JP5679939B2 - Method for removing catalytic metal - Google Patents

Method for removing catalytic metal Download PDF

Info

Publication number
JP5679939B2
JP5679939B2 JP2011211702A JP2011211702A JP5679939B2 JP 5679939 B2 JP5679939 B2 JP 5679939B2 JP 2011211702 A JP2011211702 A JP 2011211702A JP 2011211702 A JP2011211702 A JP 2011211702A JP 5679939 B2 JP5679939 B2 JP 5679939B2
Authority
JP
Japan
Prior art keywords
metal
temperature
catalyst metal
substrate
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011211702A
Other languages
Japanese (ja)
Other versions
JP2013071863A (en
Inventor
和志 平岡
和志 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2011211702A priority Critical patent/JP5679939B2/en
Publication of JP2013071863A publication Critical patent/JP2013071863A/en
Application granted granted Critical
Publication of JP5679939B2 publication Critical patent/JP5679939B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、触媒金属の除去方法に関するものである。   The present invention relates to a method for removing a catalytic metal.

カーボンナノチューブの形成方法としては、CVD法、すなわち、基板に鉄触媒などの触媒金属を塗布した上で原料ガスを供給し、当該触媒金属上にカーボンナノチューブを成長させていく方法などがある。CVD法によると、形成されるカーボンナノチューブを垂直配向にすることができるので、広範囲に整列したナノ構造を構築できるという利点がある。垂直配向のカーボンナノチューブは、その用途によっては性能や寿命を低下させる触媒金属が残存しているので、触媒金属を除去することにより、さらに性能や寿命を向上させる余地がある。   As a method for forming carbon nanotubes, there is a CVD method, that is, a method in which a catalyst metal such as an iron catalyst is applied to a substrate, a raw material gas is supplied, and carbon nanotubes are grown on the catalyst metal. According to the CVD method, since the formed carbon nanotubes can be vertically aligned, there is an advantage that nanostructures arranged in a wide range can be constructed. Vertically-aligned carbon nanotubes still have catalyst metal that lowers performance and life depending on the application. Therefore, there is room for further improvement in performance and life by removing the catalyst metal.

触媒金属の除去方法としては、触媒金属を硝酸など酸溶液に溶かすことが考えられるが、この除去方法だと、カーボンナノチューブの垂直配向を崩すだけでなく、カーボンナノチューブに損傷を与えて格子欠陥を生じさせることになる。このため、酸溶液を用いずに、カーボンナノチューブを加熱することで、残存する触媒金属を蒸発させて除去する方法が開示されている(例えば、特許文献1参照)。   As a method for removing the catalyst metal, it is conceivable to dissolve the catalyst metal in an acid solution such as nitric acid. However, this removal method not only destroys the vertical orientation of the carbon nanotubes, but also damages the carbon nanotubes to cause lattice defects. Will be generated. For this reason, a method of evaporating and removing the remaining catalytic metal by heating carbon nanotubes without using an acid solution has been disclosed (for example, see Patent Document 1).

特開2005−306681号公報JP 2005-306681 A

しかしながら、上記特許文献1に記載の除去方法では、蒸発した触媒金属がカーボンナノチューブに再付着するという問題が考えられる。蒸発した触媒金属がカーボンナノチューブに再付着するのであれば、当然ながら、カーボンナノチューブから触媒金属を確実に除去することができず、高品質のカーボンナノチューブを得ることができない。   However, the removal method described in Patent Document 1 may have a problem that the evaporated catalyst metal reattaches to the carbon nanotubes. If the evaporated catalyst metal is reattached to the carbon nanotube, naturally, the catalyst metal cannot be reliably removed from the carbon nanotube, and high quality carbon nanotubes cannot be obtained.

そこで、本発明は、蒸発した触媒金属がカーボンナノチューブに再付着することを防止し、配向を崩すことなくカーボンナノチューブから確実に触媒金属を除去することで、高純度で高品質のカーボンナノチューブを得ることができる触媒金属の除去方法を提供することを目的とする。   Therefore, the present invention prevents the evaporated catalyst metal from reattaching to the carbon nanotubes, and reliably removes the catalyst metal from the carbon nanotubes without breaking the orientation, thereby obtaining high-purity and high-quality carbon nanotubes. It is an object of the present invention to provide a method for removing a catalytic metal.

上記課題を解決するため、本発明の請求項1に係る触媒金属の除去方法は、基板に触媒金属を介して形成させたカーボンナノチューブから、ナノ粒子である当該触媒金属を除去する触媒金属の除去方法であって、
上記基板の近傍に配置された上記触媒金属と同種の金属からなる金属材を、当該金属材の溶解温度未満である蒸着用温度で加熱し、
所定の真空度において、上記基板を上記触媒金属の蒸発温度以上である蒸発用温度で加熱することにより、当該触媒金属を蒸発させて上記金属材に蒸着させ
上記蒸着用温度が、上記蒸発用温度よりも0〜100℃低い温度であるものである。
In order to solve the above-mentioned problem, a method for removing a catalytic metal according to claim 1 of the present invention is a method for removing a catalytic metal that removes the catalytic metal as a nanoparticle from a carbon nanotube formed on a substrate via the catalytic metal. A method,
Heating a metal material made of the same kind of metal as the catalyst metal disposed in the vicinity of the substrate at a deposition temperature that is lower than the melting temperature of the metal material,
By heating the substrate at an evaporation temperature equal to or higher than the evaporation temperature of the catalyst metal at a predetermined degree of vacuum, the catalyst metal is evaporated and deposited on the metal material ,
The deposition temperature is 0 to 100 ° C. lower temperature der shall than the evaporating temperature.

また、本発明の請求項2に係る触媒金属の除去方法は、請求項1に記載の触媒金属の除去方法において、金属材が、蒸発した触媒金属を蒸着させ得る蒸着面を有し、
上記蒸着面が、鏡面加工されているものである。
Moreover, the method for removing a catalytic metal according to claim 2 of the present invention is the method for removing a catalytic metal according to claim 1, wherein the metal material has an evaporation surface on which evaporated catalyst metal can be evaporated,
The vapor deposition surface is mirror-finished.

さらに、本発明の請求項3に係る触媒金属の除去方法は、請求項2に記載の触媒金属の除去方法において、金属材の蒸着面と、基板のカーボンナノチューブが形成された面とが略平行であるものである。   Furthermore, the catalyst metal removal method according to claim 3 of the present invention is the catalyst metal removal method according to claim 2, wherein the vapor deposition surface of the metal material and the surface of the substrate on which the carbon nanotubes are formed are substantially parallel. It is what is.

また、本発明の請求項に係る触媒金属の除去方法は、請求項1乃至のいずれか一項に記載の触媒金属の除去方法において、触媒金属および金属材が、鉄、コバルトまたはニッケルからなるものである。 A catalyst metal removal method according to claim 4 of the present invention is the catalyst metal removal method according to any one of claims 1 to 3 , wherein the catalyst metal and the metal material are iron, cobalt, or nickel. It will be.

また、本発明の請求項に係る触媒金属の除去方法は、請求項1乃至のいずれか一項に記載の触媒金属の除去方法において、所定の真空度が、10−5〜10−2Paであるものである。 The catalyst metal removal method according to claim 5 of the present invention is the catalyst metal removal method according to any one of claims 1 to 4 , wherein the predetermined degree of vacuum is 10 −5 to 10 −2. Pa.

上記触媒金属の除去方法によると、蒸発した触媒金属がカーボンナノチューブに再付着することを防止し、配向を崩すことなくカーボンナノチューブから確実に触媒金属を除去することで、高純度で高品質のカーボンナノチューブを得ることができる。   According to the above catalyst metal removal method, the catalyst metal that has evaporated is prevented from reattaching to the carbon nanotubes, and the catalyst metal is reliably removed from the carbon nanotubes without breaking the orientation. Nanotubes can be obtained.

本発明の実施の形態に係る触媒金属の除去方法において使用する装置の側部断面図である。It is side part sectional drawing of the apparatus used in the removal method of the catalyst metal which concerns on embodiment of this invention. 同装置の変形例を示す図であり、同装置がカーボンナノチューブ製造装置に組み込まれた状態を示す側部断面図である。It is a figure which shows the modification of the apparatus, and is a sectional side view which shows the state with which the apparatus was integrated in the carbon nanotube manufacturing apparatus.

以下、本発明の実施の形態に係る触媒金属の除去方法について、図面に基づき説明する。
本発明の実施の形態に係る触媒金属の除去方法は、基板に形成された垂直配向のカーボンナノチューブから、その垂直配向を維持しつつ、当該カーボンナノチューブに残存する触媒金属を確実に除去することで、高純度で高品質のカーボンナノチューブを得るものである。
Hereinafter, a method for removing a catalytic metal according to an embodiment of the present invention will be described with reference to the drawings.
The method for removing a catalytic metal according to an embodiment of the present invention is to reliably remove the catalytic metal remaining in the carbon nanotube from the vertically aligned carbon nanotube formed on the substrate while maintaining the vertical alignment. , To obtain high-purity and high-quality carbon nanotubes.

まず、上記垂直配向のカーボンナノチューブについて簡単に説明する。
このカーボンナノチューブは、例えば、熱CVD法により形成されるものである。熱CVD法では、基板に金属微粒子である触媒金属を塗布した後に、当該基板を加熱するとともにアセチレンガスなどの原料ガスを当該基板に供給することで、当該触媒金属上に垂直配向のカーボンナノチューブが形成される。このようなカーボンナノチューブには触媒金属が残存しており、当該触媒金属(金属微粒子)は個々の粒径がナノメートルオーダ(1〜100nm)のナノ粒子である。また、上記カーボンナノチューブは、個々のチューブが互いに支え合っているため、触媒金属が除去されても垂直配向を維持し得る。ところで、上記触媒金属には、鉄、コバルトまたはニッケルが用いられる。また、基板Kは、後述するが触媒金属(金属微粒子)の蒸発温度以上に加熱されるので、この加熱に耐え得るシートまたは板材であればよく、例えば、ステンレス鋼板、石英ガラス、カーボンクロスシートなど、またはこれらの複合材が用いられる。
First, the vertically aligned carbon nanotube will be briefly described.
The carbon nanotube is formed by, for example, a thermal CVD method. In the thermal CVD method, after applying catalytic metal, which is metal fine particles, to the substrate, the substrate is heated and a source gas such as acetylene gas is supplied to the substrate, so that vertically aligned carbon nanotubes are formed on the catalytic metal. It is formed. The catalytic metal remains in such carbon nanotubes, and the catalytic metal (metal fine particles) is a nanoparticle having an individual particle size on the order of nanometers (1 to 100 nm). In addition, since the individual tubes of the carbon nanotubes support each other, the carbon nanotube can maintain the vertical orientation even if the catalytic metal is removed. By the way, iron, cobalt, or nickel is used as the catalyst metal. Further, since the substrate K is heated to a temperature higher than the evaporation temperature of the catalytic metal (metal fine particles), which will be described later, it may be any sheet or plate material that can withstand this heating. For example, stainless steel plate, quartz glass, carbon cloth sheet Or a composite of these.

以下、基板に形成されたカーボンナノチューブから、ナノ粒子である触媒金属を除去する装置および方法について説明する。
図1に示すように、触媒金属を除去する装置1は、基板Kを内部に配置するとともに加熱して当該基板Kに形成されたカーボンナノチューブCから触媒金属を蒸発させて除去する除去室2と、この除去室2内の温度を制御する温度制御装置(図示しない)とを有している。上記除去室2は、その両側壁部にそれぞれ形成された基板K交換用の連通口3と、これら連通口3にそれぞれ配置された仕切弁4とを備えている。また、上記除去室2は、その内部に配置される基板Kを載置する水平支持台5と、この水平支持台5の下方に配置されて基板Kを下方から加熱する基板加熱用ヒータ6と、除去室2内の上壁部に設けられて基板Kの上方にバルク材7(金属材の一例である)を配置するバルク材保持具8と、図示しないがバルク材7の近傍に配置されて当該バルク材7を加熱するバルク材加熱用ヒータと、除去室2の内壁面に配置された断熱材9とを備えている。さらに、上記除去室2には、還元ガス(例えばHガスなど)をガス供給管11により除去室2内に供給するガス供給部12と、還元ガスとともに蒸発させた触媒金属を除去室2内からガス排出管21により排出する真空ポンプ22とが設けられている。ここで、上記バルク材7は、上記触媒金属と同種の金属(つまり、鉄、コバルトまたはニッケルである)からなる直方体であり、少なくとも底面が、カーボンナノチューブCから蒸発させた触媒金属を蒸着させ得る蒸着面7Dとして鏡面加工されたものである。このバルク材7は、上面が上記バルク材保持具8で保持されるとともに、蒸着面7Dである底面が基板Kに対して平行に且つ間隔が10〜200mm程度となるようにして、除去室2内に配置される。蒸着面7Dに酸化膜が生成すると、バルク材7に触媒金属が蒸着するのを妨げることになるが、ガス供給管11により除去室2内に還元ガス(例えばHガスなど)を供給することで、蒸着面7Dに酸化膜が生成するのを防ぐようにされている。また、上記真空ポンプ22は、除去室2内の圧力を10−5〜10−2Pa程度にし得る性能を有するものである。なぜなら、除去室2内の圧力が高ければ、蒸発した触媒金属(金属微粒子)は、その原子の平均自由行程が短くなり、バルク材7に到達する効率が低下するからである。ところで、除去室2内は基板加熱用ヒータ6およびバルク材加熱用ヒータにより高温となるため、除去室2内に配置される上記バルク材保持具8、水平支持台5、仕切弁4、ガス供給管11およびガス排出管21は、いずれも耐熱性を有する材料で構成されている。また、バルク材保持具8および仕切弁4は断熱性も必要であり、例えば炭素系材料や耐熱レンガなどで構成されている。
Hereinafter, an apparatus and method for removing the catalytic metal, which is a nanoparticle, from the carbon nanotubes formed on the substrate will be described.
As shown in FIG. 1, the apparatus 1 for removing the catalyst metal includes a removal chamber 2 in which the substrate K is disposed and heated to remove the catalyst metal from the carbon nanotubes C formed on the substrate K by evaporation. And a temperature control device (not shown) for controlling the temperature in the removal chamber 2. The removal chamber 2 includes a communication port 3 for exchanging substrates K formed on both side walls, and gate valves 4 respectively disposed in the communication ports 3. The removal chamber 2 includes a horizontal support 5 for placing the substrate K disposed therein, and a substrate heater 6 disposed below the horizontal support 5 for heating the substrate K from below. A bulk material holder 8 provided on the upper wall portion in the removal chamber 2 and disposing a bulk material 7 (an example of a metal material) above the substrate K; and not shown, but disposed in the vicinity of the bulk material 7. And a bulk material heating heater for heating the bulk material 7 and a heat insulating material 9 disposed on the inner wall surface of the removal chamber 2. Further, in the removal chamber 2, a gas supply unit 12 that supplies a reducing gas (for example, H 2 gas) into the removal chamber 2 through the gas supply pipe 11, and a catalytic metal evaporated together with the reducing gas are contained in the removal chamber 2. And a vacuum pump 22 for discharging the gas through a gas discharge pipe 21. Here, the bulk material 7 is a rectangular parallelepiped made of the same kind of metal as the catalyst metal (that is, iron, cobalt, or nickel), and at least the bottom surface can deposit the catalyst metal evaporated from the carbon nanotube C. The deposition surface 7D is mirror-finished. The bulk material 7 has its upper surface held by the bulk material holder 8 and the bottom surface, which is the vapor deposition surface 7D, is parallel to the substrate K and the interval is about 10 to 200 mm. Placed inside. When an oxide film is generated on the vapor deposition surface 7D, it prevents the catalytic metal from being vapor deposited on the bulk material 7, but a reducing gas (for example, H 2 gas) is supplied into the removal chamber 2 through the gas supply pipe 11. Thus, an oxide film is prevented from being formed on the vapor deposition surface 7D. Moreover, the said vacuum pump 22 has the performance which can make the pressure in the removal chamber 2 into about 10 < -5 > -10 <-2 > Pa. This is because, if the pressure in the removal chamber 2 is high, the evaporated catalyst metal (metal fine particles) has a shorter mean free path of its atoms and the efficiency of reaching the bulk material 7 is reduced. The removal chamber 2 is heated to a high temperature by the substrate heating heater 6 and the bulk material heating heater. Therefore, the bulk material holder 8, the horizontal support base 5, the gate valve 4, and the gas supply disposed in the removal chamber 2. Both the pipe 11 and the gas discharge pipe 21 are made of a material having heat resistance. Moreover, the bulk material holder 8 and the gate valve 4 also need to have heat insulation properties, and are made of, for example, a carbon-based material or a heat-resistant brick.

上記温度制御装置は、図示しないが、バルク材加熱用ヒータによる加熱温度を制御するバルク材温度制御部と、基板加熱用ヒータ6による加熱温度を制御する基板温度制御部とを備えている。上記バルク材温度制御部は、バルク材7を、当該バルク材7を構成する金属の溶解温度未満の温度(以下、蒸着用温度という)に加熱し得るようにされており、上記基板温度制御部は、基板Kを、触媒金属(金属微粒子)の蒸発温度以上で且つカーボンナノチューブCの耐熱温度以下の温度(以下、蒸発用温度という)にし得るようにされている。なお、触媒金属の蒸発温度は、この触媒金属がナノ粒子であるから、バルク材7の蒸発温度より低いのは勿論のこと、バルク材7の溶解温度よりも低い。また、カーボンナノチューブCの耐熱温度は、還元ガス下(酸化性物質が無い状態)だと高くなり、2000℃以上である。ここで、蒸着用温度は、バルク材7を構成する金属の溶解温度を超えないものとして、蒸発用温度よりも0〜100℃(好ましくは40〜80℃)低い温度で設定される。なぜなら、バルク材7の温度(蒸着用温度)が基板Kの温度(蒸発用温度)よりも遥かに低ければ、蒸発してバルク材7に蒸着した触媒金属が、バルク材7と一体化せずナノ粒子のままとなり、再び蒸発してカーボンナノチューブCに再付着するからである。   Although not shown, the temperature control device includes a bulk material temperature control unit that controls the heating temperature by the bulk material heating heater and a substrate temperature control unit that controls the heating temperature by the substrate heating heater 6. The bulk material temperature control unit can heat the bulk material 7 to a temperature lower than the melting temperature of the metal constituting the bulk material 7 (hereinafter referred to as a deposition temperature), and the substrate temperature control unit The substrate K can be set to a temperature not lower than the evaporation temperature of the catalyst metal (metal fine particles) and not higher than the heat resistant temperature of the carbon nanotube C (hereinafter referred to as an evaporation temperature). The catalyst metal evaporation temperature is lower than the evaporation temperature of the bulk material 7 as well as the evaporation temperature of the bulk material 7 because the catalyst metal is nanoparticles. In addition, the heat resistant temperature of the carbon nanotube C is high under a reducing gas (in the absence of an oxidizing substance) and is 2000 ° C. or higher. Here, the temperature for vapor deposition is set at a temperature 0 to 100 ° C. (preferably 40 to 80 ° C.) lower than the temperature for evaporation, assuming that it does not exceed the melting temperature of the metal constituting the bulk material 7. This is because if the temperature of the bulk material 7 (temperature for vapor deposition) is much lower than the temperature of the substrate K (temperature for evaporation), the catalyst metal evaporated and deposited on the bulk material 7 will not be integrated with the bulk material 7. This is because the nanoparticles remain as they are, and are evaporated again to reattach to the carbon nanotubes C.

次に、上述した装置1を用いて触媒金属を除去する方法について説明する。
予め、バルク材7を、底面が水平支持台5に対して平行となるようにして、バルク材保持具8で除去室2内に配置しておく。そして、仕切弁4を開にして、基板Kを連通口3から除去室2内に入れ、カーボンナノチューブCが形成された面を上にして基板Kを水平支持台5に載置し、仕切弁4を閉にする。
Next, a method for removing the catalytic metal using the above-described apparatus 1 will be described.
The bulk material 7 is previously placed in the removal chamber 2 with the bulk material holder 8 so that the bottom surface is parallel to the horizontal support 5. Then, the gate valve 4 is opened, the substrate K is put into the removal chamber 2 through the communication port 3, the substrate K is placed on the horizontal support 5 with the surface on which the carbon nanotubes C are formed facing upward, 4 is closed.

その後、ガス供給部12により除去室2内に還元ガスを供給するとともに、真空ポンプ22により除去室2内から還元ガスを排出して、除去室2内の圧力を10−5〜10−2Pa程度にしておく。 Thereafter, the reducing gas is supplied into the removal chamber 2 by the gas supply unit 12, and the reducing gas is discharged from the removal chamber 2 by the vacuum pump 22 so that the pressure in the removal chamber 2 is 10 −5 to 10 −2 Pa. Keep it at a degree.

そして、温度制御装置により、バルク材7が蒸着用温度、基板Kが蒸発用温度となるように加熱する。基板Kの加熱時間は、蒸発用温度にもよるが、触媒金属が確実に蒸発して除去されるためにも、1〜10時間程度である。   Then, the temperature control device heats the bulk material 7 so that the deposition temperature and the substrate K become the evaporation temperature. Although the heating time of the substrate K depends on the evaporation temperature, it is about 1 to 10 hours in order to surely remove the catalyst metal by evaporation.

基板Kが蒸発用温度に達すると、この基板Kに形成されたカーボンナノチューブCから触媒金属が蒸発する。なお、蒸発用温度はカーボンナノチューブCの耐熱温度以下であるから、基板Kが蒸発用温度に達しても、カーボンナノチューブCは損傷しない。   When the substrate K reaches the evaporation temperature, the catalytic metal evaporates from the carbon nanotubes C formed on the substrate K. Since the evaporation temperature is lower than the heat resistant temperature of the carbon nanotube C, the carbon nanotube C is not damaged even when the substrate K reaches the evaporation temperature.

カーボンナノチューブCから蒸発した触媒金属のうち、一部は真空ポンプ22により除去室2から排出され、残りはバルク材7の蒸着面7Dに蒸着する(図1の破線矢印参照)。バルク材7は、蒸着用温度(蒸発用温度より0〜100℃低い温度)であるとともに、触媒金属と同種の金属からなるので、バルク材7に蒸着した触媒金属は、バルク材7と一体化する。また、除去室2内に還元ガスが供給されているので、蒸着を妨げる酸化膜が蒸着面7Dに生成しない。さらに、蒸着面7Dが鏡面加工されているので、蒸着面7Dに蒸着した触媒金属は、よりバルク材7と一体化しやすくなり、再び蒸発しない。   A part of the catalyst metal evaporated from the carbon nanotube C is discharged from the removal chamber 2 by the vacuum pump 22, and the rest is deposited on the deposition surface 7D of the bulk material 7 (see the broken line arrow in FIG. 1). Since the bulk material 7 has a vapor deposition temperature (a temperature lower by 0 to 100 ° C. than the evaporation temperature) and is made of the same kind of metal as the catalyst metal, the catalyst metal deposited on the bulk material 7 is integrated with the bulk material 7. To do. Further, since the reducing gas is supplied into the removal chamber 2, an oxide film that hinders vapor deposition is not generated on the vapor deposition surface 7D. Furthermore, since the vapor deposition surface 7D is mirror-finished, the catalyst metal deposited on the vapor deposition surface 7D is more easily integrated with the bulk material 7, and does not evaporate again.

カーボンナノチューブCから触媒金属が十分に除去されると、温度制御装置により除去室2内を常温に戻し、仕切弁4を開にして基板Kを取り出す。
以下、上記実施の形態をより具体的に示した実施例に係る触媒金属の除去方法について説明する。
When the catalytic metal is sufficiently removed from the carbon nanotubes C, the inside of the removal chamber 2 is returned to room temperature by the temperature control device, the gate valve 4 is opened, and the substrate K is taken out.
Hereinafter, a method for removing a catalyst metal according to an example showing the above embodiment more specifically will be described.

カーボンナノチューブCを形成した熱CVD法では、触媒金属として鉄触媒を用いた。したがって、触媒金属を除去する装置1には、バルク材7として、鉄触媒と同種の金属である鉄からなるものを用いた。ここで、鉄のナノ粒子の蒸発温度は1100℃程度で且つカーボンナノチューブCの耐熱温度は上述の通り2000℃以上であるから、蒸発用温度を1100〜2000℃程度の任意の温度にした。また、鉄の融点(当然ながら、溶解温度は融点以下である)は1535℃であるから、蒸発用温度が1500℃未満であれば蒸着用温度を蒸発用温度と同一または少し低温とし、蒸発用温度が1500℃以上であれば蒸着用温度を1500℃以下の温度で一定にした。さらに、除去室2内を10−5〜10−2Paの任意の圧力にし、基板Kの加熱時間を鉄触媒が確実に除去される時間(1〜10時間の任意の時間)とした。また、還元ガスとしてHガスを用いた。 In the thermal CVD method in which the carbon nanotube C was formed, an iron catalyst was used as the catalyst metal. Therefore, for the apparatus 1 for removing the catalyst metal, the bulk material 7 is made of iron which is the same kind of metal as the iron catalyst. Here, the evaporation temperature of the iron nanoparticles is about 1100 ° C., and the heat-resistant temperature of the carbon nanotube C is 2000 ° C. or more as described above. Therefore, the evaporation temperature is set to an arbitrary temperature of about 1100 to 2000 ° C. Further, since the melting point of iron (of course, the melting temperature is not higher than the melting point) is 1535 ° C., if the evaporation temperature is less than 1500 ° C., the vapor deposition temperature is set equal to or slightly lower than the evaporation temperature. If temperature was 1500 degreeC or more, the temperature for vapor deposition was made constant at the temperature of 1500 degrees C or less. Furthermore, the inside of the removal chamber 2 was set to an arbitrary pressure of 10 −5 to 10 −2 Pa, and the heating time of the substrate K was set to a time for reliably removing the iron catalyst (an arbitrary time of 1 to 10 hours). Further, H 2 gas was used as the reducing gas.

このような条件下で、カーボンナノチューブCから鉄触媒を確実に除去して、高純度で高品質のカーボンナノチューブCを得ることができた。
このように、上述した実施の形態および実施例に係る触媒金属の除去方法によると、垂直配向のカーボンナノチューブCから、触媒金属を蒸発させてバルク鉄に蒸着させるので、カーボンナノチューブCの垂直配向を維持したまま、触媒金属を除去することができる。
Under such conditions, the iron catalyst was surely removed from the carbon nanotubes C, and high-purity and high-quality carbon nanotubes C could be obtained.
As described above, according to the catalyst metal removal method according to the above-described embodiment and examples, the catalyst metal is evaporated from the vertically aligned carbon nanotubes C and deposited on the bulk iron. While maintained, the catalytic metal can be removed.

また、バルク材7が、触媒金属と同種の金属からなるとともに、蒸着した触媒金属がバルク材7と一体化する温度(蒸着用温度)に設定されているので、蒸着した触媒金属がバルク材7と一体化することで、当該触媒金属が再蒸発してカーボンナノチューブCに再付着することを防止し、確実に触媒金属を除去することができる。   Further, since the bulk material 7 is made of the same kind of metal as the catalyst metal and is set to a temperature at which the deposited catalyst metal is integrated with the bulk material 7 (deposition temperature), the deposited catalyst metal is the bulk material 7. , It is possible to prevent the catalyst metal from re-evaporating and reattaching to the carbon nanotubes C, and to remove the catalyst metal reliably.

さらに、蒸着面7Dが基板Kと平行に配置されるとともに、蒸着を妨げる酸化膜が蒸着面7Dに生成しないので、蒸発した触媒金属が蒸着面7Dに蒸着しやすく、また蒸着面7Dが鏡面加工されているので、蒸着した触媒金属がよりバルク材7と一体化しやすくなり、したがって、より確実に触媒金属を除去することができる。   Furthermore, since the vapor deposition surface 7D is arranged in parallel with the substrate K and an oxide film that prevents vapor deposition is not generated on the vapor deposition surface 7D, the evaporated catalyst metal is easily deposited on the vapor deposition surface 7D, and the vapor deposition surface 7D is mirror-finished. Therefore, the deposited catalyst metal can be more easily integrated with the bulk material 7, and therefore the catalyst metal can be more reliably removed.

また、カーボンナノチューブCの垂直配向を維持したまま、より確実に触媒金属が除去されることで、高純度で高品質のカーボンナノチューブを得ることができる。
ところで、上記実施の形態および実施例では、還元ガスの例としてHガスについて説明したが、これに限定されるものではなく、バルク材7の蒸着面7Dに酸化膜が生成するのを防ぐものであれば、COガスなど他の還元ガスであってもよい。
Further, the catalytic metal is more reliably removed while maintaining the vertical alignment of the carbon nanotubes C, whereby high-purity and high-quality carbon nanotubes can be obtained.
However, those in the foregoing embodiment and the foregoing examples have been described H 2 gas as an example of the reducing gas, which is not limited to this, the oxide film on the deposition surface 7D of the bulk material 7 is prevented from generating Any other reducing gas such as CO gas may be used.

また、上記実施の形態では、触媒金属およびバルク材が、鉄、コバルトまたはニッケルからなるとして説明したが、鉄、コバルトおよび/またはニッケルを含む合金からなるものであってもよい。   Moreover, in the said embodiment, although the catalyst metal and the bulk material demonstrated as consisting of iron, cobalt, or nickel, you may consist of an alloy containing iron, cobalt, and / or nickel.

ところで、上記実施の形態および実施例で説明した触媒金属を除去する装置1は、バッチ式の装置1として説明したが、図2に示すように、カーボンナノチューブ製造装置の一部に組み込まれた装置1’であってもよい。すなわち、この装置1’は、カーボンナノチューブ供給室40の下流側で且つカーボンナノチューブ冷却室50の上流側に隣接して配置されたものである。また、上記装置1’は、除去室2内から仕切弁4が撤去され、水平支持台5の代わりに上流側から下流側に基板Kを搬送するカーボンファイバークロスコンベア31が設けられ、このカーボンファイバークロスコンベア31を回動させるカーボンローラ32が当該カーボンファイバークロスコンベア31の下面に接して配置されたものである。この装置1’によると、高純度で高品質のカーボンナノチューブを連続して得ることができる。また、図2に示す基板KおよびカーボンナノチューブCは、分断されたものであるが、連続的な帯状のものであってもよい。   By the way, although the apparatus 1 for removing the catalyst metal described in the above embodiment and examples has been described as a batch type apparatus 1, as shown in FIG. 2, an apparatus incorporated in a part of the carbon nanotube production apparatus. 1 'may be sufficient. In other words, this apparatus 1 ′ is disposed downstream of the carbon nanotube supply chamber 40 and adjacent to the upstream side of the carbon nanotube cooling chamber 50. Further, the apparatus 1 ′ is provided with a carbon fiber cross conveyor 31 in which the gate valve 4 is removed from the removal chamber 2 and the substrate K is transported from the upstream side to the downstream side instead of the horizontal support 5. A carbon roller 32 for rotating the cross conveyor 31 is disposed in contact with the lower surface of the carbon fiber cross conveyor 31. According to this apparatus 1 ', high-purity and high-quality carbon nanotubes can be obtained continuously. Moreover, although the board | substrate K and the carbon nanotube C which are shown in FIG. 2 are parted, a continuous strip | belt shape may be sufficient.

K 基板
C カーボンナノチューブ
1 装置
2 除去室
3 連通口
4 仕切弁
5 水平支持台
6 基板加熱用ヒータ
7 バルク材
8 バルク材保持具
9 断熱材
11 ガス供給管
12 ガス供給部
21 ガス排出管
22 真空ポンプ
31 カーボンファイバークロスコンベア
32 カーボンローラ
40 カーボンナノチューブ供給室
50 カーボンナノチューブ冷却室
K substrate C carbon nanotube 1 device 2 removal chamber 3 communication port 4 gate valve 5 horizontal support stand 6 heater for substrate 7 bulk material 8 bulk material holder 9 heat insulating material 11 gas supply pipe 12 gas supply pipe 21 gas discharge pipe 22 vacuum Pump 31 Carbon fiber cross conveyor 32 Carbon roller 40 Carbon nanotube supply chamber 50 Carbon nanotube cooling chamber

Claims (5)

基板に触媒金属を介して形成させたカーボンナノチューブから、ナノ粒子である当該触媒金属を除去する触媒金属の除去方法であって、
上記基板の近傍に配置された上記触媒金属と同種の金属からなる金属材を、当該金属材の溶解温度未満である蒸着用温度で加熱し、
所定の真空度において、上記金属材に還元ガスを供給し、上記基板を上記触媒金属の蒸発温度以上である蒸発用温度で加熱することにより、当該触媒金属を蒸発させて上記金属材に蒸着させ
上記蒸着用温度が、上記蒸発用温度よりも0〜100℃低い温度であることを特徴とする触媒金属の除去方法。
A catalyst metal removal method for removing the catalyst metal, which is a nanoparticle, from a carbon nanotube formed on the substrate via the catalyst metal,
Heating a metal material made of the same kind of metal as the catalyst metal disposed in the vicinity of the substrate at a deposition temperature that is lower than the melting temperature of the metal material,
By supplying a reducing gas to the metal material at a predetermined degree of vacuum and heating the substrate at an evaporation temperature that is equal to or higher than the evaporation temperature of the catalyst metal, the catalyst metal is evaporated and deposited on the metal material. ,
The deposition temperature, method for removing the catalyst metal, wherein 0 to 100 ° C. lower temperature der Rukoto than the evaporating temperature.
金属材が、蒸発した触媒金属を蒸着させ得る蒸着面を有し、
上記蒸着面が、鏡面加工されていることを特徴とする請求項1に記載の触媒金属の除去方法。
The metal material has a deposition surface on which the evaporated catalyst metal can be deposited;
2. The method for removing a catalytic metal according to claim 1, wherein the vapor deposition surface is mirror-finished.
金属材の蒸着面と、基板のカーボンナノチューブが形成された面とが略平行であることを特徴とする請求項2に記載の触媒金属の除去方法。   The method for removing a catalytic metal according to claim 2, wherein the vapor deposition surface of the metal material and the surface of the substrate on which the carbon nanotubes are formed are substantially parallel. 触媒金属および金属材が、鉄、コバルトまたはニッケルからなることを特徴とする請求項1乃至3のいずれか一項に記載の触媒金属の除去方法。 The method for removing a catalyst metal according to any one of claims 1 to 3, wherein the catalyst metal and the metal material are iron, cobalt, or nickel . 所定の真空度が、10 −5 〜10 −2 Paであることを特徴とする請求項1乃至4のいずれか一項に記載の触媒金属の除去方法。 The method for removing a catalytic metal according to claim 1 , wherein the predetermined degree of vacuum is 10 −5 to 10 −2 Pa .
JP2011211702A 2011-09-28 2011-09-28 Method for removing catalytic metal Expired - Fee Related JP5679939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211702A JP5679939B2 (en) 2011-09-28 2011-09-28 Method for removing catalytic metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211702A JP5679939B2 (en) 2011-09-28 2011-09-28 Method for removing catalytic metal

Publications (2)

Publication Number Publication Date
JP2013071863A JP2013071863A (en) 2013-04-22
JP5679939B2 true JP5679939B2 (en) 2015-03-04

Family

ID=48476636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211702A Expired - Fee Related JP5679939B2 (en) 2011-09-28 2011-09-28 Method for removing catalytic metal

Country Status (1)

Country Link
JP (1) JP5679939B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9512545B2 (en) 2004-11-09 2016-12-06 Board Of Regents, The University Of Texas System Nanofiber ribbons and sheets and fabrication and application thereof
US9784249B2 (en) 2012-08-01 2017-10-10 The Board Of Regents, The University Of Texas System Coiled and non-coiled twisted nanofiber yarn torsional and tensile actuators

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407984A (en) * 2013-07-16 2013-11-27 清华大学 Carbon nano-tube purification method based on weak oxidizing atmosphere oxidation assisted acid treatment
GB201421664D0 (en) * 2014-12-05 2015-01-21 Q Flo Ltd Method
KR102450076B1 (en) * 2020-07-21 2022-10-05 한국과학기술연구원 Method for safety tuning of carbon nanotubes including catalyst metal particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203761A (en) * 1987-02-18 1988-08-23 Sumitomo Metal Ind Ltd Steel product having high-adhesiveness cr film and its production
JPH0229456U (en) * 1988-08-12 1990-02-26
JP4306990B2 (en) * 2001-10-18 2009-08-05 独立行政法人産業技術総合研究所 Nonlinear optical element
JP4177244B2 (en) * 2003-12-15 2008-11-05 日信工業株式会社 Method for producing porous composite metal material
JP2005220500A (en) * 2004-02-09 2005-08-18 Bussan Nanotech Research Institute Inc Heat treatment apparatus for carbon fiber
JP2005306681A (en) * 2004-04-22 2005-11-04 Toyota Motor Corp Method for removing catalyst metal
JP4466549B2 (en) * 2005-12-06 2010-05-26 トヨタ自動車株式会社 Method for producing single-walled carbon nanotubes with increased diameter
JP2012082105A (en) * 2010-10-12 2012-04-26 Toyota Motor Corp Method for manufacturing carbon nanotube for fuel cell, and electrode catalyst for fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9512545B2 (en) 2004-11-09 2016-12-06 Board Of Regents, The University Of Texas System Nanofiber ribbons and sheets and fabrication and application thereof
US9605363B2 (en) 2004-11-09 2017-03-28 The Board Of Regents, The University Of Texas System Fabrication of nanofiber ribbons and sheets
US9845554B2 (en) 2004-11-09 2017-12-19 Board Of Regents, The University Of Texas System Fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
US9944529B2 (en) 2004-11-09 2018-04-17 Board Of Regents, The University Of Texas System Fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
US10196271B2 (en) 2004-11-09 2019-02-05 The Board Of Regents, The University Of Texas System Fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
US9784249B2 (en) 2012-08-01 2017-10-10 The Board Of Regents, The University Of Texas System Coiled and non-coiled twisted nanofiber yarn torsional and tensile actuators
US9903350B2 (en) 2012-08-01 2018-02-27 The Board Of Regents, The University Of Texas System Coiled and non-coiled twisted polymer fiber torsional and tensile actuators
US10480491B2 (en) 2012-08-01 2019-11-19 The Board Of Regents, The University Of Texas System Coiled, twisted nanofiber yarn and polymer fiber torsional actuators
US11143169B2 (en) 2012-08-01 2021-10-12 Board Of Regents, The University Of Texas System Coiled and twisted nanofiber yarn and polymer fiber actuators
US11149720B2 (en) 2012-08-01 2021-10-19 Board Of Regents, The University Of Texas System Thermally-powered coiled polymer fiber tensile actuator system and method
US11629705B2 (en) 2012-08-01 2023-04-18 The Board Of Regents, The University Of Texas System Polymer fiber actuators

Also Published As

Publication number Publication date
JP2013071863A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5679939B2 (en) Method for removing catalytic metal
KR101711504B1 (en) Vapor deposition system and supply head
US20120040516A1 (en) Method and device for depositing semiconductor film on substrate using close-spaced sublimation process
KR101711502B1 (en) Method and apparatus for vapor deposition
US9150417B2 (en) Process for growth of graphene
US20150140211A1 (en) Scalable 2D-Film CVD Synthesis
JP2000303168A (en) DEVICE FOR VAPOR-DEPOSITING CdS AND CdTe LAYER ON SUBSTRATE BY CSS METHOD
US20180179629A1 (en) Apparatus and Methods for High Volume Production of Graphene and Carbon Nanotubes on Large-Sized Thin Foils
KR101168259B1 (en) Apparatus for composing graphene continuously using roll-to-roll process
KR20140041793A (en) Vapor deposition material source and method for making same
WO2009135344A1 (en) Method of self-assembly growing carbon nanotubess by chemical-vapor-deposition without the use of metal catalyst
Xu et al. Towards intrinsically pure graphene grown on copper
TWI418644B (en) Gasifier
CN109355628A (en) Crucible is deposited
TWI698399B (en) Metal chloride generating device and method for manufacturing metal powder
Ullah et al. Quasistatic equilibrium chemical vapor deposition of graphene
JP5303304B2 (en) Production apparatus and production method for aligned carbon nanotube assembly
JP2012136761A (en) Vacuum deposition device
Sano et al. Synthesis of carbon nanotubes in graphite microchannels in gas-flow and submerged-in-liquid reactors
JP2005001938A (en) Method of manufacturing carbon nanotube
JP2005112659A (en) Apparatus and method for manufacturing carbon nanotube
JP5582978B2 (en) Gas discharge device for reaction chamber
JP7315148B2 (en) CERAMICS, CERAMIC COATING METHOD, AND CERAMIC COATING APPARATUS
Jia et al. Preparation of meter-scale Cu foils with decimeter grains and the use for the synthesis of graphene films
TW202314014A (en) Close couple diffuser for physical vapor deposition web coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5679939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees