JP5891797B2 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP5891797B2
JP5891797B2 JP2012003456A JP2012003456A JP5891797B2 JP 5891797 B2 JP5891797 B2 JP 5891797B2 JP 2012003456 A JP2012003456 A JP 2012003456A JP 2012003456 A JP2012003456 A JP 2012003456A JP 5891797 B2 JP5891797 B2 JP 5891797B2
Authority
JP
Japan
Prior art keywords
virtual
torque
rotational speed
engine
load factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012003456A
Other languages
English (en)
Other versions
JP2013142349A (ja
Inventor
敏行 宮田
敏行 宮田
晃史 柴田
晃史 柴田
浩明 上野
浩明 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2012003456A priority Critical patent/JP5891797B2/ja
Publication of JP2013142349A publication Critical patent/JP2013142349A/ja
Application granted granted Critical
Publication of JP5891797B2 publication Critical patent/JP5891797B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンに要求される要求トルクに基づいてスロットル開度を制御するエンジンの制御装置に関する。
車両に搭載されたエンジンの制御手法の一つとして、エンジンに要求されるトルクの大きさを基準として吸入空気量や燃料噴射量,点火時期等を制御するトルクベース(トルクディマンド)制御が知られている。トルクベース制御では、アクセル開度やエンジン回転速度に基づいてエンジンが出力すべきトルクの目標値が演算され、この目標トルクが得られるようにエンジンの運転状態が制御される。また、自動変速機やオートクルーズ装置,車両安定装置といった外部制御システムを搭載した車両では、各外部制御システムからエンジンへの出力要求がトルク値に換算されてエンジン制御装置(エンジンECU)内で一元化され、エンジンのトルク挙動が包括的に制御される。
例えば特許文献1には、エンジンの目標トルクを設定するとともに出力トルクを推定し、その出力トルクを目標トルクに追従させるように吸入空気量,点火時期を制御する制御装置が記載されている。この技術では、アクセル開度等に基づいて目標トルクが設定されるほか、アイドルスピードコントロールやクルーズコントロールでも目標トルクが設定され、これらの複数の目標トルクの中から最終的な目標トルクが選択されている。
特開2009−24677号公報
ところで、トルクベースの吸入空気量制御では、エンジンに要求されるトルクを発生させるのに必要十分な燃焼反応を生じさせる量の空気が確保されるように、スロットルバルブの開度が制御される。例えば、アクセル開度とエンジン回転数とに基づいて要求トルクが演算されると、その要求トルクと等しい大きさのエンジン出力トルクを得るための吸気流量が演算され、スロットルバルブを通過する空気の流量がその吸気流量に一致するように、スロットル開度が制御される。
一方、スロットルバルブのトルク特性として、スロットル開度の変化に対するエンジン出力トルクの変化は必ずしもリニアではなく、スロットル開度が増大するほど出力トルクの増分が減少する。つまり、出力目標とされる要求トルクの値が大きいほど、その値が変化したときのスロットル開度変化も大きくなりやすい。そのため、アクセル開度が全開付近であるときには、そのアクセル開度が一定であったとしても、エンジン回転数の変動に伴って要求トルクが僅かに変動しただけで、スロットル開度が大きく変化することになる。このようなスロットル開度の急激な変化は、出力トルクの挙動を不安定にし、エンジンの制御性を大きく低下させうる。
本件の目的の一つは、上記のような課題に鑑み創案されたもので、アクセル開度に基づいて要求トルクを演算するトルクベース制御において、出力トルクの制御安定性を向上させることのできるエンジンの制御装置を提供することである。
なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的として位置づけることができる。
(1)ここで開示するエンジンの制御装置は、車両のアクセル開度を検出する検出手段と、前記車両に搭載されたエンジンの実回転速度よりも大きい仮想回転速度を設定する設定手段とを備える。また、前記検出手段で検出された前記アクセル開度と前記設定手段で設定された前記仮想回転速度とに基づいて前記エンジンに要求されている要求トルクを演算する演算手段と、前記演算手段で演算された前記要求トルクに基づいて前記エンジンのスロットル開度を制御する制御手段とを備える。
また、前記演算手段が、前記エンジンに要求されている負荷が所定負荷を超える場合に、前記アクセル開度及び前記仮想回転速度に基づいて前記要求トルクを演算するとともに、前記負荷が前記所定負荷以下である場合に、前記アクセル開度及び前記実回転速度に基づいて前記要求トルクを演算する。
なお、前記アクセル開度とは、前記車両に装備されたアクセルペダルの踏み込み操作量に相当するパラメーターである。
また、ここでいう前記負荷は、前記エンジンに対して抵抗を及ぼす力,仕事率(エンジン出力,馬力),仕事(エネルギー)を意味する。典型的には、前記エンジンに要求されるエンジン出力が、前記負荷として取り扱われる。すなわち、エンジン出力を減少させる何らかの要因があるとき、そのエンジン出力の減少分が前記負荷の大きさに対応する。また、エンジン出力が減少することを見越して、あらかじめエンジン出力を増加させておく制御を実施するとき、そのエンジン出力の増加分が前記負荷の大きさに対応する。
一般に、前記エンジン出力は前記エンジンのトルク及び回転速度の積に比例する。したがって、前記回転速度が一定であるという条件下では、「負荷」を「エンジンが出力すべきトルク」,「エンジンで生じさせたいトルク」,「エンジンで生じたトルク」と読み替えることができる。同様に、前記トルクが一定であるという条件下では、「負荷」を「エンジンが回転すべき回転速度」,「エンジンを回転させたい速度」,「エンジンの実回転速度」と読み替えることができる。
また、前記負荷としては、運転者の運転操作によって与えられる負荷(アクセル負荷)や、外部負荷装置が作動することによって前記エンジンに与えられる負荷、車両の走行環境に由来する負荷などが考えられる。なお、前記外部負荷装置とは、ブレーキ制御装置,変速機制御装置,車両安定制御装置,空調制御装置,電装品制御装置といったさまざまな電子制御装置によって制御される車載装置である。
)また、前記演算手段が、全開時トルク演算手段,アクセル要求トルク演算手段,要求負荷率演算手段及び要求トルク演算手段を有することが好ましい。全開時トルク演算手段とは、前記スロットル開度の全開時における前記エンジンの前記実回転速度での出力トルクを全開時トルクとして演算するものであり、アクセル要求トルク演算手段とは、前記アクセル開度及び前記実回転速度に基づいてアクセル負荷に相当するアクセル要求トルクを演算するものである。
また、要求負荷率演算手段とは、前記全開時トルクに対する前記アクセル要求トルクの割合を要求負荷率として演算するものであり、要求トルク演算手段とは、前記要求負荷率が所定負荷率を超える場合に、前記アクセル開度及び前記仮想回転速度に基づいて前記要求トルクを演算し、前記要求負荷率が前記所定負荷率以下である場合に、前記アクセル開度及び前記実回転速度に基づいて前記要求トルクを演算するものである。
つまり、前記要求負荷率が前記所定負荷率以下である場合には、前記仮想回転速度の代わりに前記実回転速度が用いられて、前記要求トルクが演算されることが好ましい。反対に、前記要求負荷率が前記所定負荷率以上である場合には、前記実回転速度の代わりに前記仮想回転速度が用いられて、前記要求トルクが演算されることが好ましい。
)また、前記演算手段が、前記アクセル開度及び前記仮想回転速度に基づいて仮想アクセル要求トルクを演算する仮想アクセル要求トルク演算手段と、前記全開時トルクに対する前記仮想アクセル要求トルクの割合を仮想要求負荷率として演算する仮想要求負荷率演算手段と、を有することが好ましい。この場合、前記設定手段が、前記仮想要求負荷率が前記所定負荷率以下となるように前記仮想回転速度の大きさを設定することが好ましい。
)また、前記設定手段が、前記仮想要求負荷率が前記所定負荷率以下となるまで、前記実回転速度に所定値を繰り返し加算することで前記仮想回転速度を設定することが好ましい。
(5)なお、前記仮想回転速度は、その時点の前記アクセル開度で、仮想要求負荷率が所定負荷率以下となる最小の回転速度であり、前記仮想要求負荷率は、前記アクセル開度及び前記仮想回転速度に基づいて演算される仮想アクセル要求トルクが前記エンジンの負荷として作用する度合いに相当するパラメーターであることが好ましい。
開示のエンジンの制御装置では、実回転速度よりも大きい仮想回転速度に基づいて要求トルクが演算され、その要求トルクに基づいてスロットル開度が制御されるため、エンジンの実回転速度の変動に伴うスロットル開度変化を抑制することができる。これにより、エンジンの出力トルクの収束性や制御性を高めることができ、車両の挙動を安定させることができる。
一実施形態に係るエンジンの制御装置のブロック構成及びこの制御装置が適用されたエンジンの構成を例示する図である。 本制御装置に係るスロットルバルブのトルク特性を例示するグラフである。 本制御装置に係るスロットルバルブの等スロットル開度特性を例示するグラフである。 本制御装置の吸気量制御部を例示するブロック構成図である。 本制御装置での要求トルクの演算手法を例示するフローチャートである。 本制御装置での目標スロットル開度の演算手法を例示するフローチャートである。 本制御装置を搭載した車両の等アクセル開度特性を例示するグラフである。
図面を参照してエンジンの制御装置について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
[1.装置構成]
[1−1.エンジン]
本実施形態のエンジンの制御装置は、図1に示す車載のガソリンエンジン10に適用される。ここでは、多気筒のエンジン10に設けられた複数のシリンダーのうちの一つを示す。ピストン16は、中空円筒状に形成されたシリンダー19の内周面に沿って往復摺動自在に内装される。ピストン16の上面とシリンダー19の内周面及び頂面に囲まれた空間は、エンジンの燃焼室26として機能する。
ピストン16の下部は、コネクティングロッドを介して、クランクシャフト17の軸心から偏心した中心軸を持つクランクアームに連結される。これにより、ピストン16の往復動作がクランクアームに伝達され、クランクシャフト17の回転運動に変換される。
シリンダー19の頂面には、吸入空気を燃焼室26内に供給するための吸気ポート11と、燃焼室26内で燃焼した後の排気を排出するための排気ポート12とが穿孔形成される。また、吸気ポート11,排気ポート12の燃焼室26側の端部には、吸気弁14及び排気弁15が設けられる。これらの吸気弁14,排気弁15は、エンジン10の上部に設けられる図示しない動弁機構によって各々の動作を個別に制御される。また、シリンダー19の頂部には、点火プラグ13がその先端を燃焼室26側に突出させた状態で設けられる。点火プラグ13による点火時期は、後述するエンジン制御装置1で制御される。
[1−2.吸排気系]
吸気ポート11内には、燃料を噴射するインジェクター18が設けられる。通常は、インジェクター18から噴射される燃料量は、後述するエンジン制御装置1でスロットル開度(即ち吸気量)に応じて制御される。また、インジェクター18よりも吸気流の上流側には、インテークマニホールド20(以下、インマニと呼ぶ)が設けられる。このインマニ20には、吸気ポート11側へと流れる空気を一時的に溜めるためのサージタンク21が設けられる。サージタンク21よりも下流側のインマニ20は、各シリンダー19の吸気ポート11に向かって分岐するように形成され、サージタンク21はその分岐点に位置する。サージタンク21は、各々のシリンダーで発生しうる吸気脈動や吸気干渉を緩和するように機能する。
インマニ20の上流側には、スロットルボディ22が接続される。スロットルボディ22の内部には電子制御式のスロットルバルブ23が内蔵され、インマニ20側へと流れる空気量がスロットルバルブ23の開度(スロットル開度)に応じて調節される。このスロットル開度は、エンジン制御装置1によって制御される。
スロットルボディ22のさらに上流側には吸気通路24が接続され、吸気通路24のさらに上流側にはエアフィルター25が介装される。これにより、エアフィルター25で濾過された新気が吸気通路24及びインマニ20を介してエンジン10の各シリンダー19に供給される。
[1−3.検出系]
エンジン10のクランクシャフト17には、その回転角を検出するエンジン回転速度センサー31が設けられる。回転角の単位時間あたりの変化量(角速度)はエンジン10の実回転速度Ne(単位時間あたりの実回転数)に比例する。したがって、エンジン回転速度センサー31は、エンジン10の実回転速度Neを取得する機能を持つ。なお、エンジン回転速度センサー31で検出された回転角に基づいて、エンジン制御装置1の内部で実回転速度Neを演算する構成としてもよい。
エンジン制御装置1の内部又は車両の任意の位置には、大気圧センサー32が設けられる。大気圧センサー32は大気の圧力(大気圧)BPを検出するものである。大気圧BPは、吸気通路24の入口での圧力(エアフィルター25よりも上流側の圧力)に相当する。
また、車両の任意の位置(例えばアクセルペダルの近傍)には、アクセルペダルの踏み込み操作量(アクセル開度APS)を検出するアクセル開度センサー33(検出手段)が設けられる。アクセル開度APSは、運転者の加速要求に対応するパラメーターであり、すなわちエンジン10への出力要求に対応する。
上記の各種センサー31〜33で取得された実回転速度Ne,大気圧BP,アクセル開度APSの各情報は、エンジン制御装置1に伝達される。
[1−4.制御系]
上記のエンジン10を搭載する車両には、エンジン制御装置1(Engine Electronic Control Unit,制御装置)が設けられる。このエンジン制御装置1は、例えばマイクロプロセッサやROM,RAM等を集積したLSIデバイスや組み込み電子デバイスとして構成され、車両に設けられた車載ネットワーク網の通信ラインに接続される。なお、車載ネットワーク上には、例えばブレーキ制御装置,変速機制御装置,車両安定制御装置,空調制御装置,電装品制御装置といったさまざまな公知の電子制御装置が、互いに通信可能に接続される。エンジン制御装置1以外の電子制御装置のことを外部制御システムと呼び、外部制御システムによって制御される装置のことを外部負荷装置と呼ぶ。
エンジン制御装置1は、エンジン10に関する点火系,燃料系,吸排気系及び動弁系といった広汎なシステムを総合的に制御する電子制御装置であり、エンジン10の各シリンダー19に供給される空気量や燃料噴射量、各シリンダー19の点火時期等を制御するものである。ここでは、エンジン10に要求されるトルクの大きさを基準としたトルクベース制御が実施される。エンジン制御装置1の具体的な制御対象としては、インジェクター18から噴射される燃料量や噴射時期,点火プラグ13での点火時期,スロットルバルブ23のスロットル開度等が挙げられる。
エンジン制御装置1では、エンジン10に要求されるトルクとして、三種類の要求トルクを演算する。第一の要求トルクは運転者の加速要求に対応するものであり、第二の要求トルクは外部負荷装置からの要求に対応するものである。これらの要求トルクはともに、エンジン10に作用する負荷に基づいて算出されるトルクといえる。一方、第三の要求トルクは、エンジン10の実回転速度Neを維持する回転フィードバック制御のためのものであり、エンジン10に外部からの負荷が作用していない無負荷状態であっても考慮される要求トルクである。これらの要求トルクは、エンジン10の運転条件に応じて自動的に切り換えられる。
本実施形態では、これらの三種類の要求トルクのうち、運転者の加速要求に対応する要求トルクTRQTGTの演算手法について詳述する。また、この加速要求に対応する要求トルクTRQTGTを用いて、スロットルバルブ23の開度を制御する場合を例に取り上げて、その制御作用を説明する。
ここでスロットルバルブ23のトルク特性について説明する。エンジン10の実回転速度Neが一定の条件下で、スロットル開度を徐々に増加させたときにエンジン10で発生する出力トルクの大きさを、図2に示す。出力トルクは、スロットル開度が比較的低開度であるときには、スロットル開度の増大に対してほぼ一定の勾配で増加する。一方、スロットル開度がある程度増大した時点で増加勾配が急激に減少し、出力トルクが上昇しにくくなる。つまり、エンジン10は、スロットルバルブ23のスロットル開度が増大するほど、出力トルクの増分が減少するような特性を持っている。
また、図3中の実線グラフは、スロットル開度を一定とした条件下での実回転速度Neと出力トルクとの関係を示すグラフである。ここでは、スロットル開度を八段階に変更したときのグラフが重ねて表現されている。図3中の上方に位置するものほど、スロットル開度が大きい場合に対応する。このスロットルバルブ23の特性は、エンジン10に要求されているトルクとその時点での実回転速度Neとが決まれば、スロットル開度をどの程度開放すればよいかを示している。
一方、これらのグラフの間隔が狭い運転領域ほど、スロットル開度が増大したときの出力トルクの増分が小さい運転領域であり、逆にいえば出力トルクの変動に対するスロットル開度の変化量が大きい運転領域である。このような運転領域では、エンジン10に要求されているトルクと実回転速度Neとからスロットル開度を求めようとしたときの開度変化が極端に増減しやすくなり、吸気に関する制御安定性が低下しやすい。
そこで、本実施形態のエンジン制御装置1では、図3に示すような特性に基づいてスロットル開度を求めるにあたって、通常の要求トルクだけでなく、実回転速度Neやアクセル開度APSの変動に対する変化量の小さい仮想の要求トルクを演算し、これらの二種類の要求トルクの何れか一方に基づいてスロットル開度を演算する構成とする。以下、上記の二種類の要求トルクのそれぞれを「通常要求トルク」,「仮想要求トルク」と呼び、最終的に選択される要求トルクのことを「要求トルクTRQTGT」と表記する。
[2.制御装置構成]
図1に示すように、エンジン制御装置1の入力側には、エンジン回転速度センサー31,大気圧センサー32及びアクセル開度センサー33が接続される。また、エンジン制御装置1の出力側には、トルクベース制御の制御対象である点火プラグ13,インジェクター18,スロットルバルブ23等が接続される。
このエンジン制御装置1には、設定部2,演算部3及び吸気量制御部4が設けられる。これらの設定部2,演算部3及び吸気量制御部4の各機能は、電子回路(ハードウェア)によって実現してもよく、ソフトウェアとしてプログラミングされたものとしてもよいし、あるいはこれらの機能のうちの一部をハードウェアとして設け、他部をソフトウェアとしたものであってもよい。
[2−1.設定部]
設定部2(設定手段)は、その時点での実回転速度Neよりも大きい値の仮想回転速度Nev(仮想エンジン回転速度)を設定するものである。仮想回転速度Nevとは、エンジン制御装置1が実施するトルクベース制御で使用される最終的な要求トルクTRQTGTの演算用のパラメーターのひとつであり、その時点のアクセル開度APSで、後述する仮想要求負荷率RLOADVが所定負荷率R0以下となる最小のエンジン回転速度である。本実施形態のトルクベース制御では、エンジン10の運転状態に応じて、実回転速度Neまたは仮想回転速度Nevの何れか一方とアクセル開度APSとに基づいて要求トルクTRQTGTが演算される。
この設定部2では、エンジン10に要求されている負荷が所定負荷を超える場合に、仮想回転速度Nevが設定される。例えば、後述する演算部3で演算されるエンジン10の要求負荷率RLOADや仮想要求負荷率RLOADVが所定負荷率R0を超えるほど高い場合に、仮想回転速度Nevが設定される。なお、ここでいう所定負荷は、エンジン10の回転速度や車両の走行環境条件に応じて任意に決定される。所定負荷の値は、予め設定された固定値としてもよいし、実回転速度Neや走行環境条件に係る各種パラメーターに応じて随時設定される変数としてもよい。
また、仮想回転速度Nevの値は、エンジン10に要求されている負荷が大きいほど高い値に設定される。本実施形態の設定部2での具体的な仮想回転速度Nevの設定手法については後述する。ここで設定された仮想回転速度Nevの値は、演算部3に伝達される。
[2−2.演算部]
演算部3(演算手段)は、トルクベース制御で使用される要求トルクTRQTGTを演算するものである。ここには、図1に示すように、全開時トルク演算部3A,アイドル目標トルク演算部3B,アクセル要求トルク演算部3C,要求負荷率演算部3D,仮想アクセル要求トルク演算部3E,仮想要求負荷率演算部3F及び要求トルク演算部3Gが設けられる。
全開時トルク演算部3A(全開時トルク演算手段)は、その時点のエンジン10の実回転速度Neで、アクセルペダルを完全に踏み込んだとき(アクセル開度APSが最大のとき)にエンジン10が出力可能なトルクの最大値に相当するトルクを全開時トルクTRQMAXとして演算するものである。全開時トルクTRQMAXは、予め設定された対応マップや数式,関係式等に基づき、エンジン10の実回転速度Neやスロットルバルブ23の前後圧力比等に基づいて演算される。また、図3に示すような特性を利用して、全開のスロットル開度に対応するグラフ(最も上方に位置するグラフ)と実回転速度Neとに基づいて演算してもよい。この全開時トルクTRQMAXは、要求負荷率RLOADを演算する際の基準となる値であり、要求負荷率演算部3D及び仮想要求負荷率演算部3Fに伝達される。
アイドル目標トルク演算部3Bは、エンジン10の無負荷損失に基づいて、アイドル運転時のトルク目標値であるアイドル目標トルクTRQIDLを演算するものである。ここでは、エンジン10を目標回転速度Nobjで回転させたときの損失トルクに相当する無負荷損失トルクが演算されるとともに、エンジン10の補機負荷に相当する補機負荷トルクやエンジン10の個体差及び制御偏差を相殺するための学習トルク等が演算され、これらを合算したものがアイドル目標トルクTRQIDLとして演算される。
アイドル目標トルクTRQIDLは、エンジン10を目標回転速度Nobjで駆動し続けるのに要求されるトルクであり、エンジン10のアイドル運転時の出力目標値のベースとなるパラメーターである。言い換えると、アイドル目標トルクTRQIDLは、エンジン10が無負荷に相当する運転状態であるとき(エンジン10が外部に仕事をしていない状態であるとき)に目標とすべきトルク(無負荷相当運転時の目標トルク)である。ここで演算されたアイドル目標トルクTRQIDLの値は、要求負荷率を演算する際のもう一つの基準となる値であり、要求負荷率演算部3D及び仮想要求負荷率演算部3Fに伝達される。
なお、無負荷損失トルクとは、エンジン10に内在する損失に対応するトルクであり、負荷の大きさに依らない機械的な損失に対応するトルクである。この無負荷損失トルクには、例えばアクセルペダルが踏み込まれていない状態で、エンジン10を一定の回転速度で駆動したときに失われる摩擦損失トルクや機械損失トルクが含まれ、あるいはエンジン10の補機を駆動するために要求される補機駆動トルクが含まれる。
アクセル要求トルク演算部3C(アクセル要求トルク演算手段)は、運転者のアクセル操作に基づいてエンジン10に要求されているアクセル要求トルクTRQAPSを演算するものである。ここでは、エンジン10の実回転速度Neとアクセル開度APSとに基づいてアクセル要求トルクTRQAPSが演算される。アクセル要求トルクTRQAPSは、上記の二種類の要求トルクのうち「通常要求トルク」に相当し、例えば実回転速度Ne及びアクセル開度APSとアクセル要求トルクTRQAPSとの対応マップや数式,関係式等に基づいて演算される。
ただし、アクセル要求トルクTRQAPSが取り得る範囲は、アイドル目標トルク演算部3Bで演算されたアイドル目標トルクTRQIDL以上、かつ、全開時トルク演算部3Aで演算された全開時トルクTRQMAX以下とされる。ここで演算されたアクセル要求トルクTRQAPSの値は、要求負荷率演算部3Dに伝達される。
なお、後述する要求負荷率RLOADを用いて、アイドル目標トルクTRQIDLと全開時トルクTRQMAXとの間を補間することでアクセル要求トルクTRQAPSを求めてもよい。この場合、アクセル要求トルクTRQAPSは以下の式1を用いて求めることができる。
Figure 0005891797
要求負荷率演算部3D(要求負荷率演算手段)は、アクセル要求トルク演算部3Cで演算されたアクセル要求トルクTRQAPSについての要求負荷率RLOADを演算するものである。要求負荷率RLOADとは、アクセル要求トルクTRQAPSがエンジン10の負荷として作用する度合いに相当するパラメーターであり、全開時トルクTRQMAX及びアイドル目標トルクTRQIDLを基準として演算される。
例えば、式2に示すように、アイドル目標トルクTRQIDLを下限とし、全開時トルクTRQMAXを上限としたトルク変動範囲内でのアクセル要求トルクTRQAPSの割合が、要求負荷率RLOADとして演算される。ここで演算された要求負荷率RLOADの値は、設定部2及び要求トルク演算部3Gに伝達される。
Figure 0005891797
なお、上記の式2は式1を変形したものである。式2中の全開時トルクTRQMAXやアクセル要求トルクTRQAPSは、実回転速度Neとアクセル開度APSとから求めることも可能である。したがって、実回転速度Ne及びアクセル開度APSと要求負荷率RLOADとの対応マップや数式,関係式を予め設定しておき、これらの対応マップや数式,関係式に基づいて要求負荷率RLOADを演算してもよい。この場合、要求負荷率RLOADの値を用いてアクセル要求トルクTRQAPSを求めてもよい。
仮想アクセル要求トルク演算部3E(仮想アクセル要求トルク演算手段)は、アクセル要求トルク演算部3Cでの要求トルクとは異なる第二のアクセル要求トルクとして、仮想アクセル要求トルクTRQAPSVを演算するものである。ここでは、設定部2で設定された仮想回転速度Nevとアクセル開度APSとに基づいて仮想アクセル要求トルクTRQAPSVが演算される。
仮想アクセル要求トルクTRQAPSVは、上記の二種類の要求トルクのうち「仮想要求トルク」に相当し、例えばアクセル要求トルク演算部3Cに予め設定された対応マップに基づき、実回転速度Neの代わりに仮想回転速度Nevを用いることで演算される。仮想アクセル要求トルクTRQAPSVが取り得る範囲は、アクセル要求トルクTRQAPSと同様に、アイドル目標トルクTRQIDL以上、かつ、全開時トルクTRQMAX以下である。ここで演算された仮想アクセル要求トルクTRQAPSVの値は、仮想要求負荷率演算部3Fに伝達される。
なお、後述する仮想要求負荷率RLOADVを用いて、アイドル目標トルクTRQIDLと全開時トルクTRQMAXとの間を補間することで仮想アクセル要求トルクTRQAPSVを求めてもよい。この場合、仮想アクセル要求トルクTRQAPSVは以下の式3を用いて求めることができる。
Figure 0005891797
仮想要求負荷率演算部3F(仮想要求負荷率演算手段)は、仮想アクセル要求トルク演算部3Eで演算された仮想アクセル要求トルクTRQAPSVについての要求負荷率である仮想要求負荷率RLOADVを演算するものである。仮想要求負荷率RLOADVとは、仮想アクセル要求トルクTRQAPSVがエンジン10の負荷として作用する度合いに相当するパラメーターであり、上述の要求負荷率RLOADと同様に、全開時トルクTRQMAX及びアイドル目標トルクTRQIDLを基準として演算される。
例えば、式4に示すように、アイドル目標トルクTRQIDLを下限とし、全開時トルクTRQMAXを上限としたトルク変動範囲内での仮想アクセル要求トルクTRQAPSVの割合が、仮想要求負荷率RLOADVとして演算される。この式4は上記の式3を変形したものである。
Figure 0005891797
なお、式4中の全開時トルクTRQMAXや仮想アクセル要求トルクTRQAPSVは、仮想回転速度Nevとアクセル開度APSとから求めることも可能である。したがって、仮想実回転速度Nev及びアクセル開度APSと仮想要求負荷率RLOADVとの対応マップや数式,関係式を予め設定しておき、これらの対応マップや数式,関係式に基づいて仮想要求負荷率RLOADVを演算してもよい。この場合、仮想要求負荷率RLOADVの値を用いて仮想アクセル要求トルクTRQAPSVを求めてもよい。
ここで、要求負荷率RLOAD及び仮想要求負荷率RLOADVに基づく仮想回転速度Nevの設定手法について説明する。前述の設定部2は、エンジン10に要求されている負荷が所定負荷を超える場合に仮想回転速度Nevを設定するものであり、その負荷が大きいほど仮想回転速度Nevの値を高く設定する。具体的には、エンジン10に要求されている負荷の大小を要求負荷率RLOAD及び仮想要求負荷率RLOADVに基づいて判定し、これらの要求負荷率RLOAD及び仮想要求負荷率RLOADVの値が所定負荷率R0以下になるまで、仮想回転速度Nevの値を徐々に増加させる。所定負荷率R0の大きさは、比較的高負荷な状態に対応する値とし、例えば90[%]以上(要求負荷率が0.90以上)や95[%]以上(要求負荷率が0.95以上)とする。
つまり、エンジン10に要求されている負荷が比較的小さい運転状態では、仮想回転速度Nevが設定されず、すなわち仮想要求負荷率RLOADVも演算されない。一方、負荷が比較的大きい運転状態では、実回転速度Neよりも大きい範囲で仮想回転速度Nevが設定され、仮想要求負荷率RLOADVが演算される。さらに、その仮想要求負荷率RLOADVの値から負荷の大小が判定され、その負荷が大きい場合には仮想回転速度Nevの値がより大きくなるように再設定される。このような仮想回転速度Nevの設定と仮想要求負荷率RLOADVの演算とが繰り返し実施される。
仮想回転速度Nevの増加に伴って仮想要求負荷率RLOADVの値が減少した場合、その値が所定負荷率R0以下になった時点で仮想回転速度Nevの設定が停止し、仮想要求負荷率RLOADVの演算も停止する。なお、仮想回転速度Nevが上昇したからといって仮想要求負荷率RLOADVの値が必ずしも減少するとは限らない。したがって、仮想要求負荷率RLOADVの値が所定負荷率R0以下にならなかった場合には、仮想回転速度Nevがエンジン10の上限回転速度Nemax(例えば、6000[rpm])に至るまで演算が繰り返される。このように、仮想要求負荷率演算部3Fで最終的に得られた仮想要求負荷率RLOADVの値は、設定部2及び要求トルク演算部3Gに伝達される。
要求トルク演算部3G(要求トルク演算手段)は、要求負荷率演算部3Dで演算された要求負荷率RLOADや仮想要求負荷率演算部3Fで演算された仮想要求負荷率RLOADVに基づいて、エンジン10に要求されている要求トルクTRQTGTを演算するものである。ここでは、仮想要求負荷率RLOADVが仮想要求負荷率演算部3Fから伝達されていない場合には要求負荷率RLOADに基づいて要求トルクTRQTGTが演算され、仮想要求負荷率RLOADVが伝達されている場合にはその仮想要求負荷率RLOADVに基づいて要求トルクTRQTGTが演算される。
具体的な要求トルクTRQTGTの演算手法は任意である。例えば、エンジン10の回転速度(実回転速度Ne及び仮想回転速度Nevを含む)及び負荷(要求負荷率RLOAD及び仮想要求負荷率RLOADVを含む)と要求トルクTRQTGTとの対応マップや数式,関係式を予め設定しておき、これらの対応マップや数式,関係式に基づいて要求トルクTRQTGTを演算してもよい。あるいは、前述のアクセル要求トルクTRQAPSや仮想アクセル要求トルクTRQAPSVに基づいて要求トルクTRQTGTを求めてもよいし、これらの何れか一方をそのまま要求トルクTRQTGTとしてもよい。ここで演算された要求トルクTRQTGTの値は、吸気量制御部4に伝達される。
[2−3.吸気量制御部]
吸気量制御部4(制御手段,吸気制御手段)は、演算部3で演算された要求トルクTRQTGTに基づいてスロットル開度を制御するものである。ここでは、要求トルクTRQTGTに等しい大きさのトルクがエンジン10から出力されるように目標スロットル開度θTHとして演算される。この吸気量制御部4には、図4に示すように、要求インマニ圧演算部4A,要求圧力比演算部4B,要求流速演算部4C,要求流量演算部4D,要求面積演算部4E及び要求開度演算部4Fが設けられる。
要求インマニ圧演算部4Aは、要求トルクTRQTGTと実回転速度Ne又は仮想回転速度Nevとに基づき、要求されているインマニ20内の圧力(スロットルバルブ23部よりも下流側の圧力)を要求インマニ圧PIMTGTとして演算するものである。ここでは、例えば予め設定された要求トルクTRQTGT及びエンジン回転速度Ne,Nevと要求インマニ圧PIMTGTとの対応マップや数式,関係式等に基づいて、要求インマニ圧PIMTGTが演算される。この演算のエンジン回転速度としては、エンジン10に要求されている負荷が所定負荷を超える場合に仮想回転速度Nevが用いられ、所定負荷以下の場合に実回転速度Neが用いられる。ここで演算された要求インマニ圧PIMTGTの値は、要求圧力比演算部4Bに伝達される。
要求圧力比演算部4Bは、要求インマニ圧PIMTGTと大気圧BPとに基づいて、スロットルバルブ23部に要求されている圧力比を要求圧力比RPRSとして演算するものである。ここでは、例えば要求インマニ圧PIMTGTを大気圧BPで除した値が要求圧力比RPRSとして演算される。なお、スロットルバルブ23の上流圧を用いて要求圧力比RPRSを演算してもよい。この場合、大気圧BPから吸気通路24内の圧力損失量を減じたものをスロットルバルブ23の上流圧として求め、要求インマニ圧PIMTGTを上流圧で除算したものを要求圧力比RPRSとしてもよい。ここで演算された要求圧力比RPRSの値は、要求流速演算部4Cに伝達される。
要求流速演算部4Cは、要求圧力比RPRSに基づいて、スロットルバルブ23を通過させるべき吸気の流速(実際のスロットルバルブ23部の圧力比を要求圧力比RPRSに等しくするために要求される流速)を要求流速VTHとして演算するものである。ここでは、例えば予め設定された要求圧力比RPRSと要求流速VTHとの対応マップや数式,関係式等に基づいて、要求流速VTHが演算される。ここで演算された要求流速の値は、要求面積演算部4Eに伝達される。
要求流量演算部4Dは、要求トルクTRQTGTと実回転速度Ne又は仮想回転速度Nevとに基づき、スロットルバルブ23を通過させるべき吸気の流量(単位時間あたりの流量)を要求流量QTHTGTとして演算するものである。ここでは、例えば予め設定された要求トルクTRQTGT及びエンジン回転速度と要求流量QTHTGTとの対応マップや数式,関係式等に基づいて、要求流量QTHTGTが演算される。この演算のエンジン回転速度としては、エンジン10に要求されている負荷が所定負荷を超える場合に仮想回転速度Nevが用いられ、所定負荷以下の場合に実回転速度Neが用いられる。ここで演算された要求流量QTHTGTの値は、要求面積演算部4Eに伝達される。
要求面積演算部4Eは、要求流速演算部4Cで演算された要求流速VTHと要求流量演算部4Dで演算された要求流量QTHTGTとに基づき、スロットルバルブ23に要求される開放面積が要求面積STHとして演算するものである。要求面積STHは、要求流量QTHTGTを要求流速VTHで除算して求められる。ここで演算された要求面積STHの値は、要求開度演算部4Fに伝達される。
要求開度演算部4Fは、要求面積STHに基づいて目標スロットル開度θTHを演算するものである。ここでは、例えば予め設定された要求面積STHと目標スロットル開度θTHとの対応マップや数式,関係式等に基づいて、目標スロットル開度θTHが演算される。また、ここで演算された目標スロットル開度θTHに対応する制御信号がスロットルバルブ23へと出力され、実際のスロットル開度が制御される。
[3.フローチャート]
図5はエンジン制御装置1で実行される要求トルクTRQTGTの演算手順を説明するためのフローチャートであり、図6は目標スロットル開度θTHの演算手順を説明するためのフローチャートである。前者はおもに設定部2及び演算部3内での演算内容に対応し、後者はおもに吸気量制御部4内での演算内容に対応する。これらのフローチャートは、予め設定された所定周期(例えば、数十[ms]サイクル)で繰り返し実施される。
[3−1.要求トルクTRQTGTの演算]
図5のフローチャート内の記号nは、エンジン10の仮想回転速度Nevを漸増させる繰り返し演算の回数を意味する変数(0又は正の整数)であり、記号Ne(n)は第n番目に設定された仮想回転速度を意味する変数である。なお、本フローチャート内の仮想回転速度Ne(0)のうち、第0番目の仮想回転速度Ne(0)は実回転速度Neに相当し、第1番目以降のものが実回転速度Neよりも大きい値を持つ上記の仮想回転速度Nevに相当する。
まず、ステップA10では、変数nの値が初期化されてn=0に設定される。続くステップA20では、アクセル開度センサー33で検出されたアクセル開度APSの値が演算部3に読み込まれる。また、ステップA30では、エンジン回転速度センサー31で取得された実回転速度Neが第0番目の仮想回転速度Ne(0)として設定部2で設定される。
ステップA40では、変数nの値がn=0であるか否かが判定される。ここで、本フローが実施されてから初回の判定時であるn=0のときにはステップA100へ進み、二回目以降であるn≠0のときにはステップA50へ進む。
ステップA100では、要求負荷率演算部3Dにおいて、要求負荷率RLOADが演算される。ここでは、仮想回転速度Ne(n)及びアクセル開度APSと要求負荷率RLOADとの対応マップfLOADに基づいて、要求負荷率RLOADが演算される。n=0のときにここで演算される要求負荷率RLOADの値は、実回転速度Neとアクセル開度APSとに応じたものとなる。なお、このような手法の代わりに、全開時トルクTRQMAX,アイドル目標トルクTRQIDL及びアクセル要求トルクTRQAPSに基づいて要求負荷率RLOADを求めてもよい。
ステップA110では、設定部2又は要求負荷率演算部3Dにおいて、前ステップで演算された要求負荷率RLOADが所定負荷率R0を超えているか否かが判定される。この条件が成立しない場合には、エンジン10に要求されている負荷が比較的小さいものと判断され、ステップA140へ進む。
ステップA140では、要求トルク演算部3Gにおいて要求トルクTRQTGTが演算される。ここでは、仮想回転速度Ne(n)及び要求負荷率RLOADと要求トルクTRQTGTとの対応マップfTRQに基づいて、要求トルクTRQTGTが演算される。n=0のときにここで演算される要求トルクTRQTGTの値は、実回転速度Neとアクセル開度APSとに応じたものとなる。したがって、要求負荷率RLOADが比較的低い運転状態では、従来のトルクベース制御と同等の制御が実施される。
一方、ステップA110の条件が成立する場合にはステップA120へ進む。ステップA120では、仮想回転速度Ne(n)が上限回転速度Nemax以下であるか否かが判定される。ここでNe(n)≦Nemaxである場合には、変数nに値n+1が代入され、再びステップA40へと進む。なお、Ne(n)>Nemaxである場合には、ステップA140へ進む。
ステップA40でn≠0であるときに進むステップA50では、変数nの値がn>1であるか否かが判定される。ここで、n>1でないとき(n=1であるとき)にはステップA60へ進み、n>1であるとき(nが2以上であるとき)にはステップA90へと進む。
ステップA60では、第1番目の暫定的な仮想回転速度Ne(1)の値として、予め設定された所定回転速度Ne0が代入される。所定回転速度Ne0は、例えば500[rpm]や1000[rpm]といった比較的小さい値が与えられる。続くステップA70では、前ステップで設定された仮想回転速度Ne(1)が実回転速度Neよりも小さいか否かが判定される。
ここで、Ne(1)<Neである場合にはステップA80に進み、その時点での仮想回転速度Ne(1)の値に所定値A(例えば、100[rpm]や500[rpm]等)を加算した値が新たに仮想回転速度Ne(1)に代入されて、再びステップA70に進む。つまり、第1番目の仮想回転速度Ne(1)の値が実回転速度Ne以上になるまで、仮想回転速度Ne(1)の値を所定値Aずつ増加させる演算が実施される。その後、ステップA70でNe(1)≧Neになると、ステップA100へ進む。
ステップA100では、前述の通り、仮想回転速度Ne(n)及びアクセル開度APSから要求負荷率RLOADが演算される。n=1であるときに演算される要求負荷率RLOADは、実回転速度Neよりも大きい値を持つ仮想回転速度Ne(1)及びアクセル開度APSに応じた要求負荷率RLOAD(すなわち仮想要求負荷率RLOADV)であり、n=0のときに演算されたものとは異なる値の要求負荷率RLOADが演算される。
続くステップA110では、前ステップで演算された要求負荷率RLOADが所定負荷率R0を超えているか否かが判定され、RLOAD>R0である場合にはステップA120へ進み、RLOAD≦R0である場合にはステップA140へ進む。ステップA120では、再び仮想回転速度Ne(n)が上限回転速度Nemax以下であるか否かが判定され、この条件が成立する場合にはステップA130へ進み、変数nに値n+1が代入され、再びステップA40へと進む。また、ステップA140では、仮想回転速度Ne(n)及び要求負荷率RLOADに基づいて要求トルクTRQTGTが演算される。n≧1のときにここで演算される要求トルクTRQTGTの値は、仮想回転速度Nevとアクセル開度APSとに応じたものとなる。
再びステップA40が実施された場合であって変数nの値がn=2であるとき、制御はステップA40からステップA50を経由してステップA90へと進む。このステップA90では、一つ前の番号の仮想回転速度Ne(n-1)に所定値Aを加算した値が仮想回転速度Ne(n)に代入され、ステップA110へと進む。つまり、仮想回転速度Ne(n)の値が所定値Aずつ徐々に増加するように設定され、ステップA100〜A120で要求負荷率RLOADの演算及び判定が繰り返される。
このような仮想回転速度Ne(n)の漸増設定は、ステップA110で判定される要求負荷率RLOADが所定負荷率R0以下となるか、ステップA120で判定される仮想回転速度Ne(n)が上限回転速度Nemaxを超えるまで繰り返されることになる。ステップA140で要求トルクTRQTGTが演算されると、図6に示す目標スロットル開度θTHの演算フローに制御が移行する。
[3−2.目標スロットル開度θTHの演算]
図6のステップB10では、大気圧センサー32で検出された大気圧BPの値と演算部3で演算された要求トルクTRQTGTの値とが吸気量制御部4に読み込まれる。続くステップB20では、要求インマニ圧演算部4Aで要求インマニ圧PIMTGTが演算される。ここでは、仮想回転速度Ne(n)及び要求負荷率RLOADと要求インマニ圧PIMTGTとの対応マップfPIMに基づいて、要求インマニ圧PIMTGTが演算される。
ステップB30では、要求圧力比演算部4Bにおいて要求インマニ圧PIMTGTが大気圧BPで除算され、要求圧力比RPRSが演算される。また、ステップB40では、要求流量演算部4Cで要求流速VTHが演算される。ここでは、要求圧力比RPRSと要求流速VTHとの対応マップfVTHに基づいて、要求流速VTHが演算される。
ステップB50では要求流量演算部4Dで要求流量QTHTGTが演算される。ここでは、仮想回転速度Ne(n)及び要求負荷率RLOADと要求流量QTHTGTとの対応マップfQTHに基づいて、要求流量QTHTGTが演算される。続くステップB60では、要求面積演算部4Eにおいて、ステップB50で演算された要求流量QTHTGTをステップB40で演算された要求流速VTHで除算したものが要求面積STHとして演算される。
ステップB70では、要求開度演算部4Fで目標スロットル開度θTHが演算される。ここでは、要求面積STHと目標スロットル開度θTHとの対応マップfθTHに基づいて、目標スロットル開度θTHが演算される。その後、吸気量制御部4は目標スロットル開度θTHに応じた制御信号をスロットルバルブ23に出力し、実際のスロットル開度を制御する。
[4.作用]
図7は、上記のエンジン制御装置1を搭載した車両の等アクセル開度特性を例示するグラフであり、それぞれの実線グラフはアクセル開度APSを一定とした条件下でのエンジン10の実回転速度Neと出力トルクとの関係を模式的に表現したものである。前述の図3のグラフがスロットル開度を一定にしたときの出力特性(等スロットル開度特性)を示すものであるのに対し、図7のグラフはアクセル開度APSを一定にしたときの出力特性を示すものである。図7中の上方に位置するものほどアクセル開度APSが大きい場合に対応し、大小関係はAPS0>APS1>APS2>APS3である。また、APS0はアクセル開度APSが最大であるときの特性を示し、最も上方に位置する太実線のグラフは前述の全開時トルクTRQMAXに相当する。
トルクベース制御におけるアクセル開度APSとスロットルバルブ23のスロットル開度とは必ずしも一対一に対応しないため、厳密にいえば図3のグラフと図7のグラフとは相違するものである。しかし、これらの特性には類似点や共通点もある。例えば、図7上に実線で示す等アクセル開度線の間隔が狭い運転領域ほど、アクセル開度APSが増加したときの出力トルクの増分が小さい。また、たとえアクセル開度APSを一定に保ったとしても、実回転速度Neがある大きさを超えた時点で急激に出力トルクが減少するようになり、アクセル開度APSが大きいほど出力トルクが減少し始める実回転速度Neの値が上昇する。
上記の通り、本エンジン制御装置1では、要求負荷率RLOADや仮想要求負荷率RLOADVに基づいて要求トルクTRQTGTが演算される。その演算の結果として得られる要求トルクTRQTGTとその時点での実回転速度Neとからなるエンジン10の運転状態をグラフ上の点で示しながら、エンジン制御装置1による制御作用を以下に説明する。
アクセル開度APSが所定アクセル開度APS2であって実回転速度Neが第一実回転速度Ne1であるとき、運転状態はグラフ上の点Aで表現される。このとき、従来のトルクベース制御で演算される要求トルクTRQTGTの値はTRQAとなる。続いて、アクセル開度APSが一定の状態で実回転速度Neが徐々に上昇したとき、運転状態は所定アクセル開度APS2の実線グラフに沿って移動する。したがって、実回転速度Neが第一回転速度Ne1から第二回転速度Ne2まで変化した場合、従来のトルクベース制御で演算される要求トルクTRQTGTの値は点AのTRQAから点BのTRQBまで一旦増大したのち、点CのTRQCまで減少することになる。このような要求トルクTRQTGTの変動は、従来のトルクベース制御におけるスロットル開度の急変を招く要因となる。
これに対し、上記のエンジン制御装置1では、運転状態が点Aに位置する時点で、仮想要求負荷率RLOADVが所定負荷率R0以下となる最小のエンジン回転速度が仮想回転速度Nevとして演算され、この仮想回転速度Nevに基づいて要求トルクTRQTGTが演算される。要求負荷率RLOADはアクセル要求トルクTRQAPSが全開時トルクTRQMAXと等しいときに最大(100[%])であるから、所定負荷率R0が90[%]や95[%]といった値を持つとき、所定負荷率R0に対応するトルクの大きさは全開時トルクTRQMAXよりも若干小さい値となる。つまり、所定負荷率R0に対応するトルクのグラフは、図7中に破線で示すように、全開時トルクTRQMAXのグラフ(太実線)よりもやや下方に位置することになる。
したがって、仮想回転速度Nevは、その時点での所定アクセル開度APS2に対応する実線グラフと破線グラフとの交点の座標の回転速度となる。例えば、点Aの運転状態のときに演算される仮想回転速度Nevは、点Cの回転速度である第二回転速度Ne2となる。このときに演算される要求トルクTRQTGTの値は、TRQCとなる。
また、これに続いてアクセル開度APSが一定の状態で実回転速度Neが徐々に上昇し、運転状態が点Aから移動したとしても、アクセル開度APSが所定アクセル開度APS2のままであれば実線グラフと破線グラフとの交点の座標は変化しないため、要求トルクTRQTGTの値はTRQCに維持される。つまり、実際の運転状態が点Aから点Bを経由して点Cへと推移した場合であっても、要求トルクTRQTGTは一定値TRQCとなる。
なお、アクセル開度APSが一定でない場合には、実線グラフと破線グラフとの交点の座標が移動し、要求トルクTRQTGTの値が変動する。この場合、アクセル開度APSが増加するほど、実線グラフと破線グラフとの交点の座標が図7中の右側へと移動し、仮想回転速度Nevが上昇することになる。
しかし、本エンジン制御装置1では、要求負荷率RLOADが所定負荷率R0を超える運転領域で仮想回転速度Nevが演算され、すなわち運転状態が図7上の破線グラフよりも上方に位置するときに仮想回転速度Nevが演算される。そして、演算される要求トルクTRQTGTの値は、仮想回転速度Nevに応じた所定負荷率R0の破線グラフ上の座標のトルクとなる。つまり、要求負荷率RLOADが所定負荷率R0を超える運転領域の下限を定める破線グラフによって要求トルクTRQTGTが設定されることになる。
したがって、エンジン10に作用する負荷が比較的大きい運転状態であるときには、その運転状態がどのような状態であっても、実回転速度Neが上昇するに連れて要求負荷率RLOADが所定負荷率R0に漸近するような大きさの要求トルクTRQTGTが演算され、すなわち要求トルクTRQTGTの変動が抑制されることになる。
[5.効果]
このように、本実施形態のエンジン制御装置1によれば、以下のような作用,効果が得られる。
(1)上記のエンジン制御装置1では、その時点でのエンジン10の実回転速度Neよりも大きい仮想回転速度Nevに基づいて要求トルクTRQTGTを演算することで、実回転速度Neの変動に伴う出力トルクの変動を小さくすることができる。つまり、要求トルクTRQTGTに基づいて吸入空気量や点火時期,燃料噴射量等を制御するトルクベース制御において、吸入空気量や点火時期,燃料噴射量等を演算するためのパラメーターである要求トルクTRQTGTの高負荷領域での変動を抑制することができる。
これにより、例えばアクセル操作や実回転速度Neの変化による目標スロットル開度θTH(実際のスロットル開度)の変化を抑制することができる。したがって、エンジン10の出力トルクの収束性や制御性を高めることができる。また、エンジン10の出力特性が安定することから、車両の挙動を安定させることができる。
(2)また、上記のエンジン制御装置1では、エンジン10に要求されている負荷が所定負荷率R0を超えるような高負荷の場合に、仮想回転速度Nevに基づく要求トルクTRQTGTの演算が実施される。つまり、アクセル開度APSの変化に対して要求トルクTRQTGTが過敏に変動する運転状態のときに、スロットル開度変化による出力トルクの変動を小さくすることができ、制御安定性を向上させることができる。
一方、エンジン10に要求されている負荷が所定負荷率R0以下であるような低負荷の場合には、実回転速度Neに基づく要求トルクTRQTGTの演算が実施される。これにより、運転者の加速要求やエンジン10の回転状態に応じた要求トルクTRQTGTを演算することができ、エンジン10の動力性能の低下を抑制することができる。
なお、エンジン10に作用する負荷が比較的高い状態であっても、実回転速度Neが上昇すれば負荷が相対的に低下するため、運転者の加速要求やエンジン10の回転状態に応じた要求トルクTRQTGTを演算することができるようになる。
(3)さらに、上記のエンジン制御装置1では、全開時トルクTRQMAXに対するアクセル要求トルクTRQAPSの割合を要求負荷率RLOADとして演算し、この要求負荷率RLOADに基づいてエンジン10に要求されている負荷の大きさを判定している。例えば、要求負荷率RLOADが所定負荷率R0以下である場合には、仮想回転速度Nevの代わりに実回転速度Neが用いられて、要求トルクTRQTGTが演算される。反対に、要求負荷率RLOADが所定負荷率R0を超える場合には、実回転速度Neの代わりに仮想回転速度Nevが用いられて、要求トルクTRQTGTが演算される。
このように、仮想回転速度Nevに基づく要求トルクTRQTGTの演算を実施するための条件判定に要求負荷率RLOADを用いることで、エンジン10の回転状態に応じた負荷の度合いを精度よく把握することができる。これにより、スロットル開度変化による出力トルクの変動を効果的に抑制することができる。
(4)また、上記のエンジン制御装置1では、仮想要求負荷率RLOADVが所定負荷率R0以下となるように、仮想回転速度Nevの大きさが設定される。例えば、図7に示すように、その時点のアクセル開度APSに対応する実線グラフと所定負荷率R0に対応する破線グラフとの交点の座標の回転速度が仮想回転速度Nevとして設定される。これにより、実回転速度が上昇したときのエンジン負荷が過剰又は過小とならない適切な大きさの要求トルクTRQTGTを演算することができ、エンジン10の動力性能の低下を効率的に抑制しながら出力トルクの制御安定性を向上させることができる。
(5)また、上記のエンジン制御装置1では、仮想要求負荷率RLOADVが所定負荷率R0以下となるまで、実回転速度Neに所定値Aを繰り返し加算することで仮想回転速度Nevを演算している。これにより、仮想要求負荷率RLOADVが所定負荷率R0以下となる最小の仮想回転速度を容易かつ確実に設定することができる。
例えば、上記のエンジン制御装置1による仮想回転速度Nevの演算は、実際のエンジン10の運転状態が図7に示す点Aの状態のときに、その状態が大きく変化しないうちに、点Cの座標を求めることが望ましい。このような要望に対して、上記のエンジン制御装置1は実回転速度Neとの差が徐々に大きくなるように仮想回転速度Nevを演算するため、仮想要求負荷率RLOADVが所定負荷率R0以下となった最初の仮想回転速度Nevが、必要条件を満たす最小の仮想回転速度Nevであるということになる。したがって、仮想回転速度Nevの演算精度及び演算速度を向上させることができ、トルクベース制御の制御性を向上させることができる。
(6)また、上記のエンジン制御装置1では、エンジン10に要求されている負荷が高いほど、仮想回転速度Nevが大きな値に設定される。すなわち、図7中の実線グラフと破線グラフとの交点である点Cに着目し、アクセル開度APSが増加するほど点Cが右側へと移動するのに対応するように、アクセル開度APSが増加するほど仮想回転速度Nevが大きく設定される。これにより、要求トルクTRQTGTの変動を確実に小さくすることができる。
(7)また、上記のエンジン制御装置1では、仮想回転速度Nevに基づいて演算された要求トルクTRQTGTをスロットルバルブ23の開度制御に適用している。これにより、例えば図2に示すように、出力トルクを基準としたスロットル開度の変化量が大きい運転領域での開度変化を大幅に改善することができ、吸気に関する制御安定性を向上させることができる。特に、車両の吸気に関する制御では吸気応答遅れによる動力性能の低下が懸念される場合があるが、上記の制御によればこのような懸念を解消することができ、ドライブフィーリングを向上させつつ車両の挙動を安定させることができ、車両商品性を高めることができる。
[6.変形例]
上述の実施形態のフローチャートでは、対応マップfLOADに基づいて要求負荷率RLOAD及び仮想要求負荷率RLOADVを演算するものを示したが、要求負荷率RLOAD及び仮想要求負荷率RLOADVの演算手法はこれに限定されない。例えば、全開時トルクTRQMAX,アイドル目標トルクTRQIDL及びアクセル要求トルクTRQAPSに基づいて要求負荷率RLOADを求めてもよいし、全開時トルクTRQMAX,アイドル目標トルクTRQIDL及び仮想アクセル要求トルクTRQAPSVに基づいて仮想要求負荷率RLOADVを求めてもよい。
また、上述の実施形態では、要求負荷率RLOAD及び仮想要求負荷率RLOADVが所定負荷率R0を超える場合に、仮想回転速度Nevに基づく要求トルクTRQTGTを演算するものを説明したが、この所定負荷率R0の値を固定値ではなく変数としてもよい。例えば、アクセル開度APSや実回転速度Neに応じて所定負荷率R0の値を設定する構成としてもよい。つまり、図7中に示す破線のグラフの形状は、任意に変形,設定することができる。
また、上述の実施形態では、要求インマニ圧PIMTGTと大気圧BPとに基づいて要求圧力比RPRSを演算するものを例示したが、要求トルク演算部3Gで演算される要求トルクTRQTGTと仮想全開時トルクTRQMAXVとに基づいて要求圧力比RPRSを演算してもよい。例えば要求圧力比演算部4Bが、仮想全開時トルクTRQMAXVに対する要求トルクTRQTGTの比を要求圧力比RPRSとして演算する。
ここでいう仮想全開時トルクTRQMAXVとは、エンジン10が仮想回転速度Nevで回転している状態で、アクセルペダルを完全に踏み込んだとき(アクセル開度APSが最大のとき)に出力可能なトルクの最大値に相当するトルクである。全開時トルク演算部3Aで演算される全開時トルクTRQMAXが、エンジン10の実回転速度Neでのトルクの最大値に相当するものであるのに対し、仮想全開時トルクTRQMAXVは、仮想回転速度Nevでのトルクの最大値に相当する。
仮想全開時トルクTRQMAXVに対する要求トルクTRQTGTの比と実際のスロットルバルブ23部の圧力比(要求インマニ圧PIMTGTをスロットルバルブ23の上流圧で除算した値)との間には相関がある。したがって、このような手法で得られた要求圧力比RPRSを用いた場合にも、上述の実施形態と同様に要求トルクTRQTGTの変動を抑制することができ、目標スロットル開度θTHの急変を防止することができる。
なお、エンジン10の充填効率を用いて要求圧力比RPRSを演算する手法もある。トルクの代わりにシリンダー19内に導入される空気量を用いることで同様の演算を行うものである。例えば、上述の要求トルクTRQTGT及び仮想全開時トルクTRQMAXVの代わりに、目標充填効率EcTGT及び仮想最大充填効率EcMAXVを用いてもよい。この場合、要求圧力比演算部4Bが、仮想最大充填効率EcMAXVに対する目標充填効率EcTGTの比を要求圧力比RPRSとして演算する。
目標充填効率EcTGTは、シリンダー19内に導入すべき空気量に対応する充填効率の目標値であり、例えば予め設定された要求トルクTRQTGTと目標充填効率EcTGTとの対応マップや数式等に基づいて演算される。また、仮想最大充填効率EcMAXVは、仮想全開時トルクTRQMAXVを充填効率に換算したものであり、エンジン10が仮想回転速度Nevで回転している状態で、全開時トルクTRQMAXを発生させるのに要する空気量に対応する充填効率(スロットル全開時における充填効率)である。
仮想最大充填効率EcMAXVに対する目標充填効率EcTGTの比と実際のスロットルバルブ23部の圧力比との間には相関がある。したがって、このような手法で得られた要求圧力比RPRSを用いた場合にも、上述の実施形態と同様に要求トルクTRQTGTの変動を抑制することができ、目標スロットル開度θTHの急変を防止することができる。
また、上述の実施形態における図5のフローチャートで、ステップA120での判定条件が不成立となるのは、仮想回転速度をどんなに上昇させたとしても要求負荷率RLOADが所定負荷率R0以下にならない(負荷が十分に大きい)ことを意味している。したがって、ステップA120での判定条件が不成立となってステップA140へ進んだ場合に限り、実回転速度Ne及び要求負荷率RLOADから要求トルクTRQTGTを演算する構成としてもよい。これにより、要求トルクTRQTGTの変動が許容されるため、スロットル開度θTHを俊敏に変化させることができ出力トルクの制御応答性を向上させることができる。
1 エンジン制御装置
2 設定部(設定手段)
3 演算部(演算手段)
3A 全開時トルク演算部(全開時トルク演算手段)
3B アイドル目標トルク演算部
3C アクセル要求トルク演算部(アクセル要求トルク演算手段)
3D 要求負荷率演算部(要求負荷率演算手段)
3E 仮想アクセル要求トルク演算部(仮想アクセル要求トルク演算手段)
3F 仮想要求負荷率演算部(仮想要求負荷率演算手段)
3G 要求トルク演算部(要求トルク演算手段)
4 吸気量制御部(制御手段,吸気制御手段)
10 エンジン
23 スロットルバルブ
31 エンジン回転速度センサー
33 アクセル開度センサー(検出手段)
APS アクセル開度
Ne 実回転速度
Nev,Ne(0)〜Ne(n) 仮想回転速度
TRQTGT 要求トルク
RLOAD 要求負荷率
R0 所定負荷率

Claims (5)

  1. 車両のアクセル開度を検出する検出手段と、
    前記車両に搭載されたエンジンの実回転速度よりも大きい仮想回転速度を設定する設定手段と、
    前記検出手段で検出された前記アクセル開度と前記設定手段で設定された前記仮想回転速度とに基づいて前記エンジンに要求されている要求トルクを演算する演算手段と、
    前記演算手段で演算された前記要求トルクに基づいて前記エンジンのスロットル開度を制御する制御手段と、を備え
    前記演算手段が、
    前記エンジンに要求されている負荷が所定負荷を超える場合に、前記アクセル開度及び前記仮想回転速度に基づいて前記要求トルクを演算するとともに、
    前記負荷が前記所定負荷以下である場合に、前記アクセル開度及び前記実回転速度に基づいて前記要求トルクを演算する
    ことを特徴とする、エンジンの制御装置。
  2. 前記演算手段が、
    前記スロットル開度の全開時における前記エンジンの前記実回転速度での出力トルクを全開時トルクとして演算する全開時トルク演算手段と、
    前記アクセル開度及び前記実回転速度に基づいてアクセル負荷に相当するアクセル要求トルクを演算するアクセル要求トルク演算手段と、
    前記全開時トルクに対する前記アクセル要求トルクの割合を要求負荷率として演算する要求負荷率演算手段と、
    前記要求負荷率が所定負荷率を超える場合に、前記アクセル開度及び前記仮想回転速度に基づいて前記要求トルクを演算し、前記要求負荷率が前記所定負荷率以下である場合に、前記アクセル開度及び前記実回転速度に基づいて前記要求トルクを演算する要求トルク演算手段と、を有する
    ことを特徴とする、請求項記載のエンジンの制御装置。
  3. 前記演算手段が、
    前記アクセル開度及び前記仮想回転速度に基づいて仮想アクセル要求トルクを演算する仮想アクセル要求トルク演算手段と、
    前記全開時トルクに対する前記仮想アクセル要求トルクの割合を仮想要求負荷率として演算する仮想要求負荷率演算手段と、を有し、
    前記設定手段が、前記仮想要求負荷率が前記所定負荷率以下となるように前記仮想回転速度の大きさを設定する
    ことを特徴とする、請求項記載のエンジンの制御装置。
  4. 前記設定手段が、前記仮想要求負荷率が前記所定負荷率以下となるまで、前記実回転速度に所定値を繰り返し加算することで前記仮想回転速度を設定する
    ことを特徴とする、請求項記載のエンジンの制御装置。
  5. 前記仮想回転速度は、その時点の前記アクセル開度で、仮想要求負荷率が所定負荷率以下となる最小の回転速度であり、
    前記仮想要求負荷率は、前記アクセル開度及び前記仮想回転速度に基づいて演算される仮想アクセル要求トルクが前記エンジンの負荷として作用する度合いに相当するパラメーターである
    ことを特徴とする、請求項1〜4の何れか1項に記載のエンジンの制御装置。
JP2012003456A 2012-01-11 2012-01-11 エンジンの制御装置 Expired - Fee Related JP5891797B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003456A JP5891797B2 (ja) 2012-01-11 2012-01-11 エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003456A JP5891797B2 (ja) 2012-01-11 2012-01-11 エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2013142349A JP2013142349A (ja) 2013-07-22
JP5891797B2 true JP5891797B2 (ja) 2016-03-23

Family

ID=49039063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003456A Expired - Fee Related JP5891797B2 (ja) 2012-01-11 2012-01-11 エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP5891797B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135719B2 (ja) * 2018-10-24 2022-09-13 トヨタ自動車株式会社 スロットル制御装置
JP7380347B2 (ja) 2020-03-10 2023-11-15 トヨタ自動車株式会社 スロットル制御装置
CN113915008B (zh) * 2021-09-29 2023-10-03 广西柳工机械股份有限公司 一种混凝土泵车的控制方法、控制***及混凝土泵车

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509558B2 (ja) * 1998-06-04 2004-03-22 日産自動車株式会社 車両の駆動力制御装置
JP2007239606A (ja) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd 車両の運動制御装置
JP2009024677A (ja) * 2007-07-23 2009-02-05 Denso Corp 内燃機関の制御装置
JP2009216055A (ja) * 2008-03-12 2009-09-24 Mitsubishi Heavy Ind Ltd 汎用エンジンの電子ガバナー装置
US8181627B2 (en) * 2008-09-24 2012-05-22 GM Global Technology Operations LLC Securing throttle area in a coordinated torque control system

Also Published As

Publication number Publication date
JP2013142349A (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
JP5598366B2 (ja) エンジンの制御装置
US20150159546A1 (en) Control device of internal combustion engine equipped with turbo supercharger
JP2007192082A (ja) 車両に搭載された内燃機関の推定トルク算出装置
JP5891797B2 (ja) エンジンの制御装置
EP2436914B1 (en) Engine controlling apparatus
JP2010024963A (ja) 内燃機関の制御装置
JP2012077688A (ja) エンジンの制御装置
JP5742648B2 (ja) エンジンの制御装置
JP5273398B2 (ja) 内燃機関の出力制御装置
JP5994465B2 (ja) エンジンの制御装置
JP5598374B2 (ja) エンジンの制御装置
JP2008286074A (ja) 内燃機関の制御装置
JP5472165B2 (ja) エンジンの制御装置
JP5751344B2 (ja) 内燃機関の制御装置
JP5348118B2 (ja) 可変動弁機構の制御装置
JP5601252B2 (ja) エンジンの制御装置
JP5376171B2 (ja) 車両の出力制御装置
JP5742653B2 (ja) エンジンの制御装置
JP5246451B2 (ja) 車両の出力制御装置
JP5375819B2 (ja) エンジントルク制御装置
JP6079952B2 (ja) エンジンの制御装置
JP5126181B2 (ja) 車両用エンジンの制御装置
JP4315221B2 (ja) 内燃機関の制御装置
JP5598387B2 (ja) エンジンの制御装置
JP4862813B2 (ja) 駆動力源制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R151 Written notification of patent or utility model registration

Ref document number: 5891797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees