JP5776669B2 - エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 - Google Patents

エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 Download PDF

Info

Publication number
JP5776669B2
JP5776669B2 JP2012249221A JP2012249221A JP5776669B2 JP 5776669 B2 JP5776669 B2 JP 5776669B2 JP 2012249221 A JP2012249221 A JP 2012249221A JP 2012249221 A JP2012249221 A JP 2012249221A JP 5776669 B2 JP5776669 B2 JP 5776669B2
Authority
JP
Japan
Prior art keywords
silicon wafer
epitaxial
epitaxial silicon
manufacturing
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012249221A
Other languages
English (en)
Other versions
JP2014099450A (ja
JP2014099450A5 (ja
Inventor
武 門野
武 門野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2012249221A priority Critical patent/JP5776669B2/ja
Priority to US14/078,217 priority patent/US9224601B2/en
Priority to TW102141074A priority patent/TWI521567B/zh
Publication of JP2014099450A publication Critical patent/JP2014099450A/ja
Publication of JP2014099450A5 publication Critical patent/JP2014099450A5/ja
Application granted granted Critical
Publication of JP5776669B2 publication Critical patent/JP5776669B2/ja
Priority to US14/946,661 priority patent/US9396967B2/en
Priority to US15/182,443 priority patent/US9576800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26566Bombardment with radiation with high-energy radiation producing ion implantation of a cluster, e.g. using a gas cluster ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法に関する。本発明は特に、より高いゲッタリング能力を発揮することにより金属汚染を抑制でき、かつ、転位クラスターおよび空孔凝集欠陥(COP:Crystal Originated Particle)に起因するエピタキシャル欠陥のないエピタキシャルシリコンウェーハを製造する方法に関する。
半導体デバイスの特性を劣化させる要因として、金属汚染が挙げられる。例えば、裏面照射型固体撮像素子では、この素子の基板となる半導体エピタキシャルウェーハに混入した金属は、固体撮像素子の暗電流を増加させる要因となり、白傷欠陥と呼ばれる欠陥を生じさせる。裏面照射型固体撮像素子は、配線層などをセンサー部よりも下層に配置することで、外からの光をセンサーに直接取り込み、暗所などでもより鮮明な画像や動画を撮影することができるため、近年、デジタルビデオカメラやスマートフォンなどの携帯電話に広く用いられている。そのため、白傷欠陥を極力減らすことが望まれている。
ウェーハへの金属の混入は、主に半導体エピタキシャルウェーハの製造工程および固体撮像素子の製造工程(デバイス製造工程)において生じる。前者の半導体エピタキシャルウェーハの製造工程における金属汚染は、エピタキシャル成長炉の構成材からの重金属パーティクルによるもの、あるいは、エピタキシャル成長時の炉内ガスとして塩素系ガスを用いるために、その配管材料が金属腐食して発生する重金属パーティクルによるものなどが考えられる。近年、これら金属汚染は、エピタキシャル成長炉の構成材を耐腐食性に優れた材料に交換するなどにより、ある程度は改善されてきているが、十分ではない。一方、後者の固体撮像素子の製造工程においては、イオン注入、拡散および酸化熱処理などの各処理中で、半導体基板の重金属汚染が懸念される。
そのため、従来は、半導体エピタキシャルウェーハに金属を捕獲するためのゲッタリングシンクを形成するか、あるいは高濃度ボロン基板などの金属の捕獲能力(ゲッタリング能力)が高い基板を用いて、半導体ウェーハへの金属汚染を回避していた。
半導体ウェーハにゲッタリングシンクを形成する方法としては、半導体ウェーハの内部に結晶欠陥である酸素析出物(シリコン酸化物析出物の通称であり、BMD:Bulk Micro Defectともいう。)や転位を形成するイントリンシックゲッタリング(IG)法と、半導体ウェーハの裏面にゲッタリングシンクを形成するエクストリンシックゲッタリング(EG)法が一般的である。
ここで、重金属のゲッタリング法の一手法として、半導体ウェーハ中にイオン注入によりゲッタリングサイトを形成する技術がある。特許文献1には、シリコンウェーハの一面から炭素イオンを注入して、炭素イオン注入領域を形成した後、この表面にシリコンエピタキシャル層を形成し、シリコンエピタキシャルウェーハとする製造方法が記載されている。この技術では、炭素イオン注入領域がゲッタリングサイトとして機能する。
また、特許文献2には、シリコンウェーハに炭素イオンを注入して炭素注入層を形成し、その後、イオン注入により乱れたウェーハの結晶性を回復させるための熱処理をRTA(Rapid Thermal Annealing)装置で行うことで、この回復熱処理工程を短縮させる技術が記載されている。
さらに、特許文献3には、単結晶シリコンインゴット基板に対してボロン、炭素、アルミニウム、砒素、アンチモンのうち少なくとも1種類をドーズ量5×1014〜1×1016atoms/cmの範囲でイオン注入し、その後、該イオン注入を行った前記単結晶シリコンインゴット基板に対して回復熱処理を行わずに洗浄を行った後、枚葉式エピタキシャル装置を用いて1100℃以上の温度でエピタキシャル層を形成することを特徴とするエピタキシャルウェーハの製造方法が記載されている。
また、こうしたゲッタリングシンクの形成に加えて、半導体エピタキシャルウェーハの基板自体の高い品質を確保することも重要である。この点、特許文献4には、チョクラルスキー法(CZ法)により、結晶全面に亘って極低欠陥密度のシリコン単結晶ウェーハを製造する技術について記載されている。
特開平6−338507号公報 特開2008−294245号公報 特開2010−177233号公報 特開平11−147786号公報
特許文献1、特許文献2、および特許文献3に記載された技術は、いずれもエピタキシャル層形成前にモノマーイオン(シングルイオン)をシリコンウェーハに注入するものである。しかしながら、本発明者の検討によれば、モノマーイオン注入を施したシリコンエピタキシャルウェーハから製造した固体撮像素子では、白傷欠陥を十分に抑えることができず、このエピタキシャルシリコンウェーハにはより強力なゲッタリング能力が求められることがわかった。
また、高品質の半導体デバイスを製造するには、基板となるエピタキシャルシリコンウェーハのエピタキシャル層に欠陥が存在しないことが肝要である。しかし、エピタキシャルシリコンウェーハの基板となるシリコンウェーハの表層部に転位クラスターやCOPが存在すると、これらに起因する積層欠陥等のエピタキシャル欠陥が発生してしまうおそれがある。
そこで本発明は、上記課題に鑑み、より高いゲッタリング能力を発揮することで金属汚染を抑制でき、かつ、転位クラスターおよびCOPに起因するエピタキシャル欠陥のないエピタキシャルシリコンウェーハおよびその製造方法を提供することを目的とする。
本発明者の更なる検討によれば、シリコンウェーハにクラスターイオンを照射することにより、モノマーイオンを注入する場合に比べて、以下の有利な点があることを知見した。すなわち、クラスターイオンを照射した場合、モノマーイオンと同等の加速電圧で照射しても、1原子または1分子あたりのエネルギーはモノマーイオンの場合より小さくしてシリコンウェーハに衝突させることができ、また、一度に複数の原子を照射できるため、照射した元素の深さ方向プロファイルのピーク濃度を高濃度とすることができ、ピーク位置をよりシリコンウェーハ表面に近い位置に位置させることができる。その結果、ゲッタリング能力が向上することを知見した。また、エピタキシャルウェーハの基板として、転位クラスターおよびCOPを含まないシリコンウェーハを用いることにより、転位クラスターおよびCOPに起因するエピタキシャル欠陥のないエピタキシャルシリコンウェーハを得ることができることも知見し、本発明を完成させるに至った。
すなわち、本発明のエピタキシャルシリコンウェーハの製造方法は、転位クラスターおよびCOPを含まないシリコンウェーハに、ゲッタリングに寄与する構成元素を含むクラスターイオンを照射して、該シリコンウェーハの表面に、前記クラスターイオンの構成元素から形成された改質層を形成する第1工程と、前記シリコンウェーハの改質層上にエピタキシャルシリコン層を形成する第2工程と、を有し、該第2工程後の改質層における前記構成元素の深さ方向の濃度プロファイルの半値幅が100nm以下であるエピタキシャルシリコンウェーハを得ることを特徴とする。
ここで、前記クラスターイオンが、構成元素として炭素を含むことが好ましく、構成元素として炭素を含む2種以上の元素を含むことがより好ましい。
本発明では、前記第1工程の後、前記シリコンウェーハに対して結晶性回復のための熱処理を行うことなく、前記シリコンウェーハをエピタキシャル成長装置に搬送して第2工程を行うことができる。
また、前記第1工程では、前記シリコンウェーハの表面からの深さが150nm以下の範囲内に、前記改質層における前記構成元素の深さ方向の濃度プロファイルのピークが位置するように、前記クラスターイオンを照射することができる。
また、第1工程は、炭素1原子あたりの加速電圧が50keV/atom以下、クラスターサイズが100個以下、炭素のドーズ量が1×1016atoms/cm以下の条件で行うことが好ましい。さらに、前記第1工程は、炭素1原子あたりの加速電圧が40keV/atom以下、クラスターサイズが60個以下、炭素のドーズ量が5×1015atoms/cm以下の条件で行うとより好ましい。
次に、本発明のエピタキシャルシリコンウェーハは、転位クラスターおよびCOPを含まないシリコンウェーハと、該シリコンウェーハの表面に形成された、該シリコンウェーハ中に固溶しゲッタリングに寄与する所定元素から形成された改質層と、該改質層上のエピタキシャル層と、を有し、前記改質層における前記所定元素の深さ方向の濃度プロファイルの半値幅が100nm以下であることを特徴とする。
さらに、前記シリコンウェーハの表面からの深さが150nm以下の範囲内に、前記改質層における前記濃度プロファイルのピークが位置すると好ましく、そのピーク濃度が、1×1015atoms/cm以上であると好ましい。
ここで、前記所定元素が炭素を含むことが好ましく、前記所定元素が炭素を含む2種以上の元素を含むことがより好ましい。
そして、本発明の固体撮像素子の製造方法は、上記いずれか1つの製造方法で製造されたエピタキシャルシリコンウェーハまたは上記いずれか1つのエピタキシャルシリコンウェーハの、表面に位置するエピタキシャル層に、固体撮像素子を形成することを特徴とする。
本発明のエピタキシャルシリコンウェーハの製造方法によれば、転位クラスターおよびCOPを含まないシリコンウェーハにクラスターイオンを照射して、このシリコンウェーハの表面にクラスターイオンの構成元素からなる改質層を形成したので、この改質層がより高いゲッタリング能力を発揮することにより、金属汚染を抑制でき、かつ、転位クラスターおよびCOPに起因するエピタキシャル欠陥のないエピタキシャルシリコンウェーハを製造することができる。
本発明によるエピタキシャルシリコンウェーハ100の製造方法を説明する摸式断面図である。 固液界面における温度勾配に対する引き上げ速度の比と単結晶シリコンインゴットを構成する結晶領域との関係を示す図である。 (A)はクラスターイオンを照射する場合の照射メカニズムを説明する模式図、(B)はモノマーイオンを注入する場合の注入メカニズムを説明する模式図である。 実施例に使用した単結晶製造装置を示す図である。 実施例の引き上げ速度変更実験により得られた単結晶シリコンインゴットの縦断面における欠陥分布を示す図である。 本発明例3および比較例3について、シリコンウェーハの表面からの深さに対する炭素濃度の分布を表すグラフである。 本発明例3および比較例3について、Niのゲッタリング能力を比較したグラフである。
以下、図面を参照しつつ本発明の実施形態を詳細に説明する。なお、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。また、図1では説明の便宜上、実際の厚さの割合とは異なり、シリコンウェーハ10に対してエピタキシャル層20の厚さを誇張して示す。
本発明のエピタキシャルシリコンウェーハ100の製造方法は、図1に示すように、シリコンウェーハ10にクラスターイオン16を照射して、シリコンウェーハ10の表面10Aに、このクラスターイオン16の構成元素が固溶してなる改質層18を形成する第1工程(図1(A),(B))と、シリコンウェーハ10の改質層18上にエピタキシャル層20を形成する第2工程(図1(C))と、を有することを特徴とする。図1(C)は、この製造方法の結果得られたエピタキシャルシリコンウェーハ100の模式断面図である。
まず、本発明においては、シリコンウェーハ10として、転位クラスターおよびCOPを含まないシリコンウェーハを用いる。シリコンウェーハ10の素材である単結晶シリコンインゴットの製造方法として代表的なものの1つとして、CZ法を挙げることができる。このCZ法による単結晶シリコンインゴットの製造では、石英ルツボ内に供給されたシリコン融液に種結晶を浸漬し、石英ルツボおよび種結晶を回転させながら種結晶を引き上げることにより、種結晶の下方に単結晶シリコンインゴットが育成される。
こうして育成された単結晶シリコンインゴットには、デバイス作製工程で問題となる様々の種類のGrown−in欠陥が生じることが知られている。その代表的なものは、低速な引き上げ条件での育成により格子間シリコンが優勢な領域(以下、「I領域」ともいう)に発生する転位クラスター、および高速な引き上げ条件での育成により空孔が優勢な領域(以下、「V領域」ともいう)に発生するCOPである。また、I領域とV領域との境界付近には酸化誘起積層欠陥(OSF:Oxidation induced Stacking Fault)と呼ばれるリング状に分布する欠陥が存在する。
育成された単結晶シリコンインゴットにおけるこれらの欠陥の分布は、2つの要因、すなわち、結晶の引き上げ速度Vと固液界面の温度勾配Gに依存することが知られている。図2は、固液界面における温度勾配Gに対する引き上げ速度Vの比V/Gと単結晶シリコンインゴットを構成する結晶領域との関係を示す図である。この図に示すように、単結晶シリコンインゴットは、V/Gが大きい場合には、COPが検出される結晶領域であるCOP発生領域41に支配され、V/Gが小さくなると、特定の酸化熱処理を施すとリング状のOSF領域として顕在化するOSF潜在核領域42が形成され、このOSF領域42にはCOPは検出されない。また、高速引き上げ条件で育成した単結晶シリコンインゴットから採取されたシリコンウェーハは、ウェーハの多くをCOP発生領域41が占めるため、結晶径方向のほぼ全域に亘ってCOPが発生することになる。
また、OSF潜在核領域42の内側には、酸素の析出が起きやすくCOPが検出されない結晶領域である酸素析出促進領域(以下、「Pv(1)領域」ともいう)43が形成される。
V/Gを小さくしていくと、OSF潜在核領域42の外側には、酸素析出物が存在しCOPが検出されない結晶領域である酸素析出促進領域(以下、「Pv(2)領域」ともいう)44が形成される。
引き続き、V/Gを小さくしていくと、酸素の析出が起きにくくCOPが検出されない結晶領域である酸素析出抑制領域(以下、「Pi領域」ともいう)45が形成され、転位クラスターが検出される結晶領域である転位クラスター領域46が形成される。
引き上げ速度に応じてこのような欠陥分布を示す単結晶シリコンインゴットから採取されるシリコンウェーハにおいて、COP発生領域41および転位クラスター領域46以外の結晶領域は、一般的には欠陥のない無欠陥領域と見なされる結晶領域であり、これらの結晶領域からなる単結晶シリコンインゴットから採取されるシリコンウェーハは、転位クラスターおよびCOPを含まないシリコンウェーハとなる。そこで、本発明においては、COP発生領域41および転位クラスター領域46以外の結晶領域、すなわち、OSF潜在核領域42、Pv(1)領域43、Pv(2)領域44、および酸素析出抑制領域(Pi領域)45の結晶領域のいずれか、あるいはそれらの組み合わせからなる単結晶シリコンインゴットから採取されるシリコンウェーハを、エピタキシャルシリコンウェーハの基板(すなわち、シリコンウェーハ10)として使用する。
ここで、本発明における「COPを含まないシリコンウェーハ」とは、以下に説明する観察評価により、COPが検出されないシリコンウェーハを意味するものとする。すなわち、まず、CZ法により育成された単結晶シリコンインゴットから切り出し加工されたシリコンウェーハに対して、SC−1洗浄(すなわち、アンモニア水と過酸化水素水と超純水とを1:1:15で混合した混合液による洗浄)を行い、洗浄後のシリコンウェーハ表面を、表面欠陥検査装置としてKLA−Tenchor社製:Surfscan SP−2を用いて観察評価し、表面ピットと推定される輝点欠陥(LPD:Light Point Defect)を特定する。その際、観察モードはObliqueモード(斜め入射モード)とし、表面ピットの推定は、Wide Narrowチャンネルの検出サイズ比に基づいて行うものとする。こうして特定されたLPDに対して、原子間力顕微鏡(AFM:Atomic Force Microscope)を用いて、COPか否かを評価する。この観察評価により、COPが観察されないシリコンウェーハを「COPを含まないシリコンウェーハ」とする。
なお、上記SP−2のメーカー保証検出限界サイズは37nmであるため、この検出限界サイズよりも小さなCOPの存在は否定されない。しかし、後述する実施例から明らかとなるように、上記観察評価によりCOPが検出されなければ、このシリコンウェーハを用いて製造されたエピタキシャルシリコンウェーハにエピタキシャル欠陥は観察されなかった。従って、エピタキシャル欠陥の形成を防止する点からは、SP−2およびAFMによりCOPが検出されなければ、それらが実質的に存在しないものと考えて差し支えなく、よって、本明細書においては、上記定義により特定されるシリコンウェーハを「COPを含まないシリコンウェーハ」とする。
一方、転位クラスターは、過剰な格子間シリコンの凝集体として形成されるサイズの大きな(10μm程度)の欠陥(転位ループ)であり、セコエッチングなどのエッチング処理を施したり、Cuデコレーションして顕在化させることにより、目視レベルで転位クラスターの有無を簡単に確認することができる。転位クラスターを含むシリコンウェーハを採用した場合には、エピタキシャル層に転位クラスターを起点とする欠陥(積層欠陥など)が多量に発生してしまうため、エピタキシャルシリコンウェーハの基板として使用することはできない。
上記単結晶シリコンインゴットを育成する際に、酸素濃度が高すぎる場合には、酸素析出物に起因するエピタキシャル欠陥が発生しやすく、OSF潜在核領域42を含む結晶領域のウェーハの場合、その上に形成されるエピタキシャル層にOSF起因のエピタキシャル欠陥(積層欠陥)が発生する場合がある。これを抑制するためには、酸素濃度を低くすることが有効であり、具体的には,酸素濃度が16×1017atoms/cm以下(ASTM F121-1979)とすることが好ましい。また、ウェーハの強度確保の観点からは、6×1017atoms/cm以上とすることが好ましい。
こうして用意したシリコンウェーハ10の極性はn型またはp型としてもよい。また、後述するクラスターイオンの照射に加えて、結晶内に炭素および/または窒素が添加されたシリコンウェーハを使用して、ゲッタリング能力をさらに高めるようにしてもよい。
次に、本発明の特徴的工程であるクラスターイオン照射工程について、この工程を採用することの技術的意義を、作用効果とともに説明する。クラスターイオン16を照射した結果形成される改質層18は、クラスターイオン16の構成元素がシリコンウェーハ10の表面10Aの結晶の格子間位置または置換位置に固溶して局所的に存在する領域であり、ゲッタリングサイトとして働く。その理由は、以下のように推測される。すなわち、クラスターイオンの形態で照射された炭素やホウ素などの元素は、単結晶シリコンの置換位置・格子間位置に高密度で局在する。そして、単結晶シリコンの平衡濃度以上にまで炭素やホウ素を固溶すると、重金属の固溶度(遷移金属の飽和溶解度)が極めて増加することが実験的に確認された。つまり、平衡濃度以上にまで固溶した炭素やホウ素により重金属の固溶度が増加し、これにより重金属に対する捕獲率が顕著に増加したものと考えられる。
ここで、本発明ではクラスターイオン16を照射するため、モノマーイオンを注入する場合に比べて、より高いゲッタリング能力を得ることができ、さらに回復熱処理も省略することができる。そのため、高いゲッタリング能力を有するエピタキシャルシリコンウェーハ100をより効率的に製造することが可能となり、本製法により得られるエピタキシャルシリコンウェーハ100から製造した裏面照射型固体撮像素子は、従来に比べ白傷欠陥の発生の抑制が期待できる。
また、上述のように、本発明においては、シリコンウェーハ10として、転位クラスターおよびCOPを含まないシリコンウェーハを用いるが、これは、OSF潜在核領域42、Pv(1)領域43、Pv(2)領域44およびPi領域45のいずれか、あるいは複数が混在しうるウェーハであり、その場合、ウェーハ径方向の酸素析出物密度がウェーハ面内で一様にはならないため、径方向のゲッタリング能力にばらつきを生じることになる。しかし、クラスターイオン照射により形成される改質層18は高いゲッタリング能力を有するため、ウェーハ表面近傍でのゲッタリング能力をウェーハ面内で均一にすることができる。なお、本明細書において「クラスターイオン」とは、原子または分子が複数集合して塊となったクラスターに正電荷または負電荷を与え、イオン化したものを意味する。クラスターは、複数(通常2〜2000個程度)の原子または分子が互いに結合した塊状の集団である。
本発明者は、このような効果が得られる作用を以下のように考えている。
シリコンウェーハに、例えば炭素のモノマーイオンを注入する場合、図3(B)に示すように、モノマーイオンは、シリコンウェーハを構成するシリコン原子を弾き飛ばし、シリコンウェーハ中の所定深さ位置に注入される。注入深さは、注入イオンの構成元素の種類およびイオンの加速電圧に依存する。この場合、シリコンウェーハの深さ方向における炭素の濃度プロファイルは、比較的ブロードになり、注入された炭素の存在領域は概ね0.5〜1μm程度となる。複数種のイオンを同一エネルギーで同時照射した場合には、軽い元素ほど深く注入され、すなわち、それぞれの元素の質量に応じた異なる位置に注入されるため、注入元素の濃度プロファイルはよりブロードになる。
さらに、モノマーイオンは一般的に150〜2000keV程度の加速電圧で注入するが、各イオンがそのエネルギーをもってシリコン原子と衝突するため、モノマーイオンが注入されたシリコンウェーハ表面部の結晶性が乱れ、その後にウェーハ表面上に成長させるエピタキシャル層の結晶性を乱す。また、加速電圧が大きいほど、結晶性が大きく乱れる。そのため、イオン注入後に乱れた結晶性を回復させるための熱処理(回復熱処理)を高温かつ長時間で行う必要がある。
一方、シリコンウェーハに、例えば炭素とホウ素からなるクラスターイオンを照射する場合、図3(A)に示すように、クラスターイオン16は、シリコンウェーハに照射されるとそのエネルギーで瞬間的に1350〜1400℃程度の高温状態となり、シリコンが融解する。その後、シリコンは急速に冷却され、シリコンウェーハ中の表面近傍に炭素およびホウ素が固溶する。すなわち、本明細書における「改質層」とは、照射するイオンの構成元素がシリコンウェーハ表面の結晶の格子間位置または置換位置に固溶した層を意味する。シリコンウェーハの深さ方向における炭素およびホウ素の濃度プロファイルは、クラスターイオンの加速電圧およびクラスターサイズに依存するが、モノマーイオンの場合に比べてシャープになり、照射された炭素およびホウ素が局所的に存在する領域(すなわち、改質層)の厚みは概ね500nm以下の領域(例えば50〜400nm程度)となる。なお、クラスターイオンの形態で照射された元素は、エピタキシャル層20の形成過程で多少の熱拡散は起こる。このため、エピタキシャル層20形成後の炭素およびホウ素の濃度プロファイルは、これらの元素が局所的に存在するピークの両側に、ブロードな拡散領域が形成される。しかし、改質層の厚みは大きく変化しない(後述の図7(A)参照)。その結果、炭素およびホウ素の析出領域を局所的にかつ高濃度にすることができる。また、シリコンウェーハの表面近傍に改質層18が形成されるため、より近接ゲッタリングが可能となる。その結果、より高いゲッタリング能力を得ることができるものと考えられる。なお、クラスターイオンの形態であれば、複数種のイオンを同時に照射することができる。
また、クラスターイオンは一般的に10〜100keV/Cluster程度の加速電圧で照射するが、クラスターは複数の原子または分子の集合体であるため、1原子または1分子あたりのエネルギーを小さくして打ち込むことができるため、シリコンウェーハの結晶へ与えるダメージは小さい。さらに、上記のような注入メカニズムの相違にも起因して、クラスターイオン照射の方がモノマーイオン注入よりもシリコンウェーハの結晶性を乱さない。そのため、第1工程の後、シリコンウェーハ10に対して回復熱処理を行うことなく、シリコンウェーハ10をエピタキシャル成長装置に搬送して第2工程を行うことができる。
クラスターイオン16は結合様式によって多種のクラスターが存在し、例えば以下の文献に記載されるような公知の方法で生成することができる。ガスクラスタービームの生成法として、(1)特開平9−41138号公報、(2)特開平4−354865号公報、イオンビームの生成法として、(1)荷電粒子ビーム工学:石川 順三:ISBN978-4-339-00734-3 :コロナ社、(2)電子・イオンビーム工学:電気学会:ISBN4-88686-217-9 :オーム社、(3)クラスターイオンビーム基礎と応用:ISBN4-526-05765-7:日刊工業新聞社。また、一般的に、正電荷のクラスターイオンの発生にはニールセン型イオン源あるいはカウフマン型イオン源が用いられ、負電荷のクラスターイオンの発生には体積生成法を用いた大電流負イオン源が用いられる。
以下で、クラスターイオンの照射条件について説明する。まず、照射する元素は特に限定されず、炭素、ホウ素、リン、砒素などを挙げることができる。より高いゲッタリング能力を得る観点からは、クラスターイオンが、構成元素として炭素を含むことが好ましい。格子位置の炭素原子は共有結合半径が単結晶シリコンインゴットと比較して小さいため、シリコン結晶格子の収縮場が形成されるため、格子間の不純物を引き付けるゲッタリング能力が高い。
また、構成元素として炭素を含む2種以上の元素を含むことがより好ましい。析出元素の種類により効率的にゲッタリング可能な金属の種類が異なるため、2種以上の元素を固溶させることにより、より幅広い金属汚染に対応できるからである。例えば、炭素の場合、ニッケルを効率的にゲッタリングすることができ、ホウ素の場合、銅、鉄を効率的にゲッタリングすることができる。
イオン化させる化合物も特に限定されないが、イオン化に適した化合物を列挙すると、炭素源としては、エタン、メタン、プロパン、ジベンジル(C1414)、二酸化炭素(CO)などが挙げられ、ホウ素源としては、ジボラン、デカボラン(B1014)などを挙げることができる。例えば、ジベンジルとデカボランを混合したガスを材料ガスとした場合、炭素、ホウ素および水素が集合した水素化合物クラスターを生成することができる。また、シクロヘキサン(C12)を材料ガスとすれば、炭素および水素からなるクラスターイオンを生成することができる。また、炭素源化合物としては、特に、ピレン(C1610)、ジベンジル(C1414)などより生成したクラスターC(3≦n≦16,3≦m≦10)を用いることが好ましい。これは、小サイズのクラスターイオンビームを形成しやすいためである。
次に、クラスターイオンの加速電圧およびクラスターサイズを制御することにより、改質層18における構成元素の深さ方向の濃度プロファイルのピークの位置を制御することができる。本明細書において「クラスターサイズ」とは、1つのクラスターを構成する原子または分子の個数を意味する。
本発明の第1工程では、より高いゲッタリング能力を得る観点から、シリコンウェーハ10の表面10Aからの深さが150nm以下の範囲内に、改質層18における構成元素の深さ方向の濃度プロファイルのピークが位置するように、クラスターイオン16を照射することが好ましい。なお、本明細書において、「構成元素の深さ方向の濃度プロファイル」は、構成元素が2種以上の元素を含む場合は、合計ではなく、それぞれ単独の元素についてのプロファイルを意味するものとする。
ピーク位置を当該深さの範囲に設定するために必要な条件として、クラスターイオン16としてC(3≦n≦16,3≦m≦10)を用いる場合、炭素1原子あたりの加速電圧は、0keV/atom超え50keV/atom以下とし、好ましくは、40keV/atom以下である。また、クラスターサイズは2〜100個、好ましくは60個以下、より好ましくは50個以下とする。
なお、加速電圧の調整には、(1)静電加速、(2)高周波加速の2方法が一般的に用いられる。前者の方法としては、複数の電極を等間隔に並べ、それらの間に等しい電圧を印加して、軸方向に等加速電界を作る方法がある。後者の方法としては、イオンを直線状に走らせながら高周波を用いて加速する線形ライナック法がある。また、クラスターサイズの調整は、ノズルから噴出されるガスのガス圧力および真空容器の圧力、イオン化する際のフィラメントへ印加する電圧などを調整することにより行うことができる。なお、クラスターサイズは、四重極高周波電界による質量分析またはタイムオブフライト質量分析によりクラスター個数分布を求め、クラスター個数の平均値をとることにより求めることができる。
また、クラスタードーズ量は、イオン照射時間を制御することにより調整することができる。本発明では、炭素のドーズ量は1×1013atoms/cm以上1×1016atoms/cm以下とする。これは、1×1013atoms/cm未満の場合、ゲッタリング能力を十分に得ることができない可能性があり、1×1016atoms/cm超えの場合、エピタキシャル表面に大きなダメージを与えるおそれがあるからである。好ましくは1×1014atoms/cm以上5×1015atoms/cm以下とする。
本発明によれば、既述のとおり、RTAやRTOなどの、エピタキシャル装置とは別個の急速昇降温熱処理装置などを用いて回復熱処理を行う必要がない。それは、以下に述べるエピタキシャル層20を形成するためのエピタキシャル装置内で、エピタキシャル成長に先立ち行われる水素ベーク処理によって、シリコンウェーハ10の結晶性を十分回復させることができるからである。水素ベーク処理の一般的な条件は、エピタキシャル成長装置内を水素雰囲気とし、600℃以上900℃以下の炉内温度でシリコンウェーハ10を炉内に投入し、1℃/秒以上15℃/秒以下の昇温レートで1100℃以上1200℃以下の温度範囲にまで昇温させ、その温度で30秒以上1分以下の間保持するものである。この水素ベーク処理は、本来はエピタキシャル層成長前の洗浄処理によりウェーハ表面に形成された自然酸化膜を除去するためのものであるが、上記条件の水素ベークによりシリコンウェーハ10の結晶性を十分回復させることができる。
もちろん第1工程の後、第2工程の前に、エピタキシャル装置とは別個の熱処理装置を用いて回復熱処理を行ってもよい。この回復熱処理は、900℃以上1200℃以下で10秒以上1時間以下行えばよい。ここで、熱処理温度を900℃以上1200℃以下とするのは、900℃未満では、結晶性の回復効果が得られにくいためであり、一方、1200℃を超えると、高温での熱処理に起因するスリップが発生し、また、装置への熱負荷が大きくなるためである。また、熱処理時間を10秒以上1時間以下とするのは、10秒未満では回復効果が得られにくいためであり、一方、1時間超えでは、生産性の低下を招き、装置への熱負荷が大きくなるためである。
このような回復熱処理は、例えば、RTAやRTOなどの急速昇降温熱処理装置や、バッチ式熱処理装置(縦型熱処理装置、横型熱処理装置)を用いて行うことができる。前者は、ランプ照射加熱方式のため、装置構造的に長時間処理には適しておらず、15分以内の熱処理に適している。一方、後者は、所定温度までに温度上昇させるために時間がかかるものの、一度に多数枚のウェーハを同時に処理できる。また、抵抗加熱方式のため、長時間の熱処理が可能である。使用する熱処理装置は、クラスターイオン16の照射条件を考慮して適切なものを選択すればよい。
改質層18上に形成するエピタキシャル層20としては、シリコンエピタキシャル層が挙げられ、一般的な条件により形成することができる。例えば、水素をキャリアガスとして、ジクロロシラン、トリクロロシランなどのソースガスをチャンバー内に導入し、使用するソースガスによっても成長温度は異なるが、概ね1000〜1200℃の温度範囲の温度でCVD法によりシリコンウェーハ10上にエピタキシャル成長させることができる。エピタキシャル層20は、厚さが1〜15μmの範囲内とすることが好ましい。1μm未満の場合、シリコンウェーハ10からのドーパントの外方拡散によりエピタキシャル層20の抵抗率が変化してしまう可能性があり、また、15μm超えの場合、固体撮像素子の分光感度特性に影響が生じるおそれがあるからである。エピタキシャル層20は裏面照射型固体撮像素子を製造するためのデバイス層となる。
次に、上記製造方法により得られるエピタキシャルシリコンウェーハ100について説明する。このエピタキシャルシリコンウェーハ100は、図1(C)に示すように、シリコンウェーハ10と、このシリコンウェーハ10の表面に形成され、シリコンウェーハ10中に所定元素が固溶してなる改質層18と、この改質層18上のエピタキシャル層20と、を有する。ここで、シリコンウェーハ10は、転位クラスターおよびCOPのないシリコンウェーハであり、改質層18における所定元素の深さ方向の濃度プロファイルの半値幅Wが100nm以下であることを特徴とする。すなわち、本発明のエピタキシャルシリコンウェーハの製造方法によれば、モノマーイオン注入に比べて、クラスターイオンを構成する元素の析出領域を局所的かつ高濃度にすることができ、その結果、上記半値幅Wを100nm以下とすることが可能となった。下限としては10nmと設定することができる。
なお、本明細書における「深さ方向の濃度プロファイル」は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)にて測定した深さ方向の濃度分布を意味する。また、「所定元素の深さ方向の濃度プロファイルの半値幅」とは、測定精度を考慮して、エピタキシャル層の厚さが1μm超えの場合は、エピタキシャル層を1μmに薄膜化した状態で、SIMSにて所定元素の濃度プロファイルを測定したときの半値幅を意味する。
所定元素としては、シリコン以外の元素であれば特に限定されないが、炭素または炭素を含む2種以上の元素とすることが好ましいのは既述のとおりである。
より高いゲッタリング能力を得る観点から、エピタキシャルシリコンウェーハ100において、シリコンウェーハ10の表面からの深さが150nm以下の範囲内に、改質層18における濃度プロファイルのピークが位置することが好ましい。また、濃度プロファイルのピーク濃度が、1×1015atoms/cm以上であることが好ましく、1×1017〜1×1022atoms/cmの範囲内がより好ましく、1×1019〜1×1021atoms/cmの範囲内がさらに好ましい。
また、改質層18の深さ方向厚みは、概ね30〜400nmの範囲内とすることができる。
本発明のエピタキシャルシリコンウェーハ100によれば、従来に比べ高いゲッタリング能力を発揮することで、金属汚染をより抑制することができ、また、基板として転位クラスターおよびCOPを含まないシリコンウェーハを用いるため、転位クラスターおよびCOPに起因するエピタキシャル欠陥が限りなく低減されたエピタキシャルシリコンウェーハとなる。
本発明の実施形態による固体撮像素子の製造方法は、上記の製造方法で製造されたエピタキシャルシリコンウェーハまたは上記のエピタキシャルシリコンウェーハ、すなわちエピタキシャルシリコンウェーハ100の表面に位置するエピタキシャル層20に、固体撮像素子を形成することを特徴とする。この製造方法により得られる固体撮像素子は、従来に比べ白傷欠陥の発生を十分に抑制することができる。
以上、本発明の代表的な実施形態を説明したが、本発明はこれらの実施形態に限定されるものではない。例えば、シリコンウェーハ10上に2層のエピタキシャル層を形成しても良い。
図4は、本発明のエピタキシャルシリコンウェーハの基板として用いる、転位クラスターおよびCOPを含まないシリコンウェーハの素材となる単結晶シリコンインゴットを製造する条件を得るために使用した単結晶製造装置の構成を模式的に示す図である。この図に示すように、単結晶製造装置50は、その外郭をチャンバー51で構成され、その中心部にルツボ52が配置されている。ルツボ52は二重構造であり、内側の石英ルツボ52aと、外側の黒鉛ルツボ52bとから構成され、回転および昇降が可能なルツボ回転昇降軸53の上端部に固定されている。
ルツボ52の外側には、ルツボ52を囲繞する抵抗加熱式のヒーター54が配設され、その外側には、チャンバー51の内面に沿って断熱材60が配設されている。ルツボ52の上方には、ルツボ回転昇降軸53と同軸上で逆方向または同一方向に所定の速度で回転するワイヤなどの引き上げ軸55が配され、この引き上げ軸55の下端に取り付けた種結晶保持器56によって種結晶Sが保持されている。
チャンバー51内には、ルツボ52内の上方で育成中のインゴットIを囲繞する円筒状の熱遮蔽体59が配置されている。熱遮蔽体59は、育成中のインゴットIに対して、ルツボ52内の原料融液Mやヒーター54やルツボ52の側壁からの高温の輻射熱を入光量や、結晶成長界面近傍の熱の拡散量を調整するもので、単結晶インゴット中心部および単結晶インゴット外周部の引き上げ軸方向の温度勾配を制御する役割を担う。
チャンバー51の上部には、Arガスなどの不活性ガスをチャンバー51内に導入するガス導入口57が設けられている。チャンバー51の下部には、図示しない真空ポンプの駆動によりチャンバー51内の気体を吸引して排出する排気口58が設けられている。ガス導入口57からチャンバー51内に導入された不活性ガスは、育成中のシリコン単結晶インゴットIと熱遮蔽体59との間を下降し、熱遮蔽体59の下端と原料融液Mの液面との隙間を経た後、熱遮蔽体59の外側、さらにルツボ52の外側に向けて流れ、その後にルツボ52の外側を下降し、排気口58から排出される。
この単結晶製造装置50を用いて、チャンバー51内を減圧下のArガス雰囲気に維持した状態で、ルツボ52内に充填した多結晶シリコンなどの固形原料をヒーター54の加熱により溶融させ、原料融液Mを形成する。その後、引き上げ軸55を下降させて種結晶Sを原料融液Mに浸漬し、ルツボ52および引き上げ軸55を所定の方向に回転させながら、引き上げ軸55を上方に引き上げ、種結晶Sの下方にインゴットIを育成する。
本実施例では、径方向全域にわたり無欠陥領域となる単結晶インゴットを育成できるように、育成中の単結晶インゴットの温度が融点から1300℃までの範囲にて、引き上げ軸方向の単結晶インゴット中心部の温度勾配Gcと単結晶インゴット外周部の温度勾配Geとの関係がGc/Ge>1の条件を満足するように、熱遮蔽体59の寸法形状や設置高さ位置を設定した状態で、引き上げ速度を高速(1.0mm/分)から低速(0.3mm/分)まで変化させるようにして、直胴部長さ方向に結晶領域分布が異なるようにして単結晶インゴットIを育成した。育成した単結晶シリコンインゴットIは、結晶方位<100>、直胴部直径310mm、リンドープ(1×1015atoms/cm〜1×1017atoms/cm)したn型の単結晶シリコンインゴットであり、インゴットIの酸素濃度(ASTM F121-1979)は12〜14×1017atoms/cmである。
上述のように育成した単結晶シリコンインゴット内に形成される欠陥分布を評価した。具体的には、まず、上記引き上げ速度変更実験で育成した単結晶シリコンインゴットを、引き上げ軸に沿って縦割りした板状サンプル片を作製し、次いで、作製されたサンプル片に対して、酸素析出熱処理(窒素雰囲気、800℃×4時間+1000℃×16時間)を施した後、熱処理したサンプル片を硫酸銅水溶液に浸漬してCuデコレーションを行い、その後、窒素雰囲気中において900℃で20分間の熱処理を施した後、X線トポグラフ法によりサンプル片表面における欠陥分布を評価した。得られた欠陥分布の模式図を図5に示す。
図5における(a)〜(d)ライン位置の結晶領域となる引き上げ条件(引き上げ速度)にそれぞれ変更して、各ライン位置に対応する結晶領域からなる、結晶領域分布が異なる4水準の単結晶シリコンインゴット(a)〜(d)を育成した。引き上げ速度を変更した以外は、上述した引き上げ速度変更実験の育成条件と全て同じである。
育成された4水準の単結晶シリコンインゴットに対して、公知の外周研削、スライス、ラッピング、エッチング、鏡面研磨の加工工程を施して、厚さ725μmのシリコンウェーハをそれぞれ作製した。具体的には、以下の結晶領域からなる4種類のウェーハを用意した。作製した各シリコンウェーハに転位クラスターが含まれるか否かはセコエッチング後の目視検査により確認したが、いずれもその存在は確認されなかった。
ウェーハ(a):ウェーハ全面がCOP発生領域
ウェーハ(b):OSF潜在核領域とPv(1)領域とからなる混合領域
ウェーハ(c):OSF潜在核領域とPv(2)領域とからなる混合領域
ウェーハ(d):Pv(2)領域とPi領域とからなる混合領域
(本発明例1)
上述のように作製されたウェーハ(b)を用い、クラスターイオン発生装置(日新イオン機器社製、型番:CLARIS)を用いて、クラスターイオンとしてCクラスターを生成し、ドーズ量9.00×1013Clusters/cm(炭素のドーズ量4.50×1014atoms/cm)、炭素1原子当たりの加速電圧14.8keV/atomの条件で、シリコンウェーハに照射した。その後、シリコンウェーハをHF洗浄した後、枚葉式エピタキシャル成長装置(アプライドマテリアルズ社製)内に搬送し、装置内で1120℃の温度で30秒の水素ベーク処理を施した後、水素をキャリアガス、トリクロロシランをソースガスとして1150℃でCVD法により、シリコンウェーハ上にシリコンのエピタキシャル層(厚さ:8μm、ドーパント種類:リン、ドーパント濃度:1×1015atoms/cm)をエピタキシャル成長させ、本発明に従うシリコンエピタキシャルウェーハとした。
(本発明例2および3)
基板としてのシリコンウェーハをウェーハ(c)(本発明例2)およびウェーハ(d)(本発明例3)に変更した以外は、本発明例1と同様にして本発明に従うエピタキシャルシリコンウェーハを製造した。なお、本発明例1〜3では、80keV/Clusterでクラスターイオンを照射したが、各クラスターは、5の炭素原子(原子量12)および5の水素原子(原子量1)からなる。そのため、炭素原子1つが受けるエネルギーは、80×{12×5/(12×5+1×5)}/5≒14.8keVとなる。
(比較例1〜3)
クラスターイオン照射工程に替えて、COを材料ガスとして、炭素のモノマーイオンを生成し、ドーズ量9.00×1013atoms/cm、加速電圧300keV/atomの条件でモノマーイオン注入工程を行った以外は、本発明例1〜3と同様にして、比較例にかかるエピタキシャルシリコンウェーハを製造した。具体的には、比較例1〜3では、基板としてそれぞれウェーハ(b)〜(d)を用い、炭素のモノマーイオンを300keVの加速電圧でシリコンウェーハに照射した。
(比較例4)
シリコンウェーハを、ウェーハ(a)に変更した以外は、本発明例1と同様にして比較例にかかるエピタキシャルシリコンウェーハを製造した。
(比較例5)
シリコンウェーハを、ウェーハ(a)に変更した以外は、比較例1と同様にして比較例にかかるエピタキシャルシリコンウェーハを製造した。
上記本発明例および比較例で作製した各サンプルについて評価を行った。評価方法を以下に示す。
(1)SIMS測定
まず、クラスターイオンの照射直後と、モノマーイオンの注入直後における、炭素の分布の相違を明らかにするため、本発明例3および比較例3について、エピタキシャル層形成の前のシリコンウェーハについて、SIMS測定を行った。得られた炭素濃度プロファイルを図6に参考に示す。ここで、図6の横軸の深さはシリコンウェーハの表面をゼロとしている。
次に、本発明例3および比較例3のエピタキシャルシリコンウェーハについて、SIMS測定を行った。得られた炭素濃度プロファイルを図7(A),(B)にそれぞれに示す。図7の横軸の深さはエピタキシャルシリコンウェーハの表面をゼロとしている。
また、各本発明例および比較例で作成した各サンプルについて、エピタキシャル層を1μmまで薄膜化した後にSIMS測定したときの炭素濃度プロファイルの半値幅を表1に示す。なお、既述のとおり、表1に示す半値幅はエピタキシャル層を1μmに薄膜化した後にSIMS測定したときの半値幅であるため、表1に示す半値幅と、図7(A),(B)の半値幅とは異なる。また、薄膜化した後にSIMS測定したときの濃度のピーク位置およびピーク濃度についても表1に示す。
Figure 0005776669
(2)ゲッタリング能力評価
本発明例および比較例で作製した各サンプルのシリコンウェーハ表面を、Ni汚染液(1.0×1012/cm)で、それぞれスピンコート汚染法を用いて故意に汚染し、引き続き900℃、30分の熱処理を施した。その後、SIMS測定を行った。測定結果を代表して、本発明例3および比較例3についてのNi濃度プロファイルを、それぞれ炭素濃度プロファイルとともに示す(図7(A),(B))。他の本発明例および比較例については、ゲッタリング能力評価の結果を表1に示す。なお、評価基準をNi濃度プロファイルのピーク濃度の値によって以下のとおりに分類した。
◎:1.0×1017atoms/cm以上
○:5.0×1016atoms/cm以上1.0×1017atoms/cm未満
△:1.0×1016atoms/cm以上5.0×1016atoms/cm未満
(3)エピタキシャル欠陥の評価
本発明例および比較例で作製した各サンプルのエピタキシャルウェーハの表面を、KLA−Tenchor社製:Surfscan SP−2を用いて観察評価し、LPDの発生状況を調べた。その際、観察モードはObliqueモード(斜め入射モード)とし、表面ピットの推定は、Wide Narrowチャンネルの検出サイズ比に基づいて行った。続いて、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、LPDの発生部位を観察評価して、LPDが積層欠陥(SF:Stacking Fault)であるか否かを評価した。その後、収束イオンビーム(FIB:Focused Ion Beam)加工により、SFの発生部位を含む断面観察用評価サンプルを作製した。最後に、この評価サンプルを透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて観察評価して、COP起因のSFであるか否かを評価した。SFの個数を表1に示す。
まず、クラスターイオン照射に替えてモノマーイオン注入を行った点のみで異なる本発明例3と比較例3とを用いて比較する。図6に示すように、クラスターイオンの照射直後と、モノマーイオンの注入直後における中間製造物であるエピタキシャル層形成前のシリコンウェーハの炭素濃度プロファイルを比較すると、クラスターイオン照射の場合は炭素濃度プロファイルがシャープであり、モノマーイオン注入の場合は炭素濃度プロファイルがブロードである。このことから、エピタキシャル層形成後も、炭素濃度プロファイルの傾向は同様となることが推定される。実際に、これら中間製造物にエピタキシャル層を形成したときの炭素濃度プロファイル(図7(A),(B))からもわかるように、クラスターイオン照射により、モノマーイオン注入よりも局所的かつ高濃度の改質層が形成されている。さらに、図7(A),(B)に示したNiの濃度プロファイルから、本発明例3と比較例3とを比較すると、本発明例3ではクラスターイオン照射により形成された改質層が多量のNiを捕獲して、高いゲッタリング能力を発揮していることがわかる。
また、表1に示すとおり、クラスターイオン照射した本発明例1〜3および比較例4は、全て半値幅が100nm以下であり、全て十分なゲッタリング能力を備えていることがわかる。一方、モノマーイオン注入した比較例1〜3,5は、いずれも半値幅が100nm超えであり、ゲッタリング能力が不足している。このように、クラスターイオンを照射した本発明例1〜3および比較例1〜3,5は、モノマーイオンを注入した比較例4に比べ、炭素濃度プロファイルの半値幅が小さくなるために、より高いゲッタリング能力を得ることができていると言える。
さらに、ウェーハ(b)〜(d)を用いた発明例1〜3および比較例1〜3については、SFの数がゼロであったのに対して、COP領域からなるウェーハ(a)を用いた比較例4および5については、SFが検出された。このように、ウェーハ(b)〜(d)を用いることにより、エピタキシャル欠陥を防止できていることがわかる。
本発明によれば、より高いゲッタリング能力を発揮することで金属汚染を抑制することができ、かつ、転位クラスターおよびCOPに起因するエピタキシャル欠陥が限りなく低減されたエピタキシャルシリコンウェーハを効率的に製造することができるため、半導体ウェーハ製造業において有用である。
100 エピタキシャルシリコンウェーハ
10 シリコンウェーハ
10A シリコンウェーハの表面
16 クラスターイオン
18 改質層
20 エピタキシャル層
41 COP発生領域
42 OSF潜在核領域
43 酸素析出促進領域(Pv(1)領域)
44 酸素析出促進領域(Pv(2)領域)
45 酸素析出抑制領域(Pi領域)
46 転位クラスター領域
50 単結晶製造装置
51 チャンバー
52 ルツボ
52a 石英ルツボ
52b 黒鉛ルツボ
53 ルツボ回転昇降軸
54 ヒーター
55 引き上げ軸
56 種結晶保持器
57 ガス導入口
58 排気口
59 熱遮蔽体
60 断熱材
I 単結晶シリコンインゴット
S 種結晶
M 原料融液

Claims (13)

  1. 転位クラスターおよびCOPを含まないシリコンウェーハに、ゲッタリングに寄与する構成元素を含むクラスターイオンを照射して、該シリコンウェーハの表面に、前記クラスターイオンの構成元素から形成された改質層を形成する第1工程と、
    前記シリコンウェーハの改質層上にエピタキシャル層を形成する第2工程と、
    を有し、該第2工程後の改質層における前記構成元素の深さ方向の濃度プロファイルの半値幅が100nm以下であるエピタキシャルシリコンウェーハを得ることを特徴とするエピタキシャルシリコンウェーハの製造方法。
  2. 前記クラスターイオンが構成元素として炭素を含む、請求項1に記載のエピタキシャルシリコンウェーハの製造方法。
  3. 前記クラスターイオンが構成元素として炭素を含む2種以上の元素を含む、請求項2に記載のエピタキシャルシリコンウェーハの製造方法。
  4. 前記第1工程の後、前記シリコンウェーハに対して結晶性回復のための熱処理を行うことなく、前記シリコンウェーハをエピタキシャル成長装置に搬送して第2工程を行う、請求項1〜3のいずれか一項に記載のエピタキシャルシリコンウェーハの製造方法。
  5. 前記第1工程では、前記シリコンウェーハの表面からの深さが150nm以下の範囲内に、前記改質層における前記構成元素の深さ方向の濃度プロファイルのピークが位置するように、前記クラスターイオンを照射する、請求項1〜4のいずれか一項に記載のエピタキシャルシリコンウェーハの製造方法。
  6. 前記第1工程は、炭素1原子あたりの加速電圧が50keV/atom以下、クラスターサイズが100個以下、炭素のドーズ量が1×1016atoms/cm以下の条件で行う、請求項5に記載のエピタキシャルシリコンウェーハの製造方法。
  7. 前記第1工程は、炭素1原子あたりの加速電圧が40keV/atom以下、クラスターサイズが60個以下、炭素のドーズ量が5×1015atoms/cm以下の条件で行う、請求項5に記載のエピタキシャルシリコンウェーハの製造方法。
  8. 転位クラスターおよびCOPを含まないシリコンウェーハと、該シリコンウェーハの表面に形成された、該シリコンウェーハ中に固溶しゲッタリングに寄与する所定元素から形成された改質層と、該改質層上のエピタキシャル層と、を有し、
    前記改質層における前記所定元素の深さ方向の濃度プロファイルの半値幅が100nm以下であることを特徴とするエピタキシャルシリコンウェーハ。
  9. 前記シリコンウェーハの表面からの深さが150nm以下の範囲内に、前記改質層における前記濃度プロファイルのピークが位置する、請求項8に記載のエピタキシャルシリコンウェーハ。
  10. 前記改質層における前記濃度プロファイルのピーク濃度が、1×1015atoms/cm以上である、請求項8または9に記載のエピタキシャルシリコンウェーハ。
  11. 前記所定元素が炭素を含む、請求項8〜10のいずれか一項に記載のエピタキシャルシリコンウェーハ。
  12. 前記所定元素が炭素を含む2種以上の元素を含む、請求項11に記載のエピタキシャルシリコンウェーハ。
  13. 請求項1〜7のいずれか一項に記載の製造方法で製造されたエピタキシャルシリコンウェーハまたは請求項8〜12のいずれか一項に記載のエピタキシャルシリコンウェーハの、表面に位置するエピタキシャル層に、固体撮像素子を形成することを特徴とする固体撮像素子の製造方法。
JP2012249221A 2012-11-13 2012-11-13 エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法 Active JP5776669B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012249221A JP5776669B2 (ja) 2012-11-13 2012-11-13 エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
US14/078,217 US9224601B2 (en) 2012-11-13 2013-11-12 Method of producing epitaxial silicon wafer, epitaxial silicon wafer, and method of producing solid-state image sensing device
TW102141074A TWI521567B (zh) 2012-11-13 2013-11-12 磊晶矽晶圓的製造方法、磊晶矽晶圓及固體攝影元件的製造方法
US14/946,661 US9396967B2 (en) 2012-11-13 2015-11-19 Method of producing epitaxial silicon wafer, epitaxial silicon wafer, and method of producing solid-state image sensing device
US15/182,443 US9576800B2 (en) 2012-11-13 2016-06-14 Method of producing epitaxial silicon wafer, epitaxial silicon wafer, and method of producing solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249221A JP5776669B2 (ja) 2012-11-13 2012-11-13 エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法

Publications (3)

Publication Number Publication Date
JP2014099450A JP2014099450A (ja) 2014-05-29
JP2014099450A5 JP2014099450A5 (ja) 2015-04-23
JP5776669B2 true JP5776669B2 (ja) 2015-09-09

Family

ID=50682097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249221A Active JP5776669B2 (ja) 2012-11-13 2012-11-13 エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法

Country Status (3)

Country Link
US (3) US9224601B2 (ja)
JP (1) JP5776669B2 (ja)
TW (1) TWI521567B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534791B (zh) * 2011-05-13 2016-05-11 胜高股份有限公司 半导体外延晶片的制造方法、半导体外延晶片及固体摄像元件的制造方法
JP5776669B2 (ja) * 2012-11-13 2015-09-09 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
DE102014208815B4 (de) * 2014-05-09 2018-06-21 Siltronic Ag Verfahren zur Herstellung einer Halbleiterscheibe aus Silizium
JP6566683B2 (ja) * 2014-07-02 2019-08-28 東京エレクトロン株式会社 基板洗浄方法および基板洗浄装置
US10026843B2 (en) 2015-11-30 2018-07-17 Taiwan Semiconductor Manufacturing Co., Ltd. Fin structure of semiconductor device, manufacturing method thereof, and manufacturing method of active region of semiconductor device
JP6299835B1 (ja) * 2016-10-07 2018-03-28 株式会社Sumco エピタキシャルシリコンウェーハおよびエピタキシャルシリコンウェーハの製造方法
AU2017380834B2 (en) 2016-12-19 2023-06-01 Upl Ltd Moisture barrier package
JP6724824B2 (ja) * 2017-03-08 2020-07-15 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、品質予測方法および品質評価方法
CN110164959A (zh) * 2019-05-15 2019-08-23 中国电子科技集团公司第十三研究所 一种衬底及外延片
JP7207204B2 (ja) * 2019-07-02 2023-01-18 信越半導体株式会社 炭素ドープシリコン単結晶ウェーハの製造方法
JP7259706B2 (ja) * 2019-11-06 2023-04-18 株式会社Sumco エピタキシャルシリコンウェーハのパッシベーション効果評価方法
CN111273158B (zh) * 2020-02-26 2022-04-15 上海韦尔半导体股份有限公司 一种排查弹坑的测试方法、装置及智能打线设备
US11551904B2 (en) * 2020-09-09 2023-01-10 Applied Materials, Inc. System and technique for profile modulation using high tilt angles

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311004B2 (ja) * 1991-03-28 2002-08-05 株式会社東芝 固体撮像装置
JP3384506B2 (ja) * 1993-03-30 2003-03-10 ソニー株式会社 半導体基板の製造方法
JP3460551B2 (ja) 1997-11-11 2003-10-27 信越半導体株式会社 結晶欠陥の少ないシリコン単結晶ウエーハ及びその製造方法
JP3816484B2 (ja) * 2003-12-15 2006-08-30 日本航空電子工業株式会社 ドライエッチング方法
US7259036B2 (en) * 2004-02-14 2007-08-21 Tel Epion Inc. Methods of forming doped and un-doped strained semiconductor materials and semiconductor films by gas-cluster-ion-beam irradiation and materials and film products
US7666771B2 (en) * 2005-12-09 2010-02-23 Semequip, Inc. System and method for the manufacture of semiconductor devices by the implantation of carbon clusters
KR20090018954A (ko) * 2006-06-13 2009-02-24 세미이큅, 인코포레이티드 이온 빔 장치와 자기 스캐닝을 채용한 방법
JP2008294245A (ja) 2007-05-25 2008-12-04 Shin Etsu Handotai Co Ltd エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
JP5374883B2 (ja) * 2008-02-08 2013-12-25 富士電機株式会社 半導体装置およびその製造方法
JP2010040864A (ja) * 2008-08-06 2010-02-18 Sumco Corp エピタキシャルシリコンウェーハ及びその製造方法
JP2010114409A (ja) * 2008-10-10 2010-05-20 Sony Corp Soi基板とその製造方法、固体撮像装置とその製造方法、および撮像装置
JP5099023B2 (ja) 2009-01-27 2012-12-12 信越半導体株式会社 エピタキシャルウエーハの製造方法及び固体撮像素子の製造方法
JP5515406B2 (ja) * 2009-05-15 2014-06-11 株式会社Sumco シリコンウェーハおよびその製造方法
JP2011054879A (ja) * 2009-09-04 2011-03-17 Sumco Corp 裏面照射型イメージセンサ用エピタキシャル基板およびその製造方法。
JP2011151318A (ja) * 2010-01-25 2011-08-04 Renesas Electronics Corp 半導体装置およびその製造方法
JP2012059849A (ja) * 2010-09-08 2012-03-22 Shin Etsu Handotai Co Ltd シリコンエピタキシャルウェーハおよびシリコンエピタキシャルウェーハの製造方法
JP5776669B2 (ja) * 2012-11-13 2015-09-09 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP5776670B2 (ja) 2012-11-13 2015-09-09 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法

Also Published As

Publication number Publication date
TWI521567B (zh) 2016-02-11
TW201428823A (zh) 2014-07-16
JP2014099450A (ja) 2014-05-29
US9224601B2 (en) 2015-12-29
US9576800B2 (en) 2017-02-21
US20160148964A1 (en) 2016-05-26
US20160293426A1 (en) 2016-10-06
US9396967B2 (en) 2016-07-19
US20140134779A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP5776669B2 (ja) エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP6278591B2 (ja) 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP6065848B2 (ja) 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP5776670B2 (ja) エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP6107068B2 (ja) エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
TWI611482B (zh) 半導體磊晶晶圓的製造方法及固體攝像元件的製造方法
JP6427946B2 (ja) エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP6614066B2 (ja) シリコン接合ウェーハの製造方法
JP6427894B2 (ja) エピタキシャルウェーハの製造方法
JP6280301B2 (ja) エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP2017123477A (ja) 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP6361779B2 (ja) エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP2015220242A (ja) 半導体エピタキシャルウェーハの製造方法および固体撮像素子の製造方法
JP6318728B2 (ja) 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150304

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150304

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250