JP2005220500A - Heat treatment apparatus for carbon fiber - Google Patents

Heat treatment apparatus for carbon fiber Download PDF

Info

Publication number
JP2005220500A
JP2005220500A JP2004032443A JP2004032443A JP2005220500A JP 2005220500 A JP2005220500 A JP 2005220500A JP 2004032443 A JP2004032443 A JP 2004032443A JP 2004032443 A JP2004032443 A JP 2004032443A JP 2005220500 A JP2005220500 A JP 2005220500A
Authority
JP
Japan
Prior art keywords
heat treatment
carbon fiber
low temperature
furnace body
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004032443A
Other languages
Japanese (ja)
Inventor
Fuminori Munekane
史典 宗兼
Hirosuke Kawaguchi
宏輔 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bussan Nanotech Research Institute Inc
Original Assignee
Bussan Nanotech Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc filed Critical Bussan Nanotech Research Institute Inc
Priority to JP2004032443A priority Critical patent/JP2005220500A/en
Priority to PCT/JP2005/001779 priority patent/WO2005075718A1/en
Publication of JP2005220500A publication Critical patent/JP2005220500A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment apparatus for a carbon fiber, capable of preventing such a situation as to deteriorate quality of a product and having excellent mass productivity. <P>SOLUTION: This heat treatment apparatus for the carbon fiber has a furnace body which composes such a flow channel as to allow a flow of the carbon fiber produced from a transition metal as a catalyst and a carbon source by its own weight and conducts heat treatment of the carbon fiber by heating the carbon fiber in the flow channel, wherein the heat treatment apparatus is equipped with a high-temperature part which is positioned in the furnace body and kept at a temperature higher than a boiling point of the transition metal when the heat treatment is conducted, a low-temperature part which is positioned in the furnace body and kept at a temperature lower than a melting point of the transition metal when the heat treatment is conducted, and a heating means for heating the low-temperature part up to a temperature higher than the melting point of the transition metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微細な炭素繊維やカーボンナノチューブを熱処理する際に、微細炭素繊維及びカーボンナノチューブに含まれる金属を除去し、炭素純度の高い製品を製造するための装置に関する。   The present invention relates to an apparatus for producing a product having a high carbon purity by removing metals contained in fine carbon fibers and carbon nanotubes when heat treating fine carbon fibers and carbon nanotubes.

従来より、炭素源および遷移金属触媒を用いて製造した微細炭素繊維を高温熱処理する方法としては、微細炭素繊維が充填された坩堝を熱処理炉内に供給し、該熱処理炉内で坩堝ごと高温加熱することにより、微細炭素繊維の熱処理を行うバッチ式が広く用いられている。   Conventionally, as a method for high-temperature heat treatment of fine carbon fibers produced using a carbon source and a transition metal catalyst, a crucible filled with fine carbon fibers is supplied into a heat treatment furnace, and the whole crucible is heated at a high temperature in the heat treatment furnace. By doing so, a batch system for heat-treating fine carbon fibers is widely used.

しかしながら、バッチ式では、嵩密度の低い(例えば、10kg/m以下)微細炭素繊維を量産に見合った量だけ処理する上で大容量の坩堝が要求されるとともに、加熱される微細炭素繊維の熱容量と比較して坩堝の熱容量が著しく大きいため、熱効率が著しく低くなる結果、熱処理にかかるコストの増大が避けられず、量産性に乏しいものとなる。 However, the batch method requires a large-capacity crucible for processing a fine carbon fiber having a low bulk density (for example, 10 kg / m 3 or less) in an amount suitable for mass production, and the heating of the fine carbon fiber to be heated. Since the heat capacity of the crucible is remarkably large as compared with the heat capacity, the heat efficiency is remarkably lowered. As a result, the cost for heat treatment is inevitably increased, and the mass productivity is poor.

そこで、他の従来技術としては、圧縮成形した炭素繊維を横置きした熱処理炉に順次装入する方法がある(特許文献1)。この従来技術では、バッチ式と比較して大幅に熱効率を向上させることができ、しかも、加熱される微細炭素繊維の嵩密度を大きくできるため、バッチ式と比較して量産性に優れたものといえる。
特開平8−60444号公報
Therefore, as another conventional technique, there is a method of sequentially charging a compression-molded carbon fiber into a horizontal heat treatment furnace (Patent Document 1). In this conventional technology, the thermal efficiency can be greatly improved as compared with the batch type, and the bulk density of the fine carbon fibers to be heated can be increased, so that the mass productivity is superior to the batch type. I can say that.
Japanese Patent Laid-Open No. 8-60444

ところで、上記熱処理では、例えば黒鉛化を図る目的で微細炭素繊維を2000℃以上の高温に加熱するようにしており、この結果、微細炭素繊維中に残留する使用済み触媒としての遷移金属が蒸発し、微細炭素繊維から分離、除去し得る状態となる。   By the way, in the above heat treatment, for example, for the purpose of graphitization, the fine carbon fibers are heated to a high temperature of 2000 ° C. or higher, and as a result, the transition metal as a spent catalyst remaining in the fine carbon fibers evaporates. In this state, the fine carbon fiber can be separated and removed.

ここで、残留する遷移金属を微細炭素繊維から除去することは、製品としての微細炭素繊維の品質を向上させる上で、さらには該微細炭素繊維を樹脂などに混合して得られた応用製品の品質を向上させる上で不可欠であり、上記熱処理によって微細炭素繊維から蒸発、分離した遷移金属を捕集するとともに、微細炭素繊維への再付着を防止することが望ましい。   Here, the removal of the remaining transition metal from the fine carbon fiber is to improve the quality of the fine carbon fiber as a product, and further to the application product obtained by mixing the fine carbon fiber with a resin or the like. It is indispensable for improving the quality, and it is desirable to collect the transition metal evaporated and separated from the fine carbon fiber by the heat treatment and to prevent reattachment to the fine carbon fiber.

しかしながら、上記従来技術では、微細炭素繊維から蒸発、分離した遷移金属を捕集して所定の時期まで維持する機能、および捕集した遷移金属を該時期に熱処理炉内から排出する機能を有していないため、微細炭素繊維への遷移金属の再付着によって製品の品質を損なう事態や、熱処理炉内に長期に渡って付した遷移金属が熱処理炉の交換時期を早めることによって熱処理コストが著しく増大し、量産性を損なう事態を招来する虞れがある。   However, the above prior art has a function of collecting and maintaining the transition metal evaporated and separated from the fine carbon fiber until a predetermined time, and a function of discharging the collected transition metal from the heat treatment furnace at the time. As a result, the quality of the product is impaired due to the reattachment of the transition metal to the fine carbon fiber, and the transition metal attached to the heat treatment furnace over a long period of time increases the heat treatment cost significantly by accelerating the replacement time of the heat treatment furnace. However, there is a possibility of causing a situation that impairs mass productivity.

しかも、上記従来技術では、圧縮成形した微細炭素繊維をそのまま熱処理炉内に供給するものであり、熱処理炉内に供給された微細炭素繊維類が弾性復元力によって膨張して熱処理炉を閉塞し易く、この復旧にかかるコストによって熱処理コストが増大する結果、量産性を一層損なう虞れがある。   Moreover, in the above prior art, the compression-molded fine carbon fibers are supplied as they are into the heat treatment furnace, and the fine carbon fibers supplied into the heat treatment furnace are easily expanded by the elastic restoring force, thereby closing the heat treatment furnace. As a result of the increase in the heat treatment cost due to the cost for the restoration, there is a possibility that the mass productivity is further impaired.

本発明は、上記実情に鑑みて、製品の品質を損なう事態を防止することができ、しかも、量産性に優れた炭素繊維の熱処理装置を提供する。   In view of the above circumstances, the present invention provides a carbon fiber heat treatment apparatus that can prevent a situation in which the quality of a product is impaired and is excellent in mass productivity.

本発明の前記目的は、触媒としての遷移金属と炭素源とから製造された炭素繊維の自重による流動を許容する流路を構成する炉本体を備え、前記流路内の炭素繊維を加熱して熱処理する炭素繊維の熱処理装置において、前記炉本体において前記熱処理の際に前記遷移金属の沸点よりも高い温度に維持される高温部と、前記炉本体において前記熱処理の際に前記遷移金属の融点よりも低い温度に維持される低温部と、前記低温部を前記遷移金属の融点よりも高い温度に加熱するための加熱手段とを備えることにより、達成される。   The object of the present invention is to provide a furnace body that constitutes a flow passage that allows a flow of carbon fibers produced from a transition metal as a catalyst and a carbon source by its own weight, and heating the carbon fibers in the flow passage. In the heat treatment apparatus for carbon fiber to be heat-treated, a high temperature portion maintained at a temperature higher than the boiling point of the transition metal during the heat treatment in the furnace body, and a melting point of the transition metal during the heat treatment in the furnace body This is achieved by including a low temperature part maintained at a low temperature and a heating means for heating the low temperature part to a temperature higher than the melting point of the transition metal.

また、前記目的は、前記低温部を、前記炉本体において前記高温部よりも前記流路の下流側となる部位に設けることにより、達成される。   Moreover, the said objective is achieved by providing the said low temperature part in the site | part which becomes a downstream of the said flow path rather than the said high temperature part in the said furnace main body.

また、前記目的は、前記低温部を、前記炉本体において前記高温部よりも前記流路の上流側となる部位に設けることにより、達成される。   Moreover, the said objective is achieved by providing the said low temperature part in the site | part which becomes an upstream of the said flow path rather than the said high temperature part in the said furnace main body.

また、前記目的は、前記低温部を、前記炉本体において前記流路の上流側となる部位および下流側となる部位の両方に設け、前記高温部を、前記炉本体において前記低温部の相互間に挟まれる中央部に設けることにより、達成される。   Further, the object is to provide the low temperature portion in both the upstream portion and the downstream portion of the flow path in the furnace body, and the high temperature portion between the low temperature portions in the furnace body. This is achieved by providing it in the central part sandwiched between the two.

また、前記目的は、前記炉本体において前記流路の上流側となる部位に前記低温部が設けられた場合、不活性ガスを前記流路の下流側から上流側へ流動させることにより、達成される。   In addition, the object is achieved by causing an inert gas to flow from the downstream side to the upstream side of the flow path when the low-temperature portion is provided at the upstream side of the flow path in the furnace body. The

また、前記目的は、前記不活性ガスの流速が0.1〜20mm/秒であることにより、達成される。   Moreover, the said objective is achieved because the flow rate of the said inert gas is 0.1-20 mm / sec.

また、前記目的は、前記流路が鉛直方向に沿って延在することにより、達成される。   Moreover, the said objective is achieved because the said flow path extends along a perpendicular direction.

また、前記目的は、前記炉本体が、前記高温部および前記低温部において前記流路を構成する個々の内周面を互いに同軸に構成し、かつ、前記高温部および前記低温部のうち、前記流路の下流側となる方が上流側となる方よりも開口面積を大きくしたことにより、達成される。   Further, the object is that the furnace body is configured such that individual inner peripheral surfaces constituting the flow path in the high temperature portion and the low temperature portion are coaxial with each other, and among the high temperature portion and the low temperature portion, This is achieved by making the opening area larger on the downstream side of the flow path than on the upstream side.

また、前記目的は、前記炉本体に、前記低温部に付された遷移金属が前記加熱手段の動作によって溶融した場合に、該溶融した遷移金属の自重による前記炉本体の内周面での流れを遮断する遮断手段を備えることにより、達成される。   Further, the object is to flow on the inner peripheral surface of the furnace body due to the weight of the melted transition metal when the transition metal attached to the low temperature part is melted by the operation of the heating means. This is achieved by providing a shut-off means for shutting off.

また、前記目的は、前記遮断手段を、前記低温部の下端となる部位に設けることにより、達成される。   Further, the object is achieved by providing the blocking means at a site that is the lower end of the low temperature part.

また、前記目的は、前記遮断手段が、前記炉本体において前記低温部に対して前記流路の下流側に隣接する部位の開口面積を、当該低温部の下端の開口面積よりも大きくすることによって構成されることにより、達成される。   Further, the object is that the blocking means makes the opening area of the portion adjacent to the downstream side of the flow path with respect to the low temperature portion in the furnace body larger than the opening area of the lower end of the low temperature portion. This is achieved by configuring.

また、前記目的は、前記遮断手段が、前記炉本体の内周面の中心軸に沿った断面形状において鋭角の鉤状を成す部分であることにより、達成される。   Further, the object is achieved by the fact that the blocking means is a portion having an acute hook shape in a cross-sectional shape along the central axis of the inner peripheral surface of the furnace body.

また、前記目的は、前記遮断手段が、前記炉本体の内周面の中心軸に対する径外方向に占める寸法が5〜15mmであることにより、達成される。   Moreover, the said objective is achieved because the dimension for which the said interruption | blocking means occupies the radial direction with respect to the central axis of the internal peripheral surface of the said furnace main body is 5-15 mm.

また、前記目的は、前記炉本体において前記流路を構成する内周面の少なくとも一部を、前記流路の下流側に向けて次第に開口面積が大きくなるテーパ状に成すことにより、達成される。   Further, the object is achieved by forming at least a part of the inner peripheral surface constituting the flow path in the furnace body into a tapered shape with an opening area gradually increasing toward the downstream side of the flow path. .

また、前記目的は、前記高温部および前記低温部を、円筒状あるいは円錐状に成すことにより、達成される。   The object is achieved by forming the high temperature part and the low temperature part into a cylindrical shape or a conical shape.

また、前記目的は、前記遷移金属が鉄であることにより、達成される。   The object is achieved by the transition metal being iron.

以上のように、本発明によると、炉本体において熱処理の際に遷移金属の沸点よりも高い温度に維持される高温部と、炉本体において熱処理の際に遷移金属の融点よりも低い温度に維持される低温部とを備え、高温部で微細炭素繊維から蒸発、分離した遷移金属を低温部で捕集し、所定の時期まで炉本体の内周面に堆積させて維持するようにした。また、低温部を遷移金属の融点よりも高い温度に加熱するための加熱手段を備え、炉本体の内周面に堆積した遷移金属を所定の時期まで熱処理炉内に維持するとともに、該時期に熱処理炉から排出するようにした。これにより、前記低温部を、炉本体において高温部よりも流路の上流側又は下流側に、或いは流路の上流側と下流側の両方に設け、高温部で蒸発、分離した遷移金属を低温部で確実に捕集し、所定の時期まで維持することができる。また、低温部に堆積した遷移金属を前記加熱手段によって溶融させた場合、溶融した遷移金属は、自重によって炉本体の内周面に沿って流れ、低温部の下端で前記遮断手段によって炉本体の内周面での流れが遮断され、炉本体の下端まで落下して外部に排出することができる。その結果、熱処理炉内で蒸発、分離した遷移金属は、前記熱処理炉内に供給された微細炭素繊維への再付着を防止することができ、製品の品質が向上する。また、熱処理炉内で堆積した遷移金属は、必要に応じて所定の時期に熱処理炉内から排出することができるので、熱処理炉の寿命が延び、熱処理コストを著しく減少させ、量産性が向上する。しかも、流路の下流側となる方が上流側となる方よりも開口面積を大きくしたため、熱処理炉内に供給された微細炭素繊維類の熱処理炉内における流動性を阻害する事態を防止でき、熱処理のバラツキを可及的に抑え、均質な炭素繊維を得ることができる。   As described above, according to the present invention, the high temperature part maintained at a temperature higher than the boiling point of the transition metal during the heat treatment in the furnace body, and the lower temperature than the melting point of the transition metal during the heat treatment in the furnace body. The transition metal evaporated and separated from the fine carbon fiber in the high temperature part is collected in the low temperature part, and is deposited and maintained on the inner peripheral surface of the furnace body until a predetermined time. In addition, a heating means for heating the low temperature part to a temperature higher than the melting point of the transition metal is provided, and the transition metal deposited on the inner peripheral surface of the furnace body is maintained in the heat treatment furnace until a predetermined time. It was discharged from the heat treatment furnace. Thereby, the low temperature part is provided in the furnace body at the upstream side or downstream side of the flow path from the high temperature part, or at both the upstream side and the downstream side of the flow path, and the transition metal evaporated and separated in the high temperature part is cooled to a low temperature. It can be reliably collected at the section and maintained until a predetermined time. Further, when the transition metal deposited in the low temperature part is melted by the heating means, the melted transition metal flows along the inner peripheral surface of the furnace main body by its own weight, and at the lower end of the low temperature part, The flow on the inner peripheral surface is cut off, and it can drop to the lower end of the furnace body and be discharged outside. As a result, the transition metal evaporated and separated in the heat treatment furnace can be prevented from reattaching to the fine carbon fibers supplied in the heat treatment furnace, and the quality of the product is improved. In addition, the transition metal deposited in the heat treatment furnace can be discharged from the heat treatment furnace at a predetermined time if necessary, thereby extending the life of the heat treatment furnace, significantly reducing the heat treatment cost, and improving mass productivity. . Moreover, since the opening area is larger on the downstream side of the flow path than on the upstream side, it is possible to prevent a situation in which the fluidity in the heat treatment furnace of fine carbon fibers supplied to the heat treatment furnace is hindered, The variation in heat treatment is suppressed as much as possible, and a homogeneous carbon fiber can be obtained.

以下、図面を参照しながら、本発明の実施形態を説明するが、本発明は以下の実施形態にのみ限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.

図1は、本発明の第1実施例に係る微細炭素繊維、例えば気相法炭素繊維(VGCF)やカーボンナノチューブ(CNT)の熱処理装置(黒鉛化処理装置)の概略構成を示す。図1において、10は、熱処理装置の縦型熱処理炉(黒鉛化炉)の炉本体であり、炉本体10は、鉛直方向に沿って延在する略筒状に形成されている。この炉本体10の中央付近に、触媒としての遷移金属、例えば鉄の融点よりも低い温度に維持される低温部11と、鉄の沸点よりも高い温度に維持される高温部12とが配されている。この低温部11と高温部12は、上下方向に隣接して配置され、上方に低温部11が、下方に高温部12がそれぞれ配されている。炉本体10の内部には、炭素繊維の自重による流動を許容する流路Pが形成されている。   FIG. 1 shows a schematic configuration of a heat treatment apparatus (graphitization apparatus) for fine carbon fibers, for example, vapor grown carbon fibers (VGCF) or carbon nanotubes (CNT) according to a first embodiment of the present invention. In FIG. 1, 10 is a furnace body of a vertical heat treatment furnace (graphitization furnace) of the heat treatment apparatus, and the furnace body 10 is formed in a substantially cylindrical shape extending along the vertical direction. Near the center of the furnace body 10, a transition metal as a catalyst, for example, a low temperature part 11 maintained at a temperature lower than the melting point of iron, and a high temperature part 12 maintained at a temperature higher than the boiling point of iron are arranged. ing. The low temperature part 11 and the high temperature part 12 are disposed adjacent to each other in the vertical direction, and the low temperature part 11 is disposed above and the high temperature part 12 is disposed below. A flow path P that allows the flow of the carbon fiber by its own weight is formed inside the furnace body 10.

また、炉本体10の外周側において、低温部11および高温部12の径外方向に位置する位置に、加熱手段16が配されている。この加熱手段16は、炉加熱用の高周波コイル17から構成され、高周波コイル17は、低温部11を加熱する低温用コイル(上側のコイル)17aと、高温部12を加熱する高温用コイル(下側のコイル)17bとから構成される。これらの低温用コイル17aおよび高温用コイル17bには、図示しない供給電源からの供給電力を変えることによって、低温部11および高温部12の温度を可変にするようになっている。これにより、低温部11を鉄の融点よりも低い温度に維持するとともに、高温部12を鉄の沸点よりも高い温度に維持するようになっている。その結果、炉本体10の内部には、高温部12に鉄を蒸発させる高温域A1と、低温部11に蒸発した鉄を捕集する低温域A2とが形成される。ちなみに、鉄の沸点は、2800℃前後であり、鉄の融点は、1500℃前後であるため、高温域A1を2800℃よりも大きくなるように設定し、かつ低温域A2を1500℃よりも小さくなるように設定する必要がある。   Further, on the outer peripheral side of the furnace body 10, the heating means 16 is arranged at a position located in the radially outward direction of the low temperature part 11 and the high temperature part 12. The heating means 16 includes a high-frequency coil 17 for furnace heating, and the high-frequency coil 17 includes a low-temperature coil (upper coil) 17a for heating the low-temperature part 11 and a high-temperature coil (lower) for heating the high-temperature part 12. Side coil) 17b. In the low temperature coil 17a and the high temperature coil 17b, the temperature of the low temperature part 11 and the high temperature part 12 is made variable by changing power supplied from a power supply (not shown). Thus, the low temperature part 11 is maintained at a temperature lower than the melting point of iron, and the high temperature part 12 is maintained at a temperature higher than the boiling point of iron. As a result, a high temperature region A1 in which iron is evaporated in the high temperature portion 12 and a low temperature region A2 in which the evaporated iron is collected in the low temperature portion 11 are formed in the furnace body 10. Incidentally, since the boiling point of iron is around 2800 ° C. and the melting point of iron is around 1500 ° C., the high temperature region A1 is set to be larger than 2800 ° C., and the low temperature region A2 is smaller than 1500 ° C. It is necessary to set so that

よって、この熱処理炉では、炉本体10に配された低温部11と高温部12を、それぞれ鉄の沸点や融点を設定温度の基準として、鉄の沸点よりも高い温度に設定された高温部12で、微細炭素繊維から鉄を蒸発、分離させるとともに、この蒸発、分離した鉄をその融点よりも低い温度に設定された低温部11で捕集するようにしている。   Therefore, in this heat treatment furnace, the low temperature part 11 and the high temperature part 12 arranged in the furnace body 10 are respectively set to a temperature higher than the boiling point of iron with the boiling point and melting point of iron as the reference temperature. Thus, the iron is evaporated and separated from the fine carbon fiber, and the evaporated and separated iron is collected in the low temperature portion 11 set to a temperature lower than the melting point thereof.

また、低温部11および高温部12では、流路Pを構成する内周面が、互いに同軸に構成されていて、低温部11および高温部12のうち、流路Pの下流側となる高温部12は、流路Pの上流側となる低温部11よりも開口面積が大きくなるように形成されている。これにより、流路Pの下流側への炭素繊維の流動が妨げられる事態を確実に防止でき、熱処理のバラツキを可及的に抑え、均質な炭素繊維を得ることができる。   Moreover, in the low temperature part 11 and the high temperature part 12, the internal peripheral surface which comprises the flow path P is comprised mutually coaxially, and the high temperature part which becomes the downstream of the flow path P among the low temperature part 11 and the high temperature part 12 12 is formed so that the opening area is larger than that of the low temperature part 11 on the upstream side of the flow path P. Thereby, the situation where the flow of the carbon fiber to the downstream side of the flow path P is prevented can be reliably prevented, the variation in the heat treatment is suppressed as much as possible, and the homogeneous carbon fiber can be obtained.

また、低温部11および高温部12は、下方に向けて緩やかに拡径する円錐状或いは円筒状に形成され、高温部12の下端から炉本体10の下端に至る流路Pでは、炉本体10の下端に向けて次第に開口面積が大きくなるテーパ状に形成されている。これにより、流路Pの途中に、段差など、流動に対して障害となる不連続箇所がなくなり、炭素繊維の流動がスムーズになる。   Further, the low temperature part 11 and the high temperature part 12 are formed in a conical shape or a cylindrical shape whose diameter gradually increases downward, and in the flow path P from the lower end of the high temperature part 12 to the lower end of the furnace main body 10, the furnace main body 10. It is formed in a taper shape with an opening area gradually increasing toward the lower end of. As a result, there are no discontinuous parts that obstruct the flow, such as steps, in the middle of the flow path P, and the flow of the carbon fibers becomes smooth.

また、炉本体10の上方には、反応炉から取り出された状態の炭素繊維を供給するためのホッパー13が配されていて、該ホッパー13から、スクリューフィーダなどにより炭素繊維を炉本体10の上方から供給するようになっている。さらに、炉本体10には、下方にガス導入口14、上方にガス排出口15がそれぞれ設けられ、アルゴンやヘリウムなどの不活性ガスを、0.1〜20mm/秒の流速で、炭素繊維の流動方向とは逆方向、すなわち流路Pの下流側から上流側へ流動させるようになっている。これにより、高温部12で蒸発、分離した気体状の鉄は、不活性ガスの流動に伴って、自重による降下力に抗して上方に移動し、低温部11で効率よく捕集することができる。   In addition, a hopper 13 for supplying carbon fibers taken out from the reaction furnace is disposed above the furnace body 10, and carbon fibers are fed from the hopper 13 to the upper side of the furnace body 10 by a screw feeder or the like. To supply from. Further, the furnace body 10 is provided with a gas inlet 14 on the lower side and a gas outlet 15 on the upper side, and an inert gas such as argon or helium is made of carbon fiber at a flow rate of 0.1 to 20 mm / second. It is made to flow in the direction opposite to the flow direction, that is, from the downstream side of the flow path P to the upstream side. Thereby, the gaseous iron evaporated and separated in the high temperature part 12 moves upward against the descent force due to its own weight along with the flow of the inert gas, and can be efficiently collected in the low temperature part 11. it can.

また、低温部11の下端となる部位、すなわち低温部11と高温部12との境界位置には、図2に拡大して示すように、炉本体10の内周面の中心軸に沿った断面形状において、鋭角の鉤状を成す角部18が形成され、鉄を熱処理炉から排出させる場合、溶融した鉄の自重によって炉本体10の内周面での流れを遮断する遮断手段を形成するようになっている。この角部18は、炉本体10の内周面の中心軸に対する径外方向に占める寸法((D4−D3)/2)が5〜15mmに設定される。   Further, at the boundary position between the low temperature part 11 and the high temperature part 12 at the lower end of the low temperature part 11, as shown in an enlarged view in FIG. 2, a cross section along the central axis of the inner peripheral surface of the furnace body 10. In the shape, a corner 18 having an acute bowl shape is formed, and when iron is discharged from the heat treatment furnace, a blocking means for blocking the flow on the inner peripheral surface of the furnace body 10 by the dead weight of the molten iron is formed. It has become. The corner portion 18 is set to have a dimension ((D4-D3) / 2) occupying 5-15 mm in the radially outward direction with respect to the central axis of the inner peripheral surface of the furnace body 10.

ここで、角部18における開口面積(内径D3)は、炉本体10の上端部(内径D1)よりも大きく、下端部(内径D2)よりも小さく形成され、全体として、流路Pの開口面積を流路Pの下流側に向けて次第に開口面積を大きく形成し(D1<D3<D4<D2)、炭素繊維の流動を妨げる事態を確実に防止することができる。   Here, the opening area (inner diameter D3) in the corner 18 is formed to be larger than the upper end (inner diameter D1) of the furnace body 10 and smaller than the lower end (inner diameter D2). As the opening area is gradually increased toward the downstream side of the flow path P (D1 <D3 <D4 <D2), it is possible to reliably prevent a situation in which the flow of the carbon fiber is hindered.

なお、炉本体10の下方には、炉本体10で黒鉛化処理を終えた炭素繊維を外部に排出するための押出し機構19が配されている。この押出し機構19は、炭素繊維の蓄積部20と、該蓄積部20内で図1の左右方向に往復動自在に配された排出板21と、該排出板21を往復動させるモータ22とから構成される。これにより、モータ22が駆動すると、排出板21が往復動し、蓄積部20に堆積した炭素繊維を熱処理炉内から排出するようになっている。   An extrusion mechanism 19 for discharging the carbon fiber that has been graphitized in the furnace body 10 to the outside is disposed below the furnace body 10. The pushing mechanism 19 includes a carbon fiber accumulating portion 20, a discharge plate 21 disposed in the accumulating portion 20 so as to reciprocate in the left-right direction in FIG. 1, and a motor 22 for reciprocating the discharge plate 21. Composed. As a result, when the motor 22 is driven, the discharge plate 21 reciprocates, and the carbon fibers deposited in the storage unit 20 are discharged from the heat treatment furnace.

次に、炭素繊維から鉄を除去する熱処理工程を説明する。   Next, a heat treatment process for removing iron from the carbon fiber will be described.

まず、予め加熱手段16の低温用および高温用コイル17a、17bに供給電源から電力が供給された状態において、炭素繊維がホッパー13から炉本体10内に供給されると、当該炭素繊維をグラファイト構造に近づけるべく緻密化するための熱処理が開始される。   First, when the carbon fiber is supplied from the hopper 13 into the furnace body 10 in a state where power is supplied from the supply power to the low temperature and high temperature coils 17a and 17b of the heating means 16 in advance, the carbon fiber is converted into a graphite structure. Heat treatment for densification to be close to is started.

その際、熱処理炉の炉内圧が1気圧(常圧)に維持され、高温部12で炭素繊維に含有する鉄は、沸点よりも高い温度下におかれる結果、炭素繊維から蒸発、分離する。この蒸発、分離した鉄は、図3に示すように、上方に移動すると、低温部11で鉄の融点よりも低い温度で冷やされて、低温部11の内周面に捕集されて次第に堆積する。   At that time, the internal pressure of the heat treatment furnace is maintained at 1 atm (normal pressure), and the iron contained in the carbon fiber at the high temperature part 12 is evaporated and separated from the carbon fiber as a result of being placed at a temperature higher than the boiling point. As shown in FIG. 3, when the evaporated and separated iron moves upward, it is cooled at a temperature lower than the melting point of iron in the low temperature portion 11, collected on the inner peripheral surface of the low temperature portion 11, and gradually deposited. To do.

また、低温部11で堆積した鉄は、必要に応じて回収されるが、この回収作業は、加熱手段16によって低温部11を鉄の融点より高い温度まで加熱することによって、低温部11に堆積した鉄を溶融させることによって達成される。つまり、溶融した鉄は、液滴となり、自重により低温部11の内周面に沿って流れ落ちる。そして、低温部11の下端に位置する角部18によって鉄の液滴の流れが遮断され、炉本体10の下方に自重によって落下する。   Further, the iron deposited in the low temperature part 11 is recovered as necessary. This recovery operation is performed by heating the low temperature part 11 to a temperature higher than the melting point of iron by the heating means 16, thereby depositing in the low temperature part 11. This is achieved by melting molten iron. That is, the molten iron becomes droplets and flows down along the inner peripheral surface of the low temperature portion 11 by its own weight. Then, the flow of the iron droplet is blocked by the corner portion 18 located at the lower end of the low temperature portion 11, and falls under the furnace body 10 by its own weight.

その際、炉本体10の下方には、鉄の液滴を回収するための装置、例えばトレイ23が配置され、落下した鉄の液滴を溜めるようになっていて、回収作業の終了時にトレイ23を交換して鉄は外部に回収される。なお、鉄の回収は、熱処理炉の運転頻度にもよるが、熱処理炉内に堆積した鉄が運転に支障を来たす以前に、例えば一週間おきに行えばよい。   At that time, an apparatus for collecting iron droplets, for example, a tray 23 is disposed below the furnace body 10 so as to collect the dropped iron droplets. The iron is recovered to the outside. The iron recovery may be performed, for example, every other week before the iron accumulated in the heat treatment furnace hinders the operation, although it depends on the operation frequency of the heat treatment furnace.

従って、高温部12で蒸発、分離した鉄は、炭素繊維から取り除かれて、低温部11で効率よく捕集されるため、炉本体10の内部で蒸発した鉄が滞留することがなくなり、炭素繊維への再付着を防止することができる。また、低温部11を鉄の融点よりも高い温度に加熱することによって、低温部11の内周面に付着した鉄は、溶融して低温部11の内周面に沿って流れ落ち、熱処理炉の運転に支障を来たす前に炉本体10から外部に排出することができる。その際、低温部11は、高温部12から炉本体10の下端に向けて、その開口面積が次第に大きくなるように形成されるとともに、低温部11の下端には、低温部11の内周面での流れを遮断する角部18が設けられているため、溶融した鉄は、低温部11の内周面に沿って流れた後、角部18から炉本体10の下端側に落下することになる。よって、炭素繊維から鉄を確実に除去することができ、煩雑な操作を伴うことなく熱処理炉内から排出することができる。   Therefore, the iron evaporated and separated in the high temperature part 12 is removed from the carbon fiber and efficiently collected in the low temperature part 11, so that the evaporated iron does not stay inside the furnace body 10, and the carbon fiber Reattachment to can be prevented. Further, by heating the low temperature part 11 to a temperature higher than the melting point of iron, the iron adhering to the inner peripheral surface of the low temperature part 11 melts and flows down along the inner peripheral surface of the low temperature part 11, It can be discharged to the outside from the furnace body 10 before it hinders operation. At that time, the low temperature portion 11 is formed so that the opening area gradually increases from the high temperature portion 12 toward the lower end of the furnace body 10, and the inner peripheral surface of the low temperature portion 11 is formed at the lower end of the low temperature portion 11. Since the corner portion 18 that interrupts the flow at is provided, the molten iron flows along the inner peripheral surface of the low temperature portion 11 and then falls from the corner portion 18 to the lower end side of the furnace body 10. Become. Therefore, iron can be reliably removed from the carbon fiber and can be discharged from the heat treatment furnace without complicated operations.

また、図4は、本発明の第2実施例を示し、前記第1実施例の変形例である。この第2実施例では、第1実施例と同一の部材には同一の符合を付して、その説明を省略する。   FIG. 4 shows a second embodiment of the present invention, which is a modification of the first embodiment. In the second embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第1実施例では、炉本体10において低温部11を高温部12よりも流路Pの上流側となる部位に設けた。これに対し、第2実施例では、図4に示すように、炉本体10において流路Pの上流側となる部位に低温部11を設けるだけでなく、もう一つの低温部31を流路Pの下流側となる部位にも設けた構成になっている。すなわち、高温部12は、2つの低温部11、31に挟まれる中央部に設けられる。   In the first embodiment, the low temperature portion 11 in the furnace main body 10 is provided at a site on the upstream side of the flow path P relative to the high temperature portion 12. On the other hand, in the second embodiment, as shown in FIG. 4, not only the low temperature part 11 is provided at the upstream side of the flow path P in the furnace body 10, but another low temperature part 31 is provided in the flow path P. It is the structure provided also in the site | part used as the downstream of this. That is, the high temperature part 12 is provided in the central part sandwiched between the two low temperature parts 11 and 31.

また、低温部11、31は、高温部12の上下両側に一対設けられるのに対応し、高周波コイル17も、上方から順に、上側の低温用コイル17aと、高温用コイル17bと、下側の低温用コイル17cと3つのコイルが設けられ、各コイル17a、17b、17cへの供給電力を変えることによって、低温部11、31および高温部12の温度を可変にするようになっている。すなわち、熱処理の際に、低温部11、31では、鉄などの遷移金属の融点よりも低い温度に維持されるとともに、高温部12では、鉄などの遷移金属の沸点よりも高い温度に維持されるようになっている。   Further, the low temperature parts 11 and 31 correspond to a pair provided on both the upper and lower sides of the high temperature part 12, and the high frequency coil 17 also includes, in order from the top, the upper low temperature coil 17a, the high temperature coil 17b, and the lower side coil. A low temperature coil 17c and three coils are provided, and the temperatures of the low temperature parts 11, 31 and the high temperature part 12 are made variable by changing the power supplied to the coils 17a, 17b, 17c. That is, during the heat treatment, the low temperature parts 11 and 31 are maintained at a temperature lower than the melting point of the transition metal such as iron, and the high temperature part 12 is maintained at a temperature higher than the boiling point of the transition metal such as iron. It has become so.

また、上側の低温部11、高温部12、および下側の低温部31の下端には、それぞれ炉本体10の内周面の中心軸に沿った断面形状において鋭角の鉤状をなす角部32、33、34が形成されていて、溶融した鉄の自重による炉本体10の内周面、すなわち上側の低温部11、高温部12、および下側の低温部31の各内周面における鉄の液滴の流れを遮断する遮断手段が形成されている。この角部32、33、34は、それぞれ、炉本体10の内周面に段差を成して、該内周面の中心軸に対する径外方向に占める寸法を5〜15mmに設定している。   Further, at the lower ends of the upper low temperature portion 11, the high temperature portion 12, and the lower low temperature portion 31, each corner portion 32 forms an acute bowl shape in a cross-sectional shape along the central axis of the inner peripheral surface of the furnace body 10. , 33, 34 are formed, and the inner peripheral surface of the furnace body 10 due to the dead weight of the molten iron, that is, the inner peripheral surfaces of the upper low temperature portion 11, the high temperature portion 12, and the lower low temperature portion 31 A blocking means for blocking the flow of the droplet is formed. Each of the corners 32, 33, and 34 forms a step on the inner peripheral surface of the furnace body 10, and the dimension of the inner peripheral surface in the radially outward direction with respect to the central axis is set to 5 to 15 mm.

ここで、角部32、33、34における開口面積(内径D3、D4、D5)は、流路Pの下流側に向けて次第に大きく形成され(D3<D4<D5)、角部32における開口面積(内径D3)は、炉本体10の上端部(内径D1)よりも大きく、角部34(内径D5)における開口面積(D5)は、下端部(内径D2)よりも小さく形成されている。よって、角部32、33、34における開口面積(内径D3、D4、D5)は、全体として、流路Pの開口面積を流路Pの下流側に向けて次第に開口面積を大きく形成され(D1<D3<D4<D5<D2)、炭素繊維の流動を妨げる事態を確実に防止することができる。   Here, the opening areas (inner diameters D3, D4, and D5) at the corners 32, 33, and 34 are gradually increased toward the downstream side of the flow path P (D3 <D4 <D5). The (inner diameter D3) is larger than the upper end (inner diameter D1) of the furnace body 10, and the opening area (D5) in the corner 34 (inner diameter D5) is smaller than the lower end (inner diameter D2). Therefore, the opening areas (inner diameters D3, D4, and D5) at the corners 32, 33, and 34 are formed so that the opening area of the flow path P is gradually increased toward the downstream side of the flow path P as a whole (D1). <D3 <D4 <D5 <D2), it is possible to reliably prevent a situation in which the flow of the carbon fiber is hindered.

また、高温部12における温度は、鉄の沸点よりも高い温度に設定され、上側および下側の低温部11、31における温度は、鉄の融点よりも低い温度に設定される。そのため、図5に示すように、高温部12で蒸発した鉄は上方に移動すると、上側の低温部11の内周面に捕集され、下方に移動すると、下側の低温部31の内周面に捕集される。   Moreover, the temperature in the high temperature part 12 is set to a temperature higher than the boiling point of iron, and the temperature in the upper and lower low temperature parts 11 and 31 is set to a temperature lower than the melting point of iron. Therefore, as shown in FIG. 5, when the iron evaporated in the high temperature portion 12 moves upward, it is collected on the inner peripheral surface of the upper low temperature portion 11, and when moved downward, the inner periphery of the lower low temperature portion 31. It is collected on the surface.

また、鉄の熱処理炉内からの回収時、鉄の融点よりも高い温度まで加熱された上側および下側の低温部11、31で溶融して液滴となって流れ落ちる。その際、低温部11、31の下端には、遮断手段としての鉤状の角部32、34が形成されていて、低温部11、31の内周面に沿って流れ落ちる鉄の液滴の流れを遮断し、鉄の液滴は、角部32、34から炉本体10の下端まで自重によって落下する。   When the iron is recovered from the heat treatment furnace, it melts at the upper and lower low temperature portions 11 and 31 heated to a temperature higher than the melting point of iron and flows down as droplets. At this time, bowl-shaped corners 32 and 34 as blocking means are formed at the lower ends of the low-temperature parts 11 and 31, and the flow of iron droplets flowing down along the inner peripheral surfaces of the low-temperature parts 11 and 31. The iron droplet falls from its corners 32, 34 to the lower end of the furnace body 10 by its own weight.

なお、炉本体10の下方には、鉄の回収装置、例えばトレイ23が配置され、鉄の液滴を溜めておき、回収作業の終了時に、トレイ23を交換して熱処理炉内から排出するようになっている。   Note that an iron recovery device, for example, a tray 23 is disposed below the furnace body 10 so as to collect iron droplets, and at the end of the recovery operation, the tray 23 is replaced and discharged from the heat treatment furnace. It has become.

従って、第2実施例では、炭素繊維から蒸発した鉄が、高温部12から上方に移動するだけでなく、下方にも移動して滞留するという現象に着目し、上側および下側の低温部11、31で鉄を捕集することができるようにした。よって、高温部12の上側および下側の両側に、低温部11、31を設けたので、炭素繊維から蒸発した鉄を効率よく低温部11、31で捕集することができ、炭素繊維に含有する鉄などの遷移金属の回収効率が向上する。   Therefore, in the second embodiment, paying attention to the phenomenon that the iron evaporated from the carbon fiber not only moves upward from the high temperature part 12 but also moves downward and stays there, the upper and lower low temperature parts 11. 31 was able to collect iron. Therefore, since the low temperature parts 11 and 31 are provided on both the upper side and the lower side of the high temperature part 12, iron evaporated from the carbon fiber can be efficiently collected by the low temperature parts 11 and 31 and contained in the carbon fiber. The recovery efficiency of transition metals such as iron is improved.

ちなみに、本発明者は、図1に示す装置を用いて、炭素繊維に含有される遷移金属の回収実験を行った。   Incidentally, the present inventor conducted an experiment for recovering the transition metal contained in the carbon fiber using the apparatus shown in FIG.

この実験では、炉本体10を高周波コイル17によって加熱する方式で、炭素繊維から遷移金属を回収する。また、炭素繊維としてCNTを用い、遷移金属として鉄を用いて、炉本体10は、内径D1を300mmとし、内部有効高さLを2mとした。また、低温部11および高温部12の個々の高さを625mmとした。そして、アルゴンガスの空塔速度を5.4mm/secとし、CNTに含有される鉄を炉本体10の上方から20.7kg/hrの速度で連続的に供給し、高温部12を2600℃で1時間運転して、CNTから鉄を回収する実験を行った。   In this experiment, the transition metal is recovered from the carbon fiber by heating the furnace body 10 with the high frequency coil 17. Moreover, CNT was used as the carbon fiber, iron was used as the transition metal, and the furnace body 10 had an inner diameter D1 of 300 mm and an internal effective height L of 2 m. The individual heights of the low temperature part 11 and the high temperature part 12 were set to 625 mm. Then, the superficial velocity of the argon gas is set to 5.4 mm / sec, and iron contained in the CNT is continuously supplied from above the furnace body 10 at a rate of 20.7 kg / hr. An experiment was conducted in which iron was recovered from CNTs by operating for 1 hour.

その結果、CNTに鉄が7.6重量%の濃度で炉内に残留していたが、除去処理実験後、CNTを熱処理炉外に排出した後に、低温部11を2600℃で加熱して鉄を溶融させて回収した結果、鉄回収重量は、480gであった。   As a result, iron remained in the furnace at a concentration of 7.6% by weight in the CNT, but after the removal treatment experiment, after the CNT was discharged out of the heat treatment furnace, the low temperature part 11 was heated at 2600 ° C. As a result of melting and recovering, the iron recovery weight was 480 g.

なお、上記各実施例では、CNTに含有される遷移金属として鉄を例に説明したが、これに限定されない。鉄以外の金属でも、当該金属の沸点や融点などの温度特性に応じて、高温部の温度設定を前記金属の沸点よりも大きくし、低温部の温度設定を前記金属の融点よりも小さくし、かつ熱処理炉内から遷移金属を回収する際に、低温部の温度設定を前記金属の融点よりも大きくするように、高周波コイルへの供給電力を設定するだけでよく、上記各実施例と同様の作用および効果を奏することができる。   In each of the above embodiments, iron is described as an example of the transition metal contained in CNT, but the present invention is not limited to this. Even a metal other than iron, depending on the temperature characteristics such as the boiling point and melting point of the metal, the temperature setting of the high temperature part is larger than the boiling point of the metal, the temperature setting of the low temperature part is smaller than the melting point of the metal, And when recovering the transition metal from the heat treatment furnace, it is only necessary to set the power supplied to the high-frequency coil so that the temperature setting of the low temperature part is larger than the melting point of the metal. Actions and effects can be achieved.

本発明の第1実施例に係る炭素繊維の熱処理装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat processing apparatus of the carbon fiber which concerns on 1st Example of this invention. 上記熱処理装置の炉本体に形成された角部を表示する拡大断面図である。It is an expanded sectional view which displays the corner | angular part formed in the furnace main body of the said heat processing apparatus. 図1に示す熱処理装置の要部断面を示す図である。It is a figure which shows the principal part cross section of the heat processing apparatus shown in FIG. 本発明の第2実施例を示し、図1に対応する図である。FIG. 3 shows a second embodiment of the present invention and corresponds to FIG. 1. 図4に示す熱処理装置の要部断面を示す図である。It is a figure which shows the principal part cross section of the heat processing apparatus shown in FIG.

符号の説明Explanation of symbols

P 流路
10 炉本体
11 低温部
12 高温部
16 加熱手段
17 高周波コイル
17a 低温用コイル
17b 高温用コイル
17c 低温用コイル
18 角部
19 押出し機構
31 低温部
32 角部
33 角部
34 角部
P flow path 10 furnace body 11 low temperature part 12 high temperature part 16 heating means 17 high frequency coil 17a low temperature coil 17b high temperature coil 17c low temperature coil 18 corner part 19 extrusion mechanism 31 low temperature part 32 corner part 33 corner part 34 corner part

Claims (16)

触媒としての遷移金属と炭素源とから製造された炭素繊維の自重による流動を許容する流路を構成する炉本体を備え、前記流路内の炭素繊維を加熱して熱処理する炭素繊維の熱処理装置において、
前記炉本体において前記熱処理の際に前記遷移金属の沸点よりも高い温度に維持される高温部と、
前記炉本体において前記熱処理の際に前記遷移金属の融点よりも低い温度に維持される低温部と、
前記低温部を前記遷移金属の融点よりも高い温度に加熱するための加熱手段とを備えることを特徴とする炭素繊維の熱処理装置。
A carbon fiber heat treatment apparatus comprising a furnace body that constitutes a flow passage allowing flow of carbon fibers produced from a transition metal as a catalyst and a carbon source due to its own weight, and heating the carbon fibers in the flow passage for heat treatment In
A high temperature portion maintained at a temperature higher than the boiling point of the transition metal during the heat treatment in the furnace body;
A low temperature part maintained at a temperature lower than the melting point of the transition metal during the heat treatment in the furnace body;
And a heating means for heating the low temperature portion to a temperature higher than the melting point of the transition metal.
前記低温部は、前記炉本体において前記高温部よりも前記流路の下流側となる部位に設けられることを特徴とする請求項1に記載の炭素繊維の熱処理装置。 2. The carbon fiber heat treatment apparatus according to claim 1, wherein the low-temperature portion is provided in a portion of the furnace body that is downstream of the flow path from the high-temperature portion. 前記低温部は、前記炉本体において前記高温部よりも前記流路の上流側となる部位に設けられることを特徴とする請求項1に記載の炭素繊維の熱処理装置。 2. The carbon fiber heat treatment apparatus according to claim 1, wherein the low temperature portion is provided in a portion of the furnace body that is upstream of the flow path from the high temperature portion. 前記低温部は、前記炉本体において前記流路の上流側となる部位および下流側となる部位の両方に設けられ、
前記高温部は、前記炉本体において前記低温部の相互間に挟まれる中央部に設けられることを特徴とする請求項1に記載の炭素繊維の熱処理装置。
The low temperature part is provided in both the site on the upstream side and the site on the downstream side of the flow path in the furnace body,
The said high temperature part is provided in the center part pinched | interposed between the said low temperature parts in the said furnace main body, The heat processing apparatus of the carbon fiber of Claim 1 characterized by the above-mentioned.
前記炉本体において前記流路の上流側となる部位に前記低温部が設けられた場合、不活性ガスを前記流路の下流側から上流側へ流動させることを特徴とする請求項3又は4に記載の炭素繊維の熱処理装置。 The inert gas is allowed to flow from the downstream side to the upstream side of the flow path when the low temperature portion is provided at a site on the upstream side of the flow path in the furnace body. The carbon fiber heat treatment apparatus described. 前記不活性ガスの流速が0.1〜20mm/秒であることを特徴とする請求項5に記載の炭素繊維の熱処理装置。
6. The carbon fiber heat treatment apparatus according to claim 5, wherein the flow rate of the inert gas is 0.1 to 20 mm / second.
前記流路が鉛直方向に沿って延在することを特徴とする請求項1ないし6のいずれか一項に記載の炭素繊維の熱処理装置。 The carbon fiber heat treatment apparatus according to any one of claims 1 to 6, wherein the flow path extends along a vertical direction. 前記炉本体は、前記高温部および前記低温部において前記流路を構成する個々の内周面が互いに同軸に構成され、かつ、前記高温部および前記低温部のうち、前記流路の下流側となる方が上流側となる方よりも開口面積が大きいことを特徴とする請求項1ないし7のいずれか一項に記載の炭素繊維の熱処理装置。 The furnace main body is configured such that individual inner peripheral surfaces constituting the flow path are coaxial with each other in the high temperature part and the low temperature part, and of the high temperature part and the low temperature part, the downstream side of the flow path The carbon fiber heat treatment apparatus according to any one of claims 1 to 7, wherein the opening area is larger than the upstream side. 前記炉本体は、前記低温部に付された遷移金属が前記加熱手段の動作によって溶融した場合に、該溶融した遷移金属の自重による前記炉本体の内周面での流れを遮断する遮断手段を備えることを特徴とする請求項1ないし8のいずれか一項に記載の炭素繊維の熱処理装置。 When the transition metal attached to the low temperature part is melted by the operation of the heating means, the furnace body has a blocking means for blocking the flow on the inner peripheral surface of the furnace body due to the weight of the molten transition metal. The carbon fiber heat treatment apparatus according to any one of claims 1 to 8, further comprising: 前記遮断手段は、前記低温部の下端となる部位に設けられることを特徴とする請求項9に記載の炭素繊維の熱処理装置。 10. The carbon fiber heat treatment apparatus according to claim 9, wherein the blocking means is provided at a lower portion of the low temperature portion. 前記遮断手段は、前記炉本体において前記低温部に対して前記流路の下流側に隣接する部位の開口面積を、当該低温部の下端の開口面積よりも大きくすることによって構成されることを特徴とする請求項10に記載の炭素繊維の熱処理装置。 The blocking means is configured by making an opening area of a portion adjacent to the downstream side of the flow path with respect to the low temperature portion in the furnace body larger than an opening area of a lower end of the low temperature portion. The carbon fiber heat treatment apparatus according to claim 10. 前記遮断手段は、前記炉本体の内周面の中心軸に沿った断面形状において鋭角の鉤状を成す部分であることを特徴とする請求項11に記載の炭素繊維の熱処理装置。 12. The carbon fiber heat treatment apparatus according to claim 11, wherein the shut-off means is a portion having a hooked shape with an acute angle in a cross-sectional shape along the central axis of the inner peripheral surface of the furnace body. 前記遮断手段は、前記炉本体の内周面の中心軸に対する径外方向に占める寸法が5〜15mmであることを特徴とする請求項11又は12に記載の炭素繊維の熱処理装置。 13. The carbon fiber heat treatment apparatus according to claim 11, wherein the blocking means has a dimension occupying 5 to 15 mm in a radially outward direction with respect to a central axis of an inner peripheral surface of the furnace body. 前記炉本体において前記流路を構成する内周面の少なくとも一部は、前記流路の下流側に向けて次第に開口面積が大きくなるテーパ状を成すことを特徴とする請求項1ないし13のいずれか一項に記載の炭素繊維の熱処理装置。 14. At least a part of an inner peripheral surface constituting the flow path in the furnace body has a tapered shape with an opening area gradually increasing toward a downstream side of the flow path. The carbon fiber heat treatment apparatus according to claim 1. 前記高温部および前記低温部は、円筒状あるいは円錐状を成すことを特徴とする請求項1ないし14のいずれか一項に記載の炭素繊維の熱処理装置。 The carbon fiber heat treatment apparatus according to any one of claims 1 to 14, wherein the high temperature part and the low temperature part have a cylindrical shape or a conical shape. 前記遷移金属は、鉄であることを特徴とする請求項1ないし15のいずれか一項に記載の炭素繊維の熱処理装置。 The carbon fiber heat treatment apparatus according to any one of claims 1 to 15, wherein the transition metal is iron.
JP2004032443A 2004-02-09 2004-02-09 Heat treatment apparatus for carbon fiber Pending JP2005220500A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004032443A JP2005220500A (en) 2004-02-09 2004-02-09 Heat treatment apparatus for carbon fiber
PCT/JP2005/001779 WO2005075718A1 (en) 2004-02-09 2005-02-07 Apparatus for heat treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032443A JP2005220500A (en) 2004-02-09 2004-02-09 Heat treatment apparatus for carbon fiber

Publications (1)

Publication Number Publication Date
JP2005220500A true JP2005220500A (en) 2005-08-18

Family

ID=34836089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032443A Pending JP2005220500A (en) 2004-02-09 2004-02-09 Heat treatment apparatus for carbon fiber

Country Status (2)

Country Link
JP (1) JP2005220500A (en)
WO (1) WO2005075718A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284257A (en) * 2006-04-12 2007-11-01 Showa Denko Kk Carbon nanotube and method for producing the same
JP2013071863A (en) * 2011-09-28 2013-04-22 Hitachi Zosen Corp Method for removing catalyst metal
JP2018012627A (en) * 2016-07-21 2018-01-25 新日鐵住金株式会社 Manufacturing method of porous carbon material
CN109280997A (en) * 2018-09-20 2019-01-29 北京化工大学 The high-strength high-modules carbon fibre and preparation method thereof of low degree of graphitization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176222B2 (en) * 2006-12-07 2013-04-03 東海高熱工業株式会社 Vertical firing furnace and firing method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146635A (en) * 2001-08-27 2003-05-21 Mitsubishi Heavy Ind Ltd Method, apparatus and equipment for manufacturing carbon nanomaterial
JP2003146633A (en) * 2001-11-16 2003-05-21 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon nanotube
JP2003201630A (en) * 2001-12-26 2003-07-18 Nikkiso Co Ltd Method for post-treating carbon nanofiber and method for producing graphitized carbon nanofiber
WO2004038074A1 (en) * 2002-10-28 2004-05-06 Bussan Nanotech Reserch Institute Inc. Method and apparatus for heat treatment of powder of fine carbon fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257926A (en) * 1985-09-06 1987-03-13 Asahi Chem Ind Co Ltd Continuous production of carbon fiber with vapor-phase method
JPH11350257A (en) * 1998-06-05 1999-12-21 Nikkiso Co Ltd Gas phase growing carbon fiber production unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146635A (en) * 2001-08-27 2003-05-21 Mitsubishi Heavy Ind Ltd Method, apparatus and equipment for manufacturing carbon nanomaterial
JP2003146633A (en) * 2001-11-16 2003-05-21 National Institute Of Advanced Industrial & Technology Method for manufacturing carbon nanotube
JP2003201630A (en) * 2001-12-26 2003-07-18 Nikkiso Co Ltd Method for post-treating carbon nanofiber and method for producing graphitized carbon nanofiber
WO2004038074A1 (en) * 2002-10-28 2004-05-06 Bussan Nanotech Reserch Institute Inc. Method and apparatus for heat treatment of powder of fine carbon fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284257A (en) * 2006-04-12 2007-11-01 Showa Denko Kk Carbon nanotube and method for producing the same
JP2013071863A (en) * 2011-09-28 2013-04-22 Hitachi Zosen Corp Method for removing catalyst metal
JP2018012627A (en) * 2016-07-21 2018-01-25 新日鐵住金株式会社 Manufacturing method of porous carbon material
CN109280997A (en) * 2018-09-20 2019-01-29 北京化工大学 The high-strength high-modules carbon fibre and preparation method thereof of low degree of graphitization

Also Published As

Publication number Publication date
WO2005075718A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
US8557190B2 (en) Carbon nanotube synthesis process apparatus
EP2537799B1 (en) Apparatus for producing nanocarbon material and method for producing nanocarbon material
JP4918130B2 (en) Graphite crucible and silicon single crystal manufacturing equipment
JP5530351B2 (en) Precipitation of high-purity silicon using a high surface area gas-solid or gas-liquid interface and recovery from the liquid phase
JP2011521874A (en) Direct silicon casting or direct reaction metal casting
WO2005075718A1 (en) Apparatus for heat treatment of carbon fiber
JP2012525982A (en) Method and apparatus for producing a titanium alloy
JP5144999B2 (en) Material purification method
JP5074762B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
CN202350525U (en) Feeding device for electron beam cooling bed furnace
JP2011506901A (en) Method and apparatus for coarse separation of solid particles from gas containing solids
JP4817307B2 (en) Granular semiconductor manufacturing method and manufacturing apparatus
KR101381153B1 (en) Poly Silicon Manufacturing Apparatus Using Single Crystal Silicon Button
JP4238379B2 (en) Graphitized electric furnace
JP2004000881A (en) Method for producing silicon sphere and its production apparatus
WO2011149054A1 (en) Dust collector and dust collection method
JP6672909B2 (en) Copper alloy material manufacturing equipment
KR101397979B1 (en) Apparatus for Refining Silicon
KR101394161B1 (en) Apparatus for Refining Silicon
CN103420376B (en) Electron beam melting is utilized to manufacture the device and method of high-purity polycrystalline silicon
KR102132773B1 (en) Carrier gas circulation type apparatus and method for removing residual salt and impurity
KR101396478B1 (en) Poly Silicon Manufacturing Apparatus Using Sloped One-Way Coagulation Part
KR101475755B1 (en) Apparatus for Refining Silicon
JP2009033013A (en) Method of producing crystalline silicon particles
KR101401347B1 (en) Apparatus for Refining Silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006