。セル40では、この電子と正孔の移動により起電力が発生し、電池の発電作用が得られる。   When this cell 40 is irradiated with light from the light receiving surface 13 side of the transparent substrate 11, the light reaches the porous semiconductor layer 24 through the light receiving surface 15 of the transparent conductive film 12, and the dye in the dye layer 52 is transferred. Electrons and holes are generated by absorbing light. Holes move from the dye to the solid p-type semiconductor layer 26. On the other hand, electrons move from the photoelectrode 20 to the adjacent counter electrode 30 via the transparent conductive film 12 and the connection portion 21. In the cell 40, an electromotive force is generated by the movement of the electrons and holes, and the power generation action of the battery is obtained.

この色素増感型太陽電池モジュール10の製法について、以下に説明する。まず、複数の透明導電膜12の間に溝18を形成しつつ、透明導電膜12を透明基板11上に形成する。次に、透明導電膜12上に直接、多孔質半導体層24を形成する。多孔質半導体層24の形成方法は、例えば、バーコーター法、印刷法などを用いることができる。なお、多孔質半導体層24の前駆体層を形成したあと、更に、空気中等の酸素雰囲気下、400〜600℃の温度範囲で熱処理することにより、この前駆体層を焼成して多孔質半導体層24を形成してもよい。次に、色素を多孔質半導体層24へ吸着させ、色素層52を多孔質半導体層24の表面に形成し、光電極20とする。例えば、色素層52は、有機色素を溶媒に溶解させた色素溶液を上記多孔質半導体層24へ供給し、乾燥固化して形成することができる。次に、固体p型半導体層26を色素層52の上に形成する。ここでは、説明の便宜のため、Cu化合物を用いる場合について説明する。この工程では、例えば、多孔質半導体層24上にCu化合物とイオン性液体とを含む溶液を供給し、乾燥させる工程を1回又は複数回行い、多孔質半導体層24にCu化合物及びイオン性液体を充填すると共に、多孔質半導体層24上に固体p型半導体層26を形成してもよい。この溶液は、有機溶媒にCu化合物とイオン性液体とを混合して作製してもよい。このとき、Cu化合物の濃度に対するイオン性液体の濃度の割合を0.6%以上12.5%以下とした溶液、より好ましくは3.0%以上10.0%以下とした溶液を用いる。なお、固体p型半導体層26には、イオン性液体が揮発せずに残留するが、セル40は、ほぼ全固体型の色素増感型太陽電池として作動する。続いて、溝18に合わせて光電極20の側面にセパレータ29を形成し、セパレータ29と固体p型半導体層26とに接するように対極30を形成する。対極30は、例えばカーボンとしてもよい。その後、各セルを覆うようにシール材32を形成すると共にシール材32に保護部材34を形成する。このようにして、セル40及び色素増感型太陽電池モジュール10を作製することができる。   The manufacturing method of this dye-sensitized solar cell module 10 is demonstrated below. First, the transparent conductive film 12 is formed on the transparent substrate 11 while forming the grooves 18 between the plurality of transparent conductive films 12. Next, the porous semiconductor layer 24 is formed directly on the transparent conductive film 12. As a method of forming the porous semiconductor layer 24, for example, a bar coater method, a printing method, or the like can be used. In addition, after forming the precursor layer of the porous semiconductor layer 24, this precursor layer is further baked by heat-treating in a temperature range of 400 to 600 ° C. in an oxygen atmosphere such as air. 24 may be formed. Next, the dye is adsorbed onto the porous semiconductor layer 24, and the dye layer 52 is formed on the surface of the porous semiconductor layer 24 to form the photoelectrode 20. For example, the dye layer 52 can be formed by supplying a dye solution in which an organic dye is dissolved in a solvent to the porous semiconductor layer 24 and drying and solidifying it. Next, the solid p-type semiconductor layer 26 is formed on the dye layer 52. Here, for convenience of explanation, a case where a Cu compound is used will be described. In this step, for example, a step of supplying a solution containing a Cu compound and an ionic liquid onto the porous semiconductor layer 24 and drying it is performed once or a plurality of times, and the Cu compound and the ionic liquid are applied to the porous semiconductor layer 24. The solid p-type semiconductor layer 26 may be formed on the porous semiconductor layer 24. This solution may be prepared by mixing a Cu compound and an ionic liquid in an organic solvent. At this time, a solution in which the ratio of the concentration of the ionic liquid to the concentration of the Cu compound is 0.6% or more and 12.5% or less, more preferably a solution that is 3.0% or more and 10.0% or less is used. Although the ionic liquid remains in the solid p-type semiconductor layer 26 without volatilizing, the cell 40 operates as an almost all solid-state dye-sensitized solar cell. Subsequently, a separator 29 is formed on the side surface of the photoelectrode 20 in alignment with the groove 18, and a counter electrode 30 is formed so as to contact the separator 29 and the solid p-type semiconductor layer 26. The counter electrode 30 may be carbon, for example. Thereafter, a sealing material 32 is formed so as to cover each cell, and a protective member 34 is formed on the sealing material 32. In this way, the cell 40 and the dye-sensitized solar cell module 10 can be manufactured.

以上詳述したセル40では、変換効率など、太陽電池特性をより高めることができる。このような効果が得られる理由は明らかではないが、以下のように推測される。多孔質半導体層24の細孔径分布は細孔径が160nm〜1μmの範囲で最大値を示すため、固体p型半導体が細孔に充填しやすく、充填率が高い。そのため、光励起して生成した正孔が多孔質半導体層24の細孔に存在している固体p型半導体層26を介して取り出されやすくなり、太陽電池の変換効率が高くなる。また、多孔質半導体層24の細孔内の空隙部分が少なくなるため、そうした空隙部分による光の散乱が抑制される。更に、多孔質半導体層24の屈折率と固体p型半導体層26の屈折率との関係が適正であるため、それによっても光の散乱が抑制される。その結果、入射した光が電子輸送層の奥まで届きやすくなり、太陽電池の変換効率が高くなる。   In the cell 40 described in detail above, solar cell characteristics such as conversion efficiency can be further improved. The reason why such an effect is obtained is not clear, but is presumed as follows. Since the pore size distribution of the porous semiconductor layer 24 shows the maximum value in the range of 160 nm to 1 μm, the solid p-type semiconductor is easy to fill the pores, and the filling rate is high. Therefore, holes generated by photoexcitation are easily extracted through the solid p-type semiconductor layer 26 present in the pores of the porous semiconductor layer 24, and the conversion efficiency of the solar cell is increased. Moreover, since the space | gap part in the pore of the porous semiconductor layer 24 decreases, the scattering of the light by such a space | gap part is suppressed. Furthermore, since the relationship between the refractive index of the porous semiconductor layer 24 and the refractive index of the solid p-type semiconductor layer 26 is appropriate, light scattering is also suppressed by this. As a result, the incident light can easily reach the back of the electron transport layer, and the conversion efficiency of the solar cell is increased.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば上述した実施形態では、色素増感型太陽電池モジュール10としたが、特にこれに限定されず、単体のセル40としてもよい。セル40を単体とする場合は、対極30の断面をL字状ではなく、平板状に形成するものとしてもよい。   For example, in the above-described embodiment, the dye-sensitized solar cell module 10 is used. However, the present invention is not particularly limited thereto, and a single cell 40 may be used. When the cell 40 is a single body, the counter electrode 30 may be formed in a flat plate shape instead of an L shape.

上述した実施形態では、透明導電膜12の上に直接多孔質半導体層24が形成されているものとしたが、特にこれに限定されず、透明導電膜12の上に、チタン化合物を含む溶液を用いて酸化チタン膜を形成し、この形成した酸化チタン膜を介して多孔質半導体層24が形成されているものとしてもよい。また、透明導電膜12の上に下地層を介して多孔質半導体層24が形成されているものとしてもよい。下地層は、例えば、透光性及び導電性のある材料が好ましく、例えば、酸化チタンや酸化亜鉛、酸化スズなどのn型半導体などが挙げられ、このうち酸化チタンがより好ましい。こうしても、発電特性を向上することができる。   In the above-described embodiment, the porous semiconductor layer 24 is formed directly on the transparent conductive film 12. However, the present invention is not particularly limited to this, and a solution containing a titanium compound is formed on the transparent conductive film 12. The titanium oxide film may be used to form the porous semiconductor layer 24 via the formed titanium oxide film. Alternatively, the porous semiconductor layer 24 may be formed on the transparent conductive film 12 via a base layer. For example, the base layer is preferably a light-transmitting and conductive material, and examples thereof include n-type semiconductors such as titanium oxide, zinc oxide, and tin oxide. Of these, titanium oxide is more preferable. Even in this case, the power generation characteristics can be improved.

上述した実施形態において、図2に示すように、多孔質半導体層24を受光面側の層24aと対極側(受光面とは反対側)の層24bとに分け、細孔径分布において最大値を示すときの細孔径の値が、層24aに比べて層24bの方が大きくなるようにしてもよい。なお、細孔径分布において最大値を示すときの細孔径の値は、いずれも160nm〜1μmの範囲内とする。こうした構造は、例えば、層24aを平均粒径の小さな材料を用いて形成し、層24bを平均粒径の大きな材料を用いて形成することにより得ることができる。こうした構造を採用すれば、色素の吸着量が比較的多くなると共に光の透過性も比較的高くなるため、太陽電池の変換効率が高くなる。   In the embodiment described above, as shown in FIG. 2, the porous semiconductor layer 24 is divided into the light receiving surface side layer 24a and the counter electrode side (opposite side of the light receiving surface) layer 24b, and the maximum value in the pore diameter distribution is obtained. The pore diameter value shown may be larger for the layer 24b than for the layer 24a. It should be noted that the value of the pore diameter when showing the maximum value in the pore diameter distribution is in the range of 160 nm to 1 μm. Such a structure can be obtained, for example, by forming the layer 24a using a material having a small average particle diameter and forming the layer 24b using a material having a large average particle diameter. By adopting such a structure, the amount of dye adsorbed becomes relatively large and the light transmittance becomes relatively high, so that the conversion efficiency of the solar cell becomes high.

以下には、本発明の色素増感型太陽電池を具体的に作製した例について説明する。   Below, the example which produced the dye-sensitized solar cell of this invention concretely is demonstrated.

[実施例1]
固体p型半導体層(正孔輸送層)としてCuIを用い、多孔質半導体層(電子輸送層)としてTiO2を用い、色素として色素1(既述の化1参照)を用いた。まず、TCOガラス基板上に、平均粒径200nmのTiO2粒子を含むペーストを用いてスクリーン印刷法で塗布し、150℃で乾燥したのち、電気炉内で450℃に加熱して、TiO2層基板を作製した。このときのTiO2層の細孔径分布において、最大値を示す細孔径は160nmであった。次に、上述した色素1を含む色素溶液を調製した。ここでは、色素1を0.3mM溶解したアセトニトリルとtert−ブチルアルコールとを混合した溶液を色素溶液とした。この色素溶液にTiO2層基板を浸漬し、25℃の温度条件の下で15時間放置した。このようにして、TiO2層基板に色素1を吸着させた基板、すなわち光電極を作製した。続いて、アセトニトリルにCuIを飽和させ、1−メチル−3−エチルイミダゾリウムチオシアネート(EMISCN)を添加してCuI溶液を調製した。続いて、40℃〜120℃のホットプレート上に、光電極をTiO2層が上になるように静置した。調製したCuI溶液を、色素が吸着したTiO2層の上に滴下し、CuI溶液に含まれる溶媒を蒸発させることにより、CuIを酸化チタン層の細孔へ充填させた。そして、このCuI層の上に、対極としてのPt箔を配置し、色素増感型太陽電池(図1参照)を作製した。
[Example 1]
CuI was used as the solid p-type semiconductor layer (hole transport layer), TiO 2 was used as the porous semiconductor layer (electron transport layer), and dye 1 (see Chemical Formula 1 described above) was used as the dye. First, a paste containing TiO 2 particles having an average particle size of 200 nm is applied on a TCO glass substrate by screen printing, dried at 150 ° C., and then heated to 450 ° C. in an electric furnace to form a TiO 2 layer. A substrate was produced. In the pore size distribution of the TiO 2 layer at this time, the pore size showing the maximum value was 160 nm. Next, a dye solution containing the dye 1 described above was prepared. Here, a solution obtained by mixing acetonitrile and tert-butyl alcohol in which 0.3 mM of dye 1 was dissolved was used as the dye solution. A TiO 2 layer substrate was immersed in this dye solution, and allowed to stand at 25 ° C. for 15 hours. In this manner, a substrate in which the dye 1 was adsorbed on the TiO 2 layer substrate, that is, a photoelectrode was produced. Subsequently, CuI was saturated with acetonitrile, and 1-methyl-3-ethylimidazolium thiocyanate (EMISCN) was added to prepare a CuI solution. Subsequently, the photoelectrode was placed on a hot plate at 40 ° C. to 120 ° C. so that the TiO 2 layer was on top. The prepared CuI solution was dropped on the TiO 2 layer on which the dye was adsorbed, and the solvent contained in the CuI solution was evaporated to fill the pores of the titanium oxide layer with CuI. And Pt foil as a counter electrode was arrange | positioned on this CuI layer, and the dye-sensitized solar cell (refer FIG. 1) was produced.

なお、酸化チタン層の細孔径分布において最大値を示す細孔径は、次のようにして求めた。細孔径分布が300nm以下については、酸化チタン膜の0.1g程度を用いて、液体窒素温度における窒素ガスの吸着等温線を測定した。細孔の形状を円筒形と仮定したBJH法によって、測定された吸着側の吸着等温線から細孔径分布を算出した。測定は、QUANTA CHROME社製のAUTOSORB−1を用いて行った。細孔径分布は、横軸を細孔径(nm)とし、縦軸を単位質量当たりの細孔容積としたグラフとした。この細孔径分布において、単位質量当たりの細孔容積の最大値に対応する細孔径を求め、これを細孔径分布において最大値を示す細孔径とした。細孔径分布が300nmを超える細孔径分布については、TiO 2 基板の断面SEM像で決定した。 The pore diameter showing the maximum value in the pore diameter distribution of the titanium oxide layer was determined as follows. For a pore size distribution of 300 nm or less, an adsorption isotherm of nitrogen gas at a liquid nitrogen temperature was measured using about 0.1 g of a titanium oxide film. The pore diameter distribution was calculated from the measured adsorption isotherm by the BJH method assuming that the pore shape was cylindrical. The measurement was performed using AUTOSORB-1 manufactured by QUANTA CHROME . Pore size distribution, the horizontal axis represents the pore diameter (nm), it was vertical axis and graph the pore volume per unit mass. In this pore size distribution, the pore size corresponding to the maximum value of the pore volume per unit mass was determined, and this was taken as the pore size showing the maximum value in the pore size distribution. The pore size distribution with a pore size distribution exceeding 300 nm was determined by a cross-sectional SEM image of the TiO 2 substrate.

また、TiO2粒子の平均粒径は、XRDから得られた回折ピークの半値幅を用いて、Sherrerの式:d=0.9λ/(B・cosθ)(d:結晶径(平均粒径)、λ:X線波長、B:回折ピークの半値幅、θ:回折角)を用いて算出した。 The average particle diameter of the TiO 2 particles is calculated using the half width of the diffraction peak obtained from XRD, using the Serrer equation: d = 0.9λ / (B · cos θ) (d: crystal diameter (average particle diameter)) , Λ: X-ray wavelength, B: half width of diffraction peak, θ: diffraction angle).

[実施例2]
平均粒径400nmのTiO2粒子を含むペーストを用いてTiO2層基板を作製した以外は、実施例1と同様にして色素増感型太陽電池を作製した。このときのTiO2層の細孔径分布において最大値を示す細孔径は1μmであった。
[Example 2]
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that a TiO 2 layer substrate was produced using a paste containing TiO 2 particles having an average particle diameter of 400 nm. The pore diameter showing the maximum value in the pore diameter distribution of the TiO 2 layer at this time was 1 μm.

[実施例3]
TCOガラス基板上に、200nmのTiO2粒子を含むペーストを用いてスクリーン印刷法で塗布し、150℃で乾燥したのち、電気炉内で450℃に加熱して、TiO2膜基板を作製した。続いて、このTiO2膜基板上に、新たに400nmのTiO2粒子を含むペーストを用いてスクリーン印刷法で塗布し、150℃で乾燥したのち、電気炉内で450℃に加熱して、TiO2層基板を作製した。それ以外は、実施例1と同様にして色素増感型太陽電池を作製した。このときのTiO2層は、受光面側の層と対極側(受光面とは反対側)の層の2層構造であり(図2参照)、細孔径分布において最大値を示すときの細孔径の値は、受光面側で160nm、対極側で1μmであった。
[Example 3]
A paste containing 200 nm of TiO 2 particles was applied onto a TCO glass substrate by screen printing, dried at 150 ° C., and then heated to 450 ° C. in an electric furnace to produce a TiO 2 film substrate. Subsequently, a new paste containing 400 nm of TiO 2 particles is applied on the TiO 2 film substrate by screen printing, dried at 150 ° C., and then heated to 450 ° C. in an electric furnace to obtain TiO 2. A two- layer substrate was produced. Other than that was carried out similarly to Example 1, and produced the dye-sensitized solar cell. The TiO 2 layer at this time has a two- layer structure of a layer on the light receiving surface side and a layer on the counter electrode side (opposite side of the light receiving surface) (see FIG. 2), and the pore diameter when showing the maximum value in the pore diameter distribution The value of was 160 nm on the light receiving surface side and 1 μm on the counter electrode side.

[実施例4]
平均粒径400nmのTiO2粒子を含むペーストを用いてTiO2層基板を作製したこと、色素1の代わりに色素2(既述の化1参照)を使用したこと以外は、実施例1と同様にして色素増感型太陽電池を作製した。このときのTiO2層の細孔径分布において最大値を示す細孔径は1μmであった。
[Example 4]
Similar to Example 1 except that a TiO 2 layer substrate was prepared using a paste containing TiO 2 particles having an average particle diameter of 400 nm, and that Dye 2 (see Chemical Formula 1 above) was used instead of Dye 1. Thus, a dye-sensitized solar cell was produced. The pore diameter showing the maximum value in the pore diameter distribution of the TiO 2 layer at this time was 1 μm.

[比較例1]
TiO2層の細孔径分布において最大値を示す細孔径を60nmとした以外は、実施例1と同様にして色素増感型太陽電池を作製した。
[Comparative Example 1]
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the pore diameter showing the maximum value in the pore diameter distribution of the TiO 2 layer was 60 nm.

[比較例2]
固形のCuI層の代わりに、電解液を用いた以外は、実施例4と同様にして色素増感型太陽電池を作製した。電解液は、ヨウ素及びヨウ化1,2−ジメチル−3−プロピルイミダゾリウムを溶解したγ−ブチロラクトンを用いた。なお、上記の実施例1〜4,比較例1〜2の細孔径は、ペースト内のバインダの種類や量、造孔材(有機系高分子)の粒径や添加量によって調整した。
[Comparative Example 2]
A dye-sensitized solar cell was produced in the same manner as in Example 4 except that the electrolytic solution was used instead of the solid CuI layer. As the electrolytic solution, γ-butyrolactone in which iodine and 1,2-dimethyl-3-propylimidazolium iodide were dissolved was used. In addition, the pore diameter of said Examples 1-4 and Comparative Examples 1-2 was adjusted with the kind and quantity of the binder in a paste, the particle diameter and addition amount of a pore making material (organic polymer).

[評価]
・屈折率
分光エリプソメータM−2000U(J・A・ウーラム・ジャパン社製)によって評価した。
・色素吸着量
色素吸着したTiO2基板を、テトラメチルアンモニウムヒドロキシドTMAH(0.1M)のエタノール溶液に浸漬した。これにより、TiO2層に吸着していた色素が溶液中で脱離することで、脱離した色素の溶液が得られた。得られた溶液を用いて、分光光度計(日立製作所社製U−3400)を用いて、吸収スペクトルの測定を行った。TiO2層から得られた色素の吸収スペクトルの吸光度と、色素の吸光係数を用いて、色素吸着量を算出した。
・変換効率
スーパーソーラシミュレータWXS−155S−L2,AM1.5GMM(ワコム電創社製)を擬似太陽光として用いて、1sun照射下での電流密度−電圧測定を行い、その測定結果に基づいて変換効率を求めた。
・外部量子収率(IPCE)
分光感度測定装置(分光計器社製)を用いて、IPCE特性を評価した。
・走査型電子顕微鏡(SEM)測定
日立ハイテクノロジーズ社製のS−3600Nを用いて反射電子像を観察した。
[Evaluation]
-Refractive index It evaluated by the spectroscopic ellipsometer M-2000U (made by JAWoolum Japan).
Dye adsorption amount The dye-adsorbed TiO 2 substrate was immersed in an ethanol solution of tetramethylammonium hydroxide TMAH (0.1 M). As a result, the dye adsorbed on the TiO 2 layer was desorbed in the solution, whereby a solution of the desorbed dye was obtained. Using the obtained solution, the absorption spectrum was measured using a spectrophotometer (U-3400, manufactured by Hitachi, Ltd.). The dye adsorption amount was calculated using the absorbance of the absorption spectrum of the dye obtained from the TiO 2 layer and the extinction coefficient of the dye.
・ Conversion efficiency Super solar simulator WXS-155S-L2, AM1.5GMM (manufactured by Wacom Denso Co., Ltd.) is used as simulated sunlight, current density-voltage measurement under 1 sun irradiation is performed, and conversion is performed based on the measurement result. We asked for efficiency.
External quantum yield (IPCE)
The IPCE characteristics were evaluated using a spectral sensitivity measuring device (manufactured by Spectrometer Co., Ltd.).
-Scanning electron microscope (SEM) measurement The backscattered electron image was observed using S-3600N made by Hitachi High-Technologies Corporation.

[評価結果]
実施例1〜3及び比較例1では、電子輸送材料としてTiO2、正孔輸送材料としてCuIを用い、比較例2では、電子輸送材料としてTiO2、正孔輸送材料として電解液を用いた。TiO2とCuIと電解液(比較例2)の、波長400nm〜1000nmにおける屈折率を図3のグラフに示す。また、TiO2とCuIとの屈折率の差ΔN及びTiO2と電解液(比較例2)との屈折率の差ΔNを図4のグラフに、TiO2とCuIとの屈折率に基づくレイリー散乱断面積Csca及びTiO2と電解液(比較例2)との屈折率に基づくレイリー散乱断面積Cscaを図5のグラフに示す。一般に、屈折率の差ΔNが小さいほど、また、レイリー散乱断面積Cscaが小さいほど、光が透過しやすくなることが知られている。正孔輸送材料としてCuIを用いた方が、電解液を用いた場合に比べて、屈折率の差ΔNが小さく(0.6以下)、レイリー散乱断面積Cscaも小さい(0.03以下)ことから、光が透過しやすい。つまり、CuIを用いた方が、受光面から入射した光が多孔質半導体層の奥まで到達しやすい。
[Evaluation results]
In Examples 1 to 3 and Comparative Example 1, TiO 2 was used as the electron transport material and CuI was used as the hole transport material. In Comparative Example 2, TiO 2 was used as the electron transport material and an electrolyte was used as the hole transport material. TiO 2 and CuI as the electrolyte solution (Comparative Example 2), the refractive index at the wavelength 400nm~1000nm shown in the graph of FIG. The graph of FIG. 4 shows the difference in refractive index ΔN between TiO 2 and CuI and the difference in refractive index ΔN between TiO 2 and the electrolyte (Comparative Example 2), and Rayleigh scattering based on the refractive index between TiO 2 and CuI. The Rayleigh scattering cross section Csca based on the cross-sectional areas Csca and TiO 2 and the refractive index of the electrolyte (Comparative Example 2) is shown in the graph of FIG. In general, it is known that the smaller the refractive index difference ΔN and the smaller the Rayleigh scattering cross section Csca, the easier the light is transmitted. When CuI is used as the hole transporting material, the refractive index difference ΔN is smaller (0.6 or less) and the Rayleigh scattering cross section Csca is smaller (0.03 or less) than when the electrolytic solution is used. Therefore, light is easily transmitted. That is, using CuI makes it easier for light incident from the light receiving surface to reach the back of the porous semiconductor layer.

実施例1,2及び比較例1の色素吸着量及び変換効率を表2に示す。比較例1に比べて実施例1,2の方が変換効率が高かった。その理由は、比較例1では細孔径(細孔径分布において最大値を示す細孔径)が60nmであり、細孔内へCuIが十分充填されなかったのに対して、実施例1,2では細孔径がそれぞれ160nm,1μmと大きく、細孔内へCuIが十分充填されたためと考えられる。細孔内へCuIが十分充填されていれば、屈折率の差ΔNやレイリー散乱断面積Cscaは上述したとおり小さくなるため、受光面から入射した光が多孔質半導体層の奥まで到達しやすくなり、変換効率が高くなったと考えられる。これに対して、細孔内へCuIが十分充填されていなければ、細孔内に空隙(屈折率は約1)が存在するため、実際の屈折率の差ΔNやレイリー散乱断面積Cscaは大きくなる。そのため、受光面から入射した光が多孔質半導体層の奥まで到達しにくくなり、変換効率が低くなったと考えられる。また、実施例2に比べて実施例1の方が変換効率が高くなった理由は、両者とも光の透過性は確保されているものの、実施例1よりも実施例2の色素吸着量が高かったためと考えられる。   Table 2 shows the dye adsorption amounts and conversion efficiencies of Examples 1 and 2 and Comparative Example 1. Compared with Comparative Example 1, Examples 1 and 2 had higher conversion efficiency. The reason is that in Comparative Example 1, the pore diameter (pore diameter showing the maximum value in the pore diameter distribution) was 60 nm, and CuI was not sufficiently filled in the pores, whereas in Examples 1 and 2, the fine diameter was small. This is probably because the pore diameters were as large as 160 nm and 1 μm, respectively, and CuI was sufficiently filled in the pores. If CuI is sufficiently filled in the pores, the refractive index difference ΔN and the Rayleigh scattering cross section Csca become small as described above, so that light incident from the light receiving surface can easily reach the back of the porous semiconductor layer. It is thought that the conversion efficiency has increased. On the other hand, if CuI is not sufficiently filled in the pores, voids (refractive index is about 1) exist in the pores, so that the actual refractive index difference ΔN and the Rayleigh scattering cross section Csca are large. Become. Therefore, it is considered that the light incident from the light receiving surface does not easily reach the depth of the porous semiconductor layer, and the conversion efficiency is lowered. Moreover, the reason why the conversion efficiency of Example 1 is higher than that of Example 2 is that the dye adsorption amount of Example 2 is higher than that of Example 1 although both have light transmittance. It is thought that it was because of.

表2には、実施例1及び比較例1の充填後空隙率も併せて示した。充填後空隙率は、多孔質TiO2層にCuIを充填する前の充填前空隙率から、CuI充填後の多孔質TiO2層におけるCuIの占有率を引いた値である。充填前空隙率は、窒素ガス吸着量測定の結果に基づいて算出した。CuIの占有率は、多孔質TiO2層の断面SEM像から、多孔質TiO2層全体に対するCuI部分の割合として求めた。図6は、実施例1及び比較例1の多孔質TiO2層の断面SEM像である。このSEM像の白い部分がCuIである。空隙率は、比較例1では、複数回測定して37〜57%であり、37%未満にはならなかったのに対して、実施例1では、複数回測定して7〜27%であり、27%を超えることはなかった。このことは、実施例1の方が、比較例1に比べて、CuIの充填性が向上して充填前の空隙が少ないことを意味している。 Table 2 also shows the porosity after filling of Example 1 and Comparative Example 1. The porosity after filling is a value obtained by subtracting the occupation ratio of CuI in the porous TiO 2 layer after filling CuI from the porosity before filling the porous TiO 2 layer before filling CuI. The porosity before filling was calculated based on the result of the nitrogen gas adsorption amount measurement. Occupancy of CuI from porous TiO 2 layer of cross-sectional SEM image was determined as a percentage of CuI portions to the entire porous TiO 2 layer. 6 is a cross-sectional SEM image of the porous TiO 2 layers of Example 1 and Comparative Example 1. FIG. The white part of this SEM image is CuI. The porosity was 37-57% measured multiple times in Comparative Example 1 and was not less than 37%, whereas it was 7-27% measured multiple times in Example 1. , Not exceeding 27%. This means that in Example 1, compared with Comparative Example 1, the filling property of CuI is improved and there are fewer voids before filling.

実施例3の色素吸着量及び変換効率も表2に示す。比較例1に比べて実施例3の方が変換効率が高かった。その理由は、実施例1,2と同じである。また、実施例1に比べて実施例3の方が変換効率が高かったのは、細孔径が1μmのTiO2層を備えているため細孔へのCuI充填率がより高くなり、それに伴って光の透過性がより高くなったためと考えられる。実施例2に比べて実施例3の方が変換効率が高かったのは、実施例2よりも実施例3の色素吸着量が高かったためと考えられる。つまり、実施例3は、高い色素吸着量、高い光の透過性によって変換効率が高くなったと考えられる。 Table 2 also shows the dye adsorption amount and conversion efficiency of Example 3. The conversion efficiency of Example 3 was higher than that of Comparative Example 1. The reason is the same as in Examples 1 and 2. In addition, the conversion efficiency of Example 3 was higher than that of Example 1 because the TiO 2 layer having a pore diameter of 1 μm was provided, so that the CuI filling rate into the pores was higher, and accordingly. This is thought to be due to higher light transmission. The reason why the conversion efficiency of Example 3 was higher than that of Example 2 is considered to be because the dye adsorption amount of Example 3 was higher than that of Example 2. That is, in Example 3, the conversion efficiency is considered to be high due to the high dye adsorption amount and the high light transmittance.

実施例1〜3のIPCEスペクトルを図7に示す。一般に、電解液を用いた色素増感型太陽電池におけるIPCEスペクトルでは、光の散乱によって長波長側のIPCEスペクトルが拡大すると考えられている。実施例3は、実施例1,2と比較して、長波長側のIPCEスペクトルが拡大しておらず、IPCE値が全体に向上している。このことから、実施例1,2に比べて実施例3の変換効率が高いのは、光の散乱が抑制されて、光の透過性が高くなったためと推察できる。   The IPCE spectra of Examples 1 to 3 are shown in FIG. In general, in an IPCE spectrum in a dye-sensitized solar cell using an electrolytic solution, it is considered that an IPCE spectrum on the long wavelength side is expanded by light scattering. In Example 3, compared with Examples 1 and 2, the IPCE spectrum on the long wavelength side is not enlarged, and the IPCE value is improved as a whole. From this, it can be inferred that the conversion efficiency of Example 3 is higher than that of Examples 1 and 2 because light scattering is suppressed and light transmittance is increased.

実施例4及び比較例2の変換効率を表3に示す。比較例2に比べて実施例4の方が変換効率が高かった。比較例2では、TiO2と電解液との屈折率に基づく光の散乱によって、受光面から入射した光の透過性が低くなる。これにより、光が色素吸着TiO2層の奥まで進入できず、多くの色素を光励起できないため、太陽電池性能が低くなったと考えられる。一方、実施例4では、TiO2層の細孔内に、電解液の代わりにCuIが満たされているので、光の散乱が抑制されて光の透過性が高くなる。これにより、光が色素吸着TiO2層の奥まで進入できるようになり、より多くの色素が光励起されることで、太陽電池性能が高くなったと考えられる。 Table 3 shows the conversion efficiencies of Example 4 and Comparative Example 2. The conversion efficiency of Example 4 was higher than that of Comparative Example 2. In Comparative Example 2, the transmittance of light incident from the light receiving surface is reduced due to light scattering based on the refractive indexes of TiO 2 and the electrolytic solution. As a result, light cannot enter the depth of the dye-adsorbed TiO 2 layer, and many dyes cannot be photoexcited, so that the solar cell performance is considered to be lowered. On the other hand, in Example 4, since the pores of the TiO 2 layer are filled with CuI instead of the electrolytic solution, light scattering is suppressed and the light transmission is increased. Thereby, it becomes possible for light to enter the depth of the dye-adsorbing TiO 2 layer, and it is considered that more dyes are photoexcited, thereby improving the solar cell performance.

本発明の色素増感型太陽電池は、例えば家庭用、オフィス用、工場用の各種電化製品の電源や電気自動車、ハイブリッド自動車、電動自転車などのバッテリのほか、ソーラパネルなどに利用可能である。   The dye-sensitized solar cell of the present invention can be used, for example, as a power source for various electric appliances for home use, office use, and factory use, batteries for electric vehicles, hybrid vehicles, electric bicycles, and solar panels.

10 色素増感型太陽電池モジュール、11 透明基板、12 透明導電膜、13 受光面、14 透明導電性基板、15 受光面、16,17 集電電極、18 溝、20 光電極、21 接続部、24 多孔質半導体層、24a,24b 層、26 固体p型半導体層、27 裏面、29 セパレータ、30 対極、32 シール材、34 保護部材、40 色素増感型太陽電池(セル)、52 色素層。 10 Dye-sensitized solar cell module, 11 Transparent substrate, 12 Transparent conductive film, 13 Light receiving surface, 14 Transparent conductive substrate, 15 Light receiving surface, 16, 17 Current collecting electrode, 18 Groove, 20 Photo electrode, 21 Connection portion, 24 porous semiconductor layer, 24a, 24b layer, 26 solid p-type semiconductor layer, 27 back surface, 29 separator, 30 counter electrode, 32 sealing material, 34 protective member, 40 dye-sensitized solar cell (cell), 52 dye layer.

Claims (5)

色素を有する多孔質の電子輸送層を透明導電性基板上に備えた光電極と、
少なくとも一部が前記電子輸送層の細孔に充填された正孔輸送層と、
前記正孔輸送層を挟んで前記光電極と対向するように配置された対極と、
を備え、
前記電子輸送層は、1層又は多層であり、各層の細孔径分布において細孔径が160nm〜1μmの範囲で最大値を示し、
前記電子輸送層を構成する電子輸送材料と前記正孔輸送層を構成する正孔輸送材料との屈折率の差が光の波長400nm〜1000nmの範囲において1以下であるか、又は、前記電子輸送材料と前記正孔輸送材料との屈折率から求められるレイリー散乱断面積が光の波長400nm〜1000nmの範囲において0.1以下であり、
前記電子輸送層は、平均粒径200nm〜400nmである、
色素増感型太陽電池。
A photoelectrode comprising a porous electron transport layer having a dye on a transparent conductive substrate;
A hole transport layer at least partially filled in the pores of the electron transport layer;
A counter electrode disposed to face the photoelectrode across the hole transport layer;
With
The electron transport layer is a single layer or multiple layers, and shows a maximum value in a pore diameter range of 160 nm to 1 μm in the pore diameter distribution of each layer ,
The difference in refractive index between the electron transport material composing the electron transport layer and the hole transport material composing the hole transport layer is 1 or less in the light wavelength range of 400 nm to 1000 nm, or the electron transport Ri der 0.1 or less in the range Rayleigh scattering cross section obtained from the refractive index of the wavelength 400nm~1000nm of light of the hole transport material as,
The electron transport layer is Ru average particle size 200nm~400nm der,
Dye-sensitized solar cell.
前記電子輸送層の細孔に前記電子輸送層の少なくとも一部が充填された状態での前記細孔の空隙率が27%以下である、
請求項1に記載の色素増感型太陽電池。
The porosity of the pores in a state where at least a part of the electron transport layer is filled in the pores of the electron transport layer is 27% or less,
The dye-sensitized solar cell according to claim 1.
前記電子輸送層を構成する電子輸送材料と前記正孔輸送層を構成する正孔輸送材料との屈折率の差が光の波長400nm〜1000nmの範囲において0.7以下であるか、又は、前記レイリー散乱断面積が0.05以下である、請求項1又は2に記載の色素増感型太陽電池。   The difference in refractive index between the electron transport material composing the electron transport layer and the hole transport material composing the hole transport layer is 0.7 or less in the light wavelength range of 400 nm to 1000 nm, or The dye-sensitized solar cell according to claim 1 or 2, wherein the Rayleigh scattering cross section is 0.05 or less. 前記電子輸送材料はTiO2であり、前記正孔輸送材料はCuIである、請求項1〜3のいずれか1項に記載の色素増感型太陽電池。 The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the electron transport material is TiO 2 and the hole transport material is CuI. 前記電子輸送層のうち受光面側の細孔径分布が最大値を示すときの細孔径に比べて、受光面とは反対側の細孔径分布が最大値を示すときの細孔径の方が大きい、請求項1〜のいずれか1項に記載の色素増感型太陽電池。 Compared to the pore diameter when the pore diameter distribution on the light receiving surface side of the electron transport layer shows the maximum value, the pore diameter when the pore diameter distribution on the side opposite to the light receiving surface shows the maximum value is larger, The dye-sensitized solar cell according to any one of claims 1 to 4 .
JP2012184342A 2012-08-23 2012-08-23 Dye-sensitized solar cell Expired - Fee Related JP5897427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184342A JP5897427B2 (en) 2012-08-23 2012-08-23 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184342A JP5897427B2 (en) 2012-08-23 2012-08-23 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2014041967A JP2014041967A (en) 2014-03-06
JP5897427B2 true JP5897427B2 (en) 2016-03-30

Family

ID=50393984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184342A Expired - Fee Related JP5897427B2 (en) 2012-08-23 2012-08-23 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5897427B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4169140B2 (en) * 2000-10-02 2008-10-22 日揮触媒化成株式会社 Novel metal oxide particles and uses thereof
JP2002222968A (en) * 2001-01-25 2002-08-09 Fuji Photo Film Co Ltd Photoelectric converter and photoelectrochemical cell
JP4298195B2 (en) * 2001-12-03 2009-07-15 ビッグテクノス株式会社 Photoelectric cell
US20110297235A1 (en) * 2009-02-23 2011-12-08 Basf Se Use of triarylamine derivatives as hole-conducting materials in organic solar cells and organic solar cells containing said triarylamine derivatives
JP5320109B2 (en) * 2009-02-27 2013-10-23 株式会社豊田中央研究所 Dye-sensitized solar cell and method for producing the same
JP6150732B2 (en) * 2011-02-01 2017-06-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Photovoltaic element

Also Published As

Publication number Publication date
JP2014041967A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
Son et al. Influence of TiO2 particle size on dye-sensitized solar cells employing an organic sensitizer and a cobalt (III/II) redox electrolyte
Sauvage et al. Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells
Das et al. Bifunctional photo-supercapacitor with a new architecture converts and stores solar energy as charge
Wang et al. Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes
Peng et al. Enhanced energy conversion efficiency of Mg2+-modified mesoporous TiO2 nanoparticles electrodes for dye-sensitized solar cells
JP5629625B2 (en) Method for producing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
Chen et al. Effect of Mesoporous TiO2 Bead Diameter in Working Electrodes on the Efficiency of Dye‐Sensitized Solar Cells
Pazoki et al. Mesoporous TiO2 microbead electrodes for cobalt-mediator-based dye-sensitized solar cells
Cheema et al. Harnessing photovoltage: Effects of film thickness, TiO2 nanoparticle size, MgO and surface capping with DSCs
Banik et al. Understanding the role of silica nanospheres with their light scattering and energy barrier properties in enhancing the photovoltaic performance of ZnO based solar cells
JP2012204275A (en) Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
JP5535718B2 (en) Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module
KR101429759B1 (en) Electrolyte composition comprising energy relay dyes for dye-sensitized solar cell and dye-sensitized solar cell comprising said electrolyte composition
WO2013164967A1 (en) Photoelectric conversion element and photoelectric conversion module
JP4334960B2 (en) Carbon electrode and electrode and dye-sensitized solar cell comprising the same
JP5897427B2 (en) Dye-sensitized solar cell
Mathpal et al. Basic concepts, engineering, and advances in dye-sensitized solar cells
JP6114640B2 (en) Method for producing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
JP6571309B2 (en) Dye-sensitized solar cell
WO2013077209A1 (en) Wet-type solar cell and wet-type solar-cell module
JP6472665B2 (en) Dye-sensitized solar cell, dye-sensitized solar cell module, and method for producing dye-sensitized solar cell
JP2009193863A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
KR101601965B1 (en) Photoelectrode for dye-sensitized solar cell, and preparing method of the same
KR101617173B1 (en) Photoelectrode for dye-sensitized solar cell, and preparing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160302

R150 Certificate of patent or registration of utility model

Ref document number: 5897427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees