JP5783202B2 - 内燃機関の異常検出装置 - Google Patents

内燃機関の異常検出装置 Download PDF

Info

Publication number
JP5783202B2
JP5783202B2 JP2013067210A JP2013067210A JP5783202B2 JP 5783202 B2 JP5783202 B2 JP 5783202B2 JP 2013067210 A JP2013067210 A JP 2013067210A JP 2013067210 A JP2013067210 A JP 2013067210A JP 5783202 B2 JP5783202 B2 JP 5783202B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
sensor
abnormality
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013067210A
Other languages
English (en)
Other versions
JP2014190270A (ja
Inventor
勇夫 中島
勇夫 中島
松田 好史
好史 松田
純久 小田
純久 小田
秤谷 雅史
雅史 秤谷
正英 岡田
正英 岡田
辻 宏彰
宏彰 辻
登喜司 伊藤
登喜司 伊藤
達郎 島田
達郎 島田
敏宏 加藤
敏宏 加藤
裕也 吉川
裕也 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013067210A priority Critical patent/JP5783202B2/ja
Priority to US14/216,004 priority patent/US9341544B2/en
Publication of JP2014190270A publication Critical patent/JP2014190270A/ja
Application granted granted Critical
Publication of JP5783202B2 publication Critical patent/JP5783202B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • G01M15/104Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases using oxygen or lambda-sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、排気中の酸素濃度に応じた出力を生じるセンサを排気通路に備えた内燃機関の異常検出装置に関する。
一般に、触媒を利用した排気浄化システムを備える内燃機関では、排気中有害成分の触媒による浄化を高効率で行うため、内燃機関で燃焼される混合気の空気と燃料との混合割合、すなわち空燃比のコントロールが欠かせない。こうした空燃比の制御を行うため、そのような内燃機関では、排気通路の排気浄化用触媒つまり触媒浄化装置の上下流側に排気中の酸素濃度に応じた出力を生じるセンサを設け、これらによって検出された空燃比を所定の目標空燃比に追従させるよう空燃比フィードバック制御が実施されている。例えば、触媒の上流側には広域空燃比センサが設けられ、その下流側には酸素センサが設けられる。
しかし、そのようなセンサに欠損が生じ、適切に上記空燃比制御を実施できない場合がある。そこで、このような場合には、それを迅速に検知し、修理等の対策をとることが求められる。
特許文献1は、酸素センサの異常診断装置を開示する。一般的な酸素センサは、その検出素子の内面を大気に曝すと共にその外面を排気に曝すように排気通路に配置され、大気と排気との酸素分圧、要するに酸素濃度に差が生じると、酸素濃度の高い方側から低い側へ酸素イオンが検出素子内部を流れるので起電力を発生する。しかし、酸素センサの検出素子に欠損が生じると、つまり素子割れが生じると、検出素子内部に排気が流入することになり、検出素子内外の酸素濃度に差が生じなくなる。その結果、いわゆる排気中に酸素が多くなるリーン燃焼時と同様の出力を酸素センサは出す。つまり、検出素子に欠損が生じると、酸素センサがリーン燃焼時と同様の出力を生じる程度が増す。そこで、特許文献1の装置は、この現象に着目し、その酸素センサの出力パターンに基づいて、酸素センサの検出素子に欠損異常があることを検知する構成を有する。
一方、複数の気筒を有する内燃機関つまりいわゆる多気筒内燃機関においては、通常全気筒に対して同一の制御量を用いて空燃比制御を行うため、空燃比制御を実行したとしても実際の空燃比が気筒間でばらつくことがある。このときばらつきの程度が小さければ、空燃比フィードバック制御で吸収可能であり、また触媒でも排気中有害成分を浄化処理可能なので、排気エミッションに影響を与えず、特に問題とならない。
しかし、例えば一部の気筒の燃料噴射系や吸気バルブの動弁機構が故障するなどして、気筒間の空燃比が大きくばらつくと、排気エミッションを悪化させてしまい、問題となる。このような排気エミッションを悪化させる程の大きな空燃比ばらつきは異常として検出するのが望ましい。
例えば、排気通路に設けられた広域空燃比センサの出力に基づく検出空燃比変化率を判定用閾値と比較することにより気筒間に空燃比ばらつき異常が発生していることを検出することができる(例えば特許文献2参照)。
特開2003−14683号公報 国際公開第2011−070688号
ここで、排気通路において触媒の上流側に広域空燃比センサを設け、その下流側に酸素センサを設けた内燃機関を想定する。この内燃機関では、後で詳しく述べるように、気筒間空燃比ばらつきが大きいとき、例えば異常気筒で生じた水素成分の影響により、酸素センサがリーン燃焼時のような出力を生じやすく、これは特に吸入空気量が多いときに生じやすい。したがって、この内燃機関が酸素センサの欠損異常検出用に上記構成を備える場合、そのような欠損異常が無くても、気筒間空燃比ばらつきが大きいとき、酸素センサの出力に基づいて、上で述べた如く酸素センサの検出素子に欠損異常があると誤検知される可能性がある。
そこで、本発明は、以上の事情に鑑みて創案され、その目的は、気筒間空燃比ばらつきが大きいときに、排気中の酸素濃度に応じた出力を生じるセンサの出力に基づいて、当該センサに欠損異常があると誤検出されることを防ぐことにある。
本発明の一の態様によれば、複数の気筒を有する内燃機関の排気通路において排気浄化用触媒の下流側に設けられて排気中の酸素濃度に応じた出力を生じる下流側センサの検出素子の欠損異常を、該下流側センサの出力に基づいて検出するように構成されたセンサ欠損異常検出手段であって、該下流側センサの出力の分布が空燃比が理論空燃比よりもリーンであることを示す領域に偏っていることに基づいて該下流側センサの検出素子に欠損異常があることを検出するセンサ欠損異常検出手段と、吸入空気量が所定量を越えるとき、該センサ欠損異常検出手段による該検出素子の欠損異常の検出を禁止するように構成された禁止手段とを備えた、内燃機関の異常検出装置が提供される。
センサ欠損異常検出手段は、所定回数、下流側センサの出力電圧を取得して、該取得した出力電圧が所定電圧域に含まれる回数に基づいて、該下流側センサの出力の分布を求めることができる。センサ欠損異常検出手段は、空燃比フィードバックストイキ制御が行われているときの下流側センサの出力に基づいて該下流側センサの検出素子の欠損異常を検出することができる。
好ましくは、該排気浄化用触媒の上流側に設けられた上流側空燃比センサの出力に基づいて気筒間の空燃比ばらつきの度合いを表す値を算出する値算出手段と、該値算出手段により算出された値に基づいて上記禁止手段における上記所定量を算出する所定量算出手段とがさらに備えられる。
また、代わりに、該排気浄化用触媒の上流側に設けられた上流側空燃比センサの出力に基づいて気筒間の空燃比ばらつきの度合いを表す値を算出する値算出手段と、該値算出手段により算出された値に基づいて気筒間空燃比ばらつき異常があることを検出するばらつき異常検出手段とがさらに備えられてもよい。この場合、該値算出手段により算出された値に基づいて上記所定量を算出する所定量算出手段がさらに備えられることができる。
好ましくは、上記内燃機関の異常検出装置またはその変形において、該排気浄化用触媒の上流側に設けられた上流側空燃比センサの出力に基づいて気筒間の空燃比ばらつきの度合いを表す値を算出する値算出手段と、該値算出手段により算出された値と所定値とを比較することにより、気筒間の空燃比ばらつきの度合いが所定レベル以上であることを検出するばらつきレベル検出手段と、該ばらつきレベル検出手段により気筒間の空燃比ばらつきの度合いが該所定レベル以上であることが検出されなかったとき、該禁止手段の作動を禁止する第2禁止手段とがさらに備えられるとよい。
上記構成を有する本発明によれば、禁止手段により吸入空気量が所定量を超えるときセンサ欠損異常検出手段による下流側センサの検出素子の欠損異常の検出が禁止される。したがって、下流側センサの検出素子に欠損異常が無いまたはそれが問題にならない程度であるときに、気筒間空燃比ばらつきが大きいことに伴い、たとえ下流側センサの出力の分布が空燃比が理論空燃比よりもリーンであることを示す領域に偏ったとしても、それに基づき、センサ欠損異常検出手段により、下流側センサの検出素子に欠損異常があると誤検出されることを防ぐまたは抑制することができる。
本発明の第1実施形態に係る内燃機関の概略図である。 触媒前センサの出力特性を示すグラフである。 触媒後センサの出力特性を示すグラフである。 触媒後センサである酸素センサの概念構造を示す模式図である。 図4の酸素センサの出力波形例を示すグラフである。 図5の酸素センサの出力電圧の分布を示すグラフである。 触媒後センサの検出素子の欠損異常の検出処理のフローチャートである。 インバランス割合と排気通路へ排出される水素量との関係を表したグラフである。 気筒間空燃比ばらつきの程度に応じた排気空燃比の変動例を示すグラフである。 図9のX部に相当する拡大模式図である。 インバランス割合と出力変動パラメータとの関係を示すグラフである。 気筒間空然比ばらつき異常の検出処理のフローチャートである。 第1実施形態における、センサ欠損異常検出の禁止処理のフローチャートである。 第2実施形態における、センサ欠損異常検出の禁止処理のフローチャートである。 出力変動パラメータと禁止判定用所定値との関係を示すグラフである。 第3実施形態における、センサ欠損異常検出の禁止処理のフローチャートである。
以下、本発明の実施形態を添付図面に基づき説明する。まず、第1実施形態について説明する。
図1は、本第1実施形態に係る内燃機関の概略図である。内燃機関(以下、エンジン)1は、シリンダブロックを含むエンジン本体2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、気筒内でピストンを往復移動させることにより動力を発生する。本実施形態のエンジン1は自動車用の多気筒内燃機関であり、より具体的には直列4気筒の火花点火式内燃機関すなわちガソリンエンジンである。ただし、本発明が適用可能な内燃機関はこのようなものに限られず、複数の気筒を有する内燃機関であれば気筒数、形式等は特に限定されない。なお、エンジン1は図示しないが車に搭載されている。
図示しないが、エンジン1のシリンダヘッドには吸気ポートを開閉する吸気弁と、排気ポートを開閉する排気弁とが気筒ごとに配設されており、各吸気弁および各排気弁はカムシャフトによって開閉させられる。シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ4が気筒ごとに取り付けられている。また、シリンダヘッドには、燃焼室3内に直接燃料を噴射するインジェクタ(燃料噴射弁)5が気筒ごとに配設されている。
各気筒の吸気ポートは気筒毎の枝管6を介して吸気集合室であるサージタンク7に接続されている。サージタンク7の上流側には吸気管8が接続されており、吸気管8の上流端にはエアクリーナ9が設けられている。そして吸気管8には、上流側から順に、吸入空気量を検出するための吸入空気量検出手段としてのエアフローメータ10と、電子制御式のスロットルバルブ11とが組み込まれている。吸気ポート、枝管6、サージタンク7および吸気管8は、それぞれ吸気通路12の一部を形成する。
一方、各気筒の排気ポートは排気マニホールド13に接続される。排気マニホールド13は、その上流部をなす気筒毎の枝管13aと、その下流部をなす排気集合部13bとからなる。排気集合部13bの下流側には排気管14が接続されている。排気ポート、排気マニホールド13および排気管14はそれぞれ排気通路15の一部を形成する。排気管14にはいわゆる三元触媒である排気浄化用触媒つまり触媒浄化装置16が取り付けられている。
触媒16の上流側および下流側にそれぞれ排気中の酸素濃度に応じた出力を生じるセンサ、より詳しくは、空燃比を検出するための空燃比センサ17、18が設置されている。触媒16の上流側のセンサ(上流側センサ)17は、ここでは触媒前センサ17と称され、触媒16の下流側のセンサ(下流側センサ)18は、ここでは触媒後センサ18と称される。これら触媒前センサ17および触媒後センサ18は、触媒16の直前および直後の位置の排気通路に設置され、それぞれ排気中の酸素濃度に基づく出力を発生する。
なお本第1実施形態では、触媒後センサ18の下流側にも、触媒16と同様の三元触媒からなる触媒つまり触媒浄化装置19が取り付けられている。
上述の点火プラグ4、インジェクタ5、スロットルバルブ11等は、制御装置つまり制御手段として構成された電子制御ユニット(以下、ECU)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ10、触媒前センサ17、触媒後センサ18のほか、エンジン1のクランク角を検出するためのクランク角センサ21、アクセル開度を検出するためのアクセル開度センサ22、エンジン1が搭載された車の速度つまり車速を検出するための車速センサ23、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの出力に基づいて、所望のエンジン出力が得られるように、点火プラグ4、インジェクタ5、スロットルバルブ11等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。なおスロットル開度はアクセル開度に応じた開度に制御され、アクセル開度が大きくなるほどスロットル開度も大きくなる。
このように、ECU20は、燃料噴射制御手段、点火制御手段、吸入空気量制御手段等のそれぞれの機能を担う。そして、以下の説明から明らかなように、ECU20は、空燃比制御手段、触媒後センサ18を対象としたセンサ欠損異常検出手段、禁止手段、値算出手段、ばらつき異常検出手段の各機能を担う。
そして、ECU20は、エアフローメータ10からの出力信号に基づき、単位時間当たりの吸入空気の量すなわち吸入空気量を検出する。ECU20は、クランク角センサ21からのクランクパルス信号に基づき、クランク角自体を検出すると共にエンジン1の回転数を検出する。ここで「回転数」とは単位時間当たりの回転数のことをいい、回転速度と同義である。そして、ECU20は、通常、吸入空気量およびエンジン回転速度つまりエンジン運転状態に基づいて、予め記憶装置に記憶するデータ等を用いて、燃料噴射量(または燃料噴射時間)を設定する。そして、その燃料噴射量に基づいて、インジェクタ5からの燃料の噴射が制御される。
ところで、触媒前センサ17はいわゆる広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能である。図2に触媒前センサ17の出力特性を示す。図示するように、触媒前センサ17は、空燃比(触媒前空燃比A/Ff)に比例した大きさの電圧信号Vfを出力する。空燃比がストイキ(理論空燃比、例えばA/F=14.6)であるときの出力電圧はVreff(例えば約3.3V)である。
他方、触媒後センサ18はいわゆる酸素(O)センサからなり、ストイキを境に出力値が急変する特性を持つ。図3に触媒後センサ18の出力特性を示す。図示するように、空燃比(触媒後空燃比A/Fr)がストイキであるときの出力電圧、すなわちストイキ相当値はVrefr(例えば0.45V)である。触媒後センサ18の出力電圧は所定の範囲(例えば0〜1V)内で変化する。概して空燃比がストイキよりリーンのとき、触媒後センサ18の出力電圧Vrはストイキ相当値Vrefrより低くなり、空燃比がストイキよりリッチのとき、触媒後センサ18の出力電圧Vrはストイキ相当値Vrefrより高くなる。
触媒浄化装置16、19はそれぞれ三元触媒からなり、それぞれに流入する排気の空燃比A/Fがストイキ近傍のときに排気中の有害成分であるNOx、HCおよびCOを同時に浄化する。この三者を同時に高効率で浄化できる空燃比の幅(ウィンドウ)は比較的狭い。
そこで、エンジン1の通常運転時、上流側の触媒浄化装置16に流入する排気の空燃比をストイキ近傍に制御するための空燃比制御(ストイキ制御)がECU20により実行される。この空燃比制御は、触媒前センサ17によって検出された排気の空燃比が所定の目標空燃比であるストイキになるように混合気の空燃比(具体的には燃料噴射量)をフィードバック制御する主空燃比制御(主空燃比フィードバック制御)と、触媒後センサ18によって検出された排気の空燃比がストイキになるように混合気の空燃比(具体的には燃料噴射量)をフィードバック制御する補助空燃比制御(補助空燃比フィードバック制御)とからなる。具体的には、主空燃比フィードバック制御では、触媒前センサ17の出力に基づいて検出される現状の空燃比を所定の目標空燃比に追従させるために、第1補正係数を演算して、この第1補正係数に基づいてインジェクタ5からの燃料噴射量を調整するような制御が実行される。そして、さらに補助空燃比フィードバック制御では、触媒後センサ18の出力に基づいて、第2補正係数を演算し、主空燃比フィードバック制御にて得られた第1補正係数を修正するような制御が実行される。ただし、本実施形態において、上記所定の目標空燃比つまり空燃比の基準値(目標値)はストイキであり、このストイキに相当する燃料噴射量(ストイキ相当量という)が燃料噴射量の基準値(目標値)である。但し、空燃比および燃料噴射量の基準値は他の値とすることもできる。なお、空燃比制御においては、各気筒に対し同一の制御量が一律に用いられる。
さて、エンジン1は、上で述べたような酸素センサの欠損異常の有無を診断するまたはそれを検出する装置つまりセンサ欠損異常検出装置(センサ欠損異常検出手段)を備えている(例えば特許文献1参照)。これは、酸素センサである触媒後センサ18に欠損が生じたとき、そのままでは適切に上記空燃比制御を行うことができないからである。以下、酸素センサである触媒後センサ18の検出素子の欠損異常およびその検出処理に関して説明する。なお、以下の説明から明らかなように、当該センサ欠損異常検出手段またはその機能は、実質的にECU20が担う。
まず、触媒後センサ18つまり酸素センサに関して説明する。触媒後センサ18は、固体電解質を用いた筒型酸素センサとして構成されている。このセンサ18は、図4(a)にその概念構造を示すように、排気通路15内に突出するように配設された筒型の検出素子(センサ素子)18aを備えている。検出素子18aは、その内面が大気(空気)に露呈するとともに、その外面が、センサカバー18bを通して流れ過ぎる排気に曝される。また検出素子18aは、その一部の断面構造を図4(b)に示すように、内外の表面に電極が被覆された固体電解質により形成されている。固体電解質は、酸素がイオン化した状態でその内部を移動可能な固形物質を指し、ここではジルコニアが利用されている。なお、固体電解質は他の材料から構成されてもよい。
さて、そうした検出素子18aを介して隔てられたその内側の大気と外側の排気との酸素分圧、要するに酸素濃度に差が生じると、その差を縮小すべく、酸素濃度の高い側(通常は大気側)の酸素がイオン化して固体電解質を通り、酸素濃度の低い側(通常は排気側)へと移動する。酸素分子はイオン化する過程で4価の電子を受け取り、イオン化した状態から分子に戻る過程で4価の電子を放出する。そのため、この酸素の移動に応じて検出素子18aの内外表面の電極で電子の移動が生じ、その結果、検出素子に起電力が発生する。こうしてこの触媒後センサ18は、大気と排気との酸素分圧つまり酸素濃度の差に応じた電圧を出力する。
一方、排気の酸素濃度は、燃焼された混合気の空燃比に応じて変化する。例えば、ストイキ、あるいはそれよりもリッチな空燃比で燃焼した混合気の場合、混合気の酸素がほぼ完全に燃焼し尽くされるため、その排気の酸素濃度はほぼ零となる。またストイキよりもリーンな空燃比の場合には、燃焼時に酸素が余る。そのため、空燃比がリーンとなるほど、排気中の酸素濃度は高くなる。これに対して、大気の酸素濃度は、常にほぼ一定である。したがって、大気の酸素濃度を基準とした排気の酸素濃度に応じたセンサ18の出力電圧により、エンジン1で燃焼された混合気の空燃比を把握できる。これは、既に、図3を参照しつつ説明した通りである。
さて、こうした酸素センサである触媒後センサ18において、検出素子18aの欠損が生じて検出素子18aの内外が連通すると、検出素子外部の排気ガスがその内部に侵入し、その内外の酸素濃度の差が無くなって触媒後センサ18は起電力を発生しなくなる。よって、触媒後センサ18の出力を監視し、検出素子18a内外の酸素濃度に差がないまたは実質的に無いことを示す信号を出力し続けるような出力パターンが認められた場合、検出素子18の欠損が生じたものと判断することができる。
ここで、触媒後センサ18のエンジン運転中における出力パターンの例を図5に概念的に示す。空燃比フィードバックストイキ制御が行われ、エンジンでストイキ燃焼が行われているときの触媒後センサ18の正常な出力パターンの例が、図5(a)に示されている。このようにストイキ燃焼時には、正常時の触媒後センサ18の出力は、空燃比がストイキよりもリッチであることを示す高い電圧と、それよりもリーンであることを示す低い電圧とを交互に繰り返すような出力パターンを呈する。
一方、エンジン1では、高負荷運転時には、ストイキよりもリッチな空燃比で燃焼が行われる。こうしたときには、正常時の触媒後センサ18の出力は、図5(b)に例示するように、空燃比がストイキよりもリッチであることを示す比較的高い電圧域内で推移するような出力パターンを呈する。
これに対し、検出素子18aに欠損が生じたときの触媒後センサ18は、図5(c)に例示するような出力パターンの出力を生じる。すなわち、欠損が生じた場合には、触媒後センサ18が正常であれば排気と大気との酸素濃度の差がほとんど無いことを示す「0」V付近の電圧を出力しつづける状態に触媒後センサ18の出力は保持される。ただし、燃料カット復帰後のような排気の酸素濃度の急変に応じて、触媒後センサ18は時折高い電圧を出力し得る。
以上のように、検出素子18aに欠損が生じたときには、触媒後センサ18の出力パターンは、正常時とは大きく異なっている。図6(a)〜(c)は、図5の各状況での触媒後センサ18の出力分布を示している。図6に示されるように、検出素子18aの欠損が生じたときには、触媒後センサ18の出力の分布は、空燃比がストイキよりもリーンであることを示す低い電圧域に偏るため(図6(c)参照)、そのときを正常時(図6(a)、b))と明確に区別できる。このため、触媒後センサ18の出力分布から、検出素子18aの欠損の有無を容易かつ的確に判断できる。
よって、ここでは、エンジン運転中の触媒後センサ18の出力のモニタ結果から、こうした触媒後センサ18の出力分布を求め、それに基づいて検出素子18aに欠損が生じているときにはそれを検出する。以下、こうしたセンサ欠損異常検出処理の詳細を、図7のフローチャートに基づいて説明する。なお図7のフローに基づく処理は、触媒後センサ18を対象として、エンジン運転中にECU20により繰り返し実行される。
ステップS701では、禁止フラグがOFFになっているか否かが判定される。禁止フラグは、初期状態ではOFFになっている。なお、禁止フラグに関しては後述する。ステップS701で否定判定されると、該ルーチンは終了する。したがって、この場合、以下に説明される図7の各ステップは実行されず、触媒後センサ18の検出素子18aの欠損異常の検出が実質的に行われない。
ステップS701で肯定判定されると、次ぐステップS702では、前提条件が成立しているか否かが判定される。前提条件としては、車速が所定速度以上であること(条件a1)、アイドル運転中でないこと(条件a2)、燃料カット中でないこと(条件a3)および吸入空気量が所定空気量(第1所定量)以上であること(条件a4)の4つの条件が定められている。そして、これら4つの条件が全て成立するとき、ステップS702で肯定判定され、それらのうちの1つでも成立しないときステップS702で否定判定される。しかし、前提条件はこれら(a1)から(a4)に限定されず、例えばこれらにさらなる条件が追加されてもよい。なお、前提条件は、ある程度の吸入吸気量があり(条件a4が成立)、つまり、排気量があり、混合気の空燃比が所定空燃比域内にあるように定められるとよい。なお、好ましくは、前提条件が成立しているときは空燃比フィードバックストイキ制御が行われているときであるとよい。
ステップS702で肯定判定されるとき、ステップS703で、総カウンタが1だけ増やされる。なお、総カウンタは、初期状態ではゼロであり、ステップS703に至るごとに1だけ増やされる(インクリメントされる)。さらに、ステップS703では、触媒後センサ18の出力(電圧)が取得され(サンプリングされ)、それが図6の4つの領域のうちの該当するいずれかの領域に振り分けられ、振り分けられた領域に関する個別カウンタが1つだけ増やされる(インクリメントされる)。つまり、4つの個別カウンタがある。
なお、図6の領域は、電圧が低いほうから順に、第1領域α、第2領域β、第3領域γ、第4領域δとされる。第1領域αは触媒後センサ18がほとんど電圧を出力していない電圧域(0.05V以下)であり、第2領域βは触媒後センサ18が正常時に一般に混合気の空燃比がストイキよりもリーンのときに出力する電圧域(0.05〜0.45V)であり、第3領域γは第2領域βと第4領域δとの中間の電圧域(0.45〜0.7V)であり、そして、第4領域δは触媒後センサ18が正常時に一般に混合気の空燃比がストイキよりもリッチのときに出力する電圧域(0.7V以上)である。
こうした総カウンタの操作(カウント)、触媒後センサ18のセンサ出力のサンプリングおよび個別カウンタの操作(カウント)は、ステップS701およびS702で肯定判定され続ける限りは行われる。
そして、ステップS704で総カウンタが所定値を超えたか否かが判定される。この所定値は、触媒後センサ18の検出素子18aの欠損異常を検出可能にするためのモニタ時間に対応する値として予め実験に基づいて設定されている。
ステップS704で否定判定されると、当該ルーチンは終了する。一方、ステップS704で肯定判定されると、ステップS705で、触媒後センサ18の検出素子18aの欠損異常判定または検出用の条件が成立しているか否かが判定される。ここでは、第1領域αの個別カウンタが第1所定異常値以上であること(条件b1)、第4領域δの個別カウンタが第2所定異常値未満であること(条件b2)、および、第2領域βの個別カウンタと第3領域γの個別カウンタの合計値が第3所定異常値未満であること(条件b3)の3つの条件が欠損異常判定用の条件として定められている。それら3つの条件(b1)から(b3)が全て成立するとき、ステップS705で肯定判定される、つまり欠損異常ありと判定される。
そして、ステップS705で肯定判定されると、触媒後センサ18の検出素子18aの欠損異常検出用条件が成立しているので、ステップS706で初期状態ではOFFになっている欠損異常フラグがONにされる。これにより、運転席のフロントパネル等に設けられている警報ランプが点灯される。なお、警報ランプが点灯されることに限定されず、触媒後センサ18の欠損異常が検出されたとき用の予め設定された制御が行われてもよい。例えば、上記補助空燃比フィードバック制御に所定のガードが導入されたりして、例えば上記第2補正係数が所定値または所定範囲内の値に設定されるなどして、触媒後センサ18に異常があるとき用の燃料噴射制御が行われることもできる。
他方、ステップS705で否定判定されるときは、触媒後センサ18の欠損異常が検出されなかったときであるので、要するに欠損異常がないときであるので、ステップS707で総カウンタおよび4つの個別カウンタがリセットされる。これにより、繰り返し、触媒後センサ18の欠損異常の検出が行われることになる。なお、ステップS707で、さらに、欠損異常フラグがOFFにされてもよい。
なお、ここでは、上で述べたように、(条件b1)から(条件b3)の全てが成立することを触媒後センサ18の検出素子18aの欠損異常検出または判定の要件とした。しかし、その欠損異常検出条件は、これらに限定されない。上記したように、検出素子18aに欠損があるときには、触媒後センサ18の出力の分布は、空燃比がストイキよりもリーンであることを示す領域に偏る。この特性に着目して見出された種々の条件をその欠損異常検出条件として定めることができる。
さて、このような触媒後センサ18を対象としたセンサ欠損異常検出手段を備えるエンジン1は、さらに、気筒間空燃比ばらつき異常を検出するための装置つまり、気筒間の空燃比ばらつきの度合いを表す値を算出する値算出手段および気筒間空燃比ばらつき異常があることを検出するばらつき異常検出手段を備えている。以下、気筒関空燃比ばらつきおよびその検出処理に関して説明する。なお、以下の説明から明らかなように、当該値算出手段およびばらつき異常検出手段またはそれらの機能は、実質的にECU20が担う。
まず、気筒関空燃比ばらつきおよびその度合いを表す値の算出に関して説明する。例えば全気筒のうちの一部の気筒(特に1気筒)において、インジェクタ5の故障等が発生し、気筒間に空燃比のばらつき(インバランス:imbalance)が発生することがある。例えば、インジェクタ5の閉弁不良により#1気筒の燃料噴射量が他の#2,#3,#4気筒の燃料噴射量よりも多くなり、#1気筒の空燃比が他の#2,#3,#4気筒の空燃比よりも大きくリッチ側にずれる場合である。
このときでも、前述の空燃比フィードバック制御により比較的大きな補正量を与えれば、触媒前センサ17に供給されるトータルガス(合流後の排気)の空燃比をストイキに制御できる場合がある。しかし、気筒別に見ると、#1気筒がストイキより大きくリッチ、#2,#3,#4気筒がストイキよりリーンであり、全体のバランスとしてストイキとなっているに過ぎず、エミッション上好ましくないことは明らかである。
また、燃焼室に供給される燃料は炭素と水素との化合物である。したがって、燃焼に供される混合気の空燃比がストイキよりもリッチ側の空燃比であると、HC、CO、Hなどの未燃物が中間生成物として生成され、リッチ側の空燃比であるほど、それら未燃物が酸素と結合する、つまり酸化燃焼する確率が急激に小さくなる。この結果、リッチ側の空燃比であるほど、それら未燃物が燃焼室から排出される量が増す。これは、気筒間空燃比ばらつきの度合いが大きくなる場合でも同様であり、図8に示される。
図8は、リッチ側の空燃比またはインバランス割合に対する、水素の排出量の変化を示すグラフである。インバランス割合(%)とは、気筒間空燃比のばらつき度合いつまりインバランス度合いを表す一つのパラメータである。すなわち、インバランス割合とは、全気筒のうちある1気筒のみが燃料噴射量ずれを起こしている場合に、その燃料噴射量ずれを起こしている気筒(インバランス気筒)の燃料噴射量がどれくらいの割合で、燃料噴射量ずれを起こしていない気筒(バランス気筒)の燃料噴射量からずれているかを示す値である。インバランス割合をIB、インバランス気筒の燃料噴射量をQib、バランス気筒の燃料噴射量つまり基準燃料噴射量をQsとすると、IB=(Qib−Qs)/Qs×100で表される。インバランス割合IBまたはその絶対値が大きいほど、インバランス気筒のバランス気筒に対する燃料噴射量ずれが大きく、気筒間空燃比ばらつきの度合いは大きい。したがって、図8から、気筒間空燃比ばらつきの度合いが大きくなるほど、水素の排出量が増すことが分かる。
一方、いわゆる広域空燃比センサである触媒前センサ17は、一般に拡散抵抗層を備え、その拡散抵抗層を通過して触媒前センサ17の排気側電極層(検出素子表面)に到達した酸素の量(酸素濃度または酸素分圧)に応じた出力を発生する。しかし、触媒前センサ17の出力は、さらに、拡散抵抗層を通過した未燃物の量(濃度または分圧)にも応じたものである。
水素は、HC、COなどに比べて小さい分子である。したがって、水素は他の未燃物に比べて、触媒前センサ17の拡散抵抗層を拡散し易い。つまり、その拡散抵抗層において、水素の優先的な拡散が発生する。
気筒間空燃比ばらつきの度合いが大きくなると、この水素の優先的な拡散に起因して、触媒前センサ17の出力は、真の空燃比よりもリッチ側の空燃比に対応するものになる。したがって、真の空燃比よりもリッチ側の空燃比が触媒前センサ17により検出されるので、上記空燃比フィードバック制御により、気筒間空燃比ばらつきが無いまたはほとんど無い場合に比べて、より大きなリーン側への補正が行われる。したがって、例えば、酸素センサである触媒後センサ18は、リーンに偏った出力を生じる傾向が強まる。
この傾向は、インバランス気筒の燃料噴射量がバランス気筒の燃料噴射量よりも多い場合はもとより、インバランス気筒の燃料噴射量がバランス気筒の燃料噴射量よりも少ない場合でも同様である。インバランス気筒の燃料噴射量がバランス気筒の燃料噴射量よりも少ない場合には、インバランス気筒の燃料噴射量の不足分を補うように、空燃比フィードバック制御により他のバランス気筒の燃料噴射量が増やされる。したがって、バランス気筒からは、気筒関空燃比ばらつきが無いまたはほとんど無い場合に比べて、多くの水素が排出される。この水素に起因して、触媒前センサ17は、真の空燃比よりもリッチ側の空燃比に応じた出力を生じる傾向が高まる。したがって、インバランス気筒の燃料噴射量がバランス気筒の燃料噴射量よりも少ない場合でも、同様に、上記空燃比フィードバック制御が行われる結果、酸素センサである触媒後センサ18は、リーンに偏った出力を生じる傾向が強まる。
このように、かかる現象をもたらす気筒間空燃比ばらつきは、空燃比制御上好ましくないことは明らかである。したがって、ある程度以上の気筒間空燃比ばらつきは、異常として検出されることが好ましい。そこで、以下に述べるようにして、気筒間の空燃比ばらつきの度合いを表す値を算出して、その値に基づいて気筒間空燃比ばらつき異常を検出する。
本実施形態では、空燃比センサである触媒前センサ17の出力に基づいて、気筒間空然比ばらつきの度合いを表す値が算出され、それに基づいてばらつき異常の検出が行われる。
図9に示すように、気筒間に空燃比ばらつきが発生すると、1エンジンサイクル(=720°CA)間での排気空燃比の変動が大きくなる。(B)の空燃比線図a、b、cはそれぞれ気筒間空然比ばらつき無し、1気筒のみ20%のインバランス割合でリッチずれ、および1気筒のみ50%のインバランス割合でリッチずれの場合の、触媒前センサ17による検出空燃比A/Ffの一例を示す。図9に見られるように、気筒間の空然比ばらつきつまりインバランスの度合いまたは程度が大きくなるほど空燃比変動の振幅が大きくなる。これは、リーンずれの場合でも同様である。
このように、インバランス割合が大きいほど、すなわち気筒間空燃比ばらつきの度合いが大きいほど、触媒前センサ17の出力変動が大きくなる。よってこの特性を利用し、本実施形態では、触媒前センサ17の出力変動度合いを表す出力変動パラメータXを算出し、それを気筒間空燃比ばらつきの度合いつまり程度を表す値として用いる。
以下に出力変動パラメータXの算出方法を説明する。図10は図9のX部に相当する拡大模式図であり、特に1エンジンサイクル内の触媒前センサ17の出力の変動を簡略的に示す。触媒前センサ出力としては、触媒前センサ17の出力電圧Vfを空燃比A/Ffに換算した値を用いる。ただし触媒前センサ17の出力電圧Vfを直接用いることも可能である。
図10(B)に示すように、ECU20は、1エンジンサイクル内において、所定のサンプル周期τ(単位時間、例えば4ms)毎に、触媒前センサ出力A/Fの値を取得する。そして今回のタイミング(第2のタイミング)で取得した値A/Fnと、前回のタイミング(第1のタイミング)で取得した値A/Fn−1との差ΔA/Fn(=A/Fn−A/Fn-1)を求める。この差ΔA/Fnは今回のタイミングにおける微分値あるいは傾きと言い換えることができる。
最も単純には、この差ΔA/Fnまたはその大きさ(絶対値)が触媒前センサ17の出力の変動を表す。変動度合いが大きくなるほど空燃比線図の傾きが大きくなり、差ΔA/Fnの絶対値が大きくなるからである。そこで所定の1タイミングにおける差ΔA/Fnまたはその大きさを出力変動パラメータとすることができる。
ただし、本実施形態では、差ΔA/Fは、以下では、その大きさつまり絶対値とされる。そして、精度向上のため、複数の差ΔA/Fnの平均値を出力変動パラメータとする。特に、本実施形態では、1エンジンサイクルでもよいが、さらにそれよりも多いエンジンサイクルの間に相当する数の触媒前センサ17の出力を取得し、各タイミングでの差ΔA/Fnを算出し、その差ΔA/Fの絶対値を積算し、最終積算値をサンプル数で除し、所定エンジンサイクル内の差ΔA/Fnの絶対値の平均値を求める。こうして求められた最終的な平均値が出力変動パラメータXとされる。出力変動パラメータXは、触媒前センサ出力の変動度合いが大きくなるほど大きくなる。
図11には、インバランス割合IB(%)と出力変動パラメータXとの関係を示す。図示されるように、インバランス割合IBと出力変動パラメータXとの間には強い相関関係があり、インバランス割合IBの絶対値が増加するほど(気筒間空燃比ばらつきの度合いが大きくなるほど)パラメータXも増加する。それ故、出力変動パラメータXに基づいて気筒間空燃比ばらつき、特に所定レベル以上の気筒間空然比ばらつき(気筒間空燃比ばらつき異常)が生じていることを検出することが可能である。
図12のフローチャートに基づいて、さらに気筒間空然比ばらつき異常の検出処理を説明する。なお、図12のフローに基づく処理は、エンジン運転中にECU20により繰り返し実行される。
ステップS1201では、気筒間空然比ばらつき異常の検出を行うための前提条件が成立しているか否かが判定される。ここでは、エンジン運転状態が所定運転状態にあるとき、前提条件が成立していると判定される。具体的には、エンジン回転速度と、エンジン負荷(例えば、吸入空気量、アクセル開度)に基づいて、エンジン運転状態が所定運転状態にあるか否かが判定される。なお、所定運転状態は、ここでは、上記したような、空燃比をストイキ近傍に制御するための空燃比制御つまりストイキ制御が実行される運転状態である。ただし、前提条件には、これに加えてまたはこれに代えて種々の条件が含まれることができる。
ステップS1201で肯定判定されると、ステップS1203で、既に説明したようにして、取得された触媒前センサ17の出力に基づいて差ΔA/Fが算出され、これの絶対値が今までの|ΔA/F|の積算値SUMにさらに加算される(SUMn=SUMn−1+|ΔA/Fn|)。なお、ステップS1203のこの演算が行われるごとに、カウンタCが1ずつ増やされる(インクリメントされる)。
そして、ステップS1204でカウンタCが所定値を越えるか否かが判定される。ここでの所定値は所定サンプリング数であり、気筒間空燃比ばらつき異常の検出を可能にするサンプリング数つまり時間として予め実験に基づいて設定されている。ステップS1204で否定判定されると、該ルーチンは終了する。このように、前提条件が成立して、サンプリング数が所定値に達するまでは、触媒前センサ17の出力に基づく検出空燃比の差が求められてその絶対値が加算され続ける。
ステップS1204で肯定判定されると、ステップS1205で出力変動パラメータXが算出される。出力変動パラメータXは、そのときまでの積算値SUMをカウンタCで除することで算出される(X=SUM/C)。
そして、ステップS1206で、ステップS1205で算出された出力変動パラメータXが所定値εを超えているか否かが判定される。所定値εは図11に表され、気筒間空燃比ばらつきの度合いが異常と認めるほどであるか否かを判定するための閾値として、予め実験に基づいて設定されている。なお、所定値は図11に表される値εに限定されず、他の値であってもよい。
そして、ステップS1206で肯定判定されると、気筒間空燃比ばらつきの度合いがばらつき異常と認められるほど大きいので、ステップS1207で初期状態ではOFFになっているばらつき異常フラグがONにされる。これにより、運転席のフロントパネル等に設けられている警報ランプが点灯される。この場合、修理業者などによって、ばらつき異常フラグはOFFにされ得る。なお、警報ランプが点灯されることに限定されず、気筒間空燃比ばらつき異常が検出されたとき用の予め設定された制御が行われてもよい。例えば、このようにして気筒間空然比ばらつき異常が検出されたとき、気筒間空然比ばらつき異常の程度に応じて、例えば、ステップS1205で算出された出力変動パラメータXに基づいて、エンジン1が種々運転されることができる。
他方、ステップS1206で否定判定されるときは、気筒間空燃比ばらつき異常が無いときであるので、ステップS1208でカウンタC、積算値SUM、出力変動パラメータXがリセットされる。これにより、繰り返し、気筒間空燃比ばらつき異常の検出が行われることになる。なお、ステップS1208で、さらに、ばらつき異常フラグがOFFにされてもよい。
さて、このように、酸素センサである触媒後センサ18の検出素子の欠損異常の検出処理と、気筒間空燃比ばらつき異常の検出処理とは、並行して行われる。しかし、上記したように、気筒間空燃比ばらつきの度合いが大きくなると酸素センサである触媒後センサ18は、リーンに偏った出力を生じる傾向が強まる。そして、特に、吸入空気量が多いとき、それに伴い一般に燃料噴射量も増すので、触媒後センサ18の出力に対する上記水素の影響も増す傾向にある。したがって、気筒間空燃比ばらつきの度合いが高いときに、吸入空気量が多いエンジ運転が成されると、触媒後センサ18がストイキよりもリーン側の出力を生じる傾向がいっそう強まり、その結果、触媒後センサ18の検出素子に欠損異常が生じていると誤検出される可能性がある。
そこで、本第1実施形態では、そのように吸入空気量が多いときに、センサ欠損異常の誤検出を防ぐべく、触媒後センサ18の検出素子の欠損異常の検出が、つまりその検出手段の作動が禁止される。なお、この禁止は、ECU20により担われる禁止手段としての部分により行われる。
以下に、図13のフローチャートに基づいてこの触媒後センサ18の検出素子の欠損異常の検出処理に対する禁止処理が説明される。なお、図13のフローに基づく処理は、エンジン運転中にECU20により繰り返し実行される。
まず、ステップS1301では、吸入空気量が所定値以下か否かが判定される。この判定は、吸入空気量が所定値(第2所定量)を超えるか否かの判定に相当する。吸入空気量は、エアフローメータ10の出力に基づいて、ECU20が算出する。なお、所定値は、気筒間空燃比ばらつきの度合いが大きいときに、例えば気筒間空燃比ばらつき異常があるときに、それに基づいて、触媒後センサ18の検出素子18aに欠損異常が生じていると誤検出される可能性を考慮して、予め実験に基づいて定められている。ただし、ステップS1301での所定値は、上記(条件a4)の所定空気量(第1所定量)よりも大きな空気量である。
ステップS1301で肯定判定されたとき、ステップS1302で禁止フラグがOFFにされる。禁止フラグとは、触媒後センサ18の検出素子18aの欠損異常の検出処理を行うか否かの切り分けに用いられ、上記ステップS701に関する。つまり、禁止フラグがOFFになっているとき、ステップS701で肯定判定され、要するに図7に基づいて説明された触媒後センサ18の検出素子の欠損異常の上記検出処理の実行が許可される。
これに対して、ステップS1301で否定判定されたとき、ステップS1303で禁止フラグがONにされる。したがって、上記ステップS701で否定判定されることになり、これにより、触媒後センサ18の検出素子の欠損異常の上記検出処理が禁止される。
このように、吸入空気量が所定値(上記(条件a4)の第1所定量よりも多い第2所定量)を超えているとき、触媒後センサ18の検出素子の欠損異常の上記検出処理が禁止される。したがって、触媒後センサ18の検出素子の欠損異常が生じていないときに、仮に気筒間空燃比ばらつき異常が生じていても、その影響により、触媒後センサ18の検出素子の欠損異常が生じていると誤検出(誤判定)されることを防ぐことができる。
次に、本発明に係る第2実施形態が説明される。第2実施形態が適用されたエンジンの構成は概ね上記エンジン1と同じであるので、その説明は省略する。なお、以下では、第1実施形態との差異に関して主に説明する。
本第2実施形態でも、上記第1実施形態で説明したように、吸入空気量が多いとき、触媒後センサ18の検出素子の欠損異常が誤検出されることを防ぐべく、その検出処理が禁止される。しかし、本第2実施形態では、その禁止判定用の所定値が可変である。ここでは、上で述べたように算出される出力変動パラメータXに応じて禁止判定用所定値が算出されて設定される。
気筒間空燃比ばらつき度合いが高くなるほど、水素が排気通路に排出される傾向が高まり、触媒後センサ18がリーン出力傾向を示す度合いは高まる。したがって、気筒間空燃比ばらつき度合いが高いほど少ない吸入空気量でも触媒後センサ18がリーンを示す電圧を出力し易くなる。そこで、ここでは、気筒間空燃比ばらつき度合いに応じて、触媒後センサ18の検出素子の欠損異常の検出処理を禁止するか否かの判定用閾値(所定値)を変化させる。
以下、図14のフローチャートに基づいて第2実施形態での触媒後センサ18の検出素子18aの欠損異常の検出処理に対する禁止処理について説明する。なお、以下の説明から容易に理解できるように、ECU20は、上記第1実施形態のECU20と同様に値算出手段等の機能を担うと共に、さらに所定量算出手段の機能も担う。
ステップS1401では、出力変動パラメータXに基づいて、特に直近で算出されたパラメータXに基づいて、禁止用所定値が算出される。出力変動パラメータXは、このステップのために算出されることも可能であるが、ここでは、気筒間空燃比ばらつき異常検出処理の過程で算出されたパラメータXが用いられる。なお、初期状態では、パラメータXは算出されていないので、初期段階では、パラメータXとしてゼロ、または、予め実験に基づいて設定されている初期値がパラメータXとして用いられる。なお、エンジン1が一旦停止されたときに記憶装置に保持されている出力変動パラメータXがECU20において記憶保持され続け、その後のエンジン1の始動時にそれが用いられることもできる。
禁止用所定値とパラメータXとは図15に示す関係を有し、ECU20は予めこの関係に基づくデータまたは演算式を有していて、これらに基づいて所定値を算出する。図15から理解できるように、出力変動パラメータXが大きくなるほど、つまり、気筒間空燃比ばらつきの度合いが高くなるほど、禁止用所定値は小さくなる関係を、禁止用所定値とパラメータXとは有する。ただし、ステップS1401で算出される所定値は、上記(条件a4)の所定空気量よりも大きな空気量である。なお、図15では、禁止用所定値とパラメータXとの関係は直線的に変化するが、それは所定のカーブを描き得る。
そして、ステップS1402で、ステップS1401で算出された禁止用所定値が、エアフローメータ10の出力に基づいて求められた吸入空気量と比較される。そして、ステップS1402で吸入空気量が所定値以下であるので肯定判定されるとき、ステップS1403で禁止フラグがOFFにされる。これにより、触媒後センサ18の検出素子18aの欠損異常の検出処理の実行が許可される(ステップS701で肯定判定)。一方、ステップS1402で吸入空気量が所定値を越えているので否定判定されるとき、ステップS1404で禁止フラグがONにされる。これにより、触媒後センサ18の検出素子18aの欠損異常の検出処理が禁止される(ステップS701で否定判定)。
次に、本発明に係る第3実施形態が説明される。第3実施形態が適用されたエンジンの構成は概ね上記エンジン1と同じであるので、その説明は省略する。なお、以下では、第1実施形態との差異に関して主に説明する。
本第3実施形態でも、上記第1実施形態で説明したように、吸入空気量が多いとき、触媒後センサ18の検出素子の欠損異常が誤検出されることを防ぐべく、その検出処理が禁止される。一方、気筒関空燃比ばらつきの度合いがある程度以上高くないときには、吸入空気量が多くても、触媒後センサ18の検出素子の欠損異常の誤検出が生じないまたは生じ難い。そこで、本第3実施形態では、気筒関空燃比ばらつきの度合いに応じて、上記禁止処理の実行が切り分けられる。これにより、触媒後センサ18の検出素子の欠損異常の検出処理の実行頻度を高めることができる。
以下、図16のフローチャートに基づいて第3実施形態での触媒後センサ18の検出素子18aの欠損異常の検出処理に対する禁止処理について説明する。なお、以下の説明から容易に理解できるように、ECU20は、上記第1実施形態のECU20と同様に値算出手段等の機能を担うと共に、さらに、ばらつきレベル検出手段および第2禁止手段のそれぞれの機能も担う。
ステップS1601では、出力変動パラメータXが所定値ζ以上か否かが判定される。所定値ζは、気筒間空燃比ばらつき度合いが所定度合いつまり所定レベル以上か否かを判断するための閾値として設定されている。ここでは、図11に示すように、所定値ζは、気筒間空燃比ばらつき異常判定用の所定値ε(ステップS1206)よりも小さな値として、予め実験に基づいて設定されている。異常と判断されるほどの気筒間空燃比ばらつきでなくても、気筒間空燃比ばらつきに起因して、触媒後センサ18の検出素子の欠損異常の誤検出が生じる虞があるからである。なお、エンジンによっては、所定値ζは、気筒間空燃比ばらつき異常判定用の所定値εと同じであってもよい。ただし、出力変動パラメータXは初期状態ではゼロに設定されている。なお、エンジン1が一旦停止されたときの出力変動パラメータXがECU20において記憶保持され、その後のエンジン1の始動時にそれが用いられることもできる。
ステップS1601で否定判定されるとき、気筒間空燃比ばらつき度合いが所定レベルに達していないので、ステップS1602で禁止フラグがOFFにされる。したがって、触媒後センサ18の検出素子の欠損異常の検出処理の実行が許可される(ステップS701で肯定判定)。
ステップS1601で肯定判定されると、ステップS1603で吸入空気量が所定値以下か否かが判定される。そして、ステップS1603での判定結果に応じて、ステップS1604またはS1605で禁止フラグがOFFまたはONにされる。なお、ステップS1603からS1605は、上記ステップS1301からS1303とそれぞれ同じであるので、その説明は省略される。
このように、本第3実施形態では、ばらつきレベル検出手段は、ステップS1601に相当する。そして、ステップS1601で否定判定されてステップS1602に至ることは、ステップS1603からS1605の処理を禁止することに相当するので、第2禁止手段に相当する。
なお、第3実施形態におけるステップS1603での所定値は、第2実施形態と同様に、可変とされ、出力変動パラメータXに基づいて算出されて設定されることができる(図14のステップS1401、図15参照)。このようにすることで、より適切に、触媒後センサ18の検出素子の欠損異常の誤検出を防ぐことができる。
説明した本発明の3つの実施形態では、触媒後センサ18が酸素センサであったが、それは触媒前センサ17と同様に広域空燃比センサであってもよい。広域空燃比センサも、当該センサに欠損があるときに、リーンに偏った出力を出し得る。したがって、広域空燃比センサの欠損異常も、図7のフローチャートに基づいて説明した処理と同様にして、検出することができる。一方、触媒後センサ18としての広域空燃比センサも、気筒間空燃比ばらつきの度合いが高く、吸入空気量が多いとき、リーンに偏った出力を生じる傾向が強まる。したがって、触媒後センサ18が広域空燃比センサであるときにも、第1から第3実施形態の上記各種処理を同様に適用することができる。
本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。
1 内燃機関(エンジン)
10 エアフローメータ
15 排気通路
16 触媒浄化装置
17 触媒前センサ(広域空燃比センサ)
18 触媒後センサ(酸素センサ)
20 電子制御ユニット(ECU)

Claims (5)

  1. 複数の気筒を有する内燃機関の排気通路において排気浄化用触媒の下流側に設けられて排気中の酸素濃度に応じた出力を生じる下流側センサの検出素子の欠損異常を、該下流側センサの出力に基づいて検出するように構成されたセンサ欠損異常検出手段であって、該下流側センサの出力の分布が空燃比が理論空燃比よりもリーンであることを示す領域に偏っていることに基づいて該下流側センサの検出素子に欠損異常があることを検出するセンサ欠損異常検出手段と、
    吸入空気量が所定量を越えるとき、前記センサ欠損異常検出手段による前記検出素子の欠損異常の検出を禁止するように構成された禁止手段と
    前記排気浄化用触媒の上流側に設けられた上流側空燃比センサの出力に基づいて気筒間の空燃比ばらつきの度合いを表す値を算出する値算出手段と、
    該値算出手段により算出された値と所定値とを比較することにより、気筒間の空燃比ばらつきの度合いが所定レベル以上であることを検出するばらつきレベル検出手段と、
    該ばらつきレベル検出手段により気筒間の空燃比ばらつきの度合いが前記所定レベル以上であることが検出されなかったとき、前記禁止手段の作動を禁止する第2禁止手段と
    を備えた、内燃機関の異常検出装置。
  2. 前記センサ欠損異常検出手段は、所定回数、前記下流側センサの出力電圧を取得して、該取得した出力電圧が所定電圧域に含まれる回数に基づいて、該下流側センサの出力の分布を求める、請求項1に記載の内燃機関の異常検出装置。
  3. 前記センサ欠損異常検出手段は、空燃比フィードバックストイキ制御が行われているときの前記下流側センサの出力に基づいて該下流側センサの検出素子の欠損異常を検出する、請求項1または2に記載の内燃機関の異常検出装置。
  4. 前記排気浄化用触媒の上流側に設けられた上流側空燃比センサの出力に基づいて気筒間の空燃比ばらつきの度合いを表す値を算出する値算出手段と、
    該値算出手段により算出された値に基づいて前記禁止手段における前記所定量を算出する所定量算出手段と
    をさらに備えた、請求項1から3のいずれか一項に記載の内燃機関の異常検出装置。
  5. 前記センサ欠損異常検出手段は、吸入空気量が第1所定量以上のときの前記下流側センサの出力に基づいて該下流側センサの前記検出素子の欠損異常を検出するように構成されていて、該第1所定量は前記所定量よりも少ない、請求項1から4のいずれか一項に記載の内燃機関の異常検出装置。
JP2013067210A 2013-03-27 2013-03-27 内燃機関の異常検出装置 Expired - Fee Related JP5783202B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013067210A JP5783202B2 (ja) 2013-03-27 2013-03-27 内燃機関の異常検出装置
US14/216,004 US9341544B2 (en) 2013-03-27 2014-03-17 Abnormality detecting device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067210A JP5783202B2 (ja) 2013-03-27 2013-03-27 内燃機関の異常検出装置

Publications (2)

Publication Number Publication Date
JP2014190270A JP2014190270A (ja) 2014-10-06
JP5783202B2 true JP5783202B2 (ja) 2015-09-24

Family

ID=51619486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067210A Expired - Fee Related JP5783202B2 (ja) 2013-03-27 2013-03-27 内燃機関の異常検出装置

Country Status (2)

Country Link
US (1) US9341544B2 (ja)
JP (1) JP5783202B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811125B2 (ja) * 2013-03-27 2015-11-11 トヨタ自動車株式会社 内燃機関の制御装置
JP5648706B2 (ja) 2013-04-19 2015-01-07 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP6376169B2 (ja) * 2016-04-20 2018-08-22 トヨタ自動車株式会社 ハイブリッド車両

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827719B2 (ja) * 1992-07-16 1998-11-25 三菱自動車工業株式会社 O2 センサの故障判定方法
JP3438298B2 (ja) * 1994-03-25 2003-08-18 マツダ株式会社 空燃比センサの故障検出装置
US5845489A (en) * 1995-11-08 1998-12-08 Denso Corporation Abnormality detector for air-fuel ratio control system
US6374818B2 (en) * 2000-01-31 2002-04-23 Honda Giken Kogyo Kabushiki Kaisha Apparatus for determining a failure of an oxygen concentration sensor
JP4682463B2 (ja) 2001-07-04 2011-05-11 トヨタ自動車株式会社 酸素センサの異常診断装置
JP3967630B2 (ja) * 2002-05-16 2007-08-29 本田技研工業株式会社 排ガスセンサの故障を検出する装置
KR100435707B1 (ko) * 2002-05-31 2004-06-12 현대자동차주식회사 차량의 리어 산소센서 고장 판정방법
JP4161771B2 (ja) * 2002-11-27 2008-10-08 トヨタ自動車株式会社 酸素センサの異常検出装置
JP4135563B2 (ja) * 2003-06-04 2008-08-20 トヨタ自動車株式会社 空燃比センサの異常検出装置
JP2005337139A (ja) * 2004-05-27 2005-12-08 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4779835B2 (ja) 2006-07-03 2011-09-28 トヨタ自動車株式会社 排気ガスセンサの異常診断装置
WO2009013600A2 (en) * 2007-07-24 2009-01-29 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting abnormalair-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
US7900616B2 (en) * 2007-12-12 2011-03-08 Denso Corporation Exhaust gas oxygen sensor monitoring
JP2009281328A (ja) 2008-05-23 2009-12-03 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US8670917B2 (en) * 2009-10-06 2014-03-11 Toyota Jidosha Kabushiki Kaisha Air-fuel-ratio imbalance determination apparatus for internal combustion engine
JP4962656B2 (ja) 2009-12-09 2012-06-27 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
EP2578857A4 (en) 2010-06-07 2018-07-25 Toyota Jidosha Kabushiki Kaisha Fuel injection quantity control apparatus
CN103261604B (zh) * 2010-12-15 2014-11-12 丰田自动车株式会社 电加热式催化剂的故障检测装置
US9261481B2 (en) * 2013-03-15 2016-02-16 Caterpillar Inc. Diagnostic system and method for nitrogen oxide sensor

Also Published As

Publication number Publication date
JP2014190270A (ja) 2014-10-06
US20140290348A1 (en) 2014-10-02
US9341544B2 (en) 2016-05-17

Similar Documents

Publication Publication Date Title
JP4836021B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置及びその方法
JP4496549B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP4877610B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5273202B2 (ja) 空燃比ばらつき異常検出装置
JP2009030455A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常を検出するための装置及び方法
JP5024676B2 (ja) 触媒劣化抑制装置
JP2009281328A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2009074388A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5278454B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2010025090A (ja) 空燃比センサの異常診断装置
JP2014013032A (ja) 気筒間空燃比ばらつき異常検出装置
JP2012092803A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5783202B2 (ja) 内燃機関の異常検出装置
JP5397454B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP4844587B2 (ja) 触媒劣化診断装置
JP2010159701A (ja) 触媒劣化診断装置
JP2012132392A (ja) 気筒間空燃比ばらつき異常検出装置
JP3834898B2 (ja) 空燃比センサの異常診断装置
JP5668768B2 (ja) 内燃機関の制御装置
JP2010255490A (ja) 触媒異常診断装置
US9588017B2 (en) Apparatus for detecting variation abnormality in air-fuel ratio between cylinders
JP5907111B2 (ja) 気筒間空燃比ばらつき異常検出装置
WO2013157048A1 (ja) 触媒異常診断装置
JP2014013017A (ja) 空燃比センサ感受性評価装置および気筒間空燃比ばらつき異常検出装置
JP2012097718A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R151 Written notification of patent or utility model registration

Ref document number: 5783202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees