JP5800759B2 - 角加速度検出装置及び検出方法 - Google Patents

角加速度検出装置及び検出方法 Download PDF

Info

Publication number
JP5800759B2
JP5800759B2 JP2012122815A JP2012122815A JP5800759B2 JP 5800759 B2 JP5800759 B2 JP 5800759B2 JP 2012122815 A JP2012122815 A JP 2012122815A JP 2012122815 A JP2012122815 A JP 2012122815A JP 5800759 B2 JP5800759 B2 JP 5800759B2
Authority
JP
Japan
Prior art keywords
acceleration
servo
angular acceleration
movable electrode
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012122815A
Other languages
English (en)
Other versions
JP2013250065A (ja
Inventor
恭彦 伊藤
恭彦 伊藤
善明 平田
善明 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012122815A priority Critical patent/JP5800759B2/ja
Publication of JP2013250065A publication Critical patent/JP2013250065A/ja
Application granted granted Critical
Publication of JP5800759B2 publication Critical patent/JP5800759B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、角加速度検出装置及び検出方法に関する。
従来、角加速度検出装置として、運動体の一平面上に距離を隔てて配置された2つの加速度センサからの各出力の差分から、この平面に垂直な軸の周りの角加速度を検出する角加速度検出装置が知られている(例えば、特許文献1参照)。
また、従来、加速度センサとして、加速度の作用に伴って生じる、センサ内の静電容量の変化をもとに、作用した加速度を検出する静電容量型の加速度センサも知られている。さらにこの静電容量型の加速度センサでは、検出分解能の向上、可動電極と基板との接触による動作不良あるいは破損防止等のために、この加速度センサをサーボ型として使用するものが提案されている(例えば、特許文献2参照)。即ち、このようなサーボ型の加速度センサに作用した加速度によって、センサ内の可動電極がねじれ梁の周りにねじれ、ねじれ梁を中心とした可動電極の左右側と、各駆動電極との間の静電容量に不均衡が生じる。この不均衡量をフィードバックし、不均衡量に応じた電圧を駆動電極に印加して、可動電極と駆動電極との間に生じる静電力によって、可動電極のねじれを変位0の位置に戻すようにする。このときの、変位0の位置に戻すための駆動電極への印加電圧に基づいて、作用した加速度が求められる。
特開昭62-70766号公報 国際公開 WO2003/044539号
上述のサーボ型加速度センサでは、可動電極と駆動電極との間に生じる静電力の大きさは、駆動電極に印加した電圧の2乗に比例する。よって、駆動電極に印加した電圧に基づいて作用した加速度を求める際には、電圧値の2乗を演算する乗算回路が必要となる。
演算処理回路では、一般的に、加算処理及び減算処理に比べて2乗演算等の乗算処理は、回路規模が大きくなる。例えば、nビットの数値同士の加算及び減算回路の規模を1とすれば、その数値同士の乗算回路の規模は、概ねnの2乗の規模となる。したがって、上述のサーボ型加速度センサを2つ用いて角加速度検出装置を構成する場合、乗算回路がそれぞれの加速度センサに1つずつを要し、計2つ必要となる。よって、総じて回路規模が大きくなるという問題があった。
本発明は、このような問題点を解決するためになされたもので、従来に比べて回路規模を縮小可能な角加速度検出装置及び検出方法を提供することを目的とする。
上記目的を達成するため、本発明は以下のように構成する。
即ち、本発明の一態様における角加速度検出装置は、回転可能な構造物の一平面に距離を隔てて配置され、かつ、加速度検出方向が互いに平行でかつ互いの配置位置を結ぶ線分に対して直交して配置される一対のセンサと、これらのセンサと電気的に接続される演算処理回路とを備えた角加速度検出装置であって、それぞれの上記センサは、加速度の作用によって変位する可動電極と、可動電極に対向して配置され、電圧の印加によって可動電極との間に発生する静電力によって可動電極を駆動する駆動電極と、加速度の作用によって生じる可動電極の変位を検出する検出部と、検出部が検出した可動電極の変位に応じて、可動電極を所定位置へ駆動するサーボ電圧を駆動電極へ印加するサーボ制御部と、を有し、上記演算処理回路は、それぞれの上記サーボ制御部が駆動電極へ印加する各サーボ電圧の和及び差を算出し、得られた和値と差値とを乗算して角加速度として出力する、ことを特徴とする。
本発明の一態様における角加速度検出装置によれば、一対のセンサと演算処理回路とを備え、演算処理回路は、各センサのサーボ制御部が駆動電極へ印加する各サーボ電圧の和及び差を算出し得られた和値と差値とを乗算して角加速度として出力するように構成した。したがって、演算処理回路は、一つの乗算回路を有し、従来に比べて乗算回路の削減を図り演算処理回路の規模の縮小を図ることができる。その結果、角加速度検出装置の小型化及び省エネルギーを図ることが可能となる。
本発明の実施の形態1における角加速度検出装置の構成を示す図である。 図1に示す角加速度検出装置の機能を示すブロック図である。 図2に示す各サーボ型加速度センサの機能を示すブロック図である。 図2に示すサーボ型加速度センサのセンサ素子構造体を示す平面図である。 図4に示すセンサ素子構造体から変位部材を除いた構成を示す平面図である。 図4に示すA−A部の断面図である。 図2に示すサーボ型加速度センサにおいて形成される静電容量を説明するための断面図である。 図3に示す容量−電圧変換回路の構成を示す図である。 図1に示す角加速度検出装置を構成するサーボ型加速度センサに正方向の加速度が作用した状態を示す、センサ素子構造体の断面図である。 図1に示す角加速度検出装置を構成するサーボ型加速度センサに正方向の加速度が作用した状態を示す、センサ素子構造体の断面図である。 図1に示す角加速度検出装置を構成するサーボ型加速度センサに正方向の加速度と静電力とが作用した状態を示す、センサ素子構造体の断面図である。 図1に示す角加速度検出装置を構成するサーボ型加速度センサにおいて、作用した加速度と、変位部材の変位を0にする電圧との関係を示すグラフである。 図1に示す角加速度検出装置を構成するサーボ型加速度センサにおいて、作用した加速度とセンサ出力との関係を示すグラフである。 図1に示す角加速度検出装置が回転するときに、サーボ型加速度センサが受ける力、すなわち加速度を示した図である。 本発明の実施の形態2における角加速度検出装置を構成するサーボ型加速度センサに備わるセンサ素子構造体を示す平面図である。 図15に示すB−B部の断面図である。 図15に示すサーボ型加速度センサにて形成される静電容量を説明するための断面図である。 図15に示すサーボ型加速度センサにて形成される静電容量を説明するための断面図である。
本発明の実施形態である、角加速度検出装置及びこの角加速度検出装置にて実行される角加速度検出方法について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。
実施の形態1.
以下に本発明の実施の形態1における角加速度検出装置について説明する。
図1は、実施の形態1における角加速度検出装置301の構成を示す図である。この角速度検出装置301は、2つのサーボ型加速度センサ101、102と、演算処理回路201とを備える。2つのサーボ型加速度センサ101,102は、回転中心を中心として回転可能な、つまり加速度の作用が可能な構造物103に、距離Rを隔てて配置されており、さらに、それぞれのセンサ101,102の加速度検出方向は、互いに平行であり、かつ互いの位置、例えば各中心位置、を結ぶ線分104に対して直交して配置されている。ここで、加速度検出方向を検出軸DAとして示す。また、図1では、演算処理回路201も構造物103に配置した形態を示すが、演算処理回路201は、構造物103とは別に設置してもよい。
角加速度検出装置301の機能を示すブロック図を図2に示す。サーボ型加速度センサ101,102では、以下に詳しく説明するように、構造物103に加速度が作用することで、各サーボ型加速度センサ101,102に備わる慣性質量体が変位する。この変位を、加速度が作用していない状態つまり変位0の位置まで戻すために必要な静電力を発生させるための電圧(サーボ電圧)を、各サーボ型加速度センサ101,102は、出力する。演算処理回路201では、2つのサーボ型加速度センサ101,102の出力である、それぞれのサーボ電圧値の和及び差を算出し、和値と差値とを乗ずる処理を行う。演算処理回路201の動作については、以下で詳しく説明する。
図3は、上述の角加速度検出装置301における、特にサーボ型加速度センサ101,102の機能について、ブロック図で示したものである。各サーボ型加速度センサ101,102は、センサ素子構造体15と、容量−電圧変換回路20と、サーボ制御回路30とを備えている。ここで、容量−電圧変換回路20は、「検出部」の機能を果たす一例に相当し、サーボ制御回路30は、「サーボ制御部」の機能を果たす一例に相当する。また、各サーボ型加速度センサ101,102は、同じ構成を有するので、図3では、サーボ型加速度センサ101を例に図示を行い、サーボ型加速度センサ102におけるセンサ素子構造体15、容量−電圧変換回路20、及びサーボ制御回路30の図示は省略している。
まず、サーボ型加速度センサ101,102に備わるセンサ素子構造体15について、図4から図7を参照して説明する。尚、図4及び図5はセンサ素子構造体15の平面図を示し、図6及び図7は、図4のA−A部における断面図を示している。
図4及び図5に示すように、センサ素子構造体15は、基板1と、基板1上に絶縁体9を介して固定されたアンカー5と、アンカー5に支持される変位部材2とを備えている。変位部材2は、ねじれ梁6、検出フレーム7、リンク梁4、及び慣性質量体3を備えている。ねじれ梁6は、アンカー5に接続されており、ねじれ軸6aを中心に、その軸周り方向にねじれることができる。検出フレーム7は、ねじれ軸6aを中心として回転可能に、ねじれ梁6に支持されている。リンク梁4は、ねじれ梁6とは離れた位置にて検出フレーム7に連結されており、加速度が作用することによって基板1に対して垂直方向に変位する。
図6に示すように、センサ素子構造体15は、また、絶縁体9上に一対の駆動電極11a、11b、一対の検出電極8a、8bを備えている。
駆動電極11a,11bは、基板1の厚み方向である垂直方向において間隔dを隔てて検出フレーム7と対向するように設けられ、駆動電極11a,11bに電圧が印加されることによって検出フレーム7との間に発生する静電力によって検出フレーム7を駆動する。
検出電極8a,8bは、上記間隔dを隔てて検出フレーム7と対向するように設けられ、検出フレーム7の変位を検出フレーム7との間の静電容量変化として検出する。また、実施の形態1では、検出フレーム7が「可動電極」の機能を果たす一例に相当する。
このように構成されたセンサ素子構造体15は、基板1上への成膜、パターニング、エッチングといったプロセスを繰り返し行う半導体微細加工技術、いわゆるMEMS(Micro Electro Mechanical Systems)デバイス製造技術によって製造される。
基板1としては、シリコン基板やガラス基板を用いることができる。またアンカー5、ねじれ梁6、検出フレーム7、リンク梁4、慣性質量体3、駆動電極11a,11b、検出電極8a,8bとしては、導電性ポリシリコン膜を用いることができる。この導電性ポリシリコン膜は、低応力で、かつ応力分布がないことが望ましい。絶縁体9としては、窒化シリコン膜や酸化シリコン膜を用いることができる。
また、アンカー5、ねじれ梁6、検出フレーム7、リンク梁4、慣性質量体3は、それぞれ等電位になるように電気的に接続されている。基板1、駆動電極11a,11b、検出電極8a,8bは、アンカー5、ねじれ梁6、検出フレーム7、リンク梁4、慣性質量体3のいずれの部位とも電気的に接続されていない。
なお、サーボ型加速度センサ101,102の使用においては、静電容量の電圧への変換や、各電極11a,11b、8a,8bへの電圧印加のために、センサ素子構造体15と、容量−電圧変換回路20及びサーボ制御回路30とが電気的に接続される。この電気的な接続は、図示していないが、基板1上の配線パターンやボンディングワイヤ等を用いて可能となる。
図7では、サーボ型加速度センサ101,102で形成される静電容量を示している。図7に示すように、検出電極8a,8bと検出フレーム7との間には、それぞれ静電容量Cda、Cdbが形成される。同様に駆動電極11a,11bと検出フレーム7との間にはそれぞれ静電容量Csa、Csbが形成される。
次に、サーボ型加速度センサ101,102に備わる容量−電圧変換回路20について、図8を参照して説明する。
容量−電圧変換回路20は、接続した検出電極8a,8bと、検出フレーム7との間の静電容量Cda、Cdbに差が生じた場合に、その差分に応じた電圧を出力する。ここで図8に示すように、静電容量Cda、Cdbは、直列に接続されている。そして、静電容量Cdaの一端には一定電位Vdが印加され、静電容量Cdbの一端は接地されている。また、静電容量Cdaと静電容量Cdbとの接続部には、端子が設けられている。この端子の出力電位Voutは、次の(1)式で表される。
Figure 0005800759
検出フレーム7がねじれ軸6aを中心に回転変位すると、静電容量Cda、Cdbは、その増減の方向が互いに異なるように変化する。即ち、上記回転変位によって、静電容量Cdaが増加すれば静電容量Cdbが減少し、静電容量Cdaが減少すれば静電容量Cdbが増加する。検出電極8a,8bと検出フレーム7との間隔に対して検出フレーム7の変位が充分小さい領域では,静電容量(Cda+Cdb)は一定であるとともに、静電容量(Cda−Cdb)は、変位に比例して変化するため、検出フレーム7の回転変位に応じて、容量−電圧変換回路20は、出力電位Voutを得ることができる。
次に、サーボ型加速度センサ101,102に備わるサーボ制御回路30について説明する。
図3において、サーボ制御回路30は、容量−電圧変換回路20の出力の大きさに応じて、スイッチ32により駆動電極11a、11bのどちらに電圧を印加するかを選択し、センサ素子構造体15の駆動電極11aあるいは駆動電極11bに電圧を印加する。即ち、サーボ制御回路30は、容量−電圧変換回路20の出力電位Voutが(Vd/2)よりも大きい場合には駆動電極11bに、出力電位Voutが(Vd/2)よりも小さい場合には駆動電極11aに電圧を印加し、検出フレーム7の変位を変位0の位置、つまり加速度が作用していないときの検出フレーム7の状態に戻すように作用する。
以上のように構成されたサーボ型加速度センサ101,102の動作について、図9から図11を参照して以下に説明する。尚、図9から図11では、サーボ型加速度センサ101,102に対して、正方向401の加速度が印加された状態を示す。
サーボ型加速度センサ101,102に正方向401の加速度Gが印加されると、図9に示すように、慣性質量体3は慣性力Fiを受けた基板1から離れる方向(負方向402)に変位する。このときリンク梁4は、慣性質量体3とともに負方向402に変位する。検出フレーム7は、リンク梁4の変位により負方向402の力を受け、リンク梁4及びねじれ梁6の変形による復元力とつりあうようにねじれ軸6aを軸として回転変位する。この回転変位により、検出フレーム7と検出電極8a,8bとの間隔がそれぞれ変化し、静電容量Cdaは減少し、静電容量Cdbは増加する。容量−電圧変換回路20は、静電容量Cda、Cdbの変化に基づいて、検出フレーム7の変位を検出する。
ここで、駆動電極11aに電圧Vs11aを印加すると、図10に示すように、静電力Fs11aが生じる。静電力Fs11aは、印加電圧Vs11a、間隔d、駆動電極11aが検出フレーム7と対向する面積S11、を用いて、次の(2)式のように表される。ここでεは誘電率である。
Figure 0005800759
印加電圧Vs11aを変化させることにより、発生する静電力Fs11aを変化させることができるので、検出フレーム7の変位を0とするように印加電圧Vs11aを制御することができる。ここで、検出フレーム7の変位を0とする印加電圧をV11a、このときに発生する静電力をF11aとする。印加電圧V11aは、検出フレーム7の変位に対して単調関数であり、検出フレーム7の変位は、作用した加速度に対して単調関数である。よって、作用した加速度に対して、印加電圧V11aは一意に定まる。
図11に示すように、静電力F11aによって、ねじれ軸6aを軸とした検出フレーム7の回転変位を、もとに戻す方向に検出フレーム7は回転する。その結果、検出フレーム7は、静電力F11aとリンク梁4、ねじれ梁6の復元力と、慣性力Fiとがつりあう位置に変位し、変位は0に戻る。
作用した加速度によって生じる慣性質量体3の変位は、作用した加速度に比例し、リンク梁4及びねじれ梁6の変形による復元力は、慣性質量体3の変位に比例するため、変位0の位置に戻すために必要な静電力F11aは、作用した加速度に比例する。
図12は、作用した加速度Gと、作用した加速度によって生じた変位を0にする電圧V11aとの関係を示す図である。図12において、横軸は加速度センサに作用した加速度、縦軸は変位を0にする印加電圧を示している。上述の(2)式を参照して、間隔dが一定のもとでは、静電力の大きさは、印加電圧の2乗に比例することから、作用した加速度Gと、変位を0にする印加電圧V11aとの関係は、次の(3)式のように表され、印加電圧の2乗は加速度Gに比例する。
Figure 0005800759
同様に、サーボ型加速度センサ101,102に負方向402の加速度が印加された場合にも、スイッチ32により、駆動電極11aに替わり駆動電極11bに電圧V11bを印加することで、検出フレーム7の変位を0にすることができる。また、印加電圧の2乗は加速度の大きさに比例する。
また、作用した加速度の方向(正、負)は、前述のように、容量−電圧変換回路20の出力Voutが(Vd/2)よりも大きければ正、小さければ負として知ることができる。
実施の形態1の角加速度検出装置301において、サーボ型加速度センサ101,102は、検出フレーム7を変位0の位置に戻すために駆動電極11a,11bへ印加する電圧を出力するが、加速度が正方向401に作用している場合には印加電圧V11aを、加速度が負方向402に作用している場合には、印加電圧V11bを、その符号を反転して、−V11bとして出力する。即ち、サーボ型加速度センサ101,102の出力Vは、次の(4)式で表される。
Figure 0005800759
図13は、作用した加速度とサーボ型加速度センサ101,102の出力との関係を示す図である。図13において、横軸はサーボ型加速度センサ101,102に作用した加速度、縦軸はサーボ型加速度センサ101,102の出力を示している。2つのサーボ型加速度センサ101,102は、それぞれ、検出軸方向に作用した加速度、すなわち力に応じて電圧V1、V2を出力する。
次に、実施の形態1の角加速度検出装置301の動作について以下に説明する。
図14は、実施の形態1の角加速度検出装置301が回転中心Oを中心に回転するときに、サーボ型加速度センサ101,102が受ける力、すなわち加速度を示した図である。
図1及び図2に示す角加速度検出装置301が図14のように、紙面に対して垂直方向を回転軸RAとして、回転中心Oを中心に、角速度変化を伴って回転するとき、2つのサーボ型加速度センサ101、102は、それぞれ、図14に示すように、角速度Ωの回転による遠心力と角加速度∂Ω/∂tに伴う力Fcとを受ける。遠心力は、回転の半径方向(501、502)に、角速度に伴う力は、回転の円周方向(601、602)に生ずる。サーボ型加速度センサ101が受ける、回転による遠心力Fr1と角加速度に伴う力Fc1は次の(5)式、(6)式で表される。ここで、図14に示すように、R1は、回転中心Oからサーボ型加速度センサ101までの距離、θ1は、センサ検出軸と、回転中心O−センサ間を結ぶ線分とが成す角度である。
Figure 0005800759
Figure 0005800759
遠心力Fr1、角加速度に伴う力Fc1は、それぞれ回転の半径方向、円周方向の力であるから、サーボ型加速度センサ101では、これらの力の検出軸方向成分の和を検出することができる。即ち、図14に示す作図から、遠心力Fr1についてはそのcosθ1成分を、角加速度に伴う力Fc1はそのsinθ1成分を検出することができる。したがって、サーボ型加速度センサ101が検出軸方向に受ける力F1は、次の(7)式で表される。
Figure 0005800759
同様に、サーボ型加速度センサ102が検出軸方向に受ける力F2は、次の(8)式で表される。ここで、R2は回転中心Oからサーボ型加速度センサ102までの距離、θ2はサーボ型加速度センサ102の検出軸と、回転中心O−センサ間を結ぶ線分とが成す角度である。
Figure 0005800759
検出軸方向に受ける力Fにより、サーボ型加速度センサ101,102の各慣性質量体3が変位し、2つのサーボ型加速度センサ101,102は、それぞれ電圧V1と電圧V2とを出力する。(3)式に基づき、次の(9)式、(10)式の関係がある。
Figure 0005800759
Figure 0005800759
ここで、比例定数をkと置けば、これらの式は、次の(11)式、(12)式のように表される。
Figure 0005800759
Figure 0005800759
ここで、2つのサーボ型加速度センサ101,102の各出力電圧である印加電圧V1と印加電圧V2との和、及び印加電圧V1と印加電圧V2との差の各値の積を考えると、次の(13)式を得る。
Figure 0005800759
さらに、図14より明らかなように、次の(14)式、(15)式で表される距離R、R1、R2の関係
Figure 0005800759
Figure 0005800759
を用いれば、次の(16)式を得る。
Figure 0005800759
両辺を整理し、新たに定数Cを定めれば、
Figure 0005800759
であり、
Figure 0005800759
を得る。即ち、2つのサーボ型加速度センサ101,102が出力する各印加電圧値から回転の角加速度に応じた出力を得ることができる。
ここで、角加速度を算出するための乗算処理の回数に注目すれば、本実施形態1の角加速度検出装置301によれば、乗算処理は1回である。従来方式では、乗算処理は2回であり、本実施形態1の角加速度検出装置301は、従来方式に比べ、乗算回路の削減を図り、演算処理の回路規模を縮小することが可能となる。
このような、サーボ型加速度センサ101,102の各出力電圧である印加電圧V1と印加電圧V2との和、及び印加電圧V1と印加電圧V2との差の各値の積を演算する部分が、図2に示す演算処理回路201である。
また、角加速度検出装置301では、加速度が作用していないときでも、駆動電極11a,11bに電圧を印加することで発生する静電力によって、慣性質量体3を変位させることができることから、センサ素子構造体15が破壊されているか否かを自己診断することも可能である。
また、実施の形態1の角加速度検出装置301の出力を積分処理することにより、回転の角速度を求めることができる。
実施の形態1では、容量−電圧変換回路20を用い、検出フレーム7と検出電極8a,8bとの間に形成された静電容量の差を電圧に変換することで、検出フレーム7の変位を検出しているものを示したが、これは、変位に応じた信号が得られれば、回路方式、検出方式等に依らない。
実施の形態2.
次に、本発明の実施の形態2における角加速度検出装置302について、図15から図18を参照して以下に説明する。
本実施の形態2の角加速度検出装置302は、上述したサーボ型加速度センサ101、102におけるセンサ素子構造体15の構造を異ならせた構成であり、その他の、容量−電圧変換回路20及びサーボ制御回路30、さらに、アナログデジタル変換回路40、演算処理回路201の構成については角加速度検出装置301の場合に同じである。よって、以下では、相違部分である、センサ素子構造体部分についてのみ説明を行う。
即ち、図15には、本実施の形態2の角加速度検出装置302のセンサ素子構造体15−2の平面図が示され、図16には、図15に示すB−B部の断面が図示されている。
本実施の形態2の角加速度検出装置302のセンサ素子構造体15−2は、図15に示すように、基板1と、基板1に絶縁体9を介して固定されたアンカー5と、アンカー5に支持される変位部材2とを備えている。変位部材2は、支持梁56と慣性質量体3とを備えている。
支持梁56は、アンカー5に接続されている。慣性質量体3は、支持梁56に支持されており、加速度が作用することによって基板1に対して面内方向に変位する。
慣性質量体3は、複数の可動電極部12を有している。実施の形態2では、この可動電極部12が「可動電極」として機能する。
基板1には、駆動電極11a,11b及び検出電極8a,8bが可動電極部12と対向するようにそれぞれ櫛歯状に設けられている。
尚、図15及び図16では、作図の都合上、各電極をそれぞれ分離して示しているが、同じハッチングで示している電極は、基板1上に設けた配線パターン等(図示せず)により、電気的に等電位になるように接続している。
図17及び図18は、駆動電極11a,11b及び検出電極8a,8bと、可動電極部12との間に形成されるそれぞれの静電容量を示している。即ち、実施の形態2のセンサ素子構造体15−2においても実施の形態1と同様に、図17に示すように、検出電極8a,8bと可動電極部12との間に静電容量Cda、Cdbが、図18に示すように、駆動電極11a,11bと可動電極部12との間に静電容量Csa、Csbがそれぞれ形成される。
以上のような構成を有するセンサ素子構造体15−2を有する角加速度検出装置302においても、実施の形態1の角加速度検出装置301と同様に角加速度を検出することができ、かつ、演算処理回路201を備えることから、乗算回路の削減を図り、演算処理の回路規模を縮小することが可能である。
尚、実施の形態2の角加速度検出装置302では、検出電極8a,8bの外側に駆動電極11a,11bを配置しているが、検出電極8a,8b、及び駆動電極11a,11bは、可動電極部12との間に静電容量を形成し、駆動電極11a,11bと可動電極部12との間に静電力を発生させることができればよく、位置や配置は問わない。また、変位部材2は、作用した加速度に応じて基板1に対して面内方向の加速度の検出ができればよく、支持梁56の形態や、慣性質量体3の支持方法に依らない。
7 検出フレーム、11a、11b 駆動電極、12 可動電極部、
15、15−2 センサ素子構造体、
20 容量−電圧変換回路、30 サーボ制御回路、
101,102 サーボ型加速度センサ、201 演算処理回路、
301,302 角加速度検出装置。

Claims (2)

  1. 回転可能な構造物の一平面に距離を隔てて配置され、かつ、加速度検出方向が互いに平行でかつ互いの配置位置を結ぶ線分に対して直交して配置される一対のセンサと、これらのセンサと電気的に接続される演算処理回路とを備えた角加速度検出装置であって、
    それぞれの上記センサは、
    加速度の作用によって変位する可動電極と、
    可動電極に対向して配置され、電圧の印加によって可動電極との間に発生する静電力によって可動電極を駆動する駆動電極と、
    加速度の作用によって生じる可動電極の変位を検出する検出部と、
    検出部が検出した可動電極の変位に応じて、可動電極を所定位置へ駆動するサーボ電圧を駆動電極へ印加するサーボ制御部と、を有し、
    上記演算処理回路は、
    それぞれの上記サーボ制御部が駆動電極へ印加する各サーボ電圧の和及び差を算出し、得られた和値と差値とを乗算して角加速度として出力する、
    ことを特徴とする角加速度検出装置。
  2. 回転可能な構造物の一平面に距離を隔てて配置され、かつ、加速度検出方向が互いに平行でかつ互いの配置位置を結ぶ線分に対して直交して配置される一対のセンサと、これらのセンサと電気的に接続される演算処理回路とを備えた角加速度検出装置にて実行される角加速度検出方法であって、
    それぞれの上記センサでは、
    加速度の作用による可動電極の変位を検出部で検出し、検出部が検出した可動電極の変位に応じて可動電極を所定位置へ駆動するサーボ電圧をサーボ制御部から駆動電極へ印加し、
    上記演算処理回路では、
    それぞれの上記サーボ制御部が駆動電極へ印加する各サーボ電圧の和及び差を算出し、得られた和値と差値とを乗算して角加速度として出力する、
    ことを特徴とする角加速度検出方法。
JP2012122815A 2012-05-30 2012-05-30 角加速度検出装置及び検出方法 Expired - Fee Related JP5800759B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012122815A JP5800759B2 (ja) 2012-05-30 2012-05-30 角加速度検出装置及び検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012122815A JP5800759B2 (ja) 2012-05-30 2012-05-30 角加速度検出装置及び検出方法

Publications (2)

Publication Number Publication Date
JP2013250065A JP2013250065A (ja) 2013-12-12
JP5800759B2 true JP5800759B2 (ja) 2015-10-28

Family

ID=49848911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012122815A Expired - Fee Related JP5800759B2 (ja) 2012-05-30 2012-05-30 角加速度検出装置及び検出方法

Country Status (1)

Country Link
JP (1) JP5800759B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023100249A1 (ja) * 2021-11-30 2023-06-08
WO2023100250A1 (ja) * 2021-11-30 2023-06-08 日本電信電話株式会社 動き取得装置、動き取得方法及び動き取得プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270766A (ja) * 1985-09-25 1987-04-01 Nissan Motor Co Ltd 車両揺動運動検出装置
JPH04136708A (ja) * 1990-09-25 1992-05-11 Hitachi Ltd ヨー角加速度検出装置とヨー運動制御装置及びヨー運動制御装置付車両
JPH1123611A (ja) * 1997-07-09 1999-01-29 Japan Aviation Electron Ind Ltd 静電トルカ型加速度計
WO2003044539A1 (fr) * 2001-11-19 2003-05-30 Mitsubishi Denki Kabushiki Kaisha Accelerometre
JP2006226762A (ja) * 2005-02-16 2006-08-31 Mitsubishi Electric Corp ロールオーバセンシング装置

Also Published As

Publication number Publication date
JP2013250065A (ja) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5432440B2 (ja) 揺動体装置
JP6328823B2 (ja) 加速度センサー構造体およびその用途
JP5714648B2 (ja) 力学量memsセンサ及び力学量memsセンサシステム
JP3941694B2 (ja) 加速度センサ
JP5772873B2 (ja) 静電容量式物理量センサ
JP6583547B2 (ja) 改良型微小電気機械加速度測定装置
WO2013179647A2 (ja) 物理量センサ
JP2008139282A (ja) 加速度センサ
JPWO2009125510A1 (ja) 加速度センサ
JP2012163507A (ja) 加速度センサ
JP2018531377A6 (ja) 改良型微小電気機械加速度測定装置
JP4367165B2 (ja) 半導体力学量センサの検査方法
JP5800759B2 (ja) 角加速度検出装置及び検出方法
JP2015125124A (ja) 多軸センサ
CN111512118B (zh) 检测质块偏移量补偿
CN110366685B (zh) 电极层分区
JP5822321B2 (ja) 回転角加速度測定装置
Tavakoli et al. Designing a new high performance 3-axis MEMS capacitive accelerometer
JP5292600B2 (ja) 加速度センサ
WO2014156119A1 (ja) 物理量センサ
JP5535124B2 (ja) 加速度センサ
JP2008256578A (ja) 角速度センサ
JP5900398B2 (ja) 加速度センサ
JP2014048179A (ja) 回転検出装置および方法
JP2013152111A (ja) 加速度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150825

R150 Certificate of patent or registration of utility model

Ref document number: 5800759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees