JP5768232B2 - Method for producing vertically aligned carbon nanotubes - Google Patents

Method for producing vertically aligned carbon nanotubes Download PDF

Info

Publication number
JP5768232B2
JP5768232B2 JP2013158918A JP2013158918A JP5768232B2 JP 5768232 B2 JP5768232 B2 JP 5768232B2 JP 2013158918 A JP2013158918 A JP 2013158918A JP 2013158918 A JP2013158918 A JP 2013158918A JP 5768232 B2 JP5768232 B2 JP 5768232B2
Authority
JP
Japan
Prior art keywords
carbon nanotubes
vertically aligned
gas
substrate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013158918A
Other languages
Japanese (ja)
Other versions
JP2013216578A (en
Inventor
翼 井上
翼 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2013158918A priority Critical patent/JP5768232B2/en
Publication of JP2013216578A publication Critical patent/JP2013216578A/en
Application granted granted Critical
Publication of JP5768232B2 publication Critical patent/JP5768232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カーボンナノチューブの製造方法及び製造装置に係り、特に、平板状の基板に垂直配向するカーボンナノチューブの製造方法及び製造装置に関する。   The present invention relates to a carbon nanotube manufacturing method and manufacturing apparatus, and more particularly, to a carbon nanotube manufacturing method and manufacturing apparatus that are vertically aligned on a flat substrate.

カーボンナノチューブ(CNT)は、機械的強度が高い、軽い、電気伝導特性が良い、熱特性が良い、電界電子放出特性が良い等の特性を有することから、走査プローブ顕微鏡(SPM)の探針、電界放出ディスプレイ(FED)、の冷陰極、導電性樹脂、高強度樹脂、耐腐食性樹脂、耐摩耗性樹脂、高度潤滑性樹脂、二次電池や燃料電池の電極、LSIの層間配線材料、バイオセンサーなどへの応用が注目されている。   Since carbon nanotubes (CNT) have properties such as high mechanical strength, lightness, good electrical conductivity, good thermal properties, and good field electron emission properties, the probe of a scanning probe microscope (SPM), Field emission display (FED), cold cathode, conductive resin, high-strength resin, corrosion-resistant resin, wear-resistant resin, highly-lubricated resin, secondary battery and fuel cell electrodes, LSI interlayer wiring materials, bio Its application to sensors is drawing attention.

カーボンナノチューブの製造方法としては、例えばアーク放電法やレーザー蒸発法、化学気相成長法(CVD法)等があり、特許文献1には、CVD法によりカーボンナノチューブを製造する技術が開示されている。   Examples of the carbon nanotube production method include an arc discharge method, a laser evaporation method, a chemical vapor deposition method (CVD method), and the like. Patent Document 1 discloses a technique for producing a carbon nanotube by a CVD method. .

CVD法では、基本的には触媒金属と炭素源の炭化水素を共存させ、例えば650°C〜1300°C程度のプロセス温度でカーボンナノチューブを合成させる。触媒粒子のサイズが小さいときには単層カーボンナノチューブ(SWNT)が得られる。触媒の種類、その支持の仕方(基板上や浮遊など)に多くのバリエーションがある。   In the CVD method, basically, a catalytic metal and a hydrocarbon as a carbon source coexist, and carbon nanotubes are synthesized at a process temperature of about 650 ° C. to 1300 ° C., for example. Single-walled carbon nanotubes (SWNT) are obtained when the size of the catalyst particles is small. There are many variations in the type of catalyst and how it is supported (on the substrate, floating, etc.).

例えば、平板状の基板上に触媒として鉄やアルミナ等の金属膜をスパッタリング等により形成し、これを電気炉内にセットして電気炉内を所定温度に昇温させた状態で、アセチレンや水素、アンモニア等がブレンドされたガスを電気炉内に流入させて触媒と化学反応させることにより、基板上にカーボンナノチューブを垂直配向させる技術がある。   For example, a metal film such as iron or alumina is formed as a catalyst on a flat substrate by sputtering or the like, and this is set in an electric furnace and the electric furnace is heated to a predetermined temperature. There is a technique for vertically aligning carbon nanotubes on a substrate by flowing a gas blended with ammonia or the like into a furnace to cause a chemical reaction with a catalyst.

特開2006−265006号公報JP 2006-265006 A

しかしながら、上記従来技術は、基板上に金属膜を形成する必要があったり、ガスのブレンド比率が変化するとカーボンナノチューブが成長しなかったりする等、簡単にカーボンナノチューブを製造することができない、という問題があった。   However, the above-mentioned prior art has a problem that it is not possible to easily produce carbon nanotubes, for example, it is necessary to form a metal film on a substrate, or carbon nanotubes do not grow when the gas blend ratio changes. was there.

本発明は上記事実を考慮して成されたものであり、簡単に垂直配向したカーボンナノチューブを製造することができるカーボンナノチューブの製造方法及び製造装置を得ることを目的とする。   The present invention has been made in consideration of the above facts, and an object of the present invention is to obtain a carbon nanotube manufacturing method and manufacturing apparatus that can easily manufacture vertically aligned carbon nanotubes.

上記目的を達成するため、請求項1記載の発明のカーボンナノチューブの製造方法は、少なくとも一部の表面が酸化ケイ素である平板状の基板と触媒とが載置された管内を排気するステップと、前記管内を前記触媒が昇華する所定温度に調整するステップと、前記所定温度に調整されて前記触媒が昇華した状態にある前記管内に炭化水素のガスを供給し、化学気相成長法により前記基板上にカーボンナノチューブを垂直配向させるステップと、を含むことを特徴とする。   In order to achieve the above object, the method for producing a carbon nanotube of the invention according to claim 1 evacuates the inside of a tube on which a flat substrate having a surface of at least a part of silicon oxide and a catalyst are placed, and Adjusting the inside of the tube to a predetermined temperature at which the catalyst sublimes; and supplying a hydrocarbon gas into the tube that is adjusted to the predetermined temperature and in which the catalyst is sublimated; And vertically aligning the carbon nanotubes thereon.

この発明によれば、化学気相成長法により、昇華した触媒と炭化水素のガスとが気相反応することで基板表面の酸化ケイ素の部分にカーボンナノチューブが垂直配向する。このように、基板上に金属膜を形成する必要がなく、管内に供給するガスも炭化水素以外の他のガスをブレンドする必要がないので、簡単に垂直配向したカーボンナノチューブを製造することができる。   According to the present invention, by the chemical vapor deposition method, the sublimated catalyst and the hydrocarbon gas undergo a gas phase reaction, whereby the carbon nanotubes are vertically aligned in the silicon oxide portion on the substrate surface. In this way, it is not necessary to form a metal film on the substrate, and the gas supplied into the tube does not need to be blended with other gases other than hydrocarbons, so that it is possible to easily manufacture vertically aligned carbon nanotubes. .

なお、請求項2に記載したように、前記酸化ケイ素は石英であることが好ましい。   In addition, as described in claim 2, the silicon oxide is preferably quartz.

また、請求項3に記載したように、前記炭化水素はアセチレンであることが好ましい。   Further, as described in claim 3, the hydrocarbon is preferably acetylene.

請求項4記載の発明のカーボンナノチューブの製造装置は、少なくとも一部の表面が酸化ケイ素である基板と触媒とが載置された管内を排気する排気手段と、前記管内を前記触媒が昇華する所定温度に調整する温度調整手段と、前記所定温度に調整されて前記触媒が昇華した状態にある前記管内に炭化水素のガスを供給し、化学気相成長法により前記基板上にカーボンナノチューブを垂直配向させるガス供給手段と、を含むことを特徴とする。   According to a fourth aspect of the present invention, there is provided an apparatus for producing a carbon nanotube, comprising: exhaust means for exhausting the inside of a tube on which a substrate having at least a part of the surface made of silicon oxide and the catalyst is placed; A temperature adjusting means for adjusting the temperature, and a hydrocarbon gas is supplied into the tube which is adjusted to the predetermined temperature and the catalyst is sublimated, and the carbon nanotubes are vertically aligned on the substrate by chemical vapor deposition Gas supply means to be included.

この発明によれば、基板上に金属膜を形成する必要がなく、管内に供給するガスも炭化水素以外の他のガスをブレンドする必要がないので、簡単に垂直配向したカーボンナノチューブを製造することができる。   According to this invention, it is not necessary to form a metal film on the substrate, and the gas supplied into the tube does not need to be blended with other gases other than hydrocarbons. Can do.

本発明によれば、簡単に垂直配向したカーボンナノチューブを製造することができる、という効果を有する。   According to the present invention, it is possible to easily produce vertically aligned carbon nanotubes.

CVD装置の概略構成図である。It is a schematic block diagram of a CVD apparatus. カーボンナノチューブの成長方法を示すフローチャートである。It is a flowchart which shows the growth method of a carbon nanotube. カーボンナノチューブの成長過程における各物質の分圧とカーボンナノチューブの成長時間との関係を示す図である。It is a figure which shows the relationship between the partial pressure of each substance in the growth process of a carbon nanotube, and the growth time of a carbon nanotube. アセチレンガスの流量と成長したカーボンナノチューブの長さとの関係を示す図である。It is a figure which shows the relationship between the flow volume of acetylene gas, and the length of the grown carbon nanotube. カーボンナノチューブの成長時間と成長したカーボンナノチューブの長さとの関係を示す図である。It is a figure which shows the relationship between the growth time of a carbon nanotube, and the length of the grown carbon nanotube. (A)はアセチレンガスの圧力を10Torrとして成長させたカーボンナノチューブのラマン測定の結果を示す図、(B)はアセチレンガスの圧力を1Torrとして成長させたカーボンナノチューブのラマン測定の結果を示す図である。(A) is a figure which shows the result of the Raman measurement of the carbon nanotube grown with the pressure of acetylene gas being 10 Torr, (B) is the figure which shows the result of the Raman measurement of the carbon nanotube grown with the pressure of acetylene gas being 1 Torr. is there. (A)は石英基板の一部の外観を示す図、(B)はカーボンナノチューブが成長した石英基板の外観を示す図である。(A) is a figure which shows the external appearance of a part of quartz substrate, (B) is a figure which shows the external appearance of the quartz substrate in which the carbon nanotube grew. 石英基板上に成長したカーボンナノチューブの外観を示す図である。It is a figure which shows the external appearance of the carbon nanotube grown on the quartz substrate. 走査電子顕微鏡により観察したカーボンナノチューブを示す図である。It is a figure which shows the carbon nanotube observed with the scanning electron microscope.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1には、CVD法により基板上にカーボンナノチューブを成長させるCVD装置10の概略構成図を示した。   FIG. 1 shows a schematic configuration diagram of a CVD apparatus 10 for growing carbon nanotubes on a substrate by a CVD method.

同図に示すように、CVD装置10は、電気炉12を備えている。電気炉12内には、石英管14が通されており、この石英管14の周囲にはヒータ16、熱電対18が設けられている。   As shown in the figure, the CVD apparatus 10 includes an electric furnace 12. A quartz tube 14 is passed through the electric furnace 12, and a heater 16 and a thermocouple 18 are provided around the quartz tube 14.

ヒータ16及び熱電対18は制御部20に接続されており、この制御部20は、石英管14の内部がカーボンナノチューブの成長に適した所定温度となるように、熱電対18により検出された温度に基づいてヒータ16を制御する。   The heater 16 and the thermocouple 18 are connected to the control unit 20, and the control unit 20 detects the temperature detected by the thermocouple 18 so that the inside of the quartz tube 14 has a predetermined temperature suitable for the growth of carbon nanotubes. The heater 16 is controlled based on the above.

また、石英管14の一方には、ガス供給部22が接続されており、石英管14の他方には圧力調整バルブ23及び排気部24が接続されている。ガス供給部22、圧力調整バルブ23及び排気部24は制御部20によって制御される。   A gas supply unit 22 is connected to one side of the quartz tube 14, and a pressure adjustment valve 23 and an exhaust unit 24 are connected to the other side of the quartz tube 14. The gas supply unit 22, the pressure adjustment valve 23, and the exhaust unit 24 are controlled by the control unit 20.

ガス供給部22は、炭化水素のガスを石英管14に流入させる。本実施形態では、炭化水素のガスとして、一例としてアセチレン(C)のガスを用いる。 The gas supply unit 22 causes hydrocarbon gas to flow into the quartz tube 14. In the present embodiment, an acetylene (C 2 H 2 ) gas is used as an example of the hydrocarbon gas.

圧力調整バルブ23は、ガス供給部22から供給されるアセチレンのガスの圧力を調整するものである。   The pressure adjustment valve 23 is for adjusting the pressure of the acetylene gas supplied from the gas supply unit 22.

排気部24は、アセチレンのガスを石英管14内に流入させる前に、石英管14内を真空排気するものであり、例えばロータリーポンプが用いられる。   The exhaust unit 24 evacuates the quartz tube 14 before allowing the acetylene gas to flow into the quartz tube 14, and a rotary pump is used, for example.

次に、カーボンナノチューブの製造方法について、図2に示すフローチャートを参照して説明する。   Next, a carbon nanotube manufacturing method will be described with reference to the flowchart shown in FIG.

まず、ステップ100では、図1に示すように、触媒26を載せた石英基板28を石英管14内部にセットする。なお、触媒26を石英基板28上に必ずしも載せておく必要はなく、触媒26と石英基板28とが石英管14内にあればよい。   First, in step 100, as shown in FIG. 1, the quartz substrate 28 on which the catalyst 26 is placed is set inside the quartz tube 14. Note that the catalyst 26 is not necessarily placed on the quartz substrate 28, and the catalyst 26 and the quartz substrate 28 may be in the quartz tube 14.

なお、触媒26としては、塩化第一鉄(FeCl)及び塩化第二鉄(FeCl)の少なくとも一方を含む塩化鉄の粉体を用いることができるが、本実施形態のように塩化第一鉄(FeCl)を用いることが好ましい。 As the catalyst 26, iron chloride powder containing at least one of ferrous chloride (FeCl 2 ) and ferric chloride (FeCl 3 ) can be used. As in this embodiment, ferrous chloride is used. It is preferable to use iron (FeCl 2 ).

また、石英基板28は、少なくとも表面が酸化ケイ素、好ましくは本実施形態のように石英(SiO)であればよい。この石英の部分にカーボンナノチューブが成長する。 Further, at least the surface of the quartz substrate 28 may be silicon oxide, preferably quartz (SiO 2 ) as in the present embodiment. Carbon nanotubes grow on this quartz part.

ステップ102では、制御部20は、排気部24に対して石英管14内を真空排気するように指示する。これにより、排気部24は、例えば石英管14内の圧力が10−2Torr以下となるように石英管14内を真空排気する。 In step 102, the control unit 20 instructs the exhaust unit 24 to evacuate the quartz tube 14. Accordingly, the exhaust unit 24 evacuates the inside quartz tube 14 for example so that the pressure in the quartz tube 14 is 10 -2 Torr or less.

ステップ104では、制御部20は、電気炉12内が所定温度に昇温するように、熱電対18により検出された温度に基づいてヒータ16を制御する。なお、所定温度は、少なくとも触媒26が昇華すると共に石英管14内に流入されるガスと気相反応する温度の下限値以上の温度に設定され、例えば700〜900°Cの範囲内の温度に設定される。   In step 104, the control unit 20 controls the heater 16 based on the temperature detected by the thermocouple 18 so that the temperature in the electric furnace 12 is increased to a predetermined temperature. The predetermined temperature is set to a temperature equal to or higher than the lower limit of the temperature at which the catalyst 26 sublimates and reacts with the gas flowing into the quartz tube 14 in a gas phase. Is set.

ステップ106では、制御部20は、ガス供給部22に対して石英管14内にアセチレンガス30を供給するように指示すると共に、アセチレンガス30が所定圧力となるように圧力調整バルブ23を調整する。これにより、所定圧力で且つ所定流量のアセチレンガス30が石英管14内に流入される。なお、所定圧力及び所定流量は、カーボンナノチューブが成長可能な圧力及び流量に設定される。所定圧力は例えば1〜50Torrの範囲内の圧力に設定され、所定流量は石英管14の径に応じて例えば20〜500sccmの範囲内の流量に設定される。   In step 106, the control unit 20 instructs the gas supply unit 22 to supply the acetylene gas 30 into the quartz tube 14, and adjusts the pressure adjustment valve 23 so that the acetylene gas 30 becomes a predetermined pressure. . As a result, the acetylene gas 30 having a predetermined pressure and a predetermined flow rate flows into the quartz tube 14. The predetermined pressure and the predetermined flow rate are set to a pressure and a flow rate at which carbon nanotubes can grow. The predetermined pressure is set to a pressure in the range of 1 to 50 Torr, for example, and the predetermined flow rate is set to a flow rate in the range of 20 to 500 sccm, for example, according to the diameter of the quartz tube 14.

このように、石英管14内の触媒26が昇華した状態で所定圧力及び所定流量のアセチレンガス30が石英管14内に流入すると、触媒26とアセチレンガス30とが気相反応し、石英基板28上にカーボンナノチューブが垂直配向して成長する。なお、成長時間は、条件によるが例えば5〜60分である。従って、ガスの供給時間は、少なくともガスの供給開始からカーボンナノチューブの成長が停止するまでの時間以上に設定される。   As described above, when the acetylene gas 30 having a predetermined pressure and a predetermined flow rate flows into the quartz tube 14 in a state where the catalyst 26 in the quartz tube 14 is sublimated, the catalyst 26 and the acetylene gas 30 undergo a gas phase reaction, and the quartz substrate 28. Carbon nanotubes grow vertically aligned on the top. The growth time is, for example, 5 to 60 minutes depending on the conditions. Therefore, the gas supply time is set to at least the time from the start of gas supply to the growth of carbon nanotubes.

次に、カーボンナノチューブの成長過程について説明する。   Next, the growth process of carbon nanotubes will be described.

上記のように、触媒26及び石英基板28がセットされた石英管14内が真空排気され、触媒26が昇華する温度に石英管14内が昇温された状態でアセチレンガス30が石英管14内に流入すると、触媒26とアセチレンガス30とが気相反応する。   As described above, the inside of the quartz tube 14 in which the catalyst 26 and the quartz substrate 28 are set is evacuated, and the acetylene gas 30 is introduced into the quartz tube 14 while the inside of the quartz tube 14 is heated to a temperature at which the catalyst 26 sublimates. The catalyst 26 and the acetylene gas 30 undergo a gas phase reaction.

本発明者は、カーボンナノチューブの成長過程について考察するため、石英管14内にアセチレンガス30を流入させて触媒26と気相反応させた時に石英管14内に発生するガスとこれらの分圧について測定した。その結果を図3に示す。同図に示すように、アセチレン(C)を流入させると短時間で塩化水素(HCl)が急激に生成される。また、アセチレンの流入開始から5分位までの間に水素(H)が増加し、その後徐々に減っていく。このHClとHのガスがカーボンナノチューブの成長に関係すると考えられる。 In order to consider the growth process of carbon nanotubes, the present inventor is concerned with the gas generated in the quartz tube 14 and the partial pressure thereof when the acetylene gas 30 is introduced into the quartz tube 14 to cause a gas phase reaction with the catalyst 26. It was measured. The result is shown in FIG. As shown in the figure, when acetylene (C 2 H 2 ) is introduced, hydrogen chloride (HCl) is rapidly generated in a short time. Further, hydrogen (H 2 ) increases from the start of inflow of acetylene to about 5 minutes, and then gradually decreases. This HCl and H 2 gas is considered to be related to the growth of carbon nanotubes.

本実施形態では、触媒26は塩化第一鉄であるので、塩化水素の生成は以下の化学反応式により表わされる。   In this embodiment, since the catalyst 26 is ferrous chloride, the production of hydrogen chloride is represented by the following chemical reaction formula.

FeCl + C → FeC + 2HCl ・・・(1) FeCl 2 + C 2 H 2 → FeC 2 + 2HCl (1)

このように、塩化第一鉄とアセチレンとが気相反応することにより、FeC(以下、鉄炭化物と呼ぶ)と塩化水素が生成される。この鉄炭化物の粉体は互いに衝突を繰り返し、石英基板28上に堆積する。そして、この鉄炭化物から鉄を残してカーボンが析出し(FeC→Fe+2C)、グラフェン層が形成される。これがカーボンナノチューブの成長の始まりであると考えられる。 Thus, FeC 2 (hereinafter referred to as iron carbide) and hydrogen chloride are generated by a gas phase reaction between ferrous chloride and acetylene. The iron carbide powder repeatedly collides with each other and is deposited on the quartz substrate 28. Then, carbon is deposited from the iron carbide leaving iron (FeC 2 → Fe + 2C), and a graphene layer is formed. This is thought to be the beginning of the growth of carbon nanotubes.

そして、残った鉄と塩化水素による脱水素反応により水素が生成される。これは以下の化学反応式により表わされる。   And hydrogen is produced | generated by the dehydrogenation reaction with the remaining iron and hydrogen chloride. This is represented by the following chemical reaction formula.

Fe + 2HCl → FeCl + H ・・・(2) Fe + 2HCl → FeCl 2 + H 2 (2)

以上のような化学反応が繰り返されることにより、カーボンナノチューブが成長する。すなわち、塩化鉄とアセチレンとの化学反応により鉄炭化物と塩化水素が生成され、生成された鉄炭化物からカーボンが析出して鉄が残り、残った鉄と塩化水素との化学反応により塩化鉄と水素が生成され、再び塩化鉄とアセチレンとが化学反応して鉄炭化物と塩化水素が生成される。これが繰り返されることでカーボンナノチューブが成長する。   By repeating the chemical reaction as described above, carbon nanotubes grow. That is, iron carbide and hydrogen chloride are produced by a chemical reaction between iron chloride and acetylene, carbon is precipitated from the produced iron carbide, and iron remains, and iron chloride and hydrogen chloride are produced by a chemical reaction between the remaining iron and hydrogen chloride. Then, iron chloride and acetylene react again to produce iron carbide and hydrogen chloride. By repeating this, carbon nanotubes grow.

なお、アセチレンガス30を石英管14内に供給する際、最初からアセチレンガス30の圧力が大きすぎると、塩化鉄とアセチレンとの化学反応により生成される鉄炭化物の粉体の粒径が大きくなりすぎてしまい、カーボンナノチューブが垂直配向しない場合があるため、アセチレンガス30の供給開始時はその圧力を比較的低め(例えば0.6Torr程度)としておいて、鉄炭化物の粉体がカーボンナノチューブが垂直配向するのに適した密度で石英基板28上に配置されるようにしておき、その後圧力を大きくする(例えば10Torr程度)ようにしてもよい。これにより、適切にカーボンナノチューブを垂直配向させることができる。   When supplying the acetylene gas 30 into the quartz tube 14, if the pressure of the acetylene gas 30 is excessively high from the beginning, the particle size of the iron carbide powder produced by the chemical reaction between iron chloride and acetylene increases. In some cases, the carbon nanotubes may not be vertically aligned. Therefore, when the supply of the acetylene gas 30 is started, the pressure is relatively low (for example, about 0.6 Torr), and the iron carbide powder is aligned with the carbon nanotubes vertically. It may be arranged on the quartz substrate 28 at a density suitable for orientation, and then the pressure may be increased (for example, about 10 Torr). Thereby, the carbon nanotube can be appropriately vertically aligned.

また、アセチレンガス30を石英管14内に供給する際の流量(流速)は、あまり多すぎる(速すぎる)と昇華した触媒26の温度を下げてしまい、少なすぎる(遅すぎる)とカーボンナノチューブの成長に必要な量に満たなくなってしまう場合があるため、触媒26の温度を下げず、かつ成長に必要な量のアセチレンガス30が得られるような流量に設定することが好ましい。   Further, if the flow rate (flow velocity) when supplying the acetylene gas 30 into the quartz tube 14 is too large (too fast), the temperature of the sublimated catalyst 26 is lowered, and if it is too small (too slow), Since the amount required for growth may not be reached, it is preferable to set the flow rate so that the temperature of the catalyst 26 is not lowered and the amount of acetylene gas 30 required for growth is obtained.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

本発明者は、上記で説明したCVD装置10を用いてカーボンナノチューブを石英基板28上に成長させた。なお、石英基板28のサイズは10(mm)×10(mm)×1(mm)、石英管14の径は36mmである。   The inventor has grown carbon nanotubes on the quartz substrate 28 using the CVD apparatus 10 described above. The size of the quartz substrate 28 is 10 (mm) × 10 (mm) × 1 (mm), and the diameter of the quartz tube 14 is 36 mm.

そして、電気炉12内の温度を820°C、アセチレンガス30の圧力を10Torrとし、アセチレンガス30の流量を変化させて前述の方法により成長させたカーボンナノチューブの長さを測定した。その結果を図4に示す。同図に示すように、アセチレンガス30の流量が200sccmの時にカーボンナノチューブの長さが約2.0mmと最も長かった。なお、カーボンナノチューブの長さが最も長くなるアセチレンガス30の流量は石英管14の径によって変化すると考えられるため、石英管14の径に応じて最適な流量に設定することが好ましい。   The temperature of the carbon nanotubes grown by the above-described method was measured by setting the temperature in the electric furnace 12 to 820 ° C., the pressure of the acetylene gas 30 to 10 Torr, and changing the flow rate of the acetylene gas 30. The result is shown in FIG. As shown in the figure, when the flow rate of the acetylene gas 30 was 200 sccm, the length of the carbon nanotube was about 2.0 mm, which was the longest. Note that the flow rate of the acetylene gas 30 with the longest carbon nanotube length is considered to change depending on the diameter of the quartz tube 14, and therefore it is preferable to set the flow rate to an optimum value according to the diameter of the quartz tube 14.

また、電気炉12内の温度を820°C、アセチレンガス30の圧力を10Torr、アセチレンガス30の流量を200sccmとした時のカーボンナノチューブの成長時間と、その長さとの関係を測定した。その結果を図5に示す。同図に示すように、最初の30分間は成長率が高く、その後は成長が止まっていくのが判る。なお、カーボンナノチューブの長さは、圧力が10Torrの場合が2.1mmであり、成長時間は20分であった。   Further, the relationship between the growth time of carbon nanotubes and the length thereof when the temperature in the electric furnace 12 was 820 ° C., the pressure of the acetylene gas 30 was 10 Torr, and the flow rate of the acetylene gas 30 was 200 sccm was measured. The result is shown in FIG. As shown in the figure, the growth rate is high for the first 30 minutes, and then the growth stops. The length of the carbon nanotube was 2.1 mm when the pressure was 10 Torr, and the growth time was 20 minutes.

また、電気炉12内の温度を820°C、アセチレンガス30の流量を200sccmとし、アセチレンガス30の圧力を1Torr、10Torrとしてカーボンナノチューブを成長させたときのラマン測定した時のラマンスペクトルの結果を図6に示した。同図(A)がアセチレンガス30の圧力を10Torrとした場合、同図(B)がアセチレンガス30の圧力を1Torrとした場合の結果である。   The results of Raman spectrum when Raman measurement was performed when carbon nanotubes were grown with the temperature inside the electric furnace 12 being 820 ° C., the flow rate of the acetylene gas 30 being 200 sccm, and the pressure of the acetylene gas 30 being 1 Torr and 10 Torr are shown. This is shown in FIG. FIG. 4A shows the results when the pressure of the acetylene gas 30 is 10 Torr, and FIG. 4B shows the results when the pressure of the acetylene gas 30 is 1 Torr.

カーボンナノチューブの欠陥はラマン測定により評価することができる。具体的には、1350cm−1付近に現れるピークをD−band、1600cm−1付近に現れるピークをG−bandといい、D−bandとG−bandとのピーク強度比(G/D比)を用いて欠陥を評価することができる。G/D比の高いものが、欠陥が少なく品質が高いといえる。 The defect of the carbon nanotube can be evaluated by Raman measurement. Specifically, 1350 cm peak appearing in the vicinity of -1 D-band, means a peak appearing in the vicinity of 1600 cm -1 and G-band, the peak intensity ratio of the D-band and G-band of the (G / D ratio) Can be used to evaluate defects. A product having a high G / D ratio has few defects and high quality.

図6(A)に示すように、圧力が10Torrの場合はG/D比が約2.6となり、同図(B)に示すように、圧力が1Torrの場合はG/D比が約5.3となった。従来の場合はG/D比は約1程度であり、図6(A)、(B)の何れの場合も、従来よりもG/D比は高くなった。なお、成長したカーボンナノチューブの長さは、圧力が1Torrの場合は0.4mmであり、成長時間は30分であった。すなわち、圧力が1Torrの方が、圧力が10Torrの場合よりもG/D比は高いものの、成長したカーボンナノチューブの長さは、圧力が10Torrの場合よりも短かった。   As shown in FIG. 6A, when the pressure is 10 Torr, the G / D ratio is about 2.6. When the pressure is 1 Torr, the G / D ratio is about 5 as shown in FIG. .3. In the conventional case, the G / D ratio is about 1, and in both cases of FIGS. 6A and 6B, the G / D ratio is higher than in the conventional case. The length of the grown carbon nanotube was 0.4 mm when the pressure was 1 Torr, and the growth time was 30 minutes. That is, although the G / D ratio was higher when the pressure was 1 Torr than when the pressure was 10 Torr, the length of the grown carbon nanotubes was shorter than when the pressure was 10 Torr.

また、図7(A)には、カーボンナノチューブを成長させる前の石英基板の一部を示し、同図(B)には、電気炉内の温度を820°C、アセチレンガスの圧力を10Torr、アセチレンガスの流量を200sccmとして、前述した方法によりカーボンナノチューブを成長させたものの一部を示した。同図(B)に示すように、石英基板の表面及び裏面、側面にカーボンナノチューブが垂直配向して成長しているのが判る。また、図8には、石英基板28上にカーボンナノチューブを成長させたものの全体を示した。さらに、図9には、成長したカーボンナノチューブを走査電子顕微鏡(SEM)により観察した図を示した。なお、成長したカーボンナノチューブの長さは2.1mmである。   FIG. 7A shows a part of a quartz substrate before carbon nanotubes are grown, and FIG. 7B shows that the temperature in the electric furnace is 820 ° C., the pressure of acetylene gas is 10 Torr, A part of the carbon nanotubes grown by the method described above with an acetylene gas flow rate of 200 sccm is shown. As shown in FIG. 5B, it can be seen that the carbon nanotubes are grown in a vertically oriented manner on the front surface, back surface, and side surfaces of the quartz substrate. FIG. 8 shows the whole of the carbon nanotube grown on the quartz substrate 28. Further, FIG. 9 shows a view of the grown carbon nanotubes observed with a scanning electron microscope (SEM). The grown carbon nanotube has a length of 2.1 mm.

このように、本発明によれば、従来の方法よりも簡単な方法でカーボンナノチューブを成長させることができることが判った。   Thus, according to the present invention, it has been found that carbon nanotubes can be grown by a simpler method than the conventional method.

10 CVD装置
12 電気炉
14 石英管
16 ヒータ
18 熱電対
20 制御部
22 ガス供給部
23 圧力調整バルブ
24 排気部
26 触媒
28 石英基板
30 アセチレンガス
DESCRIPTION OF SYMBOLS 10 CVD apparatus 12 Electric furnace 14 Quartz tube 16 Heater 18 Thermocouple 20 Control part 22 Gas supply part 23 Pressure adjustment valve 24 Exhaust part 26 Catalyst 28 Quartz substrate 30 Acetylene gas

Claims (4)

その内部に基板が載置され真空排気された管内を、700〜900℃の範囲の所定の温度に設定し、  The inside of the tube in which the substrate is placed and evacuated is set to a predetermined temperature in the range of 700 to 900 ° C.,
前記所定の温度に設定された前記管内に炭化水素のガスを供給し、前記炭化水素のガスを含む化学反応により生成した鉄炭化物(FeC  An iron carbide (FeC) produced by a chemical reaction including supplying a hydrocarbon gas into the pipe set at the predetermined temperature and containing the hydrocarbon gas. 2 )の粉体を前記基板上に配置して、前記鉄炭化物からグラフェン層を形成してカーボンナノチューブの成長の始まりとすること) Is placed on the substrate and a graphene layer is formed from the iron carbide to start the growth of carbon nanotubes.
を特徴とする垂直配向したカーボンナノチューブの製造方法。A method for producing vertically aligned carbon nanotubes characterized by the following:
前記基板上に垂直配向したカーボンナノチューブのG/D比は2.6以上である、請求項1に記載の垂直配向したカーボンナノチューブの製造方法。  The method for producing vertically aligned carbon nanotubes according to claim 1, wherein the G / D ratio of the vertically aligned carbon nanotubes on the substrate is 2.6 or more. 前記基板上に垂直配向したカーボンナノチューブの成長速度は、0.4mm/30分以上である、請求項1または請求項2に記載の垂直配向したカーボンナノチューブの製造方法。  The method for producing vertically aligned carbon nanotubes according to claim 1 or 2, wherein a growth rate of the vertically aligned carbon nanotubes on the substrate is 0.4 mm / 30 minutes or more. 前記炭化水素はアセチレンである、請求項1から請求項3のいずれか1項に記載の垂直配向したカーボンナノチューブの製造方法。  The method for producing vertically aligned carbon nanotubes according to any one of claims 1 to 3, wherein the hydrocarbon is acetylene.
JP2013158918A 2013-07-31 2013-07-31 Method for producing vertically aligned carbon nanotubes Active JP5768232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158918A JP5768232B2 (en) 2013-07-31 2013-07-31 Method for producing vertically aligned carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158918A JP5768232B2 (en) 2013-07-31 2013-07-31 Method for producing vertically aligned carbon nanotubes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008043304A Division JP5335254B2 (en) 2008-02-25 2008-02-25 Carbon nanotube manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2013216578A JP2013216578A (en) 2013-10-24
JP5768232B2 true JP5768232B2 (en) 2015-08-26

Family

ID=49589155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158918A Active JP5768232B2 (en) 2013-07-31 2013-07-31 Method for producing vertically aligned carbon nanotubes

Country Status (1)

Country Link
JP (1) JP5768232B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012248A (en) * 2018-07-26 2020-02-05 한국전력공사 Apparatuses and methods for making doped graphene fiber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278018B2 (en) 2015-09-18 2018-02-14 コニカミノルタ株式会社 Charging device and image forming apparatus
JP6962008B2 (en) * 2017-06-05 2021-11-05 カシオ計算機株式会社 Authentication device, authentication method and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010074667A (en) * 1998-06-19 2001-08-08 추후보정 Free-standing and aligned carbon nanotubes and synthesis thereof
JP3988037B2 (en) * 2001-06-22 2007-10-10 大阪瓦斯株式会社 Electron emitting material and electron emitter
JP4665113B2 (en) * 2003-06-18 2011-04-06 国立大学法人京都工芸繊維大学 Fine particle production method and fine particle production apparatus
JP5335254B2 (en) * 2008-02-25 2013-11-06 国立大学法人静岡大学 Carbon nanotube manufacturing method and manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012248A (en) * 2018-07-26 2020-02-05 한국전력공사 Apparatuses and methods for making doped graphene fiber
KR102550122B1 (en) 2018-07-26 2023-07-03 한국전력공사 Apparatuses and methods for making doped graphene fiber

Also Published As

Publication number Publication date
JP2013216578A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5335254B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
JP6153274B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
JP2008296338A (en) Covered structure
Khorrami et al. Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst
JP6492598B2 (en) Method for producing carbon nanotube
JP5768232B2 (en) Method for producing vertically aligned carbon nanotubes
WO2012057229A1 (en) Process for production of carbon nanotubes
JPWO2004106234A1 (en) Method for producing single-walled carbon nanotubes with uniform diameter
KR100801192B1 (en) Carbonnitride nanotubes with nano-sized pores on their stems, their preparation method and control method of size and quantity of pore thereof
JP2007182374A (en) Method for manufacturing single-walled carbon nanotube
Shukrullah et al. Effect of ferrocene concentration on the quality of multiwalled CNTs grown by floating catalytic chemical vapor deposition technique
Jung et al. Effect of carrier gas on the growth and characteristics of spin-capable multiwalled carbon nanotubes
Jayatissa et al. Synthesis of carbon nanotubes at low temperature by filament assisted atmospheric CVD and their field emission characteristics
Maruyama Carbon nanotube growth mechanisms
Yardimci et al. Synthesis methods of carbon nanotubes
JP6455988B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method
WO2004099072A1 (en) Production method and device for single layer carbon nanotube
JP4988234B2 (en) Method for growing single-walled carbon nanotubes
Wang et al. Growth of carbon nanotubes and nanowires from amorphous carbon films by plasma-enhanced hot filament chemical vapor deposition
Ting et al. Low temperature, non-isothermal growth of carbon nanotubes
JP5429876B2 (en) Method for producing carbon nanotube
Dang et al. Study on effects of substrate temperature on growth and structure of alignment carbon nanotubes in plasma-enhanced hot filament chemical vapor deposition system
TWM504091U (en) Device for direct arc formation of carbon nanotube and carbon nanotube thereof
JP2005001936A (en) Method of manufacturing carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5768232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250