JP5718121B2 - 光源装置の駆動方法及び光源装置 - Google Patents

光源装置の駆動方法及び光源装置 Download PDF

Info

Publication number
JP5718121B2
JP5718121B2 JP2011073037A JP2011073037A JP5718121B2 JP 5718121 B2 JP5718121 B2 JP 5718121B2 JP 2011073037 A JP2011073037 A JP 2011073037A JP 2011073037 A JP2011073037 A JP 2011073037A JP 5718121 B2 JP5718121 B2 JP 5718121B2
Authority
JP
Japan
Prior art keywords
light
light source
source device
confirmation
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011073037A
Other languages
English (en)
Other versions
JP2012208258A (ja
Inventor
伊藤 毅
毅 伊藤
真博 西尾
真博 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011073037A priority Critical patent/JP5718121B2/ja
Priority to PCT/JP2012/057966 priority patent/WO2012133430A1/ja
Publication of JP2012208258A publication Critical patent/JP2012208258A/ja
Priority to US14/027,292 priority patent/US8939628B2/en
Application granted granted Critical
Publication of JP5718121B2 publication Critical patent/JP5718121B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Endoscopes (AREA)

Description

本発明は、光源装置の駆動方法及び光源装置に関する。
一般に、次のような光源モジュールが知られている。半導体レーザ(LD)等の1次光ユニットが、1次光を射出する。この1次光は、光ファイバを経由して波長変換部材に導かれる。波長変換部材において、導かれた1次光は、所望の波長を持った2次光に変換される。ただし、導かれた1次光の全てが2次光に変換されるわけではないので、光源モジュールは、1次光及び変換された2次光を照明光として射出する。
上記のような光源モジュールの一例が、特許文献1に開示されている。特許文献1に開示されている発光装置では、波長変換部材から射出した2次光のうち照明光として利用されない一部を、1次光を導く光ファイバとは別の光ファイバを経由して受光素子に導光する。この受光素子は、導かれた光を検出し、その光強度に応じた信号を出力する。上記のような光学系において、例えば一方の光ファイバの断線といった異常が生じた場合、受光素子に到達する光の強度は変化する。特許文献1に開示されている発光装置は、受光素子が出力する光強度に応じた信号に基づいて、当該装置の異常を検出する。
特開2008−122838号公報
特許文献1に開示されている技術における異常を検出する動作において、光源からは、1次光が射出される。例えば光学系に異常があるとき、異常検出のために発せられたこの1次光は、異常がある箇所から漏出する恐れがある。漏出する光の強度が高い場合、その光は、人体に害を及ぼす恐れがある。
そこで本発明は、人体に害を及ぼす恐れのある光が漏出しない光源装置の駆動方法及び光源装置を提供することを目的とする。
前記目的を果たすため、本発明の光源装置の駆動方法の一態様は、1次光源と、前記1次光源から射出した1次光を導光する光ファイバと、前記1次光源から射出して前記光ファイバにより導光された1次光を受光し、該1次光の光学的性質に含まれるピーク波長、スペクトル形状、放射角、及び光量のうち少なくともひとつを変換する光変換ユニットと、前記光変換ユニットから放射される光を検出する光検出手段と、を有する光源装置の駆動方法において、前記光変換ユニットから放射された光を検出した前記光検出手段の出力信号に基づいて前記光源装置の状態を確認するに足る十分な、かつ、漏出しても人体に対して安全な、光強度を有する確認光を前記1次光源に発光させる安全発光ステップと、前記確認光に基づいて前記光変換ユニットから放射され前記光検出手段に入射する光を検出した該光検出手段の前記出力信号に基づいて前記光源装置の状態を確認する異常確認ステップと、を有し、前記異常確認ステップにおいて前記光源装置に異常があると判断されたときは、前記1次光源に前記確認光を発光させることを特徴とする。
また、前記目的を果たすため、本発明の光源装置の一態様は、1次光源と、前記1次光源から射出した1次光を導光する光ファイバと、前記1次光源から射出して前記光ファイバにより導光された1次光を受光し、該1次光の光学的性質に含まれるピーク波長、スペクトル形状、放射角、及び光量のうち少なくともひとつを変換する光変換ユニットと、前記光変換ユニットから放射される光を検出する光検出手段と、を有する光源装置において、前記光源装置はさらに、前記光変換ユニットから放射された光を検出した前記光検出手段の出力信号に基づいて前記光源装置の状態を確認するに足る十分な、かつ、漏出しても人体に対して安全な、光強度を有する確認光を前記1次光源に発光させる安全発光手段と、前記確認光に基づいて前記光変換ユニットから放射され前記光検出手段に入射する光を検出した該光検出手段の前記出力信号に基づいて前記光源装置の状態を確認する異常確認手段と、を含む制御部を有し、前記制御部は、前記異常確認手段において前記光源装置に異常があると判断されたときは、前記1次光源に前記確認光を発光させることを特徴とする。
本発明によれば、人体に対して安全である強度を有する光を用いて異常の有無を判断するので、人体に害を及ぼす恐れのある光が漏出しない光源装置の駆動方法及び光源装置を提供できる。

本発明の第1の実施形態に係る光源装置の一実施形態の構成例の概略を示す図。 第1の実施形態の波長変換ユニットの構成例の概略を示す断面図。 第1の実施形態に係る光源装置の動作例を示すフローチャート。 最大許容露光量を表す放射パワーと露光時間との関係の一例を示す図。 第1の実施形態の第1の変形例に係る光源装置の動作例を示すフローチャート。 第1の実施形態の第2の変形例に係る光源装置の動作例を示すフローチャート。 本発明の第2の実施形態に係る光源装置の一実施形態の構成例の概略を示す図。 第2の実施形態に係る光源装置の動作例を示すフローチャート。 第3の実施形態の波長変換ユニットの構成例の概略を示す断面図。 第4の実施形態の光学系の構成例の概略を示す図。
[第1の実施形態]
本発明の第1の実施形態について図面を参照して説明する。本実施形態に係る光源装置100の構成例を図1に示す。光源装置100は、励起光源110と、レンズ112と、第1の光ファイバ120と、波長変換ユニット130と、第2の光ファイバ140と、受光素子150と、駆動部160と、制御部170と、出力部180と、入力部190とを備える。
励起光源110は、例えば半導体レーザ光源であり、励起光を射出する。射出された励起光は、レンズ112で集光され、第1の光ファイバ120に入射する。励起光源110に半導体レーザ光源を用いることで、射出した励起光は、効率的に第1の光ファイバに入射させられる。第1の光ファイバ120は、励起光源110から射出された励起光を、波長変換ユニット130に導く。
波長変換ユニット130は、保持部材134に固定された蛍光体132を有する。第1の光ファイバ120により導かれた励起光は、波長変換ユニット130に備えられた蛍光体132に照射される。励起光を照射された蛍光体132は、その励起光を吸収し、蛍光を発する。波長変換ユニット130は、蛍光体132が発した蛍光、及び蛍光体132に吸収されなかった励起光を、照明対象物900に向けて照射する。
第2の光ファイバ140は、蛍光体132が発生した蛍光の一部、及び蛍光体132で反射・散乱された励起光の一部を、波長変換ユニット130から受光素子150に導く。受光素子150は、第2の光ファイバ140によって導かれた光を検知し、その光強度に応じた信号を出力する。受光素子150は、励起光の強度と蛍光の強度とを独立に検出できるように構成されている。
波長変換ユニット130の、第1の光ファイバ120の中心軸と第2の光ファイバ140の中心軸とを含む面における断面図を、図2に示す。波長変換ユニット130は、波長変換部材である蛍光体132と、保持部材134と、フェルール136とを有する。保持部材134は、凹部を有しており、この凹部内に、蛍光体132が配置されている。第1の光ファイバ120は、保持部材134の貫通孔135に挿入されて固定されている。第2の光ファイバ140は、第1の光ファイバ120と同様に、保持部材134の貫通孔135に挿入され固定されている。第1の光ファイバ120と第2の光ファイバ140とは、互いに沿って配置され、共通のフェルール136により保持されている。
駆動部160は、励起光源110に電流を供給して励起光源110を発光させるための駆動回路である。制御部170は、駆動部160、受光素子150、出力部180、及び入力部190と接続している。制御部170は、光源装置100の全体の動作を制御する。例えば制御部170は、駆動部160の動作を制御し、励起光源110の光量や発光時間等を調整する。また、制御部170は、受光素子150の信号を受信し、光源装置100の状態を取得する。また、制御部170は、ユーザに伝達する情報に係る信号を、出力部180に出力する。また、制御部170は、ユーザからの指示に係る信号を、入力部190から取得する。
出力部180は、例えばディスプレイやスピーカであり、制御部170の指示に基づいて、ユーザに伝達する情報を出力する。伝達方法は、ディスプレイに文字や図形等を表示するようにしてもよいし、スピーカから音を発するようにしてもよい。入力部190は、例えば、キーボード、マウス、タッチパネル、ボタンスイッチ、スライダ等であり、ユーザからの指示を受け取り、その指示に基づく信号を制御部170に出力する。
このように、例えば波長変換ユニット130は、ピーク波長、スペクトル形状、放射角、及び光量のうち少なくともひとつを変換する光変換ユニットとして機能し、例えば受光素子150は、光変換ユニットから放射される光を検出する光検出手段として機能する。
次に、光源装置100の動作を説明する。光源装置100の動作は、制御部170によって制御されている。制御部170は、光源装置100の電源投入後、まず、光源装置100の異常の有無、言い換えると光源装置100が十分に安全な状態か否かを確認する。次に、制御部170は、光源装置100に異常がないことが確認されたら、使用状態で発光させるように光源装置100を動作させる。これらの動作について、図3に示すフローチャートを参照して順に説明する。
ステップS1において制御部170は、安全発光処理を実行する。この処理において制御部170は、次に示すような強度を有する確認光を、励起光源110から射出させる。確認光の強度は、励起光源110から射出された光に由来する光を、受光素子150が検出できる程度に十分高い。この光量を設定するにあたっては、後述のように、受光素子150の感度、光路への入射率、光路中での減衰等を考慮する。さらに、確認光の強度は、後述するように、励起光源110から射出される光量が人体に対し十分に安全である程度に低い。本実施形態では、光強度が最も高くなる励起光源110における光量に基づいて、上記の条件を満たす確認光の光量を設定する。
励起光源110から射出された確認光は、第1の光ファイバ120によって、波長変換ユニット130内の蛍光体132に導かれる。蛍光体132は、導かれた確認光を受光し、照射された確認光の光量に見合った蛍光を射出する。この蛍光の多くは、照明対象物900に照射される。蛍光体132で射出された蛍光の一部は、第2の光ファイバ140に入射する。また、蛍光体132で反射・散乱された励起光の一部も第2の光ファイバ140に入射する。第2の光ファイバ140に入射した光は、受光素子150に導かれる。受光素子150は、第2の光ファイバ140によって導かれた光を受光する。
ここで、確認光の光量を規定する受光素子150が検出できる程度に十分高い光量とは、第1の光ファイバ120を介して蛍光体132に照射され、蛍光体132から第2の光ファイバ140を介して受光素子150に導かれた光の強度が、受光素子150の検出下限を上回るような光量をいう。ここで、受光素子150において受光素子150の検出下限となる励起光源110から射出される光量を、光検出手段下限放射パワーと称することにする。すなわち、本実施形態では、励起光源110から射出される光量は、光検出手段下限放射パワー以上である。
また、確認光の光量を規定する人体に対し十分に安全である程度に低い光量とは、以下のとおりである。人体に光が直接照射されたとき、ある閾値を超えると人体は悪影響を受ける。この閾値の目安として最大許容露光量(Maximum Permissible Exposure;MPE)が知られている。MPEは、過去の事故例や動物を用いた実験的研究から得られた情報に基づいて決定された基準である。MPEとしては、2種類の値が知られている。すなわち、人体において最も光に対して敏感な眼に対する値と、その他の部分である皮膚に対する値とである。眼に対する値と皮膚に対する値とのどちらの基準を用いるかは、光源装置の利用環境、作業者のスキル等により慎重に決定されるべきである。
表1に、波長が400〜700nmである光について、露光時間が1ナノ秒から18マイクロ秒までと、18マイクロ秒から10秒までとのそれぞれに係る、眼に対するMPEと皮膚に対するMPEとを示す。ここでC6は、光が射出する開口径に応じた緩和係数である。開口径が150μm以下の場合において最も厳しくC6=1であり、開口径が大きくなるとC6の値は小さくなる。また、tは露光時間を示す。
Figure 0005718121
表1に示す通り、MPEは一般に、単位面積当たりに照射される光の放射エネルギー、すなわち放射露光(単位:J/m)と、露光時間との関係として与えられている。つまりMPEは、光源装置から射出される光の放射エネルギーそれ自体ではなく、その光が人体の表面に、どの程度の放射エネルギーで、どの程度の時間照射されるかによって決定される。本実施形態では、使用状況を考慮して励起光源と人体表面とが最短となる距離を想定し、その最短距離において、放射エネルギーと露光時間とから求まる値がMPE以下となるように、放射エネルギーと露光時間とを設定する。
図4に、露光時間[秒]に対する放射パワー[W]の関係(MPE)を示す。ここで、本装置で用いる光ファイバの直径が例えば50μmであることを考慮して、光源の射出径は150μm以下の条件、すなわちC6=1としている。また、放射露光(単位:J/m)から放射パワー(W)への変換においては、眼の測定開口直径は、7mmであるとし、面積は3.85×10−5[m]としている。また、皮膚の測定開口直径は、3.5mmであるとし、面積は9.62×10−6[m]としている。図4において実線は眼に対するMPEを、破線は皮膚に対するMPEを示す。図4に示すとおり、眼に対するMPEと皮膚に対するMPEとでは、2から4桁程度異なっている。
例えば本実施形態では、確認光は、光検出手段下限放射パワー以上の光パワーである必要がある。そのため、まず使用する受光素子150の検出可能な光パワーの下限に応じて、光検出手段下限放射パワー以上となるように、確認光の光強度は規定される。次に、光検出手段下限放射パワー以上の光量を有する光について、人体表面での放射露光がMPE以下となるように、露光時間が設定される。
本実施形態では、許容される露光量が小さい眼に対するMPEを用いている。励起光源110から放射された確認光の全てが眼に入ったとしてもMPEを超えないように、励起光源110から放射される確認光の光量が設定されている。このような条件を満たす値としては、例えば図4において、眼に対するMPEを示す実線よりも下の範囲に相当する放射パワーと露光時間との組み合わせである。例えば、光パワーが1mWの場合、おおよそ0.1秒以下の露光時間であればMPE以下となることが分かる。
図3に示すフローチャートに戻って説明を続ける。ステップS2において制御部170は、異常確認処理を実行する。制御部170は、受光素子150が受光した光に基づいて、光源装置100に異常があるか否かを確認する。この異常確認処理では、異常の有無の判断の基準として、蛍光の光量、蛍光に混入している蛍光体132により反射・散乱された励起光の光量、及び蛍光と励起光の強度比等を用いることができる。
例えば、励起光と蛍光との光量比の許容範囲を予め記憶しておき、検出された励起光と蛍光との光量比が許容範囲内であれば、光源装置100に異常がないと制御部170は判断する。あるいは制御部170は、前回の異常確認処理によって検出された励起光と蛍光との光量比と、今回の異常確認処理によって検出された光量比とを比較し、その変化量が許容値以下であれば、光源装置100に異常がないと判断する。
また、受光素子150が受光する蛍光の光量が許容下限値より小さい場合やほとんど検出されないような場合には、第1の光ファイバ120又は第2の光ファイバ140が折れていたり、蛍光体132が脱離していたりする可能性がある。そこで、受光素子150が受光する蛍光の光量が許容値より小さい場合には、光源装置100に異常があると制御部170は判断する。また、受光素子150が受光した励起光の光量が許容上限値より大きい場合や、受光素子150が受光する励起光と蛍光との光量比が許容範囲を超える場合には、様々な故障の恐れがある。そこでこのような場合、光源装置100に異常があると制御部170は判断する。さらに、励起光も蛍光も検出されない場合、受光素子150に異常がある恐れがある。そこでこのような場合、光源装置100に異常があると制御部170は判断する。
また、励起光源110の異常については、励起光源110の電流−電圧特性を確認する公知の方法や、モニタ用のフォトダイオードを励起光源110に併設する公知の方法で検出することが可能である。そこで、電流−電圧特性を確認する方法やモニタ用のフォトダイオードを併設する方法も併用して、光源装置100の異常を検出することもできる。
ステップS3において制御部170は、ステップS2において異常が検出されたか否かを判定する。光源装置100に異常があると判定されたら、処理をステップS4に移す。
ステップS4において制御部170は、出力部180を用いて、ユーザに異常がある旨を警告する。ここで、出力部180を例えばスピーカとし、警報音を発するようにして警告してもよい。また、出力部180を例えばディスプレイとし、警告する文字や画像を表示するようにして警告してもよい。制御部170は、警告を発した後、励起光源110から励起光を射出することの停止を含めて、光源装置100の動作を停止させる。警告を発することなく光源装置100の動作を停止させてもよいし、停止させずに警告を発し続けるように構成してもよい。
一方、ステップS3において光源装置100に異常がないと判定されたら、制御部170は、処理をステップS5に移す。
ステップS5において制御部170は、使用時発光処理を実行する。使用時発光処理では、励起光源110から、前記した安全発光処理で出力していた安全な光強度を有する確認光よりも高い光強度を有する励起光を射出させることができる。この励起光の出力レベルは、例えば入力部190から取得したユーザの指示に基づき、波長変換ユニット130から射出される光の強度が、ユーザが所望する光量となるような出力レベルである。
ユーザは、使用時発光処理で出力される照明の下、所望の作業を行う。ユーザによって使用時発光処理が終了させられたら、制御部170は、一連の処理を終了する。
このように、例えばステップS1の安全発光処理は、安全発光ステップとして機能し、例えばステップS2の異常確認処理とステップS3の判定は、異常確認ステップとして機能する。
本実施形態によれば、ユーザが意識しないうちに、光源装置100の光漏れに関する安全確認が実施される。そしてこの安全確認は、MPEに基づいて、安全とされる光量を有する安全光を用いて行われる。光源装置100に異常があることが検出されたら、光源装置100は停止する。したがって、仮に光源装置100に異常があっても、漏出する光は、安全光よりも弱い光量を有する光であり、危険を有する光は漏出しない。安全が確認されれば、ユーザが所望する強い光を射出する光源装置100として通常に機能する。このようにして本実施形態によれば、人体に害を及ぼす恐れのある光が漏出しない光源装置100を提供できる。
なお、本実施形態では、安全光の光強度の基準として、眼に対するMPEを用いたが、基準はMPEに限らない。例えば、JIS C 6802(2005)に規定されている、被ばく放出限界(AEL)を用いることができる。MPEが人体に対する最大許容露光量であるのに対し、AELは、MPEをベースとして、光源装置から放射される光量の許容限界として定義されている。AELは、光源の使用環境や保護具の有無などにより、クラス1、クラス1M、クラス2、クラス2M、等と定義されている。例えば、クラス1であれば、ビームを直接観察しても被害を受けず、クラス2Mであれば、光学機器を用いて直接ビームを覗き込まなければ被害を受けない等のように定義されている。
本実施形態では、例えばこのAELを、安全光の光強度の基準として用いることができる。AELを基準として用いることで、安全な光量の定義をJIS規格に求めることが可能となる。その結果、例えば装置の管理や使用において、他の光源装置と同様に取扱うことができ、利便性が高まる。
[第1の実施形態の第1の変形例]
第1の実施形態の第1の変形例を説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付して説明を省略する。本変形例では、所定の時間間隔毎に、ステップS1の安全発光処理と、ステップS2の異常確認処理と、ステップS3の判定とからなる状態確認処理を実行する。本変形例に係る処理のフローチャートを図5に示す。本変形例では、ステップS1乃至ステップS4の処理は、第1の実施形態と同様であり、第1の実施形態に係るステップS5が、ステップS11乃至ステップS14に置換されている。
ステップS1において制御部170は、安全発光処理を実行し、受光素子150が検出可能な十分な光量であって、かつ、人体に対し十分安全なレベルである確認光を、励起光源110から射出させる。
ステップS2において制御部170は、異常確認処理を実行し、受光素子150が受光した光の強度に基づいて光源装置100に異常があるか否かを確認する。
ステップS3において制御部170は、ステップS2において異常が検出されたか否か判定する。光源装置100に異常があると判定されたら、処理をステップS4に移す。
ステップS4において制御部170は、図示しない警報機や表示装置を介して、光源装置100に異常がある旨をユーザに警告し、光源装置100の動作を停止する。
一方、ステップS3において光源装置100に異常がないと判定されたら、制御部170は、処理をステップS11に移す。
ステップS11において制御部170は、ステップS1乃至ステップS3の状態確認処理を実行するタイミングか否かをカウンタに基づいて判定する。この判定の結果、状態確認処理を実行するタイミングであれば、制御部170は、カウンタをリセットして処理をステップS1に戻す。一方、状態確認処理を実行するタイミングでなければ、処理をステップS12に進める。
ステップS12において制御部170は、第1の実施形態のステップS5と同様の使用時発光処理を実行する。
ステップS13において制御部170は、カウンタを進める。
ステップS14において制御部170は、ユーザから処理を終了させる指示が入力されているか否かを判定する。処理を終了させる指示が入力されていれば、制御部170は、処理を終了する。一方、処理を終了させる指示が入力されていなければ、処理をステップS11に戻す。
本変形例のように処理を実行することで、ステップS13でカウントアップされるカウンタが所定の値になると、ステップS11の判定で、処理がステップS1に戻る。したがって、所定の時間間隔毎にステップS1乃至ステップS3の状態確認処理を実施し、光源装置100の異常の有無を確認することができる。その結果、使用時発光処理による光源装置100の使用中にあっても、光源装置100に異常が発生した時には、即時にステップS4に移り、警告を発し、動作を終了することができる。以上によって、光源装置100について、第1の実施形態よりもさらに高い安全性が確保できる。
[第1の実施形態の第2の変形例]
第1の実施形態の第2の変形例を説明する。ここでは、第1の変形例との相違点について説明し、同一の部分については、同一の符号を付して説明を省略する。本変形例では、光源装置100に異常が検出された場合、ユーザからの指示があるまで、安全発光処理を実行する。本変形例に係る処理のフローチャートを図6に示す。本変形例では、ステップS1乃至ステップS3の処理、及びステップS11乃至ステップS14の処理は、第1の変形例と同様であり、第1の変形例に係るステップS4が、ステップS21乃至ステップS24に置換されている。
ステップS1において制御部170は、安全発光処理を実行し、受光素子150が検出可能な十分な光量であって、かつ、人体に対し十分安全なレベルである確認光を、励起光源110から射出させる。
ステップS2において制御部170は、異常確認処理を実行し、受光素子150が受光した蛍光に基づいて光源装置100に異常があるか否かを確認する。
ステップS3において制御部170は、ステップS2において異常が検出されたか否か判定する。光源装置100に異常がないと判定されたら、処理をステップS11に移す。
ステップS11において制御部170は、状態確認処理を実行するタイミングか否かをカウンタに基づいて判定する。この判定の結果、状態確認処理を実行するタイミングであれば、制御部170は、カウンタをリセットして処理をステップS1に戻す。一方、状態確認処理を実行するタイミングでなければ、処理をステップS12に進める。
ステップS12において制御部170は、第1の実施形態のステップS5と同様に、使用時発光処理を実行する。
ステップS13において制御部170は、カウンタを進める。
ステップS14において制御部170は、ユーザから処理を終了させる指示が入力されているか否かを判定する。処理を終了させる指示が入力されていれば、制御部170は、処理を終了する。一方、処理を終了させる指示が入力されていなければ、処理をステップS11に戻す。
一方、ステップS3において光源装置100に異常があると判定されたら、制御部170は、処理をステップS21に移す。
ステップS21において制御部170は、第1の実施形態のステップS4と同様に、異常がある旨の警告を発する。
ステップS22において制御部170は、ステップS1と同様の安全発光処理を実行する。すなわち、励起光源110から安全な強度の励起光を射出させる。
ステップS23において、ユーザから停止の指示が入力されたか否かを判定する。この判定において、停止の指示が入力されていなければ、処理をステップS22に戻す。一方、停止の指示が入力されていれば、第1の実施形態のステップS4と同様に、警告を発して、光源装置100の動作を終了させる。
ステップS12の使用時発光処理が実施されている間において、光源装置100の波長変換ユニット130が位置する部分は、暗部に挿入されている可能性がある。また、波長変換ユニット130による照明下でユーザが所望の作業を行うため、任意のツールが波長変換ユニット130周辺に配置されている可能性がある。このため、異常が検出された際に即時に完全に消灯してしまうと、波長変換ユニット130が位置する部分や前記のツールを撤収する作業等に支障をきたす恐れがある。これに対して本変形例では、光源装置100に異常が発見された場合に、安全なレベルの励起光である安全光を継続して発光させる安全発光処理を実施する。安全発光処理を実施することで光量の不足はあるかもしれないが、波長変換ユニット130が位置する部分の照明を維持することができる。以上のように、本変形例によれば、光源装置100に異常があることが検出されても波長変換ユニット130が位置する部分等の撤収作業を援助することができる。
[第1の実施形態の第3の変形例]
第1の実施形態の第3の変形例を説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付して説明を省略する。第1の実施形態では、励起光源110から放射される励起光が十分に安全な光量となるように設定されている。これに対して、本変形例では、第1の光ファイバ120の射出端から放射される光量を、安全なレベル、すなわち例えばMPE以下であるように設定する。
励起光源110から射出された励起光は、レンズ112により第1の光ファイバ120の入射端に集光され、第1の光ファイバ120に入射する。このとき、励起光源110から射出された励起光が第1の光ファイバ120に入射する入射率は100%ではない。このため、励起光源110から放射される光量と比べ、第1の光ファイバ120から射出端から放射される光量は小さい。
第1の光ファイバ120から放射される確認光の強度をMPE以下としたときに、励起光源110から射出される光量がMPE以上となる可能性はある。しかしながら、一般に励起光源110と第1の光ファイバ120との接続部は、図示しない筐体により覆われて保護されている。このため、励起光源110から放出された確認光の全てが外部に照射される恐れはほとんど無い。したがって、第1の光ファイバ120から放射される確認光の強度をMPE以下としたときに、励起光源110から射出される光量がMPE以上となることはあっても、MPE以上の強度を有する確認光が励起光源110の部分から漏出する恐れはほとんど無い。
一方、第1の光ファイバ120から放射される確認光の強度がMPE以下となるように光強度を設定すれば、励起光源110から射出される励起光の強度がMPE以下となるように光強度を設定するよりも、光強度を高くすることができる。その結果、受光素子150が受光する信号光の光量を増大させることができる。受光素子150が受光する光量が増大することで、受光素子150の検出の精度が上昇し、制御部170は、より正確に光源装置100の異常を検出することが可能になる。
本変形例によれば、第1の実施形態の効果に加え、第1の実施形態よりも高い精度で、異常を検出することが可能となる。
なお、本変形例では、光ファイバの長さが数m〜数十m以内であることを想定している。このような場合、励起光源110から射出された励起光が第1の光ファイバ120へ入射する際の入射損失と比較して、第1の光ファイバ120内の導光に伴う導光損失は、十分に小さいことが想定される。このため、本変形例では、第1の光ファイバ120の射出端から放射される光量がMPE以下であり安全となるように励起光源110の射出光量を設定している。すなわち、第1の光ファイバ120が途中で折れて、その部分から確認光が外部に漏れ出た場合でも、その光量は、MPE以下であり安全であると言える。
これに対して、第1の光ファイバ120の長さが極端に長い場合や、第1の光ファイバ120の導光ロスが大きい場合は、第1の光ファイバ120の途中で折れて、折れた箇所から確認光が漏出した場合の安全を考慮して、励起光源110の射出光量を、適宜設定すればよい。例えば、第1の光ファイバ120の導光ロスと、使用状況に応じた第1の光ファイバ120が折れる可能性がある位置との関係に基づいて、励起光源110から射出される確認光の強度を、励起光源110における強度がMPEとなる値と、第1の光ファイバ120の射出端における強度がMPEとなる値との間の値に設定することができる。
[第2の実施形態]
次に、本発明の第2の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。第1の実施形態において光源装置100は、蛍光体132の後方に第2の光ファイバ140が配置され、第2の光ファイバ140に入射し導かれた光を受光素子150が検出する構成を有している。これに対して本実施形態では、光源装置100は、波長変換ユニット130の前方から照明対象物900の方向に射出され、照明対象物900で反射、散乱された励起光及び蛍光を、受光素子が検出する構成を有している。
本実施形態に係る光源装置100の構成例を図7に示す。図7に示す様に、本実施形態に係る光源装置100では、第1の実施形態の場合には備わっている第2の光ファイバ140と受光素子150が、備えられていない。一方で、波長変換ユニット130に近接して、受光素子152が配置されている。受光素子152は、励起光と蛍光とを独立に検出可能に構成されており、第1の実施形態の受光素子150と同様のものである。この受光素子152は、制御部170に電気的に接続されている。それ以外の構成は、第1の実施形態に係る構成と同様である。
本実施形態に係る光源装置100の動作を説明する。本実施形態に係る処理のフローチャートを図8に示す。本実施形態のステップS31、ステップS32、ステップS33、ステップS34、及びステップS35は、それぞれ第1の実施形態に係るステップS1、ステップS2、ステップS3、ステップS4、及びステップS5に相当する。本実施形態では、ステップS33における判定で、光源装置100に異常があると判断されたとき、ステップS34において警告を発した後にステップS31に戻る点が、第1の実施形態と異なる。
すなわち、ステップS31において制御部170は、安全発光処理を実行し、受光素子152が検出可能な十分な光量であって、かつ、人体に対し十分に安全なレベルである確認光を、励起光源110から射出させる。
ステップS32において制御部170は、異常確認処理を実行し、受光素子152が受光した蛍光に基づいて光源装置100に異常があるか否かを確認する。
ステップS33において制御部170は、ステップS32において異常が検出されたか否かを判定する。光源装置100に異常があると判定されたら、処理をステップS34に移す。
ステップS34において制御部170は、出力部180を介して、ユーザに異常がある可能性を報知する。その後、制御部170は、処理をステップS31に戻す。
一方、ステップS33において光源装置100に異常がないと判定されたら、制御部170は、処理をステップS35に移す。
ステップS35において制御部170は、使用時発光処理を実行する。
本実施形態では、照明対象物900により反射された照明光を、受光素子152が検出するように構成されている。したがって、受光素子152が検出する光の強度は、波長変換ユニット130から射出される光強度が同じであっても、照明対象物900によって異なる。このため、本実施形態では、白色板等、標準的な反射サンプルに安全光を照射して、ステップS31乃至ステップS33の状態確認処理を行うことが標準的な段取りとなる。しかしながら、電源が投入された瞬間から標準的な反射サンプルに対して安全光が照射されているとは限らない。
そこで、本実施形態では、ステップS31乃至ステップS33の状態確認処理において、光源装置100に異常がある場合と同様の所定の範囲よりも弱い光が検出されていても、すなわち異常ありと判断されても、直ちに光源装置100を停止せず、ステップS34で異常がある可能性が検出された旨を警告し、安全発光処理を継続する。その後、標準的な反射サンプルに対して安全光が照射され、異常確認処理において、異常がないことが確認された場合、ステップS35の使用時発光処理へ移行する。
本実施形態によれば、受光素子を有さない既存の光源装置に、受光素子152を例えば波長変換ユニット130といった発光部の近傍に配置し、制御部170に接続するだけで、上記の構成を実現することができる。このとき、受光素子152は、第1の光ファイバ120及び波長変換ユニット130等と一体として構成しても構わないし、分離可能な構成としても構わない。さらに、本実施形態によれば、標準的な反射サンプルを用いる事で、光源装置100の異常をより正確に把握することが可能となる。
なお、本実施形態に係る光源装置100の動作方法は、図5を参照して説明したように、定期的に状態確認処理を繰り返すような構成としてもよいし、図6を参照して説明したように、異常が検知された際に安全発光処理を行うような構成としてもよい。
[第3の実施形態]
次に、本発明の第3の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明は省略する。本実施形態に係る波長変換ユニット130の部分の構成を図9に示す。本実施形態では、受光素子154は、図9に示すように、波長変換ユニット130の蛍光体132と面する位置に設けられている。そして受光素子154は、電気的に制御部170に接続されている。その他の構成は、第1の実施形態と同様である。
この様に構成することで、蛍光体132で発生した蛍光や、蛍光体132により反射・散乱された励起光を受光素子154が直接検出することができる。すなわち、第1の実施形態では、蛍光体132で発光した蛍光や反射・散乱された光のうち、第2の光ファイバ140に入射した蛍光や励起光を測定している。これに対して、本実施形態によれば、受光素子154の有効な受光領域を、第2の光ファイバ140の開口より大きくすることができる。したがって、受光素子154は、より多くの光を受光することが可能になり、光源装置100は、検出精度を向上させることが可能となる。
また、第2の実施形態では、照明対象物900で反射・散乱された光を測定していたため、照明対象物900の色等の影響を受ける。これに対して、本実施形態では、蛍光体132で発光した蛍光や蛍光体132で反射・散乱された励起光を直接検出することが可能である。このため、標準的な反射サンプル等を用いることなく、安定な測定が可能となる。
なお、本実施形態に係る光源装置100の動作方法は、図3、図5又は図6を参照して説明した第1の実施形態及びその変形例の動作と同様である。
[第4の実施形態]
次に、本発明の第4の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明は省略する。本実施形態に係る光源装置100の光学系の構成例を図10に示す。光源装置100の光学系は、励起光源110と、光ファイバ122、分岐光学素子124と、波長変換ユニット130と、受光素子150とを備える。
励起光源110が射出された励起光は、レンズ112及び分岐光学素子124を通り、光ファイバ122に入射し、光ファイバ122によって波長変換ユニット130に導かれる。光ファイバ122によって導かれた励起光は、波長変換ユニット130に備えられた蛍光体132に照射される。蛍光体132は、その励起光を吸収し、蛍光を発生する。
光ファイバ122は、蛍光体132が発生した蛍光の一部、及び蛍光体132で反射・散乱された励起光の一部を、光を波長変換ユニット130から分岐光学素子124に導く。これらの光は、分岐光学素子124によって、受光素子150に導かれる。受光素子150は、導かれた光を検知し、その光強度に応じて信号を出力する。ここで、受光素子150は、励起光と蛍光とを独立に検出可能に構成されている。その他の構成は、第1の実施形態の場合と同様である。
このように、第1の実施形態では、蛍光体132まで励起光を導光するための第1の光ファイバ120と、蛍光体132で発生した蛍光等を受光素子150まで導光する第2の光ファイバ140とを有しているのに対して、本実施形態では、第1の光ファイバ120と第2の光ファイバ140との機能を光ファイバ122が兼ねる。
本実施形態によれば、第1の実施形態の効果に加えて、以下の効果が得られる。第1の実施形態における第1の光ファイバ120と第2の光ファイバ140とを、本実施形態では1本の光ファイバ122にまとめている。このため本実施形態によれば、より細い光源を実現することが可能となる。また、第1の実施形態、第2の実施形態、又は第3の実施形態と比較して、波長変換ユニット130近傍の構成を単純化することができる。したがって、本実施形態によれば光源装置100全体を小型化しやすい。
なお、本実施形態に係る光源装置100の動作方法は、図3、図5又は図6を参照して説明した第1の実施形態及びその変形例の動作と同様である。
なお、上述した本発明の全ての実施形態において、励起光源と波長変換ユニットとを組み合わせた光源システムに関する例を示したが、これに限らない。1次光源と、1次光源から放射される1次光の、ピーク波長、放射角、スペクトル形状、光量等の光学的性質の少なくとも一部を変換し、2次光として放射する光変換ユニットを組み合わせた光源装置であれば、本発明の効果を得ることが可能である。この場合、光源装置100は、例えば波長変換ユニット130の代わりに又は波長変換ユニット130に加えて、1次光のピーク波長、放射角、スペクトル形状、光量等を変換する部材を有し2次光を放射する光変換ユニットを備える。その他の構成や動作等は上述の実施形態と同様である。すなわち、光源装置から放射される2次光の安全レベルが、1次光がそのまま放射された場合の安全レベルと比較して向上するような光源装置であれば、どのような光源装置にも上述の実施形態を適用することができる。例えば、1次光であるレーザ光の放射角を広げ、光源使用者の眼に入射するレーザ光の光密度を減少させて安全性を向上させるような光源装置や、例えばNDフィルタや偏光板が光路に挿入されており光量が変更される光源装置においても、上述の実施形態と同様に構成し同様に動作させることで、同様の効果を得ることができ、好適である。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても、発明が解決しようとする課題の欄で述べられた課題が解決でき、かつ、発明の効果が得られる場合には、この構成要素が削除された構成も発明として抽出され得る。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
100…光源装置、110…励起光源、112…レンズ、120…第1の光ファイバ、122…光ファイバ、124…分岐光学素子、130…波長変換ユニット、132…蛍光体、134…保持部材、135…貫通孔、136…フェルール、140…第2の光ファイバ、150,152,154…受光素子、160…駆動部、170…制御部、180…出力部、190…入力部、900…照明対象物。

Claims (14)

  1. 1次光源と、前記1次光源から射出した1次光を導光する光ファイバと、前記1次光源から射出して前記光ファイバにより導光された1次光を受光し、該1次光の光学的性質に含まれるピーク波長、スペクトル形状、放射角、及び光量のうち少なくともひとつを変換する光変換ユニットと、前記光変換ユニットから放射される光を検出する光検出手段と、を有する光源装置の駆動方法において、
    前記光変換ユニットから放射された光を検出した前記光検出手段の出力信号に基づいて前記光源装置の状態を確認するに足る十分な、かつ、漏出しても人体に対して安全な、光強度を有する確認光を前記1次光源に発光させる安全発光ステップと、
    前記確認光に基づいて前記光変換ユニットから放射され前記光検出手段に入射する光を検出した該光検出手段の前記出力信号に基づいて前記光源装置の状態を確認する異常確認ステップと、
    を有し、
    前記異常確認ステップにおいて前記光源装置に異常があると判断されたときは、前記1次光源に前記確認光を発光させる
    ことを特徴とする光源装置の駆動方法。
  2. 前記光源装置の状態を確認するに足る十分な前記確認光の前記光強度は、前記光検出手段に入射する光のパワーが、該光検出手段により検出可能なパワーの下限値以上となる強度である、ことを特徴とする請求項1に記載の光源装置の駆動方法。
  3. 前記漏出しても人体に対して安全な前記確認光の前記光強度は、前記1次光源から射出された前記確認光の前記光ファイバから前記光変換ユニットへ向けて射出される部分での放射エネルギーが、人体に直接照射されても人体に影響を及ぼさない目安とされる光のエネルギー量である最大許容露光量以下となる強度である、ことを特徴とする請求項1又は2に記載の光源装置の駆動方法。
  4. 前記漏出しても人体に対して安全な前記確認光の前記光強度は、前記1次光源から射出される前記確認光の放射エネルギーが、前記最大許容露光量以下となる強度である、ことを特徴とする請求項3に記載の光源装置の駆動方法。
  5. 前記確認光は、
    前記光検出手段に入射する光のパワーが、該光検出手段により検出可能な光パワーの下限値以上となるように放射パワーが決定され、
    前記放射パワーによる前記放射エネルギーが、前記最大許容露光量以下となるように放射時間が決定される、
    ことを特徴とする請求項3又は4に記載の光源装置の駆動方法。
  6. 前記最大許容露光量は、眼に対して設定された値であることを特徴とする請求項5に記載の光源装置の駆動方法。
  7. 前記確認光は、JIS C 6802(2005)に記載のクラス1、1M、2、2Mの何れかを満足する放射エネルギーを有することを特徴とする請求項5に記載の光源装置の駆動方法。
  8. 前記異常確認ステップは、前記光源装置の電源投入時に行われることを特徴とする請求項1乃至7のうち何れか1項に記載の光源装置の駆動方法。
  9. 使用時発光ステップをさらに有し、
    前記使用時発光ステップは、
    前記異常確認ステップにおいて前記光源装置に異常がないと判断されたときに実施され、
    前記確認光よりも高い光強度を有する前記1次光を前記1次光源に発光させる、
    ことを特徴とする請求項1乃至7のうち何れか1項に記載の光源装置の駆動方法。
  10. 前記異常確認ステップにおいて前記光源装置に異常がないと判断されたときは、続いて前記使用時発光ステップを実施することを特徴とする請求項9に記載の光源装置の駆動方法。
  11. 前記異常確認ステップにおいて前記光源装置に異常があると判断されたときは、異常がある旨をユーザに報知することを特徴とする請求項1乃至7のうち何れか1項に記載の光源装置の駆動方法。
  12. 前記使用時発光ステップの実施中に所定の時間間隔で、前記安全発光ステップ及び前記異常確認ステップの実施が挿入され、
    前記挿入された前記異常確認ステップにおいて前記光源装置に異常があると判断されたときは、前記1次光源に前記確認光を発光させる、
    ことを特徴とする請求項9又は10に記載の光源装置の駆動方法。
  13. 1次光源と、
    前記1次光源から射出した1次光を導光する光ファイバと、
    前記1次光源から射出して前記光ファイバにより導光された1次光を受光し、該1次光の光学的性質に含まれるピーク波長、スペクトル形状、放射角、及び光量のうち少なくともひとつを変換する光変換ユニットと、
    前記光変換ユニットから放射される光を検出する光検出手段と、
    を有する光源装置において、前記光源装置はさらに、
    前記光変換ユニットから放射された光を検出した前記光検出手段の出力信号に基づいて前記光源装置の状態を確認するに足る十分な、かつ、漏出しても人体に対して安全な、光強度を有する確認光を前記1次光源に発光させる安全発光手段と、
    前記確認光に基づいて前記光変換ユニットから放射され前記光検出手段に入射する光を検出した該光検出手段の前記出力信号に基づいて前記光源装置の状態を確認する異常確認手段と、
    を含む制御部を有し、
    前記制御部は、前記異常確認手段において前記光源装置に異常があると判断されたときは、前記1次光源に前記確認光を発光させる
    ことを特徴とする光源装置。
  14. 前記制御部は、さらに前記異常確認手段において前記光源装置に異常がないと判断されたときには、前記確認光よりも高い光強度を有する前記1次光を前記1次光源に発光させる使用時発光手段を有することを特徴とする請求項13の光源装置。
JP2011073037A 2011-03-29 2011-03-29 光源装置の駆動方法及び光源装置 Active JP5718121B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011073037A JP5718121B2 (ja) 2011-03-29 2011-03-29 光源装置の駆動方法及び光源装置
PCT/JP2012/057966 WO2012133430A1 (ja) 2011-03-29 2012-03-27 光源装置の駆動方法
US14/027,292 US8939628B2 (en) 2011-03-29 2013-09-16 Driving method of light source apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073037A JP5718121B2 (ja) 2011-03-29 2011-03-29 光源装置の駆動方法及び光源装置

Publications (2)

Publication Number Publication Date
JP2012208258A JP2012208258A (ja) 2012-10-25
JP5718121B2 true JP5718121B2 (ja) 2015-05-13

Family

ID=46931145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073037A Active JP5718121B2 (ja) 2011-03-29 2011-03-29 光源装置の駆動方法及び光源装置

Country Status (3)

Country Link
US (1) US8939628B2 (ja)
JP (1) JP5718121B2 (ja)
WO (1) WO2012133430A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211259B2 (ja) * 2012-11-02 2017-10-11 株式会社アマダミヤチ レーザ電源装置
JP2015146396A (ja) * 2014-02-03 2015-08-13 スタンレー電気株式会社 発光装置、車両用灯具、及び、車両用照明装置
JPWO2017104048A1 (ja) 2015-12-17 2018-11-01 オリンパス株式会社 内視鏡用照明装置及び内視鏡システム
EP3449176B1 (en) * 2016-04-27 2020-10-14 Lumileds Holding B.V. Laser-based light source
JP6800221B2 (ja) 2016-05-13 2020-12-16 ヌヴォトンテクノロジージャパン株式会社 光源装置及び照明装置
JP7122628B2 (ja) * 2018-09-28 2022-08-22 パナソニックIpマネジメント株式会社 照明点灯装置、照明装置、及び照明器具
JP7281649B2 (ja) 2019-08-29 2023-05-26 パナソニックIpマネジメント株式会社 照明装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118027A (ja) * 1989-10-02 1991-05-20 Olympus Optical Co Ltd 内視鏡装置
JP2002048948A (ja) * 2000-08-04 2002-02-15 Sharp Corp 光通信モジュール
JP2006017885A (ja) * 2004-06-30 2006-01-19 Fuji Xerox Co Ltd 導波路フィルム型光モジュール、光導波路フィルム及びその製造方法
JP5103874B2 (ja) 2006-11-15 2012-12-19 日亜化学工業株式会社 発光装置
JP5273949B2 (ja) * 2007-06-05 2013-08-28 オリンパス株式会社 照明装置及び内視鏡装置
JP2009039438A (ja) * 2007-08-10 2009-02-26 Olympus Corp 光ファイバ照明装置
JP5173081B2 (ja) * 2010-04-12 2013-03-27 三菱電機株式会社 光増幅器

Also Published As

Publication number Publication date
US8939628B2 (en) 2015-01-27
US20140015413A1 (en) 2014-01-16
WO2012133430A1 (ja) 2012-10-04
JP2012208258A (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5718121B2 (ja) 光源装置の駆動方法及び光源装置
WO2012118095A1 (ja) 光源モジュール及び光源システム
CN108736297B (zh) 光功率监视装置和激光装置
EP3689530B1 (en) Industrial high power fiber laser system with optical monitoring assembly
CN102062952B (zh) 带有光束监控器的光学投影仪
US10658809B2 (en) Optical power monitoring device, laser device, and laser system
US20090154512A1 (en) Method And Device For Monitoring Light
KR101756490B1 (ko) 광섬유 측정 장치
CN109073169B (zh) 基于激光的光源
KR20140116774A (ko) 고체 조명장치
JP2013197033A (ja) 固体照明装置
US4716288A (en) Security device for detecting defects in transmitting fiber
CN112689482B (zh) 光探针、医疗用激光探针以及烧灼装置
EP0867151A2 (en) Medical laser irradiation apparatus
GB2458304A (en) Process Monitoring
KR102109948B1 (ko) 변위 계측 장치
JP2008212348A (ja) 内視鏡装置
EP3812719B1 (en) Photodetection device and laser device
CN103125145B (zh) 照明***及照明方法
JP2015210890A (ja) 光源装置および車両
WO2011125746A1 (ja) 光モジュールおよび光検出方法
CN202939129U (zh) 激光物证检验仪
CN112352358A (zh) 激光装置和使用了该激光装置的激光加工装置
JP2023021110A (ja) レーザ装置
JP4910318B2 (ja) レーザ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R151 Written notification of patent or utility model registration

Ref document number: 5718121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250