JP2012204275A - Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module - Google Patents

Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module Download PDF

Info

Publication number
JP2012204275A
JP2012204275A JP2011070021A JP2011070021A JP2012204275A JP 2012204275 A JP2012204275 A JP 2012204275A JP 2011070021 A JP2011070021 A JP 2011070021A JP 2011070021 A JP2011070021 A JP 2011070021A JP 2012204275 A JP2012204275 A JP 2012204275A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
layer
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011070021A
Other languages
Japanese (ja)
Inventor
Masaya Moribe
真也 森部
Akihiro Takechi
晃洋 武市
Naohiko Kato
直彦 加藤
Kazuo Higuchi
和夫 樋口
Koji Kamiyama
浩司 上山
Katsuyoshi Mizumoto
克芳 水元
Tatsuo Toyoda
竜生 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc filed Critical Aisin Seiki Co Ltd
Priority to JP2011070021A priority Critical patent/JP2012204275A/en
Publication of JP2012204275A publication Critical patent/JP2012204275A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve solar cell characteristics of a solid dye-sensitized solar cell.SOLUTION: A dye-sensitized solar cell 40 comprises: a transparent conductive substrate 14 provided with a transparent conductive film 12 on the surface of a transparent substrate 11 transparent to light; a porous semiconductor layer 24 formed directly on the transparent conductive film 12 of the transparent conductive substrate 14 as an electron transport layer; a solid p-type semiconductor layer 26 provided adjacent to the porous semiconductor layer 24 as a solid positive-hole transport layer; and a counter electrode 30 provided with the intervention of the solid p-type semiconductor layer 26 and a separator 29. A photoelectrode 20 comprises: the transparent conductive substrate 14 provided with the transparent conductive film 12, the porous semiconductor layer 24 disposed on the transparent conductive film 12 and emitting electrons when receiving light; a titanium oxide film 50 formed on the porous semiconductor layer 24; and a dye layer 52 formed on the titanium oxide film 50.

Description

本発明は、色素増感型太陽電池の製造方法、色素増感型太陽電池及び色素増感型太陽電池モジュールに関する。   The present invention relates to a method for producing a dye-sensitized solar cell, a dye-sensitized solar cell, and a dye-sensitized solar cell module.

従来、色素増感型太陽電池としては、第1の電極(導電性ガラス)と、第1の電極に対向して配置された第2の電極(対極)と、これらの間に位置する電子輸送層と、電子輸送層に接する色素層と、電子輸送層と第2の電極の間に位置し色素層に接触する正孔輸送層と、第1の電極と電子輸送層との間に設けられたバリア層とを有するものが提案されている(例えば、特許文献1〜3参照)。この色素増感型太陽電池では、正孔輸送層が固体である、いわゆる全固体型色素増感型太陽電池として構成されている。   Conventionally, as a dye-sensitized solar cell, a first electrode (conductive glass), a second electrode (counter electrode) disposed so as to face the first electrode, and electron transport positioned therebetween A layer, a dye layer in contact with the electron transport layer, a hole transport layer located between the electron transport layer and the second electrode and in contact with the dye layer, and provided between the first electrode and the electron transport layer. Have been proposed (see, for example, Patent Documents 1 to 3). This dye-sensitized solar cell is configured as a so-called all-solid-state dye-sensitized solar cell in which the hole transport layer is solid.

特開2003−331937号公報JP 2003-331937 A 特開2008−270042号公報JP 2008-270042 A 特開2006−172743号公報JP 2006-172743 A

このような色素増感型太陽電池では、例えば、電子輸送層の空孔率を大きくすると、正孔輸送層材料が、色素層の形成された電子輸送層の孔を浸透し、第1の電極に到達して短絡が生じうるため、第1の電極と電子輸送層との間にはバリア層を設けることが必要であった。このように、固体型色素増感型太陽電池において、バリア層を設けることにより、リーク電流の発生をより低減し、光電変換効率の向上を図ってはいるが、光電変換効率の更なる向上が望まれていた。   In such a dye-sensitized solar cell, for example, when the porosity of the electron transport layer is increased, the hole transport layer material penetrates the holes of the electron transport layer in which the dye layer is formed, and the first electrode Therefore, it is necessary to provide a barrier layer between the first electrode and the electron transport layer. As described above, in the solid dye-sensitized solar cell, by providing the barrier layer, the generation of leakage current is further reduced and the photoelectric conversion efficiency is improved, but the photoelectric conversion efficiency is further improved. It was desired.

本発明は、このような課題に鑑みなされたものであり、固体型の色素増感型太陽電池において、太陽電池特性をより高めることができる色素増感型太陽電池の製造方法、色素増感型太陽電池及び色素増感型太陽電池モジュールを提供することを主目的とする。   The present invention has been made in view of such problems, and in a solid-state dye-sensitized solar cell, a method for producing a dye-sensitized solar cell capable of further improving solar cell characteristics, and a dye-sensitized solar cell The main object is to provide a solar cell and a dye-sensitized solar cell module.

上述した目的を達成するために鋭意研究したところ、本発明者らは、透明導電性基板上に形成された電子輸送層の上に、チタン化合物を含む溶液を用いて酸化チタン膜を形成し、更にその上に色素層を形成すると、固体型の色素増感型太陽電池の変換効率をより高めることができることを見いだし、本発明を完成するに至った。   As a result of earnest research to achieve the above-described object, the present inventors formed a titanium oxide film on the electron transport layer formed on the transparent conductive substrate using a solution containing a titanium compound, Furthermore, it has been found that when a dye layer is formed thereon, the conversion efficiency of the solid dye-sensitized solar cell can be further increased, and the present invention has been completed.

即ち、本発明の色素増感型太陽電池の製造方法は、透明導電性基板の上及び/又は透明導電性基板上に形成された電子輸送層の上に、チタン化合物を含む溶液を用いて酸化チタン膜を形成する膜形成工程と、前記形成した酸化チタン膜の上に色素の層を形成し光電極とする色素形成工程と、前記光電極の前記色素の層の上に固体の正孔輸送層を形成する正孔輸送層形成工程と、を含むものである。   That is, in the method for producing a dye-sensitized solar cell of the present invention, a solution containing a titanium compound is oxidized on a transparent conductive substrate and / or an electron transport layer formed on the transparent conductive substrate. A film forming step of forming a titanium film, a dye forming step of forming a dye layer on the formed titanium oxide film to form a photoelectrode, and solid hole transport on the dye layer of the photoelectrode A hole transport layer forming step of forming a layer.

本発明の色素増感型太陽電池は、透明導電性基板と、前記透明導電性基板上に形成された電子輸送層と、前記電子輸送層の上に形成された酸化チタン膜と、前記酸化チタン膜の上に形成された色素層と、を備える光電極と、前記光電極に隣接して設けられた固体の正孔輸送層と、を備えたものである。   The dye-sensitized solar cell of the present invention includes a transparent conductive substrate, an electron transport layer formed on the transparent conductive substrate, a titanium oxide film formed on the electron transport layer, and the titanium oxide. A photoelectrode provided with a dye layer formed on a film, and a solid hole transport layer provided adjacent to the photoelectrode.

本発明の色素増感型太陽電池モジュールは、上述した色素増感型太陽電池を複数備えているものである。   The dye-sensitized solar cell module of the present invention includes a plurality of the dye-sensitized solar cells described above.

本発明は、固体型の色素増感型太陽電池の変換効率など、太陽電池特性をより高めることができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、酸化チタン膜と色素層との両方を導入することにより、透明導電性基板と固体の正孔輸送層との間、あるいは、電子輸送層と固体の正孔輸送層との間で生じうるリーク電流の発生を防止することができるものと考えられる。このため、太陽電池の変換効率がより向上すると推察される。あるいは、透明導電性基板に形成された電子輸送層の上に酸化チタン膜を形成させることにより、透明導電性基板と電子輸送層との結着性が向上することで、固体の正孔輸送層を光電極上に作製したときの光電極の破壊を防止することができるものと考えられる。このため、太陽電池の変換効率がより向上すると推察される。また、透明導電性基板と電子輸送層との結着性が向上することにより、バリヤ層を設けることを要しないため、太陽電池の変換効率がより向上すると推察される。   The present invention can further improve the solar cell characteristics such as the conversion efficiency of the solid dye-sensitized solar cell. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, by introducing both a titanium oxide film and a dye layer, it can occur between the transparent conductive substrate and the solid hole transport layer or between the electron transport layer and the solid hole transport layer. It is considered that leakage current can be prevented. For this reason, it is guessed that the conversion efficiency of a solar cell improves more. Alternatively, by forming a titanium oxide film on the electron transport layer formed on the transparent conductive substrate, the binding property between the transparent conductive substrate and the electron transport layer is improved, so that a solid hole transport layer is formed. It is considered that the photoelectrode can be prevented from being broken when the is fabricated on the photoelectrode. For this reason, it is guessed that the conversion efficiency of a solar cell improves more. Moreover, since the binding property between the transparent conductive substrate and the electron transport layer is improved, since it is not necessary to provide a barrier layer, it is assumed that the conversion efficiency of the solar cell is further improved.

色素増感型太陽電池モジュール10の構成の概略の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a schematic configuration of the dye-sensitized solar cell module 10. 有機色素分子の一例である色素1及び色素2の説明図。Explanatory drawing of the pigment | dye 1 and the pigment | dye 2 which are examples of an organic pigment | dye molecule | numerator. 添加剤の一例を示す説明図。Explanatory drawing which shows an example of an additive. 実験例1〜3の測定結果、作製概要及び構成の概略の説明図。Explanatory drawing of the outline of the measurement result of Experiment Examples 1-3, preparation outline | summary, and a structure. 実験例3,4の測定結果、作製概要及び構成の概略の説明図。Explanatory drawing of the measurement result of Experimental Examples 3 and 4, the outline of manufacture, and the outline of a structure. 実験例4〜6の測定結果、作製概要及び構成の概略の説明図。Explanatory drawing of the measurement result of Experimental Examples 4-6, the outline of preparation, and the outline of a structure. 実験例6〜8の測定結果、作製概要及び構成の概略の説明図。Explanatory drawing of the measurement result of Experimental Examples 6-8, the outline of manufacture, and the outline of a structure. 実験例6,8の断面のSEM観察結果。The SEM observation result of the cross section of Experimental example 6 and 8.

本発明の色素増感型太陽電池モジュールの一実施形態を図面を用いて説明する。図1は、色素増感型太陽電池モジュール10の構成の概略の一例を示す断面図である。図1に示すように、本実施形態に係る色素増感型太陽電池モジュール10は、透明導電性基板14上に複数の色素増感型太陽電池40(以下セルとも称する)が順次配列した構成となっている。これらのセルは直列に接続されている。この色素増感型太陽電池モジュール10では、各セルの間を埋めるように、シール材32が形成されており、透明導電性基板14とは反対側のシール材32の面に平板状の保護部材34が形成されている。本実施形態に係る色素増感型太陽電池40は、光が透過する透明基板11の表面に透明導電膜12が形成されている透明導電性基板14と、透明導電性基板14の透明導電膜12に直接形成されている電子輸送層としての多孔質半導体層24と、多孔質半導体層24に隣接して設けられた固体の正孔輸送層としての固体p型半導体層26と、固体p型半導体層26及びセパレータ29を介して設けられた対極30と、を備えている。光電極20は、透明導電性基板14と、透明基板11の受光面13の反対側の面に分離形成された透明導電膜12に配設され受光に伴い電子を放出する多孔質半導体層24と、多孔質半導体層24の上に形成された酸化チタン膜50と、酸化チタン膜50の上に形成された色素層52と、を備えている。この色素増感型太陽電池40では、光電極20と対極30とが固体p型半導体層26を介して接続されているいわゆる固体型の色素増感型太陽電池として構成されている。このように、色素増感型太陽電池40では、有機溶媒等の電解液を介さずに発電可能な構成となっている。   An embodiment of the dye-sensitized solar cell module of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view illustrating an example of a schematic configuration of a dye-sensitized solar cell module 10. As shown in FIG. 1, the dye-sensitized solar cell module 10 according to this embodiment has a configuration in which a plurality of dye-sensitized solar cells 40 (hereinafter also referred to as cells) are sequentially arranged on a transparent conductive substrate 14. It has become. These cells are connected in series. In this dye-sensitized solar cell module 10, a sealing material 32 is formed so as to fill between the cells, and a flat protective member is provided on the surface of the sealing material 32 on the side opposite to the transparent conductive substrate 14. 34 is formed. The dye-sensitized solar cell 40 according to this embodiment includes a transparent conductive substrate 14 having a transparent conductive film 12 formed on the surface of a transparent substrate 11 through which light is transmitted, and a transparent conductive film 12 of the transparent conductive substrate 14. A porous semiconductor layer 24 as an electron transport layer formed directly on the substrate, a solid p-type semiconductor layer 26 as a solid hole transport layer provided adjacent to the porous semiconductor layer 24, and a solid p-type semiconductor And a counter electrode 30 provided via a layer 26 and a separator 29. The photoelectrode 20 is disposed on the transparent conductive substrate 14 and the transparent conductive film 12 formed separately on the surface opposite to the light receiving surface 13 of the transparent substrate 11 and is provided with a porous semiconductor layer 24 that emits electrons upon receiving light. And a titanium oxide film 50 formed on the porous semiconductor layer 24, and a dye layer 52 formed on the titanium oxide film 50. The dye-sensitized solar cell 40 is configured as a so-called solid dye-sensitized solar cell in which the photoelectrode 20 and the counter electrode 30 are connected via a solid p-type semiconductor layer 26. Thus, the dye-sensitized solar cell 40 has a configuration capable of generating power without using an electrolyte such as an organic solvent.

透明導電性基板14は、透明基板11と透明導電膜12とにより構成され、光透過性及び導電性を有するものであり、シリコン太陽電池や液晶表示パネルに用いられているものを使用することができる。具体的には、フッ素ドープSnO2コートガラス、ITOコートガラス、ZnO:Alコートガラス、アンチモンドープ酸化スズ(SnO2−Sb)、等が挙げられる。また、酸化スズや酸化インジウムに原子価の異なる陽イオン若しくは陰イオンをドープした透明電極、メッシュ状、ストライプ状など光が透過できる構造にした金属電極をガラス基板等の基板上に設けたものも使用できる。この透明導電性基板14の透明導電膜12側の両端には、集電電極16,17が設けられており、この集電電極16,17を介して色素増感型太陽電池40で発電した電力を利用することができる。 The transparent conductive substrate 14 is composed of the transparent substrate 11 and the transparent conductive film 12, has light transparency and conductivity, and those used for silicon solar cells and liquid crystal display panels may be used. it can. Specific examples include fluorine-doped SnO 2 coated glass, ITO coated glass, ZnO: Al coated glass, and antimony-doped tin oxide (SnO 2 —Sb). Also, a transparent electrode obtained by doping tin oxide or indium oxide with cations or anions having different valences, or a metal electrode having a structure capable of transmitting light, such as a mesh shape or a stripe shape, provided on a substrate such as a glass substrate. Can be used. Current collecting electrodes 16 and 17 are provided at both ends of the transparent conductive substrate 14 on the transparent conductive film 12 side. Electric power generated by the dye-sensitized solar cell 40 via the current collecting electrodes 16 and 17 is provided. Can be used.

透明基板11としては、例えば、透明ガラス、透明プラスチック板、透明プラスチック膜、無機物透明結晶体などが挙げられ、このうち、透明ガラスが好ましい。この透明基板11は、透明なガラス基板、ガラス基板表面を適当に荒らすなどして光の反射を防止したもの、すりガラス状の半透明のガラス基板など光を透過するものなどとしてもよい。透明導電膜12は、例えば、透明基板11上に酸化スズを付着させることにより形成することができる。特に、フッ素をドープした酸化スズ(FTO)等の金属酸化物を用いれば、好適な透明導電膜12を形成することができる。透明導電膜12は、所定の間隔に溝18が形成されており、この溝18の幅に相当する間隔を隔てて複数の透明導電膜12の領域が分離形成されている。   Examples of the transparent substrate 11 include transparent glass, a transparent plastic plate, a transparent plastic film, and an inorganic transparent crystal, and among these, transparent glass is preferable. The transparent substrate 11 may be a transparent glass substrate, a glass substrate whose surface is appropriately roughened to prevent reflection of light, or a transparent glass substrate such as a ground glass-like translucent glass substrate. The transparent conductive film 12 can be formed, for example, by depositing tin oxide on the transparent substrate 11. In particular, if a metal oxide such as tin oxide (FTO) doped with fluorine is used, a suitable transparent conductive film 12 can be formed. In the transparent conductive film 12, grooves 18 are formed at predetermined intervals, and a plurality of regions of the transparent conductive film 12 are separately formed at intervals corresponding to the width of the grooves 18.

多孔質半導体層24は、n型半導体層により形成されているものとしてもよい。n型半導体としては、金属酸化物半導体や金属硫化物半導体などが適しており、例えば、酸化チタン(TiO2)、酸化スズ(SnO2)、酸化亜鉛(ZnO)、硫化カドミウム(CdS)、硫化亜鉛(ZnS)のうち少なくとも1以上であることが好ましく、このうち多孔質の酸化チタンがより好ましい。これらの半導体材料を微結晶又は多結晶状態にして薄膜化することにより、良好な多孔質のn型半導体層を形成することができる。特に、多孔質の酸化チタン層は、光電極20が有するn型半導体層として好適である。この多孔質半導体層24には、図1の模式図に示すように、酸化チタン膜50が形成されており、更に酸化チタン膜50の上に色素層52が形成されている。 The porous semiconductor layer 24 may be formed of an n-type semiconductor layer. As the n-type semiconductor, a metal oxide semiconductor or a metal sulfide semiconductor is suitable. For example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), cadmium sulfide (CdS), sulfide It is preferable that it is at least 1 or more among zinc (ZnS), and among these, porous titanium oxide is more preferable. By thinning these semiconductor materials into a microcrystalline or polycrystalline state, a good porous n-type semiconductor layer can be formed. In particular, the porous titanium oxide layer is suitable as an n-type semiconductor layer included in the photoelectrode 20. As shown in the schematic diagram of FIG. 1, a titanium oxide film 50 is formed on the porous semiconductor layer 24, and a dye layer 52 is further formed on the titanium oxide film 50.

酸化チタン膜50は、チタン化合物を含む溶液を用いた処理であるチタン化合物処理により形成されている。このチタン化合物としては、三塩化チタン、チタンアルコキシド、チタン錯体、四塩化チタンからなる群より選択される一種以上が好ましく、化学反応性及び安定性から四塩化チタンがより好適である。このチタン化合物処理は、詳しくは後述する。酸化チタン膜50の膜厚は、例えば、1nm以上200nm以下としてもよい。   The titanium oxide film 50 is formed by a titanium compound treatment that is a treatment using a solution containing a titanium compound. The titanium compound is preferably one or more selected from the group consisting of titanium trichloride, titanium alkoxide, titanium complex, and titanium tetrachloride, and titanium tetrachloride is more preferable in view of chemical reactivity and stability. This titanium compound treatment will be described later in detail. The film thickness of the titanium oxide film 50 may be, for example, 1 nm or more and 200 nm or less.

色素層52を形成する有機色素分子は、受光に伴い電子を放出する色素である。有機色素は、多孔質のn型半導体の表面に吸着させるものとしてもよい。この吸着は、化学吸着や物理吸着等によって行うことができる。具体的には、多孔質のn型半導体層を透明導電性基板14上に形成したのち、このn型半導体層へ有機色素を含む溶液を滴下して乾燥する方法や、色素溶液に浸漬し乾燥する方法などにより作製することができる。この有機色素分子は、可視光領域および赤外光領域のうち少なくとも一方に吸収を持つ増感特性を有していれば特に限定されるものではない。有機色素分子は、より好ましくは、少なくとも200nm〜10μmの波長の光により励起されて電子を放出するものであればよい。例えば、有機色素分子は、金属錯体であってもよい。図2は、有機色素分子の一例である色素1及び色素2の説明図である。有機色素としては、ロダニン構造を有する有機色素分子(図2の色素1)や、カルバゾール系色素、スクワリリウム系色素、メタルフリーフタロシアニン、シアニン系色素、メロシアニン系色素、キサンテン系色素、トリフェニルメタン系色素等を用いることができる。また、金属錯体としては、例えば、銅フタロシアニン、チタニルフタロシアニン等の金属フタロシアニン、クロロフィルまたはその誘導体、ヘミン、ルテニウム、オスミウム、鉄及び亜鉛の錯体等が挙げられる。ルテニウムの錯体としては、例えば、図2の色素2など、シス−ジシアネート−N,N’−ビス(2,2’−ビピリジル−4,4’−ジカルボキシレート)ルテニウム(II)などが挙げられる。   The organic dye molecules forming the dye layer 52 are dyes that emit electrons upon receiving light. The organic dye may be adsorbed on the surface of the porous n-type semiconductor. This adsorption can be performed by chemical adsorption or physical adsorption. Specifically, after forming a porous n-type semiconductor layer on the transparent conductive substrate 14, a method of dropping an organic dye-containing solution onto the n-type semiconductor layer and drying it, or dipping in a dye solution and drying It can produce by the method to do. The organic dye molecule is not particularly limited as long as it has a sensitizing property having absorption in at least one of the visible light region and the infrared light region. More preferably, the organic dye molecule only needs to be excited by light having a wavelength of at least 200 nm to 10 μm and emit electrons. For example, the organic dye molecule may be a metal complex. FIG. 2 is an explanatory diagram of a dye 1 and a dye 2 which are examples of organic dye molecules. Examples of organic dyes include organic dye molecules having a rhodanine structure (Dye 1 in FIG. 2), carbazole dyes, squarylium dyes, metal-free phthalocyanines, cyanine dyes, merocyanine dyes, xanthene dyes, triphenylmethane dyes. Etc. can be used. Examples of the metal complex include metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll or derivatives thereof, hemin, ruthenium, osmium, iron and zinc complexes. Examples of the ruthenium complex include cis-dicyanate-N, N′-bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II), such as dye 2 in FIG. .

固体p型半導体層26は、正孔輸送層としてp型半導体によって構成されている。p型半導体としては、固体の正孔輸送層を形成するものとすればよく、例えば、有機正孔輸送材料や無機正孔輸送材料としてもよい。有機正孔輸送材料としては、例えば、Spiro−OMeTAD(2,2',7,7'-tetrakis(N,N-di-p-methoxyphenilamine)-9,9'-spirobifluorene)や、P3HT(Poly(3-hexylthiophene))などが挙げられる。また、無機正孔輸送材料としては、例えば、Cu化合物やNi化合物を含む半導体により形成された層としてもよい。このCu化合物としては、例えば、CuI、CuSCN、CuO、Cu2Oのうちいずれか1以上が挙げられる。また、Ni化合物としては、NiOなどが挙げられる。このうち、Cu化合物がより好ましく、CuIが更に好ましい。この固体p型半導体層26は、添加剤としてのイオン性液体を含んで作製されていることが好ましい。こうすれば、変換効率や耐久性など、太陽電池特性をより高めることができる。この添加剤は、例えば、p型半導体材料(例えばCu化合物)の濃度に対する添加剤の濃度の割合を0.6%以上12.5%以下とした溶液を用いて固体p型半導体層26に添加されていることが好ましい。この添加剤は、イミダゾリウム系カチオン、ピリジウム系カチオン、脂環式アミン系カチオン及び脂肪族アミン系カチオンのうちいずれか1以上のカチオンと、チオシアネート(SCN-)及びアイオダイド(I-)のうちいずれか1以上のアニオンとを含むイオン性液体を含むことが好ましい。例えば、図3に示すように、トリエチルアミンヒドロチオシアネート(THT)や、1−メチル−3−エチルイミダゾリウムチオシアネート(EMISCN)、1−ブチル−3−プロピルイミダゾリウムヨージド(PMII)、1−ブチル−3−メチルイミダゾリウムチオシアネート(BMISCN)などの液体が挙げられる。このうち、イミダゾリウム系カチオンとチオシアネートのアニオンを含むイオン性液体が好ましい。この色素増感型太陽電池40において、多孔質半導体層24にはp型半導体材料(例えばCu化合物)及びイオン性液体が充填されているものとしてもよい。こうすれば、添加剤がリーク電流の防止層としてより機能しやすい。 The solid p-type semiconductor layer 26 is composed of a p-type semiconductor as a hole transport layer. As a p-type semiconductor, a solid hole transport layer may be formed. For example, an organic hole transport material or an inorganic hole transport material may be used. Examples of the organic hole transport material include Spiro-OMeTAD (2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenilamine) -9,9′-spirobifluorene) and P3HT (Poly ( 3-hexylthiophene)). Moreover, as an inorganic hole transport material, it is good also as a layer formed with the semiconductor containing Cu compound and Ni compound, for example. Examples of the Cu compound include one or more of CuI, CuSCN, CuO, and Cu 2 O. Moreover, NiO etc. are mentioned as a Ni compound. Of these, Cu compounds are more preferred, and CuI is even more preferred. The solid p-type semiconductor layer 26 is preferably produced including an ionic liquid as an additive. In this way, solar cell characteristics such as conversion efficiency and durability can be further improved. This additive is added to the solid p-type semiconductor layer 26 using, for example, a solution in which the ratio of the concentration of the additive to the concentration of the p-type semiconductor material (for example, Cu compound) is 0.6% or more and 12.5% or less. It is preferable that The additive may be any one or more of imidazolium cation, pyridium cation, alicyclic amine cation and aliphatic amine cation, and thiocyanate (SCN ) and iodide (I ). Or an ionic liquid containing one or more anions. For example, as shown in FIG. 3, triethylamine hydrothiocyanate (THT), 1-methyl-3-ethylimidazolium thiocyanate (EMISCN), 1-butyl-3-propylimidazolium iodide (PMII), 1-butyl- Examples thereof include liquids such as 3-methylimidazolium thiocyanate (BMISCN). Among these, an ionic liquid containing an imidazolium cation and an anion of thiocyanate is preferable. In the dye-sensitized solar cell 40, the porous semiconductor layer 24 may be filled with a p-type semiconductor material (for example, a Cu compound) and an ionic liquid. In this way, the additive is more likely to function as a leakage current prevention layer.

セパレータ29は、多孔質半導体層24及び固体p型半導体層26が積層された光電極20の1つの側面に隣接するように断面I字状に形成されている。セパレータ29の一端は透明導電性基板14上の溝18と接触している。これにより、光電極20と対極30との直接接触が回避される。セパレータ29は、絶縁性の材料からなり、例えば、ガラスビーズ、二酸化ケイ素(シリカ)及びルチル型の酸化チタンなどで形成されていてもよい。このセパレータ29としては、シリカ粒子を焼結した絶縁体が好ましい。シリカ粒子は、屈折率が低く光散乱が小さく、良好な透明性を有するため、セパレータに好ましい。   The separator 29 is formed in an I-shaped cross section so as to be adjacent to one side surface of the photoelectrode 20 on which the porous semiconductor layer 24 and the solid p-type semiconductor layer 26 are laminated. One end of the separator 29 is in contact with the groove 18 on the transparent conductive substrate 14. Thereby, the direct contact with the photoelectrode 20 and the counter electrode 30 is avoided. The separator 29 is made of an insulating material, and may be formed of, for example, glass beads, silicon dioxide (silica), rutile titanium oxide, or the like. The separator 29 is preferably an insulator in which silica particles are sintered. Silica particles are preferable for the separator because they have a low refractive index, low light scattering, and good transparency.

対極30は、セパレータ29の外面と固体p型半導体層26の裏面27とに接触するよう、断面L字状に形成されている。この対極30は、一端が固体p型半導体層26の裏面に接続されていると共に、他端が接続部21を介して隣側の透明導電膜12に接続されている。この対極30の裏面27と接触する面は、光電極20に対して所定の間隔を隔てて対向している。対極30としては、導電性及び固体p型半導体層26との接合性を有するものであれば特に限定されず、例えば、Pt,Au,カーボンなどが挙げられ、このうちカーボンが好ましい。なお、対極30やセパレータ29などは、色素増感型太陽電池40の構成に合わせたものとすれば、どのような形状としてもよい。   The counter electrode 30 is formed in an L-shaped cross section so as to contact the outer surface of the separator 29 and the back surface 27 of the solid p-type semiconductor layer 26. The counter electrode 30 has one end connected to the back surface of the solid p-type semiconductor layer 26 and the other end connected to the adjacent transparent conductive film 12 via the connection portion 21. The surface of the counter electrode 30 that is in contact with the back surface 27 faces the photoelectrode 20 at a predetermined interval. The counter electrode 30 is not particularly limited as long as it has conductivity and bondability to the solid p-type semiconductor layer 26, and examples thereof include Pt, Au, and carbon. Among these, carbon is preferable. The counter electrode 30, the separator 29, and the like may have any shape as long as they match the configuration of the dye-sensitized solar cell 40.

シール材32は、絶縁性の部材であれば特に限定されずに用いることができる。このシール材32としては、例えば、ポリエチレン等の熱可塑性樹脂フィルム、あるいはエポキシ系接着剤を使用することができる。   The sealing material 32 can be used without particular limitation as long as it is an insulating member. As the sealing material 32, for example, a thermoplastic resin film such as polyethylene or an epoxy adhesive can be used.

保護部材34は、色素増感型太陽電池40の保護を図る部材であり、例えば、防湿フィルムや保護ガラスなどとすることができる。この保護部材34は、省略してもよい。   The protection member 34 is a member that protects the dye-sensitized solar cell 40, and can be, for example, a moisture-proof film or protective glass. This protective member 34 may be omitted.

この色素増感型太陽電池40に対して、透明基板11の受光面13側から光を照射すると、透明導電膜12の受光面15を介して光が多孔質半導体層24へ到達し、有機色素が光を吸収して電子と正孔が発生する。正孔は多孔質半導体層24から固体p型半導体層26へ移動する。一方、電子は光電極20から透明導電膜12、接続部21を経由して隣の対極30へ移動する。色素増感型太陽電池40では、この電子と正孔の移動により起電力が発生し、電池の発電作用が得られる。この色素増感型太陽電池モジュール10では、多孔質半導体層24及び透明導電膜12の表面に酸化チタン膜50が形成され、酸化チタン膜50の上に更に色素層52が形成されており、変換効率の低下抑制、及び耐久性の向上が図られている。   When this dye-sensitized solar cell 40 is irradiated with light from the light-receiving surface 13 side of the transparent substrate 11, the light reaches the porous semiconductor layer 24 through the light-receiving surface 15 of the transparent conductive film 12, and the organic dye Absorbs light and generates electrons and holes. Holes move from the porous semiconductor layer 24 to the solid p-type semiconductor layer 26. On the other hand, electrons move from the photoelectrode 20 to the adjacent counter electrode 30 via the transparent conductive film 12 and the connection portion 21. In the dye-sensitized solar cell 40, an electromotive force is generated by the movement of the electrons and holes, and the power generation action of the battery can be obtained. In this dye-sensitized solar cell module 10, a titanium oxide film 50 is formed on the surfaces of the porous semiconductor layer 24 and the transparent conductive film 12, and a dye layer 52 is further formed on the titanium oxide film 50. The reduction of efficiency is suppressed and the durability is improved.

この色素増感型太陽電池モジュール10は、製造方法として、基板作製工程、多孔質半導体層形成工程(電子輸送層形成工程)、膜形成工程、色素形成工程、p型半導体層形成工程(正孔輸送層形成工程)、セパレータ形成工程、対極形成工程及び保護部材形成工程を経て製造することができる。まず、基板作製工程では、複数の透明導電膜12の間に溝18を形成しつつ透明導電膜12を透明基板11上に形成する。多孔質半導体層形成工程では、透明導電膜12上に直接n型半導体層を形成するものとしてもよい。n型半導体としては、例えば、多孔質半導体層24で挙げた材料のうちいずれかを用いることができ、このうち多孔質の酸化チタンがより好ましい。n型半導体層の形成方法は、例えば、バーコーター法、印刷法などを用いることができる。なお、多孔質半導体層24の前駆体層を形成したあと、更に、空気中等の酸化雰囲気下、400〜600℃の温度範囲で熱処理することにより、この前駆体層を焼成して多孔質半導体層24を形成してもよい。   The dye-sensitized solar cell module 10 includes, as a manufacturing method, a substrate manufacturing process, a porous semiconductor layer forming process (electron transport layer forming process), a film forming process, a dye forming process, and a p-type semiconductor layer forming process (holes). It can be manufactured through a transport layer forming step), a separator forming step, a counter electrode forming step, and a protective member forming step. First, in the substrate manufacturing process, the transparent conductive film 12 is formed on the transparent substrate 11 while forming the grooves 18 between the plurality of transparent conductive films 12. In the porous semiconductor layer forming step, the n-type semiconductor layer may be formed directly on the transparent conductive film 12. As the n-type semiconductor, for example, any of the materials mentioned for the porous semiconductor layer 24 can be used, and among these, porous titanium oxide is more preferable. As a method for forming the n-type semiconductor layer, for example, a bar coater method, a printing method, or the like can be used. In addition, after forming the precursor layer of the porous semiconductor layer 24, this precursor layer is further baked by heat-treating in a temperature range of 400 to 600 ° C. in an oxidizing atmosphere such as in air. 24 may be formed.

膜形成工程では、チタン化合物を含む溶液を用いた処理であるチタン化合物処理を行い、多孔質半導体層24の上に酸化チタン膜50を形成する。このチタン化合物処理では、例えば、チタン化合物を含む溶液に、多孔質半導体層24を形成した透明基板11を浸漬させ、洗浄、熱処理を行うことにより、酸化チタン膜50を形成するものとしてもよい。この膜形成工程では、チタン化合物処理を複数回行うことが好ましい。こうすれば、より安定な酸化チタン膜50を形成することができる。但し、酸化チタン膜50の膜厚が200nm以下の範囲となるように、繰り返し数を調整して行うことが好ましい。   In the film forming step, a titanium compound process, which is a process using a solution containing a titanium compound, is performed to form a titanium oxide film 50 on the porous semiconductor layer 24. In the titanium compound treatment, for example, the titanium oxide film 50 may be formed by immersing the transparent substrate 11 on which the porous semiconductor layer 24 is formed in a solution containing a titanium compound, and performing cleaning and heat treatment. In this film forming step, it is preferable to perform the titanium compound treatment a plurality of times. In this way, a more stable titanium oxide film 50 can be formed. However, it is preferable to adjust the number of repetitions so that the thickness of the titanium oxide film 50 is in the range of 200 nm or less.

膜形成工程で用いるチタン化合物としては、三塩化チタン、チタンアルコキシド又はチタン錯体及び四塩化チタンなどが挙げられ、このうち四塩化チタンが好ましい。チタンアルコキシドとしては、一般式;Ti(OR)4で表される化合物(Rは官能基)を示す。ここで、上記4つのRは同一であっても異なっていてもよいが、官能基としては、例えば、−CH3、−C25、−iC37、−nC37、−iC49及び−nC49のうち1以上としてもよい。また、チタンアルコキシドとしては、チタンテトライソプロポキシド{Ti(O−iC374}、チタンテトラnブトキシド{Ti(O−nC494}がより高い変換効率を得ることができ、好ましい。チタン錯体としては、酢酸チタン、クエン酸チタン、オキシシュウ酸チタン(IV)カリウム塩、チタンペルオキソ錯体、チタンペルオキソヒドロキシカルボン酸のアンモニウム塩、チタンイソプロポキシドアセチルアセトン誘導体及びチタンアセチルアセトナートのうち、1以上としてもよい。このうち、より高いエネルギー変換効率を得る観点からは、チタンペルオキソクエン酸アンモニウムおよびチタンアセチルアセトナートが好ましい。チタン化合物を含む溶液の溶媒としては、水、アルコール類;エタノール,n−プロパノール,i−プロパノール,n−ブタノール、ヒドロキシエチルメチルエーテルやヒドロキシエチルエチルエーテルなどのエーテル類、アセトンやアセチルアセトンなどのケトン類が挙げられる。また、これら溶媒は、少なくとも2種を任意に混合して使用してもよい。 Examples of the titanium compound used in the film forming step include titanium trichloride, titanium alkoxide or titanium complex, and titanium tetrachloride. Of these, titanium tetrachloride is preferable. The titanium alkoxide is a compound represented by the general formula; Ti (OR) 4 (R is a functional group). Here, the four R's may be different even in the same, but the functional group, for example, -CH 3, -C 2 H 5 , -iC 3 H 7, -nC 3 H 7, - iC 4 may be one or more of H 9 and -nC 4 H 9. As titanium alkoxide, titanium tetraisopropoxide {Ti (O-iC 3 H 7 ) 4 } and titanium tetra n butoxide {Ti (O—nC 4 H 9 ) 4 } can obtain higher conversion efficiency. It is possible and preferable. Examples of the titanium complex include titanium acetate, titanium citrate, titanium (IV) oxyoxalate potassium salt, titanium peroxo complex, ammonium salt of titanium peroxohydroxycarboxylic acid, titanium isopropoxide acetylacetone derivative and titanium acetylacetonate. It is good also as above. Among these, from the viewpoint of obtaining higher energy conversion efficiency, titanium peroxocitrate ammonium and titanium acetylacetonate are preferable. Solvents for the solution containing the titanium compound include water, alcohols; ethanol, n-propanol, i-propanol, n-butanol, ethers such as hydroxyethyl methyl ether and hydroxyethyl ethyl ether, and ketones such as acetone and acetylacetone. Is mentioned. Moreover, you may use these solvents, mixing at least 2 sorts arbitrarily.

チタン化合物が三塩化チタン、チタンアルコキシド又はチタン錯体である場合、溶液に浸漬する温度は0〜50℃であることが好ましい。また、チタン化合物が四塩化チタンである場合、溶液に浸漬する温度は0〜120℃であることが好ましい。浸漬温度が0℃未満では加水分解反応速度が遅く酸化チタン膜の析出に長時間を要する。また、浸漬温度が上限温度を超えると、最終的に生成する酸化チタンの粒子の粒子径が大きくなる。チタン化合物の濃度は、例えば、0.01〜0.20mol/Lであることが好ましい。チタン化合物の濃度が0.01mol/L未満では、焼成後に十分な量の酸化チタン膜が析出されない傾向にある。一方、チタン化合物の濃度が0.20mol/Lを超えると、透明導電膜3の分解を進行させる傾向が大きくなる。   When the titanium compound is titanium trichloride, titanium alkoxide, or titanium complex, the temperature of immersion in the solution is preferably 0 to 50 ° C. Moreover, when a titanium compound is titanium tetrachloride, it is preferable that the temperature immersed in a solution is 0-120 degreeC. When the immersion temperature is less than 0 ° C., the hydrolysis reaction rate is slow and it takes a long time to deposit the titanium oxide film. Further, when the immersion temperature exceeds the upper limit temperature, the particle diameter of the finally formed titanium oxide particles becomes large. The concentration of the titanium compound is preferably 0.01 to 0.20 mol / L, for example. When the concentration of the titanium compound is less than 0.01 mol / L, a sufficient amount of the titanium oxide film tends not to be deposited after firing. On the other hand, when the density | concentration of a titanium compound exceeds 0.20 mol / L, the tendency to advance decomposition | disassembly of the transparent conductive film 3 will become large.

また、浸漬後の洗浄液としては、塩酸水溶液や硝酸水溶液、硫酸水溶液などの酸溶液や、エタノールやメタノール、アセトンなどの有機溶媒を使用することができる。こうすれば、チタン化合物含む溶液の余剰な部分を除去することができる。洗浄後の熱処理としては、酸化雰囲気下、400℃以上600℃以下の温度範囲で行うことが好ましい。熱処理温度が400℃以上では、酸化チタン膜を充分に形成することができる。熱処理温度が600℃以下では、透明電極の電気抵抗の増加を抑制したり、透明基板11が歪んでしまうのをより抑制することができる。このような処理を経て、多孔質半導体層24の上に酸化チタン膜50を形成することができる。   As the cleaning liquid after immersion, an acid solution such as a hydrochloric acid aqueous solution, a nitric acid aqueous solution or a sulfuric acid aqueous solution, or an organic solvent such as ethanol, methanol or acetone can be used. If it carries out like this, the excess part of the solution containing a titanium compound can be removed. The heat treatment after the cleaning is preferably performed in an oxidizing atmosphere in a temperature range of 400 ° C. to 600 ° C. When the heat treatment temperature is 400 ° C. or higher, a titanium oxide film can be sufficiently formed. When the heat treatment temperature is 600 ° C. or lower, it is possible to suppress an increase in the electrical resistance of the transparent electrode and to further suppress the distortion of the transparent substrate 11. Through such treatment, the titanium oxide film 50 can be formed on the porous semiconductor layer 24.

色素形成工程では、上述したいずれかの有機色素を多孔質半導体層24へ吸着させ、色素層52を酸化チタン膜50の上に形成し、光電極20とする。有機色素としては、色素層52で説明したいずれか1以上を用いることができる。例えば、色素層52は、有機色素を溶媒に溶解させた色素溶液を上記多孔質半導体層24へ供給し、乾燥固化して形成することができる。このように、光電極20では、透明導電性基板14上に形成された多孔質半導体層24の上に、チタン化合物を含む溶液を用いて酸化チタン膜50を形成し、更にその上に色素層52を形成するのである。こうすれば、リーク電流の発生をより抑制可能である。   In the dye forming step, any of the organic dyes described above is adsorbed to the porous semiconductor layer 24, and the dye layer 52 is formed on the titanium oxide film 50 to form the photoelectrode 20. Any one or more of the organic dyes described in the dye layer 52 can be used. For example, the dye layer 52 can be formed by supplying a dye solution in which an organic dye is dissolved in a solvent to the porous semiconductor layer 24 and drying and solidifying it. As described above, in the photoelectrode 20, the titanium oxide film 50 is formed on the porous semiconductor layer 24 formed on the transparent conductive substrate 14 using the solution containing the titanium compound, and further, the dye layer is further formed thereon. 52 is formed. By so doing, it is possible to further suppress the occurrence of leakage current.

次に、p型半導体層形成工程により、固体p型半導体層26を色素層52の上に形成する。p型半導体としては、上述した固体p型半導体層26で説明した材料のいずれか1以上を適宜用いることができる。ここでは、説明の便宜のため、Cu化合物を用いる場合について説明する。この工程では、例えば、多孔質半導体層24上にCu化合物とイオン性液体とを含む溶液を供給し、乾燥させる工程を複数回行い、多孔質半導体層24にCu化合物及びイオン性液体を充填すると共に、多孔質半導体層24上に固体p型半導体層26を形成してもよい。この溶液は、有機溶媒にCu化合物とイオン性液体とを混合して作製してもよい。このとき、Cu化合物の濃度に対するイオン性液体の濃度の割合を0.6%以上12.5%以下とした溶液、より好ましくは3.0%以上10.0%以下とした溶液を用いる。この濃度割合が0.6%以上では、透明導電性基板14と固体p型半導体層26、又は多孔質半導体層24と固体p型半導体層26との間のリーク電流の防止層として機能し、変換効率の低下をより抑制することができる。また、この濃度割合が12.5%以下では、発電しているときに添加剤の消失や拡散がより抑制され、リーク電流を十分防止することができ、電池の耐久性がより高まる。添加剤としては、上述したイオン性液体のうちいずれか1以上を用いるものとしてもよい。このうち、イミダゾリウム系カチオンとチオシアネートのアニオンを含むイオン性液体を用いることが好ましい。有機溶媒としては、例えば、メトキシプロピオニトリルやアセトニトリルのようなニトリル化合物、γ−ブチロラクトンやバレロラクトンのようなラクトン化合物、エチレンカーボネートやプロピレンカーボネートのようなカーボネート化合物が挙げられる。また、この工程では、Cu化合物として、CuI、CuSCN、CuO、Cu2O、Cuのうちいずれか1以上を用いるものとしてもよく、例えばCuIを用いるのが好ましい。Cu化合物を溶媒に溶解させる際に、この溶液のCu濃度は適宜設定することができるが、Cu化合物の飽和溶液とするのが好ましい。こうすれば、多孔質半導体層24上にCu化合物を固体化しやすい。固体p型半導体層26の形成は、例えば、透明基板11を加熱し乾燥しながら上記溶液を供給してもよい。この加熱温度は、有機溶媒の揮発を促進すると共に、イオン性液体が十分安定である温度範囲とすることが好ましく、例えば、40℃以上120℃以下の範囲が好ましい。なお、固体p型半導体層26には、イオン性液体が揮発せずに残留するが、色素増感型太陽電池40は、ほぼ全固体型の色素増感型太陽電池として作動する。 Next, the solid p-type semiconductor layer 26 is formed on the dye layer 52 by a p-type semiconductor layer forming step. As the p-type semiconductor, any one or more of the materials described for the solid p-type semiconductor layer 26 described above can be used as appropriate. Here, for convenience of explanation, a case where a Cu compound is used will be described. In this step, for example, a solution containing a Cu compound and an ionic liquid is supplied onto the porous semiconductor layer 24 and dried, so that the porous semiconductor layer 24 is filled with the Cu compound and the ionic liquid. At the same time, the solid p-type semiconductor layer 26 may be formed on the porous semiconductor layer 24. This solution may be prepared by mixing a Cu compound and an ionic liquid in an organic solvent. At this time, a solution in which the ratio of the concentration of the ionic liquid to the concentration of the Cu compound is 0.6% or more and 12.5% or less, more preferably a solution that is 3.0% or more and 10.0% or less is used. When the concentration ratio is 0.6% or more, it functions as a leakage current prevention layer between the transparent conductive substrate 14 and the solid p-type semiconductor layer 26 or between the porous semiconductor layer 24 and the solid p-type semiconductor layer 26, A decrease in conversion efficiency can be further suppressed. When the concentration ratio is 12.5% or less, disappearance and diffusion of the additive are further suppressed during power generation, leakage current can be sufficiently prevented, and battery durability is further improved. As an additive, any one or more of the ionic liquids described above may be used. Among these, it is preferable to use an ionic liquid containing an imidazolium-based cation and an anion of thiocyanate. Examples of the organic solvent include nitrile compounds such as methoxypropionitrile and acetonitrile, lactone compounds such as γ-butyrolactone and valerolactone, and carbonate compounds such as ethylene carbonate and propylene carbonate. In this step, any one or more of CuI, CuSCN, CuO, Cu 2 O, and Cu may be used as the Cu compound. For example, CuI is preferably used. When the Cu compound is dissolved in the solvent, the Cu concentration of this solution can be set as appropriate, but it is preferably a saturated solution of the Cu compound. By doing so, the Cu compound is easily solidified on the porous semiconductor layer 24. Formation of the solid p-type semiconductor layer 26 may supply the said solution, for example, heating the transparent substrate 11 and drying. The heating temperature is preferably set to a temperature range in which volatilization of the organic solvent is promoted and the ionic liquid is sufficiently stable, for example, a range of 40 ° C. or higher and 120 ° C. or lower is preferable. Although the ionic liquid remains in the solid p-type semiconductor layer 26 without volatilizing, the dye-sensitized solar cell 40 operates as an almost all-solid dye-sensitized solar cell.

続いて、セパレータ形成工程では、溝18に合わせて光電極20の側面にセパレータ29を形成する。対極形成工程では、セパレータ29と固体p型半導体層26とに接するように対極30を形成する。対極30は、例えばカーボンとしてもよい。保護部材形成工程では、各セルを覆うようにシール材32を形成すると共にシール材32に保護部材34を形成する。このようにして、発電特性が向上した色素増感型太陽電池40及び色素増感型太陽電池モジュール10を作製することができる。   Subsequently, in the separator forming step, a separator 29 is formed on the side surface of the photoelectrode 20 in alignment with the groove 18. In the counter electrode forming step, the counter electrode 30 is formed in contact with the separator 29 and the solid p-type semiconductor layer 26. The counter electrode 30 may be carbon, for example. In the protective member forming step, the sealing material 32 is formed so as to cover each cell, and the protective member 34 is formed on the sealing material 32. In this manner, the dye-sensitized solar cell 40 and the dye-sensitized solar cell module 10 with improved power generation characteristics can be produced.

以上詳述した色素増感型太陽電池40では、変換効率など、太陽電池特性をより高めることができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、酸化チタン膜50と色素層52との両方を導入することにより、透明導電性基板14と固体p型半導体層26との間、あるいは、多孔質半導体層24と固体p型半導体層26との間で生じうるリーク電流の発生を防止することができるものと考えられる。このため、太陽電池の変換効率がより向上すると推察される。あるいは、透明導電性基板14に形成された多孔質半導体層24の上に酸化チタン膜50を形成させることにより、透明導電性基板14と多孔質半導体層24との結着性が向上することで、固体p型半導体層26を光電極20の上に作製したときの光電極20の破壊を防止することができるものと考えられる。このため、太陽電池の効率がより向上すると推察される。また、リーク電流の発生防止及び多孔質半導体層24の結着性向上のため、一般に、全固体型の色素増感型太陽電池では、透明導電性基板14と多孔質半導体層24との間に下地層(バリヤ層)を設けることがある。本発明の色素増感型太陽電池40では、酸化チタン膜50及び色素層52により、透明導電性基板14と多孔質半導体層24との結着性が向上し、下地層(バリヤ層)を設けることを要しないため、太陽電池の変換効率を高めることができると推察される。更に、固体p型半導体層26にイオン性液体が存在するため、リーク電流の発生をより確実に防止することができ、変換効率など、太陽電池特性をより高めることができるものと推察された。   In the dye-sensitized solar cell 40 described in detail above, solar cell characteristics such as conversion efficiency can be further improved. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, by introducing both the titanium oxide film 50 and the dye layer 52, between the transparent conductive substrate 14 and the solid p-type semiconductor layer 26, or between the porous semiconductor layer 24 and the solid p-type semiconductor layer 26, It is considered that the occurrence of a leakage current that can occur between the two can be prevented. For this reason, it is guessed that the conversion efficiency of a solar cell improves more. Alternatively, by forming the titanium oxide film 50 on the porous semiconductor layer 24 formed on the transparent conductive substrate 14, the binding property between the transparent conductive substrate 14 and the porous semiconductor layer 24 is improved. It is considered that destruction of the photoelectrode 20 when the solid p-type semiconductor layer 26 is formed on the photoelectrode 20 can be prevented. For this reason, it is guessed that the efficiency of a solar cell improves more. Further, in order to prevent the occurrence of leakage current and improve the binding property of the porous semiconductor layer 24, in general, in an all-solid type dye-sensitized solar cell, between the transparent conductive substrate 14 and the porous semiconductor layer 24. An underlayer (barrier layer) may be provided. In the dye-sensitized solar cell 40 of the present invention, the binding between the transparent conductive substrate 14 and the porous semiconductor layer 24 is improved by the titanium oxide film 50 and the dye layer 52, and an underlayer (barrier layer) is provided. It is speculated that the conversion efficiency of the solar cell can be increased. Furthermore, since the ionic liquid is present in the solid p-type semiconductor layer 26, it is presumed that the generation of leakage current can be prevented more reliably and the solar cell characteristics such as conversion efficiency can be further improved.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば上述した実施形態では、色素増感型太陽電池モジュール10としたが、特にこれに限定されず、単体の色素増感型太陽電池40としてもよい。色素増感型太陽電池40を単体とする場合は、対極30の断面をL字状ではなく、平板状に形成するものとしてもよい。   For example, in the embodiment described above, the dye-sensitized solar cell module 10 is used. However, the present invention is not particularly limited thereto, and a single dye-sensitized solar cell 40 may be used. When the dye-sensitized solar cell 40 is used alone, the counter electrode 30 may be formed in a flat plate shape instead of an L shape.

上述した実施形態では、透明導電膜12の上に直接多孔質半導体層24が形成されているものとしたが、特にこれに限定されず、透明導電膜12の上に、チタン化合物を含む溶液を用いて酸化チタン膜を形成し、この形成した酸化チタン膜を介して多孔質半導体層24が形成されているものとしてもよい。また、透明導電膜12の上に下地層を介して多孔質半導体層24が形成されているものとしてもよい。下地層は、例えば、透光性及び導電性のある材料が好ましく、例えば、酸化チタンや酸化亜鉛、酸化スズなどのn型半導体などが挙げられ、このうち酸化チタンがより好ましい。こうしても、発電特性を向上することができる。   In the above-described embodiment, the porous semiconductor layer 24 is formed directly on the transparent conductive film 12. However, the present invention is not particularly limited to this, and a solution containing a titanium compound is formed on the transparent conductive film 12. The titanium oxide film may be used to form the porous semiconductor layer 24 via the formed titanium oxide film. Alternatively, the porous semiconductor layer 24 may be formed on the transparent conductive film 12 via a base layer. For example, the base layer is preferably a light-transmitting and conductive material, and examples thereof include n-type semiconductors such as titanium oxide, zinc oxide, and tin oxide. Of these, titanium oxide is more preferable. Even in this case, the power generation characteristics can be improved.

以下には本発明の色素増感型太陽電池を具体的に作製した例を実験例として説明する。種々の構成となるように色素増感型太陽電池を作製し、発電特性について検討した。   Hereinafter, an example in which the dye-sensitized solar cell of the present invention is specifically manufactured will be described as an experimental example. Dye-sensitized solar cells were fabricated so as to have various configurations, and the power generation characteristics were examined.

[実験例1]
固体p型半導体層(正孔輸送層)としてCuIを用い、有機色素分子として色素2(図2参照)を用いた。まず、TCOガラス基板上に、多孔質半導体層24であるn型半導体層(電子輸送層)として多孔質酸化チタンをスクリーン印刷法で塗布し、150℃で乾燥したのち、電気炉内で450℃に加熱して、酸化チタン層基板を作製した(電子輸送層形成工程)。このように、TCOガラス基板とn型半導体層との間にバリヤ層を形成することなく、TCOガラス基板上に直接、n型半導体層を形成した。次に、上述した色素1を0.4mM溶解したアセトニトリルとtert−ブチルアルコールとを混合した色素溶液を調製した。次に、上記作製した色素2を含む色素溶液に上記酸化チタン層基板をそれぞれ浸漬し、25℃の温度条件の下で15時間放置した。このように、酸化チタン層基板に色素1を吸着させた基板を作製した(色素形成工程)。続いて、アセトニトリルにCuIを飽和させ、添加剤を添加してCuI溶液を調製した。添加剤としては、イオン性液体である1−メチル−3−エチルイミダゾリウムチオシアネート(EMISCN)を用い、CuIの飽和濃度(0.16M)に対する添加剤の濃度の割合を9.4%としたCuI溶液を調製した。続いて、40℃〜120℃のホットプレート上に、上記得られた色素吸着酸化チタン層基板を酸化チタン層が上になるように静置した。調製したCuI溶液を色素吸着酸化チタン層の上に10μL滴下し、CuI溶液に含まれる溶媒を蒸発させることによりCuI及び添加剤を、色素吸着した酸化チタン層内へ充填させた。このようにして、光電極を作製した。続いて、CuI溶液の滴下及び溶媒の蒸発を繰り返し、色素吸着酸化チタン層の上部にCuI層(正孔輸送層)を形成した(正孔輸送層形成工程)。そして、このCuI層の上に、対極としてのPt薄膜を配置し(対極形成工程)、図1に示す固体型の色素増感型太陽電池を作製し、これを実験例1とした。
[Experimental Example 1]
CuI was used as the solid p-type semiconductor layer (hole transport layer), and dye 2 (see FIG. 2) was used as the organic dye molecule. First, on a TCO glass substrate, porous titanium oxide as an n-type semiconductor layer (electron transport layer) as the porous semiconductor layer 24 is applied by screen printing, dried at 150 ° C., and then 450 ° C. in an electric furnace. To produce a titanium oxide layer substrate (electron transport layer forming step). Thus, the n-type semiconductor layer was formed directly on the TCO glass substrate without forming a barrier layer between the TCO glass substrate and the n-type semiconductor layer. Next, a dye solution in which acetonitrile and tert-butyl alcohol in which 0.4 mM of the dye 1 was dissolved was mixed was prepared. Next, the titanium oxide layer substrate was immersed in the dye solution containing the dye 2 thus prepared, and left for 15 hours under a temperature condition of 25 ° C. Thus, the board | substrate which adsorb | sucked the pigment | dye 1 to the titanium oxide layer board | substrate was produced (pigment formation process). Subsequently, CuI was saturated with acetonitrile, and an additive was added to prepare a CuI solution. As an additive, ionic liquid 1-methyl-3-ethylimidazolium thiocyanate (EMISCN) was used, and the ratio of the additive concentration to the CuI saturation concentration (0.16 M) was 9.4%. A solution was prepared. Subsequently, the obtained dye-adsorbed titanium oxide layer substrate was placed on a hot plate at 40 ° C. to 120 ° C. so that the titanium oxide layer was on the top. 10 μL of the prepared CuI solution was dropped on the dye-adsorbed titanium oxide layer, and the solvent contained in the CuI solution was evaporated to fill the dye-adsorbed titanium oxide layer with CuI. In this way, a photoelectrode was produced. Subsequently, dropping of the CuI solution and evaporation of the solvent were repeated to form a CuI layer (hole transport layer) on the dye-adsorbed titanium oxide layer (hole transport layer forming step). Then, a Pt thin film as a counter electrode was disposed on this CuI layer (counter electrode forming step), and the solid dye-sensitized solar cell shown in FIG.

(実験例2,3)
実験例1の色素増感型太陽電池の作製において、電子輸送層形成工程を行ったあとの酸化チタン層基板を、0.05Mの四塩化チタン水溶液に85℃、1時間浸漬させ、0.1MのHCl水溶液で洗浄、更にエタノールで洗浄したのち、450℃で30分間熱処理を行った(TiCl4処理)。この処理によって、多孔質半導体層24であるn型半導体層の表面やTCOガラス基板上に酸化チタン膜が形成される(膜形成工程)。このTiCl4処理を1回行ったのち、上記実験例1と同様の色素形成工程、正孔輸送層形成工程及び対極形成工程を行い、得られた固体型の色素増感型太陽電池を実験例2とした。また、膜形成工程において、TiCl4処理を3回繰り返して行った以外、実験例2と同様の工程を経て得られた固体型の色素増感型太陽電池を実験例3とした。
(Experimental examples 2 and 3)
In the production of the dye-sensitized solar cell of Experimental Example 1, the titanium oxide layer substrate after the electron transport layer forming step was immersed in a 0.05 M titanium tetrachloride aqueous solution at 85 ° C. for 1 hour, 0.1 M After washing with HCl aqueous solution and further with ethanol, heat treatment was performed at 450 ° C. for 30 minutes (TiCl 4 treatment). By this treatment, a titanium oxide film is formed on the surface of the n-type semiconductor layer that is the porous semiconductor layer 24 or on the TCO glass substrate (film forming step). After this TiCl 4 treatment is carried out once, the same dye forming step, hole transport layer forming step and counter electrode forming step as in Experimental Example 1 are carried out, and the obtained solid dye-sensitized solar cell is an experimental example. 2. In addition, a solid type dye-sensitized solar cell obtained through the same process as Experimental Example 2 was used as Experimental Example 3 except that the TiCl 4 treatment was repeated three times in the film forming process.

(実験例4)
実験例1の色素増感型太陽電池の作製において、電子輸送層形成工程を行ったあとの酸化チタン層基板に、実験例3と同様のTiCl4処理を3回行い、酸化チタン膜を形成したのち、色素層を形成せずに、実験例1と同様の正孔輸送層形成工程及び対極形成工程を行い、得られた固体型の色素増感型太陽電池を実験例4とした。
(Experimental example 4)
In the production of the dye-sensitized solar cell of Experimental Example 1, the same TiCl 4 treatment as that of Experimental Example 3 was performed three times on the titanium oxide layer substrate after the electron transport layer forming step to form a titanium oxide film. Thereafter, the hole transport layer forming step and the counter electrode forming step similar to those of Experimental Example 1 were performed without forming the dye layer, and the obtained solid dye-sensitized solar cell was set to Experimental Example 4.

(実験例5)
実験例1の色素増感型太陽電池の作製において、電子輸送層形成工程を行わずに、TCOガラス基板上に直接、実験例3と同様のTiCl4処理を3回行い、酸化チタン膜を形成したのち、色素形成工程により色素1(図2参照)を酸化チタン膜に吸着させたのちに、実験例1と同様の正孔輸送層形成工程及び対極形成工程を行い、得られた固体型の色素増感型太陽電池を実験例5とした。
(Experimental example 5)
In the production of the dye-sensitized solar cell of Experimental Example 1, the same TiCl 4 treatment as in Experimental Example 3 was performed three times directly on the TCO glass substrate without performing the electron transport layer forming step to form a titanium oxide film. Then, after the dye 1 (see FIG. 2) was adsorbed to the titanium oxide film by the dye forming step, the same hole transport layer forming step and counter electrode forming step as those of Experimental Example 1 were performed, and the obtained solid type A dye-sensitized solar cell was designated as experimental example 5.

(実験例6)
実験例1の色素増感型太陽電池の作製において、色素形成工程により色素1(図2参照)を多孔質酸化チタン層及びTCOガラス基板上に吸着させた以外は実験例1と同様の工程を行い、得られた固体型の色素増感型太陽電池を実験例6とした。
(Experimental example 6)
In the production of the dye-sensitized solar cell of Experimental Example 1, the same process as in Experimental Example 1 was performed except that the dye 1 (see FIG. 2) was adsorbed on the porous titanium oxide layer and the TCO glass substrate by the dye forming process. The solid-state dye-sensitized solar cell thus obtained was designated as Experimental Example 6.

(実験例7)
実験例1の色素増感型太陽電池の作製において、TCOガラス基板上に直接、実験例3と同様のTiCl4処理を3回行い、TCOガラス基板上に酸化チタン膜を形成した。こののち、実験例1と同様の電子輸送層形成工程を行い、酸化チタン膜の上に多孔質酸化チタン層を形成した。続いて、色素形成工程により色素1(図2参照)を多孔質酸化チタン層及び酸化チタン膜に吸着させたあと、実験例1と同様の正孔輸送層形成工程及び対極形成工程を行い、得られた固体型の色素増感型太陽電池を実験例7とした。
(Experimental example 7)
In the production of the dye-sensitized solar cell of Experimental Example 1, the same TiCl 4 treatment as that of Experimental Example 3 was performed three times directly on the TCO glass substrate to form a titanium oxide film on the TCO glass substrate. After that, the same electron transport layer forming step as in Experimental Example 1 was performed to form a porous titanium oxide layer on the titanium oxide film. Subsequently, after the dye 1 (see FIG. 2) is adsorbed to the porous titanium oxide layer and the titanium oxide film by the dye forming step, the hole transport layer forming step and the counter electrode forming step similar to those of Experimental Example 1 are performed to obtain The solid dye-sensitized solar cell thus obtained was regarded as Experimental Example 7.

(実験例8)
実験例3の色素増感型太陽電池の作製において、色素形成工程により色素1(図2参照)を酸化チタン膜に吸着させた以外は実験例3と同様の工程を行い、得られた固体型の色素増感型太陽電池を実験例8とした。
(Experimental example 8)
In the production of the dye-sensitized solar cell of Experimental Example 3, the same process as in Experimental Example 3 was performed except that the dye 1 (see FIG. 2) was adsorbed to the titanium oxide film by the dye forming process, and the obtained solid type This dye-sensitized solar cell was designated as Experimental Example 8.

[TiCl4処理回数の検討]
実験例1〜3の色素増感型太陽電池について、ソーラーシミュレータ(ワコム電創社製WXS−85−H型)を用い、500WのキセノンランプからAMフィルター(AM−1.5)を通して100mW/cm2の疑似太陽光を照射したときの電流−電圧特性(IV特性)をI−Vテスター(ワコム電創社製IV−9701)を用いて測定し、起動開始直後における光起電圧(V)及び変換効率η(%)を求めた。ここで、変換効率ηは、η(%)=100×(Voc×Isc×F.F.)/P0…式(1)を用いて算出した。ただし、式(1)中、P0は入射光強度(mW/cm2)、Vocは開放電圧(V)、Iscは短絡電流密度(mA/cm2)、F.F.は形状因子(Fill Factor)を示す。図4は、実験例1〜3の太陽電池性能の測定結果、作製概要及び構成の概略の説明図である。また、実験例1を「1」とし規格化した、短絡電流密度Jscの比、開放電圧Vocの比、形状因子F.F.の比、変換効率ηの比を表1にまとめて示す。この結果、図4に示すように、TiCl4処理が0回の実験例1では、ほとんど発電することができなかったが、TiCl4処理を繰り返し行うことによって、短絡電流密度Jscの比、開放電圧Vocの比、形状因子F.F.の比、変換効率ηなどすべての太陽電池性能が格段に向上することが明らかとなった。
[Examination of the number of TiCl 4 treatments]
For the dye-sensitized solar cells of Experimental Examples 1 to 3, a solar simulator (WXS-85-H type manufactured by Wacom Denso Co., Ltd.) was used, and a 100 mW / cm through a 500 W xenon lamp through an AM filter (AM-1.5). The current-voltage characteristic (IV characteristic) when irradiated with the artificial sunlight of 2 was measured using an IV tester (IV-9701 manufactured by Wacom Denso Co., Ltd.). Conversion efficiency η (%) was determined. Here, the conversion efficiency η was calculated using η (%) = 100 × (Voc × Isc × FF) / P0 (1). However, in Formula (1), P0 is incident light intensity (mW / cm < 2 >), Voc is an open circuit voltage (V), Isc is a short circuit current density (mA / cm < 2 >), F.I. F. Indicates a fill factor. FIG. 4 is an explanatory view of the solar cell performance measurement results, production outline, and schematic configuration of Experimental Examples 1 to 3. Further, the ratio of the short circuit current density Jsc, the ratio of the open circuit voltage Voc, and the form factor F. F. Table 1 summarizes the ratio of conversion efficiency and the ratio of conversion efficiency η. As a result, as shown in FIG. 4, in Experimental Example 1 in which the TiCl 4 treatment was zero, almost no power generation was possible, but by repeatedly performing the TiCl 4 treatment, the ratio of the short-circuit current density Jsc and the open circuit voltage Voc ratio, form factor F. It was revealed that the performance of all solar cells such as the ratio of γ and the conversion efficiency η was significantly improved.

[色素層の影響の検討]
実験例3,4の色素増感型太陽電池について、上記と同様の条件により、疑似太陽光を照射したときの電流−電圧特性(IV特性)を測定し、その結果をまとめた。図5は、実験例3,4の太陽電池性能の測定結果、作製概要及び構成の概略の説明図である。図5に示すように、色素層を形成することにより、短絡電流密度Jsc、開放電圧Voc、形状因子、変換効率ηなど太陽電池性能が向上することがわかった。この結果から、色素層によって増感する以外にも、色素層によるリーク電流の抑制効果なども得られているのではないかと推察された。
[Examination of influence of dye layer]
With respect to the dye-sensitized solar cells of Experimental Examples 3 and 4, the current-voltage characteristics (IV characteristics) when irradiated with simulated sunlight were measured under the same conditions as described above, and the results were summarized. FIG. 5 is an explanatory diagram of the solar cell performance measurement results, production outline, and schematic configuration of Experimental Examples 3 and 4. As shown in FIG. 5, it was found that the formation of the dye layer improves the solar cell performance such as the short circuit current density Jsc, the open circuit voltage Voc, the form factor, and the conversion efficiency η. From this result, it was speculated that in addition to the sensitization by the dye layer, the effect of suppressing the leakage current by the dye layer may be obtained.

[各層の有無による影響の検討]
実験例4,5,6の色素増感型太陽電池について、上記と同様の条件により、疑似太陽光を照射したときの電流−電圧特性(IV特性)を測定し、その結果をまとめた。図6は、実験例4,5,6の太陽電池性能の測定結果、作製概要及び構成の概略の説明図である。図6の実験例5に示すように、TCOガラス基板の表面にTiCl4処理を数回施すことにより、酸化チタン膜を形成して色素を吸着することで太陽電池のダイオード特性が向上することがわかった。
[Examination of the effect of the presence or absence of each layer]
With respect to the dye-sensitized solar cells of Experimental Examples 4, 5, and 6, current-voltage characteristics (IV characteristics) when irradiated with simulated sunlight were measured under the same conditions as described above, and the results were summarized. FIG. 6 is an explanatory diagram of the solar cell performance measurement results, production outline, and schematic configuration of Experimental Examples 4, 5, and 6. As shown in Experimental Example 5 of FIG. 6, the diode characteristics of the solar cell can be improved by forming a titanium oxide film and adsorbing the dye by performing TiCl 4 treatment several times on the surface of the TCO glass substrate. all right.

[酸化チタン膜の形成順の検討]
実験例6,7,8の色素増感型太陽電池について、上記と同様の条件により、疑似太陽光を照射したときの電流−電圧特性(IV特性)を測定し、その結果をまとめた。図7は、実験例6,7,8の太陽電池性能の測定結果、作製概要及び構成の概略の説明図である。図7に示すように、多孔質チタン層の表面に酸化チタン膜を形成した実験例8では、多孔質チタン層の表面に酸化チタン膜を形成しない実験例6に比して、太陽電池性能が向上することが明らかとなった。即ち、多孔質チタン層の形成後にTiCl4処理を行うことが効果的であることがわかった。なお、酸化チタン膜を先に形成した実験例7では、CuI層の作製時にTCOガラス基板と酸化チタン膜との間に剥離が生じたものと推察された。
[Examination of formation order of titanium oxide film]
With respect to the dye-sensitized solar cells of Experimental Examples 6, 7, and 8, current-voltage characteristics (IV characteristics) when irradiated with simulated sunlight were measured under the same conditions as described above, and the results were summarized. FIG. 7 is an explanatory diagram of the solar cell performance measurement results, fabrication outlines, and schematic configurations of Experimental Examples 6, 7, and 8. As shown in FIG. 7, in Experimental Example 8 in which the titanium oxide film was formed on the surface of the porous titanium layer, the solar cell performance was higher than in Experimental Example 6 in which the titanium oxide film was not formed on the surface of the porous titanium layer. It became clear that it improved. That is, it has been found that it is effective to perform TiCl 4 treatment after the formation of the porous titanium layer. In Experimental Example 7 in which the titanium oxide film was formed first, it was assumed that peeling occurred between the TCO glass substrate and the titanium oxide film during the production of the CuI layer.

(SEM観察)
作製した実験例6,8の色素増感型太陽電池の断面を電子顕微鏡(日立ハイテク社製FE−SEM S−5500)により観察した。図8は、実験例6,8の色素増感型太陽電池の作製直後の断面観察結果である。図8に示すように、実験例6では、おそらくCuIの溶液の滴下、乾燥の繰り返しによって、CuI層の体積変化が起き、TCOガラス基板と多孔質チタン層との間に剥離が生じ、この剥離で生じた隙間にCuIが形成されてしまったものと推察される。このように、固体型の色素増感型太陽電池では、TCOガラス基板と多孔質チタン層との間に下地層を設けるなどして、剥離防止や短絡防止を行う必要がある。これに対して、実験例8では、TCOガラス基板と多孔質チタン層との間に剥離は生じず、多孔質チタン層の空隙にCuIなどの充填が十分行われ、各層が均質である色素増感型太陽電池が得られていることが明らかとなった。
(SEM observation)
The cross section of the produced dye-sensitized solar cells of Experimental Examples 6 and 8 was observed with an electron microscope (FE-SEM S-5500 manufactured by Hitachi High-Tech). FIG. 8 is a cross-sectional observation result immediately after the production of the dye-sensitized solar cells of Experimental Examples 6 and 8. As shown in FIG. 8, in Experimental Example 6, the volume change of the CuI layer probably occurs due to repeated dripping and drying of the CuI solution, and separation occurs between the TCO glass substrate and the porous titanium layer. It is inferred that CuI has been formed in the gap generated in step (b). Thus, in a solid-state dye-sensitized solar cell, it is necessary to prevent peeling or short circuit by providing an underlayer between the TCO glass substrate and the porous titanium layer. On the other hand, in Experimental Example 8, there was no separation between the TCO glass substrate and the porous titanium layer, and the pores of the porous titanium layer were sufficiently filled with CuI or the like, and the dye increased so that each layer was homogeneous. It was revealed that a sensitive solar cell was obtained.

以上の実験結果より、透明導電性基板上に形成された多孔質チタン層の上に、チタン化合物を含む溶液を用いて酸化チタン膜を形成し、更にその上に色素層を形成すると、固体型の色素増感型太陽電池の太陽電池性能をより高めることができることが明らかとなった。   From the above experimental results, when a titanium oxide film is formed on a porous titanium layer formed on a transparent conductive substrate using a solution containing a titanium compound and a dye layer is further formed thereon, a solid type is obtained. It was revealed that the solar cell performance of the dye-sensitized solar cell can be further improved.

本発明の色素増感型太陽電池は、例えば家庭用、オフィス用、工場用の各種電化製品の電源や電気自動車、ハイブリッド自動車、電動自転車などのバッテリのほか、ソーラーパネルなどに利用可能である。   The dye-sensitized solar cell of the present invention can be used, for example, as a power source for various electric appliances for home use, office use, and factory use, batteries for electric vehicles, hybrid vehicles, electric bicycles, and solar panels.

10 色素増感型太陽電池モジュール、11 透明基板、12 透明導電膜、13 受光面、14 透明導電性基板、15 受光面、16,17 集電電極、18 溝、20 光電極、21 接続部、24 多孔質半導体層、25 裏面、26 固体p型半導体層、27 裏面、29 セパレータ、30 対極、32 シール材、34 保護部材、40 色素増感型太陽電池、50 酸化チタン膜、52 色素層。 10 Dye-sensitized solar cell module, 11 Transparent substrate, 12 Transparent conductive film, 13 Light receiving surface, 14 Transparent conductive substrate, 15 Light receiving surface, 16, 17 Current collecting electrode, 18 Groove, 20 Photo electrode, 21 Connection portion, 24 porous semiconductor layer, 25 back surface, 26 solid p-type semiconductor layer, 27 back surface, 29 separator, 30 counter electrode, 32 sealing material, 34 protective member, 40 dye-sensitized solar cell, 50 titanium oxide film, 52 dye layer.

Claims (8)

透明導電性基板の上及び/又は透明導電性基板上に形成された電子輸送層の上に、チタン化合物を含む溶液を用いて酸化チタン膜を形成する膜形成工程と、
前記形成した酸化チタン膜の上に色素の層を形成し光電極とする色素形成工程と、
前記光電極の前記色素の層の上に固体の正孔輸送層を形成する正孔輸送層形成工程と、
を含む色素増感型太陽電池の製造方法。
Forming a titanium oxide film on the transparent conductive substrate and / or the electron transport layer formed on the transparent conductive substrate using a solution containing a titanium compound;
A dye forming step of forming a dye layer on the formed titanium oxide film to form a photoelectrode;
A hole transport layer forming step of forming a solid hole transport layer on the dye layer of the photoelectrode;
The manufacturing method of the dye-sensitized solar cell containing this.
前記膜形成工程では、前記酸化チタン膜を形成する処理を複数回行う、請求項1に記載の色素増感型太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 1, wherein in the film formation step, the treatment for forming the titanium oxide film is performed a plurality of times. 請求項1又は2に記載の色素増感型太陽電池の製造方法であって、
透明導電性基板上に直接、電子輸送層を形成する電子輸送層形成工程、を含み、
前記膜形成工程では、前記透明導電性基板上に直接形成された電子輸送層の上に前記酸化チタン膜を形成する、色素増感型太陽電池の製造方法。
A method for producing a dye-sensitized solar cell according to claim 1 or 2,
An electron transport layer forming step of forming an electron transport layer directly on the transparent conductive substrate,
In the film formation step, the titanium oxide film is formed on the electron transport layer directly formed on the transparent conductive substrate.
前記正孔輸送層形成工程では、正孔輸送材料とイオン性液体とを含む溶液を用いて前記正孔輸送層を形成する、請求項1〜3のいずれか1項の記載の色素増感型太陽電池の製造方法。   The dye-sensitized type according to any one of claims 1 to 3, wherein in the hole transport layer forming step, the hole transport layer is formed using a solution containing a hole transport material and an ionic liquid. A method for manufacturing a solar cell. 透明導電性基板と、前記透明導電性基板上に形成された電子輸送層と、前記電子輸送層の上に形成された酸化チタン膜と、前記酸化チタン膜の上に形成された色素層と、を備える光電極と、
前記光電極に隣接して設けられた固体の正孔輸送層と、
を備えた色素増感型太陽電池。
A transparent conductive substrate, an electron transport layer formed on the transparent conductive substrate, a titanium oxide film formed on the electron transport layer, a dye layer formed on the titanium oxide film, A photoelectrode comprising:
A solid hole transport layer provided adjacent to the photoelectrode;
A dye-sensitized solar cell comprising:
前記電子輸送層は、透明導電性基板上に直接形成されている、請求項5に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 5, wherein the electron transport layer is directly formed on a transparent conductive substrate. 前記正孔輸送層は、イオン性液体を含んで形成されている、請求項5又は6に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 5 or 6, wherein the hole transport layer includes an ionic liquid. 請求項5〜7のいずれか1項に記載の色素増感型太陽電池を複数備えている、色素増感型太陽電池モジュール。   A dye-sensitized solar cell module comprising a plurality of the dye-sensitized solar cells according to any one of claims 5 to 7.
JP2011070021A 2011-03-28 2011-03-28 Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module Pending JP2012204275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070021A JP2012204275A (en) 2011-03-28 2011-03-28 Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070021A JP2012204275A (en) 2011-03-28 2011-03-28 Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module

Publications (1)

Publication Number Publication Date
JP2012204275A true JP2012204275A (en) 2012-10-22

Family

ID=47185029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070021A Pending JP2012204275A (en) 2011-03-28 2011-03-28 Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP2012204275A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189882A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Gas production apparatus
JP2014241243A (en) * 2013-06-12 2014-12-25 株式会社豊田中央研究所 Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2015056346A (en) * 2013-09-13 2015-03-23 株式会社豊田中央研究所 Dye-sensitized solar battery
KR20160029790A (en) * 2013-07-01 2016-03-15 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) Solar cell and process for producing the same
JP2016082005A (en) * 2014-10-14 2016-05-16 積水化学工業株式会社 Method for manufacturing organic inorganic hybrid solar battery, and organic inorganic hybrid solar battery
JP2016134467A (en) * 2015-01-19 2016-07-25 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module
CN108288654A (en) * 2018-01-25 2018-07-17 北京铂阳顶荣光伏科技有限公司 The solar cell and its manufacturing method that can be shone

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273381A (en) * 2002-03-12 2003-09-26 Japan Science & Technology Corp Totally solid dye sensitizing solar cell
JP2003331938A (en) * 2002-05-10 2003-11-21 Masaharu Kaneko Dye sensitized solar cell
JP2004228537A (en) * 2003-01-27 2004-08-12 Seiko Epson Corp Photoelectric, manufacturing method thereof, and electronic equipment
JP2009205818A (en) * 2008-02-26 2009-09-10 Konica Minolta Holdings Inc Dye-sensitized solar battery and method for manufacturing the same
WO2010021378A1 (en) * 2008-08-22 2010-02-25 日本化薬株式会社 Dye-sensitized photovoltaic device
JP2010177109A (en) * 2009-01-30 2010-08-12 Toyota Central R&D Labs Inc Composition for forming underlayer, method of manufacturing underlayer, method of manufacturing photoelectrode, method of manufacturing solar cell, and solar cell module
JP2010534394A (en) * 2007-07-25 2010-11-04 ポリマーズ シーアールシー リミテッド Solar cell and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273381A (en) * 2002-03-12 2003-09-26 Japan Science & Technology Corp Totally solid dye sensitizing solar cell
JP2003331938A (en) * 2002-05-10 2003-11-21 Masaharu Kaneko Dye sensitized solar cell
JP2004228537A (en) * 2003-01-27 2004-08-12 Seiko Epson Corp Photoelectric, manufacturing method thereof, and electronic equipment
JP2010534394A (en) * 2007-07-25 2010-11-04 ポリマーズ シーアールシー リミテッド Solar cell and method for manufacturing the same
JP2009205818A (en) * 2008-02-26 2009-09-10 Konica Minolta Holdings Inc Dye-sensitized solar battery and method for manufacturing the same
WO2010021378A1 (en) * 2008-08-22 2010-02-25 日本化薬株式会社 Dye-sensitized photovoltaic device
JP2010177109A (en) * 2009-01-30 2010-08-12 Toyota Central R&D Labs Inc Composition for forming underlayer, method of manufacturing underlayer, method of manufacturing photoelectrode, method of manufacturing solar cell, and solar cell module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189882A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Gas production apparatus
US10465299B2 (en) 2013-03-28 2019-11-05 Fujifilm Corporation Gas production apparatus
JP2014241243A (en) * 2013-06-12 2014-12-25 株式会社豊田中央研究所 Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
KR20160029790A (en) * 2013-07-01 2016-03-15 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) Solar cell and process for producing the same
JP2016530703A (en) * 2013-07-01 2016-09-29 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Solar cell and manufacturing method thereof
US10332689B2 (en) 2013-07-01 2019-06-25 Ecole Polytechnique Federale De Lausanne (Epfl) Solar cell and process for producing the same
KR102258500B1 (en) * 2013-07-01 2021-06-01 에꼴 뽈리떼끄닉 뻬데랄 드 로잔느 (으뻬에프엘) Solar cell and process for producing the same
JP2015056346A (en) * 2013-09-13 2015-03-23 株式会社豊田中央研究所 Dye-sensitized solar battery
JP2016082005A (en) * 2014-10-14 2016-05-16 積水化学工業株式会社 Method for manufacturing organic inorganic hybrid solar battery, and organic inorganic hybrid solar battery
JP2016134467A (en) * 2015-01-19 2016-07-25 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module
CN108288654A (en) * 2018-01-25 2018-07-17 北京铂阳顶荣光伏科技有限公司 The solar cell and its manufacturing method that can be shone
WO2019144561A1 (en) * 2018-01-25 2019-08-01 北京铂阳顶荣光伏科技有限公司 Luminescent solar cell and manufacturing method therefor, and building curtain wall

Similar Documents

Publication Publication Date Title
Mozaffari et al. An overview of the Challenges in the commercialization of dye sensitized solar cells
US10720282B2 (en) Producing method of mesoporous thin film solar cell based on perovskite
Zhu et al. Impact of high charge-collection efficiencies and dark energy-loss processes on transport, recombination, and photovoltaic properties of dye-sensitized solar cells
JP5629625B2 (en) Method for producing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
TWI401811B (en) Dye-sensitized solar cells and manufacturing method for thereof
JP2012204275A (en) Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
KR101373503B1 (en) Dye-sensitized solar cells module and method for fabricating the same
KR20090065175A (en) Dye-sensitized solar cells and method of manufacturing the same
Cheema et al. Harnessing photovoltage: Effects of film thickness, TiO2 nanoparticle size, MgO and surface capping with DSCs
JP2006210102A (en) Photoelectric conversion device and photovoltaic generator using it
Chen et al. On the photophysical and electrochemical studies of dye-sensitized solar cells with the new dye CYC-B1
Santos et al. The renaissance of monolithic dye-sensitized solar cells
KR101627161B1 (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
Singh et al. Efficiency enhancement in dye sensitized solar cells through step wise cosensitization of TiO2 electrode with N719 and metal free dye
JP5535718B2 (en) Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module
KR20090052696A (en) Dye-sensitized solar cells having substrate including p-n junction diode
KR101088676B1 (en) Electrolyte for dye-sensitized solarcell comprising pyrrolidinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
KR101551074B1 (en) Solid-state dye-sensitized solar cell with long-term stability containing pyridine compound as an adhesive
Venkatesan et al. Monolithic quasi-solid-state dye sensitized solar cells prepared entirely by printing processes
JP6114640B2 (en) Method for producing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
KR101447618B1 (en) Light sensitized Solar Cell and Method for manufacturing the same
KR101088675B1 (en) Electrolyte for dye-sensitized solarcell comprising pyridinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
KR101256473B1 (en) Electrode plate and dye-sensitized solar cell having the same, and method for manufacturing the same
JP6472665B2 (en) Dye-sensitized solar cell, dye-sensitized solar cell module, and method for producing dye-sensitized solar cell
KR20130019849A (en) Dye-sensitized solarcell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930