JP5720772B2 - Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst Download PDF

Info

Publication number
JP5720772B2
JP5720772B2 JP2013507669A JP2013507669A JP5720772B2 JP 5720772 B2 JP5720772 B2 JP 5720772B2 JP 2013507669 A JP2013507669 A JP 2013507669A JP 2013507669 A JP2013507669 A JP 2013507669A JP 5720772 B2 JP5720772 B2 JP 5720772B2
Authority
JP
Japan
Prior art keywords
exhaust gas
oxide
gas purification
carboxylic acid
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013507669A
Other languages
Japanese (ja)
Other versions
JPWO2012133526A1 (en
Inventor
伊藤 淳二
淳二 伊藤
花木 保成
保成 花木
哲郎 内藤
哲郎 内藤
美咲 赤石
美咲 赤石
若松 広憲
広憲 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013507669A priority Critical patent/JP5720772B2/en
Publication of JPWO2012133526A1 publication Critical patent/JPWO2012133526A1/en
Application granted granted Critical
Publication of JP5720772B2 publication Critical patent/JP5720772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

本発明は、排気ガス浄化触媒、排気ガス浄化モノリス触媒及び排気ガス浄化触媒の製造方法に関する。更に詳細には、本発明は、排気ガス成分の浄化において、優れた性能を発揮し得る排気ガス浄化触媒、排気ガス浄化モノリス触媒及び排気ガス浄化触媒の製造方法に関する。   The present invention relates to an exhaust gas purification catalyst, an exhaust gas purification monolith catalyst, and a method for producing an exhaust gas purification catalyst. More specifically, the present invention relates to an exhaust gas purification catalyst, an exhaust gas purification monolith catalyst, and an exhaust gas purification catalyst manufacturing method capable of exhibiting excellent performance in purification of exhaust gas components.

従来、貴金属を必須成分として用いない浄化触媒について、研究、開発がなされている。そして、排気ガス浄化触媒として、希土類元素と遷移金属元素から構成されるペロブスカイト型の複合酸化物相において、遷移金属元素の一部がジルコニウムなどで置換されたペロブスカイト型複合酸化物を適用したものが提案されている(特許文献1参照。)。
また、低温下で、優れた酸素吸放出性を有し、かつ、この酸素吸放出機能の持続性に優れるPM酸化触媒や排気ガス浄化触媒として、ペロブスカイト型構造を有する複合酸化物であって低温での酸素吸放出性に優れる酸素低温吸放出材と、ペロブスカイト型構造を有する複合酸化物であって酸素移動性に優れる酸素易移動材とを含有するものが提案されている(特許文献2参照。)。
Conventionally, research and development have been conducted on purification catalysts that do not use precious metals as essential components. As an exhaust gas purification catalyst, a perovskite complex oxide in which a part of the transition metal element is substituted with zirconium or the like in a perovskite complex oxide phase composed of a rare earth element and a transition metal element is applied. It has been proposed (see Patent Document 1).
Further, it is a complex oxide having a perovskite structure as a PM oxidation catalyst or an exhaust gas purification catalyst having excellent oxygen absorption / release properties at low temperatures and excellent durability of this oxygen absorption / release function. Proposed is a low-temperature oxygen storage / release material having excellent oxygen storage / release properties and a complex oxide having a perovskite structure and an oxygen-moving material having excellent oxygen mobility (see Patent Document 2). .)

特開2005−306618号公報JP 2005-306618 A 特開2009−131774号公報JP 2009-131774 A

しかしながら、上記特許文献1や特許文献2に記載された排気ガス浄化触媒であっても、優れた浄化性能が得られていないという問題点があった。   However, even with the exhaust gas purification catalysts described in Patent Document 1 and Patent Document 2, there is a problem that excellent purification performance is not obtained.

本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、その目的とするところは、貴金属を必須成分として用いない場合であっても、優れた浄化性能を示す排気ガス浄化触媒、排気ガス浄化モノリス触媒及び排気ガス浄化触媒の製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art. The object is to provide an exhaust gas purification catalyst, an exhaust gas purification monolith catalyst and a method for producing an exhaust gas purification catalyst that exhibit excellent purification performance even when noble metal is not used as an essential component. It is in.

本発明者らは、上記目的を達成するため鋭意検討を重ねた。そして、その結果、貴金属を含まない排気ガス浄化触媒であって、酸素吸放出能を有し、粒子径が1〜50nmである酸化物であるセリウムとジルコニウムとを含む複合酸化物に、一般式(1)で表され、粒子径が1〜30nmである酸化物を担持させることにより、上記目的が達成できることを見出し、本発明を完成するに至った。 The inventors of the present invention have made extensive studies in order to achieve the above object. As a result, the exhaust gas purification catalyst does not contain a noble metal, and has a general formula of a complex oxide containing cerium and zirconium, which is an oxide having an oxygen absorption / release capability and a particle diameter of 1 to 50 nm. It has been found that the above object can be achieved by supporting an oxide represented by (1) and having a particle diameter of 1 to 30 nm, and the present invention has been completed.

La1−xM’O3−δ・・・(1)
(式(1)中、Laはランタン、Mはバリウム(Ba)、ストロンチウム(Sr)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種、M’は鉄(Fe)、コバルト(Co)、ニッケル(Ni)及びマンガン(Mn)からなる群より選ばれる少なくとも1種、δは酸素欠損量を示し、x及びδは、0<x≦1、0≦δ≦1の関係を満足する。)
La x M 1-x M′O 3-δ (1)
(In the formula (1), La is lanthanum, M is at least one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M ′ is iron (Fe), cobalt (Co), (At least one selected from the group consisting of nickel (Ni) and manganese (Mn), δ represents the amount of oxygen deficiency, and x and δ satisfy the relationship 0 <x ≦ 1, 0 ≦ δ ≦ 1.)

すなわち、本発明の排気ガス浄化触媒は、貴金属を含まない排気ガス浄化触媒であって、酸素吸放出能を有し、粒子径が1〜50nmである酸化物であるセリウムとジルコニウムとを含む複合酸化物に、一般式(1)で表され、粒子径が1〜30nmである酸化物が担持されているものである。 That is, the exhaust gas purification catalyst of the present invention is an exhaust gas purification catalyst that does not contain a noble metal, and is a composite containing cerium and zirconium, which is an oxide having an oxygen absorption / release capability and a particle diameter of 1 to 50 nm. An oxide represented by the general formula (1) and having a particle diameter of 1 to 30 nm is supported on the oxide.

La1−xM’O3−δ・・・(1)
(式(1)中、Laはランタン、Mはバリウム(Ba)、ストロンチウム(Sr)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種、M’は鉄(Fe)、コバルト(Co)、ニッケル(Ni)及びマンガン(Mn)からなる群より選ばれる少なくとも1種、δは酸素欠損量を示し、x及びδは、0<x≦1、0≦δ≦1の関係を満足する。)
La x M 1-x M′O 3-δ (1)
(In the formula (1), La is lanthanum, M is at least one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M ′ is iron (Fe), cobalt (Co), (At least one selected from the group consisting of nickel (Ni) and manganese (Mn), δ represents the amount of oxygen deficiency, and x and δ satisfy the relationship 0 <x ≦ 1, 0 ≦ δ ≦ 1.)

また、本発明の排気ガス浄化モノリス触媒は、上記本発明の排気ガス浄化触媒を含有する触媒層が、モノリス担体の排気流路に形成されているものである。   The exhaust gas purification monolith catalyst of the present invention is such that a catalyst layer containing the exhaust gas purification catalyst of the present invention is formed in the exhaust flow path of the monolith carrier.

更に、本発明の排気ガス浄化触媒の製造方法は、上記本発明の排気ガス浄化触媒を製造するに当たり、カルボン酸のランタン塩と、カルボン酸のバリウム塩、カルボン酸のストロンチウム塩、カルボン酸のカルシウム塩、カルボン酸の鉄塩、カルボン酸のコバルト塩、カルボン酸のニッケル塩及びカルボン酸のマンガン塩からなる群より選ばれる少なくとも1種のカルボン酸の金属塩とを含む溶液に、酸素吸放出能を有する酸化物を浸漬し、溶液周囲の雰囲気を大気圧より低い減圧状態として、酸素吸放出能を有する酸化物にカルボン酸のランタン塩とカルボン酸の金属塩とを含浸担持させる製造方法である。   Furthermore, the method for producing the exhaust gas purification catalyst of the present invention comprises producing a lanthanum salt of a carboxylic acid, a barium salt of a carboxylic acid, a strontium salt of a carboxylic acid, and a calcium of a carboxylic acid. And a solution containing at least one metal salt of a carboxylic acid selected from the group consisting of a salt, an iron salt of a carboxylic acid, a cobalt salt of a carboxylic acid, a nickel salt of a carboxylic acid, and a manganese salt of a carboxylic acid. Is produced by immersing and supporting an oxide having oxygen in an oxygen absorbing / releasing ability by impregnating and supporting a lanthanum salt of carboxylic acid and a metal salt of carboxylic acid. .

本発明によれば、貴金属を含まない排気ガス浄化触媒であって、酸素吸放出能を有し、粒子径が1〜50nmである酸化物であるセリウムとジルコニウムとを含む複合酸化物に、一般式(1)で表され、粒子径が1〜30nmである酸化物を担持させた。 According to the present invention, an exhaust gas purification catalyst that does not contain a noble metal, and has a capability of absorbing and releasing oxygen , and a composite oxide containing cerium and zirconium, which is an oxide having a particle diameter of 1 to 50 nm, An oxide represented by the formula (1) and having a particle size of 1 to 30 nm was supported.

La1−xM’O3−δ・・・(1)
(式(1)中、Laはランタン、Mはバリウム(Ba)、ストロンチウム(Sr)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種、M’は鉄(Fe)、コバルト(Co)、ニッケル(Ni)及びマンガン(Mn)からなる群より選ばれる少なくとも1種、δは酸素欠損量を示し、x及びδは、0<x≦1、0≦δ≦1の関係を満足する。)
La x M 1-x M′O 3-δ (1)
(In the formula (1), La is lanthanum, M is at least one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M ′ is iron (Fe), cobalt (Co), (At least one selected from the group consisting of nickel (Ni) and manganese (Mn), δ represents the amount of oxygen deficiency, and x and δ satisfy the relationship 0 <x ≦ 1, 0 ≦ δ ≦ 1.)

そのため、貴金属を必須成分として用いない場合であっても、優れた浄化性能を示す排気ガス浄化触媒、排気ガス浄化モノリス触媒及び排気ガス浄化触媒の製造方法を提供することができる。   Therefore, it is possible to provide a method for producing an exhaust gas purification catalyst, an exhaust gas purification monolith catalyst, and an exhaust gas purification catalyst that exhibit excellent purification performance even when noble metal is not used as an essential component.

第1の実施形態の排気ガス浄化触媒を模式的に示す構成図である。It is a block diagram which shows typically the exhaust gas purification catalyst of 1st Embodiment. 推定される反応メカニズムを説明する図である。It is a figure explaining the presumed reaction mechanism. 従来の排気ガス浄化触媒を模式的に示す構成図である。It is a block diagram which shows the conventional exhaust gas purification catalyst typically. 第3の実施形態に係る排気ガス浄化モノリス触媒を模式的に示す構成図である。It is a block diagram which shows typically the exhaust-gas purification | cleaning monolith catalyst which concerns on 3rd Embodiment. 実施例1の排気ガス浄化触媒の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of an exhaust gas purification catalyst of Example 1. FIG. 図5に示す領域Aにおけるエネルギー分散型X線分析の結果を示す図である。It is a figure which shows the result of the energy dispersive X-ray analysis in the area | region A shown in FIG. 図5に示す領域Bにおけるエネルギー分散型X線分析の結果を示す図である。It is a figure which shows the result of the energy dispersive X-ray analysis in the area | region B shown in FIG. 図5に示す領域Aにおける透過型電子顕微鏡写真である。It is a transmission electron micrograph in the area | region A shown in FIG. 比較例1の排気ガス浄化触媒の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of an exhaust gas purification catalyst of Comparative Example 1. 図9に示す領域Aにおけるエネルギー分散型X線分析の結果を示す図である。It is a figure which shows the result of the energy dispersive X-ray analysis in the area | region A shown in FIG. 図9に示す領域Bにおけるエネルギー分散型X線分析の結果を示す図である。It is a figure which shows the result of the energy dispersive X-ray analysis in the area | region B shown in FIG. セリアジルコニア複合酸化物中のセリア量とCO転化率との関係を示すグラフである。It is a graph which shows the relationship between the amount of ceria in a ceria zirconia complex oxide, and CO conversion.

以下、本発明の排気ガス浄化触媒、排気ガス浄化モノリス触媒及び排気ガス浄化触媒の製造方法について詳細に説明する。   Hereinafter, the exhaust gas purification catalyst, the exhaust gas purification monolith catalyst, and the method for producing the exhaust gas purification catalyst of the present invention will be described in detail.

[第1の実施形態]
まず、本発明の一実施形態に係る排気ガス浄化触媒について図面を参照しながら詳細に説明する。図1は、第1の実施形態に係る排気ガス浄化触媒を模式的に示す構成図である。同図に示すように、第1の実施形態の排気ガス浄化触媒1は、酸素吸放出能を有する酸化物2に下記一般式(1)で表される酸化物4aが担持されているものである。また、酸化物4aの粒子径は代表的には3〜10nmであ。なお、図1中に参考のために示した一般式(1)で表される酸化物4bは、酸素吸放出能を有する酸化物2に担持されているものではない。また、酸化物4bの粒子径は代表的には50nm超である。
[First Embodiment]
First, an exhaust gas purification catalyst according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram schematically showing an exhaust gas purification catalyst according to the first embodiment. As shown in the figure, the exhaust gas purification catalyst 1 of the first embodiment is one in which an oxide 4a represented by the following general formula (1) is supported on an oxide 2 having oxygen absorption / release capability. is there. The particle diameter of the oxide 4a is typically 3 to 10 nm. Note that the oxide 4b represented by the general formula (1) shown for reference in FIG. 1 is not supported on the oxide 2 having the ability to absorb and release oxygen. The particle diameter of the oxide 4b is typically more than 50 nm.

La1−xM’O3−δ・・・(1)
(式(1)中、Laはランタン、Mはバリウム(Ba)、ストロンチウム(Sr)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種、M’は鉄(Fe)、コバルト(Co)、ニッケル(Ni)及びマンガン(Mn)からなる群より選ばれる少なくとも1種、δは酸素欠損量を示し、x及びδは、0<x≦1、0≦δ≦1の関係を満足する。)
La x M 1-x M′O 3-δ (1)
(In the formula (1), La is lanthanum, M is at least one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M ′ is iron (Fe), cobalt (Co), (At least one selected from the group consisting of nickel (Ni) and manganese (Mn), δ represents the amount of oxygen deficiency, and x and δ satisfy the relationship 0 <x ≦ 1, 0 ≦ δ ≦ 1.)

ここで、本発明における「酸素吸放出能を有する酸化物に、一般式(1)で表される酸化物が担持されている。」の意味について、「酸化物Aに酸化物Bが担持されている。」という例を用いて詳細に説明する。   Here, the meaning of “an oxide represented by the general formula (1) is supported on the oxide having oxygen absorption / release ability” in the present invention is “an oxide B is supported on the oxide A”. This will be described in detail with reference to an example.

透過型電子顕微鏡(TEM)により観察した場合に、酸化物Aと区別し得る、凝集した状態の酸化物Bは、酸化物Aに担持されているものに該当しない。一方、透過型電子顕微鏡(TEM)により観察した場合に、凝集した状態の酸化物Bとして酸化物Aとは区別し得ない酸化物Bであって、酸化物Aをエネルギー分散型X線分析(EDX(測定範囲:ビーム直径5nm))により元素分析した場合に、酸化物Aの構成元素と共に酸化物Bの構成元素が検出される酸化物Bは、酸化物Aに担持されているものに該当する。もちろん、更に拡大した透過型電子顕微鏡(TEM)による観察とX線光電子分光(XPS)分析により酸化物Bを観察できることは言うまでもない。   The aggregated oxide B, which can be distinguished from the oxide A when observed with a transmission electron microscope (TEM), does not correspond to the oxide A supported on the oxide A. On the other hand, when observed with a transmission electron microscope (TEM), the oxide B is an aggregated oxide B that cannot be distinguished from the oxide A, and the oxide A is subjected to energy dispersive X-ray analysis ( When elemental analysis is performed by EDX (measurement range: beam diameter 5 nm)), the oxide B in which the constituent element of the oxide B is detected together with the constituent element of the oxide A corresponds to that supported by the oxide A To do. Of course, it goes without saying that the oxide B can be observed by observation with an enlarged transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) analysis.

このような構成とすることにより、貴金属を必須成分として用いない場合であっても、優れた浄化性能を示す排気ガス浄化触媒となる。   By adopting such a configuration, even if no precious metal is used as an essential component, an exhaust gas purification catalyst that exhibits excellent purification performance is obtained.

現時点においては、下記のような反応メカニズムによってその作用効果が得られていると考えている。しかしながら、このような反応メカニズムによらないでその作用効果が得られている場合であっても、本発明の範囲に含まれることは言うまでもない。   At present, it is considered that the effect is obtained by the following reaction mechanism. However, it goes without saying that even if the action and effect are obtained without relying on such a reaction mechanism, they are included in the scope of the present invention.

図2は、推定される反応メカニズムを説明する図である。同図に示すように、排気ガス浄化触媒1において、酸素吸放出能を有する酸化物2に担持されている一般式(1)で表される酸化物4aは、触媒反応の活性点として機能する。その際、この酸化物4aを担持する酸素吸放出能を有する酸化物2は、触媒反応に必要な酸素の吸放出を行うことにより、触媒反応を促進する。これにより、酸素吸放出能が向上し、低温での浄化活性が優れることになる。   FIG. 2 is a diagram for explaining an estimated reaction mechanism. As shown in the figure, in the exhaust gas purification catalyst 1, the oxide 4a represented by the general formula (1) supported on the oxide 2 having oxygen absorption / release capability functions as an active point of the catalytic reaction. . At that time, the oxide 2 having the ability to absorb and release oxygen, which supports the oxide 4a, promotes the catalytic reaction by absorbing and releasing oxygen necessary for the catalytic reaction. Thereby, oxygen absorption / release capability is improved, and purification activity at low temperature is excellent.

一方、図3は、従来の排気ガス浄化触媒を模式的に示す構成図である。同図に示すように、従来の排気ガス浄化触媒10は、酸素吸放出能を有する酸化物2に下記一般式(1)で表される酸化物4bが、担持されておらず、凝集した状態で存在しているものである。なお、酸化物4bは粒子が凝集しており、その凝集体としての粒子径は代表的には100〜500nmである。このような構成であると、上記のような反応メカニズムが起こりにくいため、本発明における所望の作用効果が得られないと考えられる。   On the other hand, FIG. 3 is a block diagram schematically showing a conventional exhaust gas purification catalyst. As shown in the figure, in the conventional exhaust gas purification catalyst 10, the oxide 4b represented by the following general formula (1) is not supported on the oxide 2 having the ability to absorb and release oxygen and is agglomerated. Is what exists. The oxide 4b has aggregated particles, and the particle diameter of the aggregate is typically 100 to 500 nm. With such a configuration, the reaction mechanism as described above is unlikely to occur, so that it is considered that a desired effect in the present invention cannot be obtained.

また、第1の実施形態の排気ガス浄化触媒においては、酸素吸放出能を有する酸化物の粒子径が1〜50nmであることが好ましく、5〜20nmであることがより好ましい。粒子径が1nm未満である場合は、酸素吸放出能を有する酸化物が凝集して所望の作用効果が得られない可能性があり、粒子径が50nm超の場合には、一般式(1)で表される酸化物が担持されずに所望の作用効果が得られない可能性がある。   Moreover, in the exhaust gas purification catalyst of 1st Embodiment, it is preferable that the particle diameter of the oxide which has oxygen absorption-and-release capability is 1-50 nm, and it is more preferable that it is 5-20 nm. When the particle size is less than 1 nm, the oxide having oxygen absorption / release ability may be aggregated and a desired effect may not be obtained. When the particle size is more than 50 nm, the general formula (1) There is a possibility that a desired effect cannot be obtained without the oxide represented by

そして、第1の実施形態の排気ガス浄化触媒においては、酸素吸放出能を有する酸化物に担持される一般式(1)で表される酸化物の粒子径が1〜30nmであることが好ましく、3〜10nmであることが好ましい。粒子径が1nm未満である場合は、酸素吸放出能を有する酸化物が凝集して所望の作用効果が得られない可能性があり、粒子径が30nm超の場合には、一般式(1)で表される酸化物に担持されずに所望の作用効果が得られない可能性がある。特に、粒子径が10nm以下の場合には、より優れた浄化性能を示すという観点から好ましい。   In the exhaust gas purification catalyst of the first embodiment, it is preferable that the particle diameter of the oxide represented by the general formula (1) supported by the oxide having oxygen absorption / release capacity is 1 to 30 nm. It is preferable that it is 3-10 nm. When the particle diameter is less than 1 nm, the oxide having oxygen absorption / release ability may aggregate and a desired effect may not be obtained. When the particle diameter exceeds 30 nm, the general formula (1) There is a possibility that a desired effect cannot be obtained without being supported by the oxide represented by In particular, when the particle diameter is 10 nm or less, it is preferable from the viewpoint of showing more excellent purification performance.

また、上述したように、一般式(1)で表される酸化物は、触媒反応の活性点として機能すると考えており、使用量が同じ場合により活性点を多くすることができるという観点から、一般式(1)で表される酸化物の粒子径は、酸素吸放出能を有する酸化物の粒子径より小さいことが好ましい。   Further, as described above, the oxide represented by the general formula (1) is considered to function as an active site of the catalytic reaction, and from the viewpoint that the active site can be increased when the amount used is the same. The particle size of the oxide represented by the general formula (1) is preferably smaller than the particle size of the oxide having oxygen absorption / release capability.

なお、本明細中において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される酸化物粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。ただし、このような範囲に何ら制限されるものではなく、本発明の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。   In the present specification, the “particle diameter” refers to the contour line of oxide particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points. However, it is not limited to such a range, and it goes without saying that it may be outside this range as long as the effects of the present invention can be effectively expressed.

更に、第1の実施形態の排気ガス浄化触媒における酸素吸放出能を有する酸化物は、セリウム(Ce)及びジルコニウム(Zr)の少なくとも1種を含む酸化物であることが好ましく、セリウム(Ce)とジルコニウム(Zr)とを含む複合酸化物であることがより好ましい。セリウム(Ce)を含む酸化物は酸素吸放出能が酸素吸放出量が多いという観点から優れており、ジルコニウム(Zr)を含む酸化物は、酸素級放出能が酸素吸放出速度が速いという観点から優れている。そして、セリウム(Ce)とジルコニウム(Zr)とを含む複合酸化物は酸素放出量が多く、酸素吸放出速度が速いというの双方の観点から優れている。   Further, the oxide having oxygen absorption / release capability in the exhaust gas purification catalyst of the first embodiment is preferably an oxide containing at least one of cerium (Ce) and zirconium (Zr), and cerium (Ce). More preferably, it is a composite oxide containing zirconium and zirconium (Zr). Oxide containing cerium (Ce) is superior in terms of oxygen absorption / release capacity and a large amount of oxygen absorption / release, and oxides containing zirconium (Zr) have an oxygen class release capacity and a high oxygen absorption / release rate. Is excellent from. A composite oxide containing cerium (Ce) and zirconium (Zr) is excellent from both viewpoints of a large oxygen release amount and a high oxygen absorption / release rate.

なお、セリウムやジルコニウムを含む酸化物としては、例えば、ジルコニウムとセリウムとランタンとネオジムとを含む複合酸化物(Zr−Ce−La−Nd−Ox)やジルコニウムとセリウムとネオジムとを含む複合酸化物(Zr−Ce−Nd−Ox)、ジルコニウムとランタンとを含む(Zr−La−Ox)などを挙げることができるが、これらに限定されるものではない。すなわち、酸素吸放出能を有するものであれば、従来公知の材料を適用することができる。例えば、セリウムとジルコニウムを含有する酸化物であって、セリウムやジルコニウムの一部がアルカリ金属元素やアルカリ土類金属元素、希土類元素などで置換されたものを挙げることができる。   As the oxide containing cerium or zirconium, for example, a composite oxide containing zirconium, cerium, lanthanum, and neodymium (Zr—Ce—La—Nd—Ox) or a composite oxide containing zirconium, cerium, and neodymium is used. (Zr—Ce—Nd—Ox), (Zr—La—Ox) containing zirconium and lanthanum can be exemplified, but not limited thereto. That is, a conventionally known material can be applied as long as it has oxygen absorption / release capability. For example, an oxide containing cerium and zirconium, in which part of cerium or zirconium is substituted with an alkali metal element, an alkaline earth metal element, a rare earth element, or the like can be given.

また、第1の実施形態の排気ガス浄化触媒における酸素吸放出能を有する酸化物が、セリウム(Ce)とジルコニウム(Zr)とを含む複合酸化物である場合には、複合酸化物中のセリウム含有量がセリウム酸化物(CeO)換算で5質量%以上であることがCO転化率が向上するという観点から好ましく、20質量%以上であることCO転化率がより向上するという観点からより好ましい。より具体的には、複合酸化物中のセリウム含有量がセリウム酸化物(CeO)換算で5質量%以上90質量%以下であることが好ましく、20質量%以上80質量%以下であることがより好ましい。複合酸化物中のセリウム含有量がセリウム酸化物(CeO)換算で90質量%超とするとCO転化率の向上効果が低下するおそれがある。Further, when the oxide having oxygen absorption / release capability in the exhaust gas purification catalyst of the first embodiment is a composite oxide containing cerium (Ce) and zirconium (Zr), cerium in the composite oxide The content is preferably 5% by mass or more in terms of cerium oxide (CeO 2 ) from the viewpoint of improving the CO conversion rate, and more preferably 20% by mass or more from the viewpoint of further improving the CO conversion rate. . More specifically, the cerium content in the composite oxide is preferably 5% by mass or more and 90% by mass or less, and more preferably 20% by mass or more and 80% by mass or less in terms of cerium oxide (CeO 2 ). More preferred. If the cerium content in the composite oxide exceeds 90% by mass in terms of cerium oxide (CeO 2 ), the effect of improving the CO conversion rate may be reduced.

更に、第1の実施形態の排ガス浄化触媒における一般式(1)で表される酸化物は、ペロブスカイト型酸化物であることが好ましい。ペロブスカイト型酸化物であると、結晶構造を有しているため耐久性が優れたものとなる利点がある。   Furthermore, the oxide represented by the general formula (1) in the exhaust gas purification catalyst of the first embodiment is preferably a perovskite oxide. A perovskite oxide has an advantage that it has excellent durability because it has a crystal structure.

[第2の実施形態]
次に、本発明の一実施形態に係る排気ガス浄化触媒の製造方法について、上述した本発明の一実施形態に係る排気ガス浄化触媒を挙げて詳細に説明する。但し、本発明の排気ガス浄化触媒は、このような製造方法により作製されたものに限定されるものではない。
[Second Embodiment]
Next, a method for manufacturing an exhaust gas purification catalyst according to an embodiment of the present invention will be described in detail with reference to the above-described exhaust gas purification catalyst according to an embodiment of the present invention. However, the exhaust gas purification catalyst of the present invention is not limited to the one produced by such a production method.

第1の実施形態の排気ガス浄化触媒は、例えば以下のような製造方法により作製することができる。   The exhaust gas purification catalyst of the first embodiment can be produced, for example, by the following production method.

まず、酸素吸放出能を有する酸化物として、セリウムとジルコニウムとを含む蛍石型酸化物粒子の凝集体を用意する。   First, an aggregate of fluorite-type oxide particles containing cerium and zirconium is prepared as an oxide having oxygen absorption / release capability.

また、一般式(1)で表される酸化物における組成が所望のものとなるように調製した、カルボン酸のランタン塩と、カルボン酸のバリウム塩、カルボン酸のストロンチウム塩、カルボン酸のカルシウム塩、カルボン酸の鉄塩、カルボン酸のコバルト塩、カルボン酸のニッケル塩及びカルボン酸のマンガン塩からなる群より選ばれる少なくとも1種のカルボン酸の金属塩とを含む溶液を用意する。   In addition, a lanthanum salt of a carboxylic acid, a barium salt of a carboxylic acid, a strontium salt of a carboxylic acid, and a calcium salt of a carboxylic acid, prepared so that the composition of the oxide represented by the general formula (1) is as desired. And a solution containing at least one metal salt of carboxylic acid selected from the group consisting of iron salt of carboxylic acid, cobalt salt of carboxylic acid, nickel salt of carboxylic acid and manganese salt of carboxylic acid.

次いで、得られた溶液に、得られた酸素吸放出能を有する酸化物を浸漬する。この際、溶液周囲の雰囲気をアスピレータなどを用いて大気圧より低い減圧状態として、酸素吸放出能を有する酸化物の細孔中の気体を脱気して、溶液が含浸担持され易くする。   Next, the obtained oxide having oxygen absorbing / releasing ability is immersed in the obtained solution. At this time, the atmosphere around the solution is reduced to a pressure lower than the atmospheric pressure using an aspirator or the like, and the gas in the pores of the oxide having oxygen absorption / release capability is degassed to facilitate the impregnation of the solution.

しかる後、カルボン酸のランタン塩とカルボン酸の金属塩とが含浸担持された酸素吸放出能を有する酸化物を、乾燥、400℃程度で仮焼成、700℃程度で本焼成することにより、第1の実施形態の排気ガス浄化触媒を得ることができる。   Thereafter, the oxide having oxygen absorption / release ability impregnated and supported with a lanthanum salt of carboxylic acid and a metal salt of carboxylic acid is dried, pre-baked at about 400 ° C., and finally fired at about 700 ° C. The exhaust gas purification catalyst of one embodiment can be obtained.

例えば、硝酸のランタン塩及び硝酸の金属塩のみを用いた場合には、粘性が殆どないため細孔中に含浸されやすい一方、乾燥や焼成に際して、溶液の蒸発とともに移動し易く、担持されにくい。一方、カルボン酸のランタン塩やカルボン酸の金属塩を用いた場合には、これらは金属錯体塩を形成し、粘性があるため、細孔中の気体を脱気することにより、細孔中に含浸させることができる。一方、乾燥や焼成に際してはこれらの金属錯体塩は粘性があるため、溶液の蒸発とともに移動し難く、担持されることとなる。   For example, when only a lanthanum nitrate salt and a metal salt of nitric acid are used, since there is almost no viscosity, the pores are easily impregnated. On the other hand, during drying and firing, they easily move with evaporation of the solution and are not easily supported. On the other hand, when a lanthanum salt of carboxylic acid or a metal salt of carboxylic acid is used, these form a metal complex salt and are viscous, so by degassing the gas in the pores, Can be impregnated. On the other hand, since these metal complex salts are viscous during drying and firing, they are difficult to move with the evaporation of the solution and are supported.

なお、カルボン酸としては、1〜4個のカルボキシル基を有するものを挙げることができる。例えばグルコン酸、リンゴ酸、マレイン酸、酢酸、コハク酸、フマル酸、プロピオン酸、メタクリル酸、アクリル酸、クエン酸、酒石酸、イタコン酸、蟻酸、酢酸、マロン酸などを挙げることができる。その中でも、乳酸を用いることが好ましい。   Examples of the carboxylic acid include those having 1 to 4 carboxyl groups. Examples thereof include gluconic acid, malic acid, maleic acid, acetic acid, succinic acid, fumaric acid, propionic acid, methacrylic acid, acrylic acid, citric acid, tartaric acid, itaconic acid, formic acid, acetic acid and malonic acid. Of these, lactic acid is preferably used.

[第3の実施形態]
次に、本発明の一実施形態に係る排気ガス浄化モノリス触媒について図面を参照しながら詳細に説明する。図4は、第3の実施形態に係る排気ガス浄化モノリス触媒を模式的に示す構成図である。同図に示すように、第3の実施形態の排気ガス浄化モノリス触媒10は、上述した第1の実施形態の排気ガス浄化触媒を含有する触媒層12が、モノリス担体14の排気流路14aに形成されているものである。なお、モノリス担体としては、コーディエライトなどのセラミックスやフェライト系ステンレスなどの金属等の耐熱性材料から成るものなどを挙げることができる。
[Third Embodiment]
Next, an exhaust gas purification monolith catalyst according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 4 is a configuration diagram schematically illustrating an exhaust gas purification monolith catalyst according to a third embodiment. As shown in the figure, in the exhaust gas purification monolith catalyst 10 of the third embodiment, the catalyst layer 12 containing the exhaust gas purification catalyst of the first embodiment described above is provided in the exhaust flow path 14a of the monolith carrier 14. Is formed. Examples of the monolith carrier include those made of heat-resistant materials such as ceramics such as cordierite and metals such as ferritic stainless steel.

このような構成とすることにより、貴金属を必須成分として用いない場合であっても、優れた浄化性能を示す排気ガス浄化触媒となる。特に、排気ガスの流速が速い場合にも優れた浄化性能を示すことができる。   By adopting such a configuration, even if no precious metal is used as an essential component, an exhaust gas purification catalyst that exhibits excellent purification performance is obtained. In particular, excellent purification performance can be exhibited even when the exhaust gas flow rate is high.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1)
ランタンを含む乳酸溶液と鉄を含む乳酸溶液をCe−Zr系酸化物(72質量%ZrO−21質量%CeO−5質量%Nd−2質量%La)に含浸し、次いで、1時間減圧させ、しかる後、400℃で2時間、700℃で5時間、空気中で焼成して、本例の排気ガス浄化触媒を得た。なお、LaFeOとCe−Zr系酸化物の質量比は、LaFeO:Ce−Zr系酸化物=30:70である。また、粒子径は、走査型電子顕微鏡(SEM)による観察によって測定した。本例の排気ガス浄化触媒の仕様の一部を表1に示す。
Example 1
A lactic acid solution containing lanthanum and a lactic acid solution containing iron were impregnated in a Ce-Zr-based oxide (72 mass% ZrO 2 -21 mass% CeO 2 -5 mass% Nd 2 O 3 -2 mass% La 2 O 3 ). Then, the pressure was reduced for 1 hour, and then calcined in the air at 400 ° C. for 2 hours and at 700 ° C. for 5 hours to obtain the exhaust gas purification catalyst of this example. Note that the mass ratio of LaFeO 3 and Ce—Zr-based oxide is LaFeO 3 : Ce—Zr-based oxide = 30: 70. The particle size was measured by observation with a scanning electron microscope (SEM). Table 1 shows a part of the specification of the exhaust gas purification catalyst of this example.

図5は、本例の排気ガス浄化触媒の透過型電子顕微鏡(TEM)写真である。また、図6は、図5に示す領域Aにおけるエネルギー分散型X線分析の結果である。更に、図7は、図5に示す領域Bにおけるエネルギー分散型X線分析の結果である。更にまた、図8は、図5に示す領域Aにおける透過型電子顕微鏡写真である。   FIG. 5 is a transmission electron microscope (TEM) photograph of the exhaust gas purification catalyst of this example. FIG. 6 shows the result of energy dispersive X-ray analysis in region A shown in FIG. Further, FIG. 7 shows the result of energy dispersive X-ray analysis in the region B shown in FIG. FIG. 8 is a transmission electron micrograph in the region A shown in FIG.

図6に示すように、領域Aに観察される約10nmの粒子からは、エネルギー分散型X線分析(EDX)による元素分析により主に、ジルコニウム(Zr)、セリウム(Ce)が検出され、更にランタン(La)、ネオジム(Nd)及び鉄(Fe)が検出された。一方、図7に示すように、領域Bに観察される約50nm超の粒子からは、主に鉄(Fe)とランタン(La)が検出された。更に、蛍石型酸化物であるCe−Zr系酸化物粒子とペロブスカイト型酸化物であるLaFeO粒子が存在していることが、図8における干渉縞の周期と別途測定したX線光電子分光(XPS)分析とから分かった。なお、各実施例においても、同様の測定結果が得られた。As shown in FIG. 6, zirconium (Zr) and cerium (Ce) are mainly detected from the particle of about 10 nm observed in the region A by elemental analysis by energy dispersive X-ray analysis (EDX). Lanthanum (La), neodymium (Nd) and iron (Fe) were detected. On the other hand, as shown in FIG. 7, iron (Fe) and lanthanum (La) were mainly detected from the particles of about 50 nm observed in the region B. Furthermore, the presence of Ce—Zr-based oxide particles that are fluorite-type oxides and LaFeO 3 particles that are perovskite-type oxides indicate the period of interference fringes in FIG. XPS analysis. In each example, similar measurement results were obtained.

(実施例2)
ランタンを含む乳酸溶液とニッケルを含む乳酸溶液をCe−Zr系酸化物(72質量%ZrO−21質量%CeO−5質量%Nd−2質量%La)に含浸し、次いで、1時間減圧させ、しかる後、400℃で2時間、700℃で5時間、空気中で焼成して、本例の排気ガス浄化触媒を得た。なお、LaNiOとCe−Zr系酸化物の質量比は、LaNiO:Ce−Zr系酸化物=30:70である。また、粒子径は、走査型電子顕微鏡(SEM)による観察によって測定した。本例の排気ガス浄化触媒の仕様の一部を表1に示す。
(Example 2)
A lactic acid solution containing lanthanum and a lactic acid solution containing nickel were impregnated in a Ce-Zr-based oxide (72 mass% ZrO 2 -21 mass% CeO 2 -5 mass% Nd 2 O 3 -2 mass% La 2 O 3 ). Then, the pressure was reduced for 1 hour, and then calcined in the air at 400 ° C. for 2 hours and at 700 ° C. for 5 hours to obtain the exhaust gas purification catalyst of this example. Note that the mass ratio of LaNiO 3 and Ce—Zr-based oxide is LaNiO 3 : Ce—Zr-based oxide = 30: 70. The particle size was measured by observation with a scanning electron microscope (SEM). Table 1 shows a part of the specification of the exhaust gas purification catalyst of this example.

(実施例3)
ランタンを含む乳酸溶液とマンガンを含む乳酸溶液をCe−Zr系酸化物(72質量%ZrO−21質量%CeO−5質量%Nd−2質量%La)に含浸し、次いで、1時間減圧させ、しかる後、400℃で2時間、700℃で5時間、空気中で焼成して、本例の排気ガス浄化触媒を得た。なお、LaMnOとCe−Zr系酸化物の質量比は、LaMnO:Ce−Zr系酸化物=30:70である。また、粒子径は、走査型電子顕微鏡(SEM)による観察によって測定した。本例の排気ガス浄化触媒の仕様の一部を表1に示す。
(Example 3)
A lactic acid solution containing lanthanum and a lactic acid solution containing manganese were impregnated in a Ce-Zr-based oxide (72% by mass ZrO 2 -21% by mass CeO 2 -5% by mass Nd 2 O 3 -2% by mass La 2 O 3 ). Then, the pressure was reduced for 1 hour, and then calcined in the air at 400 ° C. for 2 hours and at 700 ° C. for 5 hours to obtain the exhaust gas purification catalyst of this example. Note that the mass ratio of LaMnO 3 and Ce—Zr-based oxide is LaMnO 3 : Ce—Zr-based oxide = 30: 70. The particle size was measured by observation with a scanning electron microscope (SEM). Table 1 shows a part of the specification of the exhaust gas purification catalyst of this example.

(実施例4)
ランタンを含む乳酸溶液とストロンチウムを含む乳酸溶液と鉄を含む乳酸溶液をCe−Zr系酸化物(70質量%ZrO−20質量%CeO−10質量%Nd)に含浸し、次いで、1時間減圧させ、しかる後、400℃で2時間、700℃で5時間、空気中で焼成して、本例の排気ガス浄化触媒を得た。なお、La0.8Sr0.2FeOとCe−Zr系酸化物の質量比は、La0.8Sr0.2FeO:Ce−Zr系酸化物=30:70である。また、粒子径は、走査型電子顕微鏡(SEM)による観察によって測定した。本例の排気ガス浄化触媒の仕様の一部を表1に示す。
Example 4
Lanthanum was impregnated with lactic acid solution Ce-Zr-based oxide (70 wt% ZrO 2 -20 wt% CeO 2 -10 wt% Nd 2 O 3) containing lactic acid solution and iron containing lactic acid solution and strontium containing, then The pressure was reduced for 1 hour, and then calcined in air at 400 ° C. for 2 hours and at 700 ° C. for 5 hours to obtain an exhaust gas purification catalyst of this example. Note that the mass ratio of La 0.8 Sr 0.2 FeO 3 to Ce—Zr-based oxide is La 0.8 Sr 0.2 FeO 3 : Ce—Zr-based oxide = 30: 70. The particle size was measured by observation with a scanning electron microscope (SEM). Table 1 shows a part of the specification of the exhaust gas purification catalyst of this example.

(実施例5)
ランタンを含む乳酸溶液と鉄を含む乳酸溶液とマンガンを含む乳酸溶液をCe−Zr系酸化物(70質量%ZrO−20質量%CeO−10質量%Nd)に含浸し、次いで、1時間減圧させ、しかる後、400℃で2時間、700℃で5時間、空気中で焼成して、本例の排気ガス浄化触媒を得た。なお、LaFe0.8Mn0.2とCe−Zr系酸化物の質量比は、LaFe0.8Mn0.2:Ce−Zr系酸化物=30:70である。また、粒子径は、走査型電子顕微鏡(SEM)による観察によって測定した。本例の排気ガス浄化触媒の仕様の一部を表1に示す。
(Example 5)
Lanthanum was impregnated with lactic acid solution containing lactic acid solution and manganese containing lactic acid solution and iron Ce-Zr-based oxide (70 wt% ZrO 2 -20 wt% CeO 2 -10 wt% Nd 2 O 3) containing, then The pressure was reduced for 1 hour, and then calcined in air at 400 ° C. for 2 hours and at 700 ° C. for 5 hours to obtain an exhaust gas purification catalyst of this example. Note that the mass ratio of LaFe 0.8 Mn 0.2 O 3 and Ce—Zr-based oxide is LaFe 0.8 Mn 0.2 O 3 : Ce—Zr-based oxide = 30: 70. The particle size was measured by observation with a scanning electron microscope (SEM). Table 1 shows a part of the specification of the exhaust gas purification catalyst of this example.

(実施例6)
ランタンを含む乳酸溶液と鉄を含む乳酸溶液とニッケルを含む乳酸溶液をCe−Zr系酸化物(70質量%ZrO−20質量%CeO−10質量%Nd)に含浸し、次いで、1時間減圧させ、しかる後、400℃で2時間、700℃で5時間、空気中で焼成して、本例の排気ガス浄化触媒を得た。なお、LaFe0.8Ni0.2とCe−Zr系酸化物の質量比は、LaFe0.8Ni0.2:Ce−Zr系酸化物=30:70である。また、粒子径は、走査型電子顕微鏡(SEM)による観察によって測定した。本例の排気ガス浄化触媒の仕様の一部を表1に示す。
(Example 6)
Lanthanum was impregnated with lactic acid solution Ce-Zr-based oxide (70 wt% ZrO 2 -20 wt% CeO 2 -10 wt% Nd 2 O 3) containing lactic acid solution and nickel containing lactic acid solution and iron containing, then The pressure was reduced for 1 hour, and then calcined in air at 400 ° C. for 2 hours and at 700 ° C. for 5 hours to obtain an exhaust gas purification catalyst of this example. The mass ratio of LaFe 0.8 Ni 0.2 O 3 and Ce—Zr-based oxide is LaFe 0.8 Ni 0.2 O 3 : Ce—Zr-based oxide = 30: 70. The particle size was measured by observation with a scanning electron microscope (SEM). Table 1 shows a part of the specification of the exhaust gas purification catalyst of this example.

(比較例1)
ランタンを含む硝酸溶液と鉄を含む硝酸溶液をCe−Zr系酸化物(72質量%ZrO−21質量%CeO−5質量%Nd−2質量%La)に含浸し、次いで、150℃で一晩乾燥させ、更に乳鉢で粉砕し、しかる後、400℃で2時間、700℃で5時間、空気中で焼成して、本例の酸化物を得た。なお、LaFeOとCe−Zr系酸化物の質量比は、LaFeO:Ce−Zr系酸化物=30:70である。また、粒子径は、走査型電子顕微鏡(SEM)による観察によって測定した。LaFeO粒子の凝集体の粒子径は、100〜500nmであった。本例の排気ガス浄化触媒の仕様の一部を表1に示す。
(Comparative Example 1)
A nitric acid solution containing lanthanum and a nitric acid solution containing iron were impregnated in a Ce-Zr-based oxide (72 mass% ZrO 2 -21 mass% CeO 2 -5 mass% Nd 2 O 3 -2 mass% La 2 O 3 ). Then, it was dried at 150 ° C. overnight, further pulverized in a mortar, and then calcined in air at 400 ° C. for 2 hours and 700 ° C. for 5 hours to obtain the oxide of this example. Note that the mass ratio of LaFeO 3 and Ce—Zr-based oxide is LaFeO 3 : Ce—Zr-based oxide = 30: 70. The particle size was measured by observation with a scanning electron microscope (SEM). The particle diameter of the aggregate of LaFeO 3 particles was 100 to 500 nm. Table 1 shows a part of the specification of the exhaust gas purification catalyst of this example.

図9は、本例の排気ガス浄化触媒の透過型電子顕微鏡(TEM)写真である。また、図10は、図9に示す領域Aにおけるエネルギー分散型X線分析の結果である。更に、図11は、図9に示す領域Bにおけるエネルギー分散型X線分析の結果である。   FIG. 9 is a transmission electron microscope (TEM) photograph of the exhaust gas purification catalyst of this example. FIG. 10 shows the results of energy dispersive X-ray analysis in region A shown in FIG. Further, FIG. 11 shows the result of the energy dispersive X-ray analysis in the region B shown in FIG.

図10に示すように、領域Aに観察される凝集体からは、エネルギー分散型X線分析(EDX)による元素分析により、主に、鉄(Fe)とランタン(La)が検出された。一方、図11に示すように、領域Bに観察されるマトリックスからは、主に、ジルコニウム(Zr)とセリウム(Ce)が検出された。   As shown in FIG. 10, iron (Fe) and lanthanum (La) were mainly detected from the aggregates observed in the region A by elemental analysis by energy dispersive X-ray analysis (EDX). On the other hand, as shown in FIG. 11, mainly from the matrix observed in the region B, zirconium (Zr) and cerium (Ce) were detected.

Figure 0005720772
Figure 0005720772

[性能評価]
各例の排気ガス浄化触媒を用いて浄化性能を評価した。得られた結果を表2に示す。
[Performance evaluation]
The purification performance was evaluated using the exhaust gas purification catalyst of each example. The obtained results are shown in Table 2.

<粉末評価>
各例の排気ガス浄化触媒に対して、下記条件下、四重極質量分析装置を用いてCOを測定した。CO転化率は下記式(I)より算出した。
<Powder evaluation>
For the exhaust gas purification catalyst of each example, CO 2 was measured using a quadrupole mass spectrometer under the following conditions. The CO conversion was calculated from the following formula (I).

(評価条件)
・触媒量:0.2g(粉末)
・流量 :50cm/min
・ガス組成:CO;0.4体積%、O;0.2体積%、He;バランス
(Evaluation conditions)
-Catalyst amount: 0.2 g (powder)
・ Flow rate: 50 cm 3 / min
Gas composition: CO; 0.4% by volume, O 2 ; 0.2% by volume, He; balance

CO転化率(%)=A×(CO2out)+B・・・(I)
(予め、COが100%反応したときの質量数44の質量分析計の値をCO生成率100%とし、また、COが0%反応したときの質量数44の質量分析計の値をCO生成率0%とし、検量線を作成する。これをY=Ax+Bとし、xは質量分析計の質量数44の値とする。xは触媒出口のCOであり、式(1)で(CO2out)と表記する。)
CO conversion rate (%) = A × (CO 2out ) + B (I)
(The mass spectrometer value of mass number 44 when 100% of CO reacts in advance is defined as 100% CO 2 production rate, and the mass spectrometer value of mass number 44 when CO reacts 0% is defined as CO 2. 2 Create a calibration curve with a production rate of 0%, which is Y = Ax + B, where x is the value of mass number 44 of the mass spectrometer, x is CO 2 at the catalyst outlet, CO 2out ).)

<ラボ評価>
各例の排気ガス浄化触媒とベーマイトアルミナ、硝酸及びイオン交換水とを用いて得られた各例の触媒スラリーを作製し、これを用いて各例の排気ガス浄化モノリス触媒を得た。各例の排気ガス浄化モノリス触媒に対して、下記条件下、排気ガス分析装置(堀場製作所製、MEXA−7100D)を用いてCO濃度を測定した。CO転化率は下記式(II)より算出した。
<Lab evaluation>
The catalyst slurry of each example obtained using the exhaust gas purification catalyst of each example and boehmite alumina, nitric acid, and ion-exchanged water was produced, and the exhaust gas purification monolith catalyst of each example was obtained using this. For the exhaust gas purifying monolith catalyst of each example, the CO concentration was measured using an exhaust gas analyzer (manufactured by Horiba, Ltd., MEXA-7100D) under the following conditions. The CO conversion was calculated from the following formula (II).

(評価条件)
・触媒容量:119cm
・ガス流量:40L/min
・ガス組成(ストイキ):O;0.6体積%、CO;0.6体積%、NO;1000体積ppm、HC;1665体積ppmC、H;0.2体積%、HO;10体積%、CO;13.9体積%
(Evaluation conditions)
Catalyst capacity: 119 cm 3
・ Gas flow rate: 40L / min
Gas composition (stoichiometric): O 2 ; 0.6 vol%, CO; 0.6 vol%, NO; 1000 vol ppm, HC; 1665 vol ppm C, H 2 ; 0.2 vol%, H 2 O; 10 Volume%, CO 2 ; 13.9 volume%

CO転化率(%)=(COin−COout)/COin×100・・・(II)
(式(II)中、COinは、サンプルを通さない場合のガスに対しての排気ガス分析装置のCO濃度、COoutは、サンプル通過後のガスに対しての排気ガス分析装置のCO濃度を示す。)
CO conversion rate (%) = (CO in −CO out ) / CO in × 100 (II)
(In Formula (II), CO in is the CO concentration of the exhaust gas analyzer with respect to the gas that does not pass through the sample, and CO out is the CO concentration of the exhaust gas analyzer with respect to the gas after passing through the sample. Is shown.)

<台上評価>
各例の排気ガス浄化触媒とベーマイトアルミナ、硝酸及びイオン交換水とを用いて得られた各例の触媒スラリーを作製し、これを用いて各例の排気ガス浄化モノリス触媒を得た。各例の排気ガス浄化モノリス触媒に対して、下記条件下、排気ガス分析装置(堀場製作所製、MEXA−7500D)を用いてCO濃度を測定した。CO転化率は上記式(II)より算出した。
<Bench evaluation>
The catalyst slurry of each example obtained using the exhaust gas purification catalyst of each example and boehmite alumina, nitric acid, and ion-exchanged water was produced, and the exhaust gas purification monolith catalyst of each example was obtained using this. For the exhaust gas purifying monolith catalyst of each example, the CO concentration was measured using an exhaust gas analyzer (manufactured by Horiba, MEXA-7500D) under the following conditions. The CO conversion was calculated from the above formula (II).

(評価条件)
・日産自動車製エンジン使用
・触媒容量:119cm
・ガス流量:60m/h
・ガス組成(ストイキ):HC;約2000体積ppmC、CO;約0.54体積%、NO;約1500体積ppm、O;約0.56体積%、CO;14.6体積%
(Evaluation conditions)
・ Uses Nissan engine ・ Catalyst capacity: 119cm 3
・ Gas flow rate: 60 m 3 / h
Gas composition (stoichi): HC; about 2000 ppm by volume, CO; about 0.54% by volume, NO; about 1500 ppm by volume, O 2 ; about 0.56% by volume, CO 2 ; 14.6% by volume

Figure 0005720772
Figure 0005720772

表1及び表2より、本発明の範囲に属する実施例1〜6は、本発明外の比較例1と比較して、一酸化炭素の転化率が高く、酸化性能が優れていることが分かる。現時点においては、実施例1や実施例4が特に優れていると考えられる。   From Table 1 and Table 2, it can be seen that Examples 1 to 6 belonging to the scope of the present invention have a higher carbon monoxide conversion rate and superior oxidation performance as compared with Comparative Example 1 outside the present invention. . At present, Example 1 and Example 4 are considered to be particularly excellent.

<台上評価2>
実施例4において、Ce−Zr系酸化物に替えてセリア量をそれぞれ変更したセリアジルコニア複合酸化物と、ベーマイトアルミナ、硝酸及びイオン交換水とを用いて得られた各例の触媒スラリーを作製し、これを用いて各例の排気ガス浄化モノリス触媒を得た。各例の排気ガス浄化モノリス触媒に対して、下記条件下、排気ガス分析装置(堀場製作所製、MEXA−9100)を用いてCO濃度を測定した。CO転化率は上記式(II)より算出した。得られた結果を図12に示す。
<Table evaluation 2>
In Example 4, the catalyst slurry of each example obtained using ceria zirconia composite oxide in which the amount of ceria was changed in place of the Ce-Zr-based oxide, boehmite alumina, nitric acid and ion-exchanged water was prepared. Using this, the exhaust gas purifying monolith catalyst of each example was obtained. With respect to the exhaust gas purification monolith catalyst of each example, the CO concentration was measured using an exhaust gas analyzer (manufactured by Horiba, Ltd., MEXA-9100) under the following conditions. The CO conversion was calculated from the above formula (II). The obtained result is shown in FIG.

(評価条件)
・日産自動車製エンジン使用
・触媒コート量:268g/L+DPR:32g/L
・ガス流量:60m/h
・A/F振幅:±0.2、1.0Hz
・ガス組成(ストイキ):HC;約2000体積ppmC、CO;約0.54体積%、NO;約1500体積ppm、O;約0.56体積%、CO;14.6体積%
(Evaluation conditions)
-Use Nissan engine-Catalyst coating amount: 268g / L + DPR: 32g / L
・ Gas flow rate: 60 m 3 / h
A / F amplitude: ± 0.2, 1.0 Hz
Gas composition (stoichi): HC; about 2000 ppm by volume, CO; about 0.54% by volume, NO; about 1500 ppm by volume, O 2 ; about 0.56% by volume, CO 2 ; 14.6% by volume

図12より、セリアジルコニア複合酸化物中のセリア(CeO)量は5質量%以上であることが好ましく、20質量%以上であることが好ましいことが分かる。特に、5〜90質量%であることが好ましく、20〜80質量%であることが好ましいことが分かる。FIG. 12 shows that the amount of ceria (CeO 2 ) in the ceria zirconia composite oxide is preferably 5% by mass or more, and more preferably 20% by mass or more. It turns out that it is especially preferable that it is 5-90 mass%, and it is preferable that it is 20-80 mass%.

1、100 排気ガス浄化触媒
2 酸素吸放出能を有する酸化物
4a、4b 一般式(1)で表される酸化物
10 排気ガス浄化モノリス触媒
12 触媒層
14 モノリス担体
DESCRIPTION OF SYMBOLS 1,100 Exhaust-gas purification catalyst 2 Oxide 4a, 4b which has oxygen absorption-release capability 10 Oxide represented by General formula (1) 10 Exhaust-gas purification monolith catalyst 12 Catalyst layer 14 Monolith support

Claims (7)

貴金属を含まない排気ガス浄化触媒であって、
酸素吸放出能を有する酸化物に、一般式(1)
La1−xM’O3−δ・・・(1)
(式(1)中、Laはランタン、Mはバリウム(Ba)、ストロンチウム(Sr)及びカルシウム(Ca)からなる群より選ばれる少なくとも1種、M’は鉄(Fe)、コバルト(Co)、ニッケル(Ni)及びマンガン(Mn)からなる群より選ばれる少なくとも1種、δは酸素欠損量を示し、x及びδは、0<x≦1、0≦δ≦1の関係を満足する。)で表される酸化物が担持されており、
上記酸素吸放出能を有する酸化物の粒子径が、1〜50nmであり、
上記一般式(1)で表される酸化物の粒子径が、1〜30nmであり、
上記酸素吸放出能を有する酸化物が、セリウムとジルコニウムとを含む複合酸化物である
ことを特徴とする排気ガス浄化触媒。
An exhaust gas purification catalyst containing no precious metal,
An oxide having oxygen absorbing / releasing ability is represented by the general formula (1)
La x M 1-x M′O 3-δ (1)
(In the formula (1), La is lanthanum, M is at least one selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca), M ′ is iron (Fe), cobalt (Co), (At least one selected from the group consisting of nickel (Ni) and manganese (Mn), δ represents the amount of oxygen deficiency, and x and δ satisfy the relationship 0 <x ≦ 1, 0 ≦ δ ≦ 1.) An oxide represented by
The particle size of the oxide having oxygen absorption / release capacity is 1 to 50 nm,
The particle size of the oxide represented by the general formula (1) is Ri 1~30nm der,
The exhaust gas purifying catalyst , wherein the oxide having oxygen absorbing / releasing ability is a composite oxide containing cerium and zirconium .
上記酸素吸放出能を有する酸化物の粒子径が、5〜20nmであり、
上記一般式(1)で表される酸化物の粒子径が、3〜10nmである
ことを特徴とする請求項1に記載の排気ガス浄化触媒。
The particle size of the oxide having oxygen absorption / release capacity is 5 to 20 nm,
The exhaust gas purification catalyst according to claim 1, wherein a particle diameter of the oxide represented by the general formula (1) is 3 to 10 nm.
上記一般式(1)で表される酸化物の粒子径が、上記酸素吸放出能を有する酸化物であるセリウムとジルコニウムとを含む複合酸化物の粒子径より小さいことを特徴とする請求項1又は2に記載の排気ガス浄化触媒。 The particle size of the oxide represented by the general formula (1) is, according to claim 1, wherein the particle size of the composite oxide is smaller than that containing cerium and a zirconium oxide having the capability of adsorbing and releasing oxygen Or the exhaust gas purifying catalyst according to 2. 上記複合酸化物中のセリウム含有量がセリウム酸化物(CeO)換算で5質量%以上であることを特徴とする請求項1〜3のいずれか1つの項に記載の排気ガス浄化触媒。 The composite oxide of cerium content of cerium oxide in (CeO 2) exhaust gas purification catalyst according to any one of claims 1 to 3, characterized in that in terms of at least 5 mass%. 上記複合酸化物中のセリウム含有量がセリウム酸化物(CeO)換算で20質量%以上であることを特徴とする請求項1〜4のいずれか1つの項に記載の排気ガス浄化触媒。 The exhaust gas purification catalyst according to any one of claims 1 to 4 , wherein a cerium content in the composite oxide is 20% by mass or more in terms of cerium oxide (CeO 2 ). 請求項1〜5のいずれか1つの項に記載の排気ガス浄化触媒を含有する触媒層が、モノリス担体の排気流路に形成されていることを特徴とする排気ガス浄化モノリス触媒。 An exhaust gas purification monolith catalyst, wherein a catalyst layer containing the exhaust gas purification catalyst according to any one of claims 1 to 5 is formed in an exhaust passage of a monolith carrier. 請求項1〜5のいずれか1つの項に記載の排気ガス浄化触媒を製造するに当たり、
カルボン酸のランタン塩と、カルボン酸のバリウム塩、カルボン酸のストロンチウム塩、カルボン酸のカルシウム塩、カルボン酸の鉄塩、カルボン酸のコバルト塩、カルボン酸のニッケル塩及びカルボン酸のマンガン塩からなる群より選ばれる少なくとも1種のカルボン酸の金属塩とを含む溶液に、酸素吸放出能を有する酸化物を浸漬し、溶液周囲の雰囲気を大気圧より低い減圧状態として、酸素吸放出能を有する酸化物にカルボン酸のランタン塩とカルボン酸の金属塩とを含浸担持させる、ことを特徴とする排気ガス浄化触媒の製造方法。
In producing the exhaust gas purification catalyst according to any one of claims 1 to 5 ,
Containing lanthanum salt of carboxylic acid, barium salt of carboxylic acid, strontium salt of carboxylic acid, calcium salt of carboxylic acid, iron salt of carboxylic acid, cobalt salt of carboxylic acid, nickel salt of carboxylic acid and manganese salt of carboxylic acid An oxygen absorbing / releasing ability is obtained by immersing an oxide having oxygen absorbing / releasing ability in a solution containing at least one metal salt of a carboxylic acid selected from the group, and setting the atmosphere around the solution at a reduced pressure lower than atmospheric pressure. A method for producing an exhaust gas purification catalyst, wherein an oxide is impregnated with a lanthanum salt of a carboxylic acid and a metal salt of a carboxylic acid.
JP2013507669A 2011-03-31 2012-03-28 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst Active JP5720772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507669A JP5720772B2 (en) 2011-03-31 2012-03-28 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011077444 2011-03-31
JP2011077444 2011-03-31
JP2013507669A JP5720772B2 (en) 2011-03-31 2012-03-28 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
PCT/JP2012/058122 WO2012133526A1 (en) 2011-03-31 2012-03-28 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and process for producing exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPWO2012133526A1 JPWO2012133526A1 (en) 2014-07-28
JP5720772B2 true JP5720772B2 (en) 2015-05-20

Family

ID=46931235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013507669A Active JP5720772B2 (en) 2011-03-31 2012-03-28 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst

Country Status (5)

Country Link
US (1) US9101914B2 (en)
EP (1) EP2692432B1 (en)
JP (1) JP5720772B2 (en)
CN (1) CN103402630B (en)
WO (1) WO2012133526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885004B2 (en) * 2012-09-10 2016-03-15 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011107702A1 (en) * 2011-07-14 2013-01-17 Sasol Germany Gmbh Process for the preparation of composites of alumina and cerium / zirconium mixed oxides
EP2878359B1 (en) * 2013-11-29 2016-04-13 Umicore Ag & Co. Kg Use of mixed oxides as oxygen storage components
EP2878368B1 (en) 2013-11-29 2019-05-22 Umicore Ag & Co. Kg Oxygen storage materials
WO2015125206A1 (en) * 2014-02-18 2015-08-27 日産自動車株式会社 Exhaust gas purification catalyst and production method thereof
EP3144062B1 (en) * 2014-05-13 2020-08-05 Nissan Motor Co., Ltd Exhaust gas purification catalyst
WO2015173880A1 (en) * 2014-05-13 2015-11-19 日産自動車株式会社 Hydrogen-generating catalyst, and exhaust gas purification catalyst
JP5892712B2 (en) * 2014-07-15 2016-03-23 株式会社キャタラー Exhaust gas purification catalyst
US9662639B2 (en) * 2015-05-11 2017-05-30 University Of Wyoming Catalytic effects of oxygen carrier based chemical-looping reforming of CH4 with CO2
MX2019003266A (en) 2016-11-14 2019-08-12 Res Triangle Inst Perovskite catalysts and uses thereof.
CN109647420B (en) * 2018-12-27 2021-01-05 中国科学院广州地球化学研究所 Calcium-doped lanthanum perovskite cobaltite type oxide for thermal catalytic oxidation of toluene and preparation method and application thereof
KR20210094641A (en) * 2019-09-04 2021-07-29 그리렘 하이-테크 캄파니 리미티드 Rare earth manganese/cerium zirconium-based composite compound and its manufacturing method and application
MX2023001589A (en) * 2020-08-12 2023-05-16 Neo Performance Mat Singapore Pte Ltd Oxygen storage capacity enhanced compositions.
US12042781B2 (en) * 2022-02-03 2024-07-23 Johnson Matthey Public Limited Company Surface-modified ceria-zirconia mixed oxide compound for gasoline exhaust
CN114917916A (en) * 2022-05-30 2022-08-19 昆明理工大学 Oxygen carrier with high oxygen storage capacity and high stability and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221448A (en) * 1986-03-20 1987-09-29 Matsushita Electric Ind Co Ltd Production of oxidizing catalyst
JPH0217944A (en) * 1988-05-24 1990-01-22 Solvay & Cie Catalyst composition, preparation thereof and hydrogenation of chlorofluoroalkene by the composition
JPH0531367A (en) * 1991-07-29 1993-02-09 Daihatsu Motor Co Ltd Catalyst for exhaust gas purification
JPH07136518A (en) * 1993-11-22 1995-05-30 Nissan Motor Co Ltd Exhaust gas purifying catalyst
JP2001276626A (en) * 2000-04-03 2001-10-09 Idemitsu Kosan Co Ltd Hydrogenation catalyst and manufacturing method thereof and hydrogenating method of hydrocarbon oil
JP2004181435A (en) * 2002-10-11 2004-07-02 Daihatsu Motor Co Ltd Heat-resistant compound oxide, exhaust gas cleaning catalyst and production method for the same
JP2006256911A (en) * 2005-03-17 2006-09-28 Tosoh Corp Preparation method of ceria-zirconia-based oxide
JP2008150264A (en) * 2006-12-20 2008-07-03 Nippon Denko Kk Ceria-zirconia-based compound oxide and its manufacturing method
JP2009090237A (en) * 2007-10-10 2009-04-30 Mazda Motor Corp Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material
WO2010100067A1 (en) * 2009-03-02 2010-09-10 Rhodia Operations Composition including a lanthanum perovskite on an alumina or aluminium oxyhydroxide substrate, preparation method and use in catalysis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243103A (en) 1988-05-24 1993-09-07 Solvay S.A. Process for obtaining catalytic compositions and process for hydrogenation of chlorofluoroalkenes by means of these compositions
EP0525677B1 (en) 1991-07-29 1995-12-13 Daihatsu Motor Company, Ltd. Exhaust gas purifying catalyst and method of preparing the same
EP1145763B1 (en) 1999-10-27 2012-07-04 Idemitsu Kosan Co., Ltd. Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
JP2002049963A (en) * 2000-08-04 2002-02-15 Kubota Corp Merchandise delivery device for automatic vending machine
WO2002049963A1 (en) 2000-12-19 2002-06-27 Idemitsu Kosan Co., Ltd. Titanium compound, aqueous solution containing titanium, and process for producing the same
JP4604211B2 (en) 2004-04-16 2011-01-05 Dowaエレクトロニクス株式会社 Perovskite complex oxide, method for producing the same, and catalyst using the same
JP2006258911A (en) 2005-03-15 2006-09-28 Denon Ltd Apparatus and method for playback
EP2055365B1 (en) 2007-10-10 2018-02-28 Mazda Motor Corporation Catalyst-supported particulate filter
JP2009131774A (en) 2007-11-30 2009-06-18 Nissan Motor Co Ltd Pm oxidation catalyst and exhaust gas cleaning catalyst comprising the same
US8409518B2 (en) * 2009-03-16 2013-04-02 GM Global Technology Operations LLC Sulfur tolerant perovskite supported catalysts
US8950174B2 (en) * 2010-09-02 2015-02-10 Basf Se Catalysts for gasoline lean burn engines with improved NH3-formation activity

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221448A (en) * 1986-03-20 1987-09-29 Matsushita Electric Ind Co Ltd Production of oxidizing catalyst
JPH0217944A (en) * 1988-05-24 1990-01-22 Solvay & Cie Catalyst composition, preparation thereof and hydrogenation of chlorofluoroalkene by the composition
JPH0531367A (en) * 1991-07-29 1993-02-09 Daihatsu Motor Co Ltd Catalyst for exhaust gas purification
JPH07136518A (en) * 1993-11-22 1995-05-30 Nissan Motor Co Ltd Exhaust gas purifying catalyst
JP2001276626A (en) * 2000-04-03 2001-10-09 Idemitsu Kosan Co Ltd Hydrogenation catalyst and manufacturing method thereof and hydrogenating method of hydrocarbon oil
JP2004181435A (en) * 2002-10-11 2004-07-02 Daihatsu Motor Co Ltd Heat-resistant compound oxide, exhaust gas cleaning catalyst and production method for the same
JP2006256911A (en) * 2005-03-17 2006-09-28 Tosoh Corp Preparation method of ceria-zirconia-based oxide
JP2008150264A (en) * 2006-12-20 2008-07-03 Nippon Denko Kk Ceria-zirconia-based compound oxide and its manufacturing method
JP2009090237A (en) * 2007-10-10 2009-04-30 Mazda Motor Corp Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material
WO2010100067A1 (en) * 2009-03-02 2010-09-10 Rhodia Operations Composition including a lanthanum perovskite on an alumina or aluminium oxyhydroxide substrate, preparation method and use in catalysis
JP2012519071A (en) * 2009-03-02 2012-08-23 ロデイア・オペラシヨン Compositions comprising lanthanum perovskite on an alumina or aluminum oxyhydroxide substrate, process for preparation and use in catalysts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885004B2 (en) * 2012-09-10 2016-03-15 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
JPWO2014038294A1 (en) * 2012-09-10 2016-08-08 日産自動車株式会社 Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst

Also Published As

Publication number Publication date
CN103402630B (en) 2015-11-25
US9101914B2 (en) 2015-08-11
US20140018235A1 (en) 2014-01-16
EP2692432A1 (en) 2014-02-05
EP2692432B1 (en) 2019-11-13
JPWO2012133526A1 (en) 2014-07-28
EP2692432A4 (en) 2014-10-29
CN103402630A (en) 2013-11-20
WO2012133526A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5720772B2 (en) Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
JP5885004B2 (en) Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and method of manufacturing exhaust gas purification catalyst
JP5458973B2 (en) Exhaust gas purification catalyst
JP5915520B2 (en) Exhaust gas purification catalyst
JP6036276B2 (en) Exhaust purification catalyst and method for producing exhaust purification catalyst
JPWO2014104181A1 (en) Catalyst carrier and exhaust gas purification catalyst
JP2016203116A (en) Catalyst for exhaust gas purification
JP5720558B2 (en) Exhaust gas purification catalyst
JP6181260B1 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
JP5299603B2 (en) Oxide complex precursor aqueous solution, oxide complex production method, oxide complex, exhaust gas purification catalyst including the oxide complex, and exhaust gas purification method using the exhaust gas purification catalyst
JP2006137651A (en) Composite oxide and catalyst for purifying exhaust gas
JP2017094273A (en) NOx OCCLUSION REDUCTION CATALYST
JP5488402B2 (en) Exhaust gas purification catalyst
JP2010240598A (en) Catalyst for cleaning exhaust
JP5673173B2 (en) Exhaust gas purification catalyst
JP2011183316A (en) Catalyst for cleaning exhaust gas
JP5104352B2 (en) Exhaust gas purification catalyst
JP5545175B2 (en) Exhaust gas purification catalyst
JP2022110902A (en) Exhaust gas purification system
JP5769666B2 (en) Exhaust gas purification catalyst
JP2014147877A (en) Exhaust emission control catalyst
JP2014161747A (en) Exhaust gas purification catalyst and method for producing the same
JP2010029772A (en) Compound oxide and exhaust gas cleaning catalyst containing the same
JP2010058006A (en) Catalyst for cleaning exhaust gas and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R151 Written notification of patent or utility model registration

Ref document number: 5720772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151